WorldWideScience

Sample records for californium tellurides

  1. Metabolism and toxicity of californium

    International Nuclear Information System (INIS)

    Metabolism of californium can be compared with that of other transplutonium elements. The most important points are as follows: a fast blood clearance and fast bone uptake more important than liver uptake, a relatively high urinary excretion and kidney retention. Blood clearance of californium can be compared with that of americium. Distribution of californium 252 nitrate after intramuscular injection in rats was studied. There are very few experimental data on acute or long term toxicity of californium. (28 references)

  2. Magnetism in californium

    International Nuclear Information System (INIS)

    A SQUID-based magnetic susceptometer has been constructed for studying small radioactive samples at temperatures below 350 K and in magnetic fields up to 50 kilogauss. The device has been used to study californium (element 98) in a number of solid-state forms: the dhcp metal, several oxides (Cf2O3 in both the bcc and monoclinic structures, Cf7O12, CfO2 and BaCfO3), several monopnictides (CfN, CfAs and CfSb) and the trichloride (in both the hexagonal and orthorhombic structures). All of these materials were studied in polycrystalline form, and hexagonal CfCl3 was studied in single-crystal form as well. The susceptometer has the sensitivity to measure samples containing less than 10 micrograms of californium. The magnetic susceptibilities of all of the californium materials at temperatures above about 100 K are described well by the Curie-Weiss relationship. This behavior is consistent with the assumption that the magnetic 5f electrons are localized and that the paramagnetic behavior can be interpreted in terms of the properties of the free ion. The measured values of the effective paramagnetic moment, μ/sub eff/, for all the californium materials that were studied are reasonably consistent with theoretical values based on intermediate coupling models. All of the californium materials showed some indications of cooperative magnetic effects. The dhcp metal was observed to order ferromagnetically at 52 K, and all of the californium compounds studied showed signs of antiferromagnetic ordering, mostly at temperatures below 25 K. 91 refs., 50 figs., 19 tabs

  3. Californium Multiplier (CFX)

    International Nuclear Information System (INIS)

    The availability of 252Cf as an economical high-intensity neutron source has made it possible to construct compact neutron irradiation devices with widespread applications. The simplest such device consists of a single 252Cf source within a moderating and shielding medium. Higher neutron flux levels can be attained either through the use of more 252Cf or through source multiplication by means of a subcritical uranium assembly. Although the use of larger 252Cf sources to achieve higher neutron flux is technically straightforward, an economic penalty is paid as the source strength is increased. Larger californium sources imply larger initial investments to cover the cost of source material and larger operating costs resulting from the decay of the 252Cf source. A Californium Multiplier, the CFX, which produces a flux enhancement of 30 when compared to a conventional moderated 252Cf system has been designed, licensed, built, and tested by IRT Corporation. Such systems are now available on a commercial basis for both neutron radiography and neutron activation analysis. The first commercial CFX system was installed at the Research Laboratories of Eastman Kodak Company in Rochester, NY, in March 1975. This device, using 1 mg of 252Cf, is very stable and the neutron flux generated by the CFX is very reproducible. The performance characteristics of this system are summarized

  4. Californium--palladium metal neutron source material

    Science.gov (United States)

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  5. Californium-252 Neutron Sources for Medical Applications

    International Nuclear Information System (INIS)

    Californium-252 neutron sources are being prepared to investigate the value of this radionuclide in diagnosing and treating diseases. A source resembling a cell-loaded radium needle was developed for neutron therapy. Since therapy needles are normally implanted in the body, very conservative design criteria were established to prevent leakage of radioactive. Methods are being developed to prepare very intense californium sources that could be used eventually for neutron radiography and for diagnosis by neutron activation analysis. This paper discusses these methods

  6. Oxidation of chromium telluride

    International Nuclear Information System (INIS)

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation

  7. Oxidation of chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomovskaya, N.S.; Iorga, E.V.; Sheveleva, T.F.; Solov' eva, A.E.

    1986-03-01

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation.

  8. Californium Electrodepositions at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boll, Rose Ann [ORNL

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  9. Historical review of californium-252 discovery and development

    International Nuclear Information System (INIS)

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving 252Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed

  10. Californium-252: a remarkable versatile radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-10-10

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.

  11. Californium-252: a remarkable versatile radioisotope

    International Nuclear Information System (INIS)

    A product of the nuclear age, Californium-252 (252Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, 252Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of 252Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the 252Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, 252Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of 252Cf from ORNL is summarized herein

  12. Californium-252 Neutron Therapy in China

    International Nuclear Information System (INIS)

    Californium-252 brachytherapy, believed to be the most successful source for neutron therapy, gives most of the cures as well as long-term and complication-free survivals. Chinese radiation oncologists were interested in californium neutron therapy (Cf-NT) in the early 1980s, but 252Cf sources for medical use were not available in China until 1992 when a californium joint venture was established by the China Institute of Atomic Energy (Beijing) and the Research Institute for Nuclear Reactors (Dimitrovgrad) of Russia. In 1995, 25 seeds of 252Cf with a strength of 3 μg each were sent to China for preclinical investigation. Three years later, a high dose rate (HDR) 252Cf source was imported and transferred into a home-made remote after-loader for intracavitary treatment in Chongqing, and a clinical trail was started in February 1999. This is the first time that Cf-NT was performed for cancer patients in China. Since then, Cf-NT in China has developed rapidly. It is estimated that one-tenth of those radiation oncology centers with brachytherapy practice will be equipped with californium units in 5 yr. That means more than 30 units will be in use in hospitals. That is significant compared with other countries, but it is just one, on average, for each province or one per 40 million people in China. Progress also has been achieved in the 252Cf treatment delivery equipment. Preliminary clinical trails showed complete response observed in all cases treated, with a rapid clearance of tumors and mild reactions in normal tissues. The short-term results are quite encouraging. To deal with problems due to the demand for Cf-NT in China, attention should be paid to the following particulars: (1) A high-strength miniature source is needed for HDR/MDR interstitial therapy to extend the Cf-NT coverage. (2) Basic work on radiophysics and radiobiology needs to be done, including source calibration, clinical dosimetry, clinical RBE determination, and Cf-NT quality assurance

  13. Californium-252 sales and loans at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The production and distribution in the United States of 252Cf has recently been consolidated at the Oak Ridge National Laboratory (ORNL). The 252Cf Industrial Sales/Loan Program and the 252Cf University Load Program, which were formerly located at the Savannah River Plant (SRP), have been combined with the californium production and distribution activities of the Transuranium Element Production Program at ORNL. Californium-252 is sold to commercial users in the form of bulk californium oxide, palladium-californium alloy pellets, or alloy wires. Neutron source capsules, which are fabricated for loans to DOE or other US government agencies, are still available in all forms previously available. The consolidation of all 252Cf distribution activities at the production site is expected to result in better service to users. In particular, customers for neutrons sources will be ale to select from a wider range of neutron source forms, including custom designs, through a single contact point

  14. Chalcogenide Cobalt telluride nanotubes

    Science.gov (United States)

    Dahal, Bishnu; Dulal, Rajendra; Pegg, Ian L.; Philip, John

    Cobalt telluride nanotubes are grown using wet chemical and hydrothermal syntheses. Wet chemical synthesized nanotubes display nearly 1: 1 Co to Te ratio. On the other hand, CoTe nanotubes synthesized using hydrothermal method show excess Co content leading to the compound Co58Te42. Both CoTe and Co58Te42 display magnetic properties, but with totally different characteristics. The Curie temperature of CoTe is higher than 400 K. However, the Tc of Co58Te42 is below 50 K. Transport properties of cobalt telluride (CoTe) nanotube devices show that they exhibit p-type semiconducting behavior. The magnetoresistance measured at 10 K show a magnetoresistance of 54%. . National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  15. Californium-252 encapsulation at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    More than 1 g of the neutron-emitting isotope californium-252 has been encapsulated at SRL for worldwide medical, industrial, and research uses. Bulk sales packages have been prepared for the USDOE sales program since 1971. Doubly-encapsulated sources have been prepared for USDOE's market evaluation program since 1968. Californium-252 sources for loan and sales packages satisfy the criteria for Special Form Radioactive Material. Encapsulation is performed in special neutron-shielded containment facilities at SRL. Development of improved source and shipping package designs and processes is continuing. 17 figures

  16. Production, distribution and applications of californium-252 neutron sources

    International Nuclear Information System (INIS)

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 1011 neutrons s-1. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations

  17. Production, distribution and applications of californium-252 neutron sources.

    Science.gov (United States)

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations. PMID:11003521

  18. Production, Distribution, and Applications of Californium-252 Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  19. Cadmium telluride nuclear radiation detectors

    International Nuclear Information System (INIS)

    The characteristics and performance of undoped high resistivity cadmium telluride detectors are compared to chlorine lifted counters. It is shown, in particular, that Undodep CdTe is in fact aluminium doped and that compensation occurs, as an silicon or germanium, by pair and triplet formation between the group III donor and the doubly charged cadmium vacancy acceptor. Furthermore, in chlorine doped samples, the polarization effect results from the unpaired level at Esub(c)-0,6eV

  20. Production of extra pure curium and californium preparations

    International Nuclear Information System (INIS)

    Preparations of curium-244,245,248 and californium-249,252 are used for the production of ionizing radiation sources for different applications and fundamental nuclear-physical investigations, placing high requirements on the radiochemical and chemical purity of the preparations. Extraction chromatography using di-(2-ethylhexyl)phosphoric acid (D2EHPA) as extractant was chosen to prepare extra pure curium and californium preparations. In order to identify the optimal conditions of Cm-Cf separation and to remove impurities from them (reagent and other impurities), investigations were performed into the effect of impurities (Na+, Ca2+, Al3+, Fe2+, Fe3+ taken as example), extractant and eluent concentration and solution flow rate on the efficiency of mutual purification of Cm and Cf. Both theoretical and experimental estimations were made of the maximum concentration at which the impurities do not affect the process. The conditions chosen allow mutual purification of milligram amounts of Cm and Cf from impurity elements at E(pur) =102 - 103 during a single chromatographic cycle (E(pur) =>103) using a column with 5 - 10 cm3 volume. In this case the production yield exceeds 98%. The purification of milligram amounts of curium and californium from fission products (lanthanides in general, cerium in particular) was performed in D2EHPA-decane-PbO2-HNO3 and D2EHPA-decane-DTPA-H3-Cit extraction chromatography systems. In order to establish the optimal conditions, the effect of [D2EHPA] and eluent on the mutual purification of Cm and Cf and on their purification from cerium and impurity elements was studied in the D2EHPA-decane-PbO2-HNO3 system. During a single chromatographic cycle the mutual purification factors of TPE and of their purification from impurity cations achieve 102-103, from cerium - E(pur) > 10. In the D2EHPA-decane-DTPA-H3Cit system, the effect of concentration of extractant and eluent pH on the efficiency of Cm and Cf purification from lanthanides was

  1. Method of making a thin film cadmium telluride solar cell

    International Nuclear Information System (INIS)

    A method for making a photovoltaic cell is described comprising the steps of: (a) depositing a transparent or semi-transparent conductive window layer onto a substrate; (b) depositing a layer of cadmium telluride including phosphorus onto the window layer; (c) depositing a layer of lead telluride onto the layer of cadmium telluride; and (d) depositing a metallic electrode onto the lead telluride layer

  2. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  3. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  4. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  5. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  6. Separation of californium from actinides and lanthanides in aqueous solution by electrochemical formation of amalgams

    International Nuclear Information System (INIS)

    The electrochemical reduction of transneptunium elements (Pu to Cf) and rare earths (Eu, Tm) from aqueous complexing solutions to amalgams was studied over a wide range of cathodic potentials in order to achieve optimal separation of californium. The reduction in acetate media (pH 4.5-4.6) at potentials around -1.7 to -1.9 V1 leads to a quantitative extraction of californium into the mercury phase, while more negative potentials are required for the reduction of the lighter transuranium elements and of the lanthanides. Hence, the optimal conditions for the separation of californium from the investigated actinides and lanthanides were determined. Separation factors α between 25 and 90 were found except in the case of Cf/Eu, where poor values (α varying from 7 to 12) were observed. More negative cathodic potentials decrease the selectivity of the reduction process. A similar study with lithium citrate solutions (pH ∝6) shows that satisfactory separation of californium from lighter and heavier actinides is achievable. A separation factor of 88 is obtained for Cf/Am at -1.98 V. The anodic stripping of mixed amalgams (Pu, Am, Cm, Bk, Tm and Cf) Hg in nitric and acetic acid soultions at potentials ranging from +0.1 to -0.7 V proceeds slowly and proved to be ineffective for the separation of californium from light actinides under conditions described. (orig.)

  7. On-line slurry analyses by californium-252

    International Nuclear Information System (INIS)

    In chemical processing technology on-line activation methods gain an increasing importance for process monitoring and control. A method is described according to which the different fluorspar contents at various strategic points of a flotation plant are determined through neutron activation by 100 μg californium-252. A continuous analytical system for onstream process control of slurries was designed and constructed. A compact facility, called SUSAC, allows continuous application of the method on an industrial scale. The main components of the SUSAC facility are the irradiation and measurement cells. The cells are equipped with multistage countercurrent stirrers ensuring a proper radial and vertical distribution of the sample. The hollow shaft of the stirrer of the irradiation cell houses the Cf-source. The NaI-detector has been installed in a recess in the bottom of the measuring cell. The volumes are 9 dm3 for the irradiation cell, 7.5 dm3 for the measuring cell, 1/2 dm3 for the vonnection line and 4 dm3 for feed and drainage lines including the pump. Investigations on the following topics are discussed: selection of stirrers, residence time, flow rate, pulp density, calibration measurements. (T.G.)

  8. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252Cf sources. Three projects at the CUF that demonstrate the versatility of 252Cf for biological and biomedical neutron-based research are described: future establishment of a 252Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  9. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  10. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252Cf neutron source for university and research loans. Within the CF, the 252Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  11. Emergence of californium as the second transitional element in the actinide series.

    Science.gov (United States)

    Cary, Samantha K; Vasiliu, Monica; Baumbach, Ryan E; Stritzinger, Jared T; Green, Thomas D; Diefenbach, Kariem; Cross, Justin N; Knappenberger, Kenneth L; Liu, Guokui; Silver, Mark A; DePrince, A Eugene; Polinski, Matthew J; Van Cleve, Shelley M; House, Jane H; Kikugawa, Naoki; Gallagher, Andrew; Arico, Alexandra A; Dixon, David A; Albrecht-Schmitt, Thomas E

    2015-01-01

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. The metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence. PMID:25880116

  12. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    Science.gov (United States)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  13. Fissile analysis of Hanford waste using Californium Multiplier/Delayed Neutron Counter system

    International Nuclear Information System (INIS)

    Measurement of low-level (10 ng/g or lower) fissile material (mainly plutonium) in Hanford waste and process samples is becoming increasingly important. A system has been designed consisting of a Californium Multiplier (CFX) and a Delayed Neutron Counter (DNC) to characterize these samples. This report describes hardware and analytical capability of the CFX/DNC system

  14. Study of the shielding for spontaneous fission sources of Californium-252

    International Nuclear Information System (INIS)

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  15. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  16. Physicochemical properties of a cadmium telluride surface

    International Nuclear Information System (INIS)

    Change of chemical state of cadmium telluride surface is investigated after different treatments (exposure in air, vacuum, gaseous media, γ- and IR-irradiation). The results of these investigations are of great interest for clarifying the nature of active surface of diamond-like semiconductors, the mechanism of its interaction with different media and the possibilities of surface properties regulation

  17. Californium (252Cf) and its use as neutron source in science medicine and technology

    International Nuclear Information System (INIS)

    The application of radionuclides in science and nuclear techniques basically is related to unstable isotopes, which are produced from stable elements in nuclear reactor. Their specifications are various from view point of application . Using of physical and chemical properties of radionuclides in chemistry, for with marking the organic compounds we can exactly explain the mechanism of chemical reactions in medical, biology and bio-chemistry. In these cases the behaviour of radionuclides is very important and the selection of the suitable radionuclides is determined between the elements for investigation aims. The special specification of radio-nuclides analysis such as, half-life, kind of ray and energy should be considered with an special accuracy as well as the laws security regulations from view point of ray-protection should be completely observed mean time working these radio-nuclides. It should be considered that application of radio-isotopes is very important from their special specifications point of view. Applying the radionuclides from technology point of view in sciences and nuclear techniques aren't only limited to three analyses of α, β, and γ, but we can use the share of neutron which are produced from spli ting of heavy nucleus such as Californium252 as a neutron source in the depths of the sea and also determining the concentration of low quantity elements on moon and other spheres. The radioisotope of Californium252 is a neutron useful radiator for investigation in nuclear medical and technology because of automatically rapid split to 3.2% Californium252 radiates 1.34 * 109N/m in each mil/GH which suitable replacement for neutron sources based on (a, n) reaction, for example, Radium-Brellium or Amersium-Brellium. The energy distribution of radiated neutrons from analyzing of Californium252 like the spectrum of neutron which is produced from splitting of U235, Pu239 nucleus has the maximum energy in quantity, En=1 MeV in the range of 1.5 MeV. The

  18. Contribution to clinical dosimetry of californium 252 sources used at Gustave Roussy institute

    International Nuclear Information System (INIS)

    The main characteristics of californium 252 sources are presented in the first part of the report. Dose measurements around Californium sources were performed with a pair of ionization multiplication chambers: the first one has an Aluminium wall and is filled with Argon, the second one a plastic tissue-equivalent gas. A set of experiments was performed in order to investigate the relative influence of beta rays on the response of both chambers. Besides the experimental work a computer program was written to calculate the dose distribution around the actual sources made of a series of small active sources placed in catheters. Theoretical data around small sources can be found in the litterature. The comparison between experimental results and theoretical ones has shown a good agreement. The computer program will be included as a sub-routine in the more general computer program used for patients treated with interstitial therapy

  19. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    International Nuclear Information System (INIS)

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations

  20. Emergence of californium as the second transitional element in the actinide series

    OpenAIRE

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; GREEN, THOMAS D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; DePrince, A. Eugene; Polinski, Matthew J.; Van Cleve, Shelley M.; House, Jane H.; Kikugawa, Naoki

    2015-01-01

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resu...

  1. Electron mobility in mercury cadmium telluride

    Science.gov (United States)

    Patterson, James D.

    1988-01-01

    A previously developed program, which includes all electronic interactions thought to be important, does not correctly predict the value of electron mobility in mercury cadmium telluride particularly near room temperature. Part of the reason for this discrepancy is thought to be the way screening is handled. It seems likely that there are a number of contributors to errors in the calculation. The objective is to survey the calculation, locate reasons for differences between experiment and calculation, and suggest improvements.

  2. Thermal conductivity of bulk nanostructured lead telluride

    International Nuclear Information System (INIS)

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering

  3. Thermal conductivity of bulk nanostructured lead telluride

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  4. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27Al(n,α)46Ti, 47Ti, 48Ti(n,p), 54Fe,56Fe(n,p), 58Ni(n,p), 64Zn(n,p), 115In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  5. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    International Nuclear Information System (INIS)

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs

  6. Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Samantha K.; Silver, Mark A.; Liu, Guokui; Wang, Jamie C.; Bogart, Justin A.; Stritzinger, Jared T.; Arico, Alexandra A.; Hanson, Kenneth; Schelter, Eric J.; Albrecht-Schmitt, Thomas E.

    2015-12-07

    The reaction of 248CmCl3 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)3·H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)- (H2DPA)(H2O)2Cl]Cl·2H2O. 248Cm is the daughter of the α decay of 252Cf and is extracted in high purity from this parent. However, trace amounts of 249,250,251Cf are still present in all samples of 248Cm. During the crystallization of Cm(HDPA)3·H2O and [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl·2H2O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)3. These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides.

  7. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  8. Effect of gamma radiation on cadmium telluride surface properties

    International Nuclear Information System (INIS)

    The effect of γ-irradiation on the surface properties of cadmium telluride is studied. The possibility of oriented modification of surface properties for increasing the adsorption activity and obtaining the materials, suited for the sensor transducer production, is shown

  9. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    OpenAIRE

    Wisniewski, Eric; Velazquez, Daniel; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study incl...

  10. Avalanche multiplication of electrons and holes in cadmium telluride

    CERN Document Server

    Demich, N V

    2001-01-01

    Determination of the ratio of the coefficients of the electrons and holes of the diode structures impact ionization is carried out with the purpose of optimizing the parameters of the avalanche diodes from the cadmium telluride. It is shown experimentally, that the process of the impact ionization in the cadmium telluride is stimulated by holes. The ratio of the coefficients of the holes and electrons impact ionization constitutes approx = 30-40

  11. Anisotropy of thermal expansion and electric resistance of cermet germanium telluride

    International Nuclear Information System (INIS)

    Anisotropies of thermal expansion α and electric resistance ρ of cermet germanium telluride were investigated depending on pressing conditions. It is shown that anisotropy of cermet germanium telluride depends sufficiently on pressing conditions with respect to thermal expansion and electric resistance. It was established that anisotropy of the cermet germanium telluride was strongly affected by pressing force and temperature. Anisotropy of the cermet germanium telluride also depends with respect to α and ρ on the material and size of the mould

  12. Scanning tunneling microscope study of cadmium telluride

    International Nuclear Information System (INIS)

    Layered samples of cadmium telluride grown epitaxially on gallium arsenide substrates have been investigated by means of scanning tunneling microscopy (STM). The surface geometric and electronic structures are both of interest. Techniques were developed to remove the native oxide by etching, or to create a fresh surface by cleaving, and to protect them from oxidation by employing mineral or paraffin oil media. STM studies were conducted within the protective medium. These techniques were adapted and tested for both etched and cleaved samples of Si, CdTe and HgTe. The current-voltage characteristics of the CdTe surface were investigated during dynamic changes of the tunnel current and barrier height while the probe-to-sample separation (gap) was static. Recorded values are shown for current versus bias for several constant gap values. A range of bias values has been employed to test a possible solution for the problem of interference between the contributions from geometric and electronic structure factors

  13. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  14. The Archaean gold-telluride-sulphide and gold-telluride mineralisation of a multiple stage hydrothermal vein deposit at the Commoner Mine, Zimbabwe

    International Nuclear Information System (INIS)

    The Commoner Mine is situated on the western edge of the Midlands greenstone belt, 50 km west-southwest of Kadoma, Zimbabwe. Current geological interest in this deposit was initiated by the presence of coarse grained telluride minerals in ore exposed on 21 level in 1978. The deposit is a hydrothermal quartz-calcite vein. It was found that coarse grained gold-silver tellurides fill fractures which transect the telluride breccia. Comparison of the physical and mineralogical characteristics of the Commoner orebody with those of the Tertiary gold-telluride deposits of the Circum Pacific Belt and the Archaean deposits of Canada and Australia indicates that this mineralisation was probably deposited in a near-surface environment. It was found that the gold-telluride ores of the Commoner Mine display features characteristic of both plutonic-hydrothermal and volcanic-hydrothermal styles of telluride mineralisation

  15. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  16. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb1-xCaxTe were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties remain

  17. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.

    1991-01-01

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C.The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities can result in conversion efficiencies over 15 percent.

  18. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    Science.gov (United States)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  19. Photovoltaic materials based on telluride of transient metals

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Ecorchard, Petra; Schelonka, Darina; Bludská, Jana

    Stow cum Quy: Zing Conferences, 2014. s. 59. [Nanocrystals Conference. 13.6.2014–16.6.2014, Punta Cana] R&D Projects: GA MPO FR-TI4/399 Institutional support: RVO:61388980 Keywords : telluride * ultrasound Subject RIV: CA - Inorganic Chemistry

  20. Understanding the Meaning of the Entrance Image: The Telluride Process.

    Science.gov (United States)

    Garnham, Harry L.; Garnham, Penny

    1989-01-01

    Describes a project to define the images of Telluride (Colorado) held by its residents and tourists and contributing to sense of place. Discusses the design of the town's entry points and efforts to maintain their visual environments in harmony with the town's defined character during ongoing community development. (SV)

  1. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie;

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formatio...

  2. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pikin, A. I. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-15

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  3. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  4. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252

    International Nuclear Information System (INIS)

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U233 when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO2(NO3)4 and 18% of thorium Th(NO3)4 as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 107 s-1. In the design the value of the effective multiplication factor, whose value turned out keff <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  5. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    Science.gov (United States)

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz. PMID:26329185

  6. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252Cf neutron sources. Neutron source intensities of ≤ 1011 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 108 cm-2 s-1 at the sample. Total flux of ≥109 cm-2 s-1 is feasible for large-volume irradiation rabbits within the 252Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  7. Long-term effects of an intracavitary treatment with californium-252 on normal tissue

    International Nuclear Information System (INIS)

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with 252Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from 252Cf and 7000 rad from 226Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for 252Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from 252Cf and 5000 rad from 226Ra

  8. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source

    International Nuclear Information System (INIS)

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction 55Mn (n.gamma)56 Mn, high concentration of manganese in the matrix and short half - life of 56Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions 56Fe(n,p)56Mn and 59 Co (n, α)56 were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  9. Five-year cure of cervical cancer treated using californium-252 neutron brachytherapy

    International Nuclear Information System (INIS)

    Female pelvic carcinoma is one of the common malignancies seen at the University of Kentucky Medical Center and often presents in an advanced stage. In 1976, the authors began to test californium-252 neutron brachytherapy (NT) for its efficacy for control of primary and recurrent advanced uterine, cervix, and vaginal cancers. The first protocol used was 5000-5500 rad of whole pelvis irradiation followed by 1-2 Cf-252 insertions using a single tandem placed in the utero-cervico-vaginal region. Of 27 patients with primary carcinomas treated, 10 are alive and well 5 year later (37%). Two of two recurrent tumors were locally controlled but failed later. These patients had advanced cervical, vaginal, or endometrial carcinomas. In 1977, a transitional year, treatment of only unfavorable stages and presentations with NT was initiated. Similar results were obtained with NT as compared to conventional photon therapy (PT). Further improvement in treatment results can be anticipated as NT brachytherapy is used for advanced cancer therapy by more effective treatment schedules and radiation doses. Cf-252 can be used as a radium substitute and achieved similar rates of tumor control and 5-year survivals. 21 references, 2 tables

  10. Uptake and distribution of californium-252 chloride administered intraperitoneally, intravenously or intratracheally and the effect of in vivo DTPA chelation on intratracheal instillation in the rat

    International Nuclear Information System (INIS)

    The first phase of this investigation, comprising of three groups of animals, was designed to study the fate of californium-252 chloride administered intraperitoneally, intravenously or intratracheally. The second phase, which consisted of two groups of animals, was designed to examine the effectiveness of DTPA chelation therapy in accelerating the excretion and preventing the deposition of californium-252 chloride instilled into the lungs of rats. Immediately following the dose administration of 2 uCi of californium-252 chloride which was dissolved in 0.2 ml of 0.9% NaCl at pH 3.5, each rat was placed in a metabolism cage. Each rat in the first group of phase II was given intraperitoneal injection of CaNa3 DTPA (50 mg/kg) and each rat in the second group was given intraperitoneal injections of 0.9% NaCl. Injections of the DTPA or the NaCl sham were initiated immediately after the intratracheal administration of californium-252 chloride and were continued every three days until sacrifice. Following intraperitoneal, intravenous or intratracheal administration, the whole body retention of californium as a function of time was described by a three component exponential equation. For each mode of administration the short term component exhibited a biological half-life of between 5 and 10 hours; the intermediate component between 4 and 6 days; and the long term component between 200 and 300 days. The organ data obtained following intraperitoneal and intravenous administration were indistinguishable. On day one, the liver retained about 9% of the administered dose and the kidneys retained 2.4%. Retention for these organs decreased to about 1% by day 32. The femurs maintained an almost constant level of 4.5% of the injected dose over the 32 days. The lungs, spleen, heart, and testes showed significant retention of californium

  11. ENEA results in the international comparison organized by BIPM for the measurament of neutron fluxes of a Californium source

    International Nuclear Information System (INIS)

    During the period between May 1978 and August 1984 under the auspices of Section III of CCEMRI of CIPM it has been carried out the international intercomparison of Californium neutron source emission rate. The previous intercomparison was based on Ra-Be (α -n) source measuraments, which took place between 1959 and 1965, and the results showed a total spread of +- 3%. Owing to the better accuracy achived over the following decade the Ra-Be intercomparison was no longer representative of the state of the art, therefore it was decided to arrange the intercomparison based on Californium which in the meantime reached a wide use in the world. Contributions to the intercomparison were received from fourteen laboratories representative of twelve Nations plus the BIPM. The results put into evidence a considerable advance on accuracy in the neutron source emission rate measuraments. The standard deviation of the residuals obtained from least square fit of normalized data resulted +- 0,57%. In the present report it is widely described the Manganese bath method used at ENEA, CRE Casaccia in Roma, and the experimental procedure followed for its absolute calibration. All measuraments are reported and analysed, including those effectuated for corrective factors determination. The final results obtained at ENEA for the circulated Californium source is (3,457 +- 0,013) 10*H7 neutron/s. The analysis of data from all partecipantes has been effectuated and concluded by J. Axton in March 1986 and the conclusions which have been showed in the present report put in evidence the satisfactory results achived by the ENEA

  12. Feasibility and market potential of protein determination of wheat using californium-252

    International Nuclear Information System (INIS)

    To evaluate the feasibility of protein determination by capture gamma-ray analysis using californium-252 neutrons, an in-situ protein analysis system for use by grain handlers has been examined. Three 227 kilogram (approximately) lots of wheat were used to determine the amount of nitrogen present. Protein analyses by the Kjeldahl method were obtained from samples taken before and after the capture gamma-ray analyses. The 5.267-MeV gamma-ray was selected for use in this study as a compromise between efficiency and interference from other elements. The associated counting equipment was a multichannel analyzer with pulse shaping electronic and analysis computing equipment. A linear regression program was used to compare the regions of interest to the Kjeldahl protein averages. The counts composing each peak were summed and normalized using the total count of the hydrogen peak. The normalized nitrogen percentages indicate a significant correlation between the spectral regions and the Kjeldahl analyses. To a first approximation, the value of wheat is the wheat protein. At the present time, protein testing of wheat is destructive, cumbersome, and time-consuming as compared to the potential for capture gamma-ray analysis testing. Assuming that such a protein analysis unit can analyze 42 tonne of wheat per hour, over 120 units would be needed to monitor one-half the U.S. annual wheat production. A 0.5% improvement in processor realizations and grain throughput value of $167.00 per tonne will result in a projected savings of $150,000 per year per unit

  13. Oxygen enhancement ratio (OER) and therapeutic gain factor (GF) for californium-252 at low dose rate

    International Nuclear Information System (INIS)

    The potential benefit of the introduction of californium-252 in interstitial and intracavitary therapy is related to the greater efficiency of its neutron emission against anoxic cancer cells. In that respect, the oxygen enhancement ratio (OER) of the 252Cf emission has been determined for a continuous low dose rate irradiation. The biological system is growth inhibition in Vicia faba bean roots. A new Vicia faba ''BelB'' strain has been used, which better tolerates long periods (up to about 10 hours) of anoxia. In a first series of experiments, for a 252Cf (Dsub(n+γ)) dose rate of 0.11 Gy.h-1, an OER of 1.4+-0.1 was observed (the γ contribution Dγ to the total absorbed dose Dsub(n+γ) was 0.35 at the position of the root tips). In a second series of experiments, in somewhat different geometrical conditions with a 252Cf (Dsub(n+γ)) dose rate of 0.13 Gy.h-1, an OER of 1.5+-0.1 was observed (Dγ/Dsub(n+γ)=0.42). The OER values observed for similar irradiation times, with iridium-192 γ-rays, were 2.3+-0.2 and 2.6+-0.1 respectively, which leads to therapeutic gain factors (GF) of 1.6 and 1.7 respectively. These GF values are slightly lower than those previously obtained (GF=1.8) on the same system, with d(50)-Be p(75)-Be and 15 MeV neutron beams

  14. Application of TSH bioindicator for studying the biological efficiency of neutrons from californium-252 source

    International Nuclear Information System (INIS)

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (TSH-assay) was studied. The special attention was paid to check whether any enhancement in effects caused by process of boron neutron capture is visible in the cells enriched with boron ions. Two chemicals (borax and BSH) were applied to introduce boron-10 ions into cells. Inflorescence, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a Cf-252 source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) in the induction of gene mutations of the neutron beam under the study, Tradescantia inflorescences, without any chemical pretreatment, were irradiated with various doses of X-rays. The ranges of radiation doses used were 0-0.1 Gy in neutrons and 0-0.5 Gy in X-rays. After the time needed to complete the postirradiation repair Tradescantia cuttings were transferred to Cracow, where screening of gene and lethal; mutations, cell cycle alterations in somatic cells have been done, and dose response relationships were figured. The maximal RBE values were estimated in the range of 4.6-6.8. Alterations of RBE value were observed; from 6.8 to 7.8 in the case of plants pretreated with 240 ppm of B-10 from borax, and 4.6 to 6.1 in the case of 400 ppm of B-10 from BSH. Results showed a slight, although statistically insignificant increase in biological efficacy of radiation from the Cf-252 source in samples pretreated with boron containing chemicals. (author)

  15. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  16. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  17. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  18. Tunneling behavior of bismuth telluride nanoplates in electrical transport

    OpenAIRE

    Eginligil, Mustafa; Zhang, Weiqing; Kalitsov, Alan; Lu, Xianmao; Yang, Hyunsoo

    2012-01-01

    We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a s...

  19. Microscopic mechanism of low thermal conductivity in lead-telluride

    OpenAIRE

    Shiga, Takuma; Shiomi, Junichiro; Ma, Jie; Delaire, Olivier; Radzynski, Tomasz; Lusakowski, Andrzej; Esfarjani, Keivan; Chen, Gang

    2012-01-01

    The microscopic physics behind low lattice thermal conductivity of single crystal rocksalt lead telluride (PbTe) is investigated. Mode-dependent phonon (normal and umklapp) scattering rates and their impact on thermal conductivity were quantified by the first-principles-based anharmonic lattice dynamics calculations that accurately reproduce thermal conductivity in a wide temperature range. The low thermal conductivity of PbTe is attributed to the scattering of longitudinal acoustic phonons b...

  20. Transient Response of Cadmium Telluride Modules to Light Exposure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; del Cueto, J.; Albin, D. S.; Petersen, C.; Tyler, L.; TamizhMani, G.

    2011-07-01

    Commercial cadmium telluride (CdTe) photovoltaic (PV) modules from three different manufacturers were monitored for performance changes during indoor and outdoor light-exposure. Short-term transients in Voc were recorded on some modules, with characteristic times of ~1.1 hours. Outdoor performance data shows a similar drop in Voc after early morning light exposure. Preliminary analysis of FF changes show light-induced changes on multiple time scales, including a long time scale.

  1. Growth rate and crystal habit of germanium telluride

    International Nuclear Information System (INIS)

    Controlling steps of GeTe crystal growth under different experimental conditions were determined. Diffusion coefficient of GeTe molecules in argon was found, and condensation coefficient was evaluated. Influence of mass transfer rate in a gas on crystal habit was studied: crystals have round faces at low rates and dendritic growth is observed at high rates. Optimal conditions of growing edged crystals of germanium telluride of α-3 mm size were determined

  2. Fission-product tellurium and cesium telluride chemistry revisited

    International Nuclear Information System (INIS)

    The chemistry of fission-product tellurium is discussed with a focus on conditions in an operating CANDU reactor and in an accident scenario, i.e., a loss of coolant accident (LOCA). Cesium telluride, Cs2Te, is likely to be one of the most abundant tellurium species released to containment. Available thermodynamic data on gas phase Cs2Te is not complete; hence the volatility of cesium telluride was studied by Knudsen-cell mass spectrometry. Cesium telluride was found to vapourize incongruently, becoming more tellurium-rich in the condensed phase as vapourization progressed. Vapour-phase species that were observed were elemental cesium and tellurium, CsTe, Cs2Te, Cs2Te2 and Cs2Te3. Second-law enthalpies and entropies were obtained for many of these species, and a third-law value, ΔH298o, of 186 ± 2 kJ·mol-1 was obtained for Cs2Te. (author)

  3. Divalent and trivalent gas-phase coordination complexes of californium: evaluating the stability of Cf(ii).

    Science.gov (United States)

    Dau, Phuong D; Shuh, David K; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J; Gibson, John K

    2016-08-01

    The divalent oxidation state is increasingly stable relative to the trivalent state for the later actinide elements, with californium the first actinide to exhibit divalent chemistry under moderate conditions. Although there is evidence for divalent Cf in solution and solid compounds, there are no reports of discrete complexes in which Cf(II) is coordinated by anionic ligands. Described here is the divalent Cf methanesulfinate coordination complex, Cf(II)(CH3SO2)3(-), prepared in the gas phase by reductive elimination of CH3SO2 from Cf(III)(CH3SO2)4(-). Comparison with synthesis of the corresponding Sm and Cm complexes reveals reduction of Cf(III) and Sm(III), and no evidence for reduction of Cm(III). This reflects the comparative 3+/2+ reduction potentials: Cf(3+) (-1.60 V) ≈ Sm(3+) (-1.55 V) ≫ Cm(3+) (-3.7 V). Association of O2 to the divalent complexes is attributed to formation of superoxides, with recovery of the trivalent oxidation state. The new gas-phase chemistry of californium, now the heaviest element to have been studied in this manner, provides evidence for Cf(II) coordination complexes and similar chemistry of Cf and Sm. PMID:27424652

  4. Hypoxic versus normoxic external-beam irradiation of cervical carcinoma combined with californium-252 neutron brachytherapy. Comparative treatment results of a 5-year randomized study

    Czech Academy of Sciences Publication Activity Database

    Tačev, T.; Vacek, Antonín; Ptáčková, B.; Strnad, V.

    2005-01-01

    Roč. 181, č. 5 (2005), s. 273-284. ISSN 0179-7158 Institutional research plan: CEZ:AV0Z50040507 Keywords : cervical carcinoma * hypoxyradiotherapy * californium-252 Subject RIV: BO - Biophysics Impact factor: 3.490, year: 2005

  5. Predeposition ultraviolet treatment for adhesion improvement of thin films on mercury cadmium telluride

    International Nuclear Information System (INIS)

    Poor film adhesion to mercury cadmium telluride is a problem of general concern because of the low film deposition temperatures (11 cm-2 and slow interface state densities of 4x1010 cm-2 were obtained at 100 K for aluminum nitiride/mercury cadmium telluride metal-insulator-semiconductor structures which had undergone the treatment

  6. Solving the Hydration Structure of the Heaviest Actinide Aqua Ion Known: The Californium(III) Case

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, Ch.; Guillaumont, D. [CEA Marcoule, Nucl Energy Div, Radiochem Proc Dept, SCPS LILA, 30 (France); Galbis, E.; Pappalardo, Rafael R.; Marcos Sanchez, E. [Univ Seville, Dept Quim Fis, E-41012 Seville (Spain); Hernandez-Cobos, J. [Inst Ciencias Fis, Cuernavaca 62251, Morelos (Mexico); Le Naour, C.; Simoni, E. [Univ Paris Sud, Inst Phys Nucl Orsay, Paris (France)

    2010-07-01

    In summary, the first MC simulation of the trivalent cation of californium, based on an exchangeable hydrated ion-water intermolecular potential, has been shown to extend and improve the hydrated ion model. Likewise, the CfL{sub III}-edge EXAFS spectrum of an acidic 1 mm Cf(ClO{sub 4}){sub 3} aqueous solution recorded under optimized experimental conditions has greatly improved the signal/noise ratio of the only previously recorded spectrum. The comparison of the experimental EXAFS spectrum with the two computed ones, obtained from two different intermolecular potentials that predict eight (BP86) or nine (MP2) water molecules in the first coordination shell, leads to the conclusion that the lowest hydration number is preferred. Then, as Cf{sup III} is the heaviest actinide aqua ion for which there is experimental information, the actinide contraction is supported by the present study. (For U{sup III}, R{sub U-O}=2.56 Angstroms, and CN=9{+-}1; for Pu{sup III}, R{sub Pu-O}=2.51 Angstroms and CN=9{+-}1; for Cm{sup III}, R{sub Cm-O}=2.47 Angstroms and CN=9{+-}1). The role of the second hydration shell is important in defining the structure and dynamics of the Cf{sup III} aqua ion, but the contribution of second-shell water molecules to the EXAFS signal as back-scatters is marginal. Finally, this work gives an illustrative example of the benefits which can be achieved from the combination of experimental X-ray absorption spectroscopy and computer simulations. The usefulness of the simultaneous analysis of the results as well as the importance of the structural statistical average has been clearly demonstrated herein. Each technique independently was not adequate. We believe that this study traces out a still poorly explored combined methodology which may be extremely useful for many other complexes and chemical problems. A systematic theoretical and experimental examination of the other known actinide cations on the same basis should be undertaken to confirm the

  7. Effect of FGMs on thermoelectric cooling properties of bismuth telluride

    International Nuclear Information System (INIS)

    Every thermoelectric material shows high performance at a specific narrow temperature range. The temperature range with high performance can be expanded by joining the materials with different peak temperature. This is the concept of an FGM. The FGMs for Peltier cooling materials have never been reported though the FGMs for thermoelectric power generation were reported to enhance conversion efficiency. Bismuth telluride is the best material for cooling devices at around room temperature. Then we investigated the thermoelectric cooling properties for bismuth telluride with two steps graded structure FGM. Two kinds of melt-grown materials of p-type bismuth telluride (hereafter, sample 1 and sample 2) were used. The samples 1 and 2 of 3 mm square x 2.5 mm were joined to form an FGM of 3 mm square x 5 mm in length by soldering with ultrasonic vibration. Thermoelectric cooling properties were evaluated by observing the maximum temperature drop to electric current when the high temperature side was kept constant. When the high temperature side is kept at 370 K, the temperature drop of the monolithic sample 1 was 34.6 K, and 39.7 K for sample 2, because of the difference of the carrier density. In the case of the FGM, the temperature drop was 45.2 K when the sample 1 was placed at the high temperature side. On the other hand, the temperature drop was only 27.6 K when the sample 2 was placed at the high temperature side. From these results, it is clear that high performance can be obtained by forming an FGM when the proper material arrangement is performed along the temperature gradient. (orig.)

  8. Hopping conduction in evaporated cadmium telluride thin films

    International Nuclear Information System (INIS)

    Hopping conduction was observed in cadmium telluride thin films. At low temperature there is insufficient energy to excite electrons into the conduction band hence the dominant conduction mechanism is probably hopping. The activation energy ΔE, was found to be approximately 0.05 eV (thickness=400nm) and 0.08 eV (thickness=267nm). As the temperature was increased activation energy more widely spread levels became possible until kt∼0.4 eV, when free conduction was dominant

  9. The photocorrosion of n-cadmium telluride and its suppression

    Science.gov (United States)

    Curran, J. S.

    1980-09-01

    The photoelectrochemical properties of n-type cadmium telluride were studied in water and five other organic solvents, with a view to suppression of the photocorrosion reaction which prevents this and other n-type small bandgap semiconductors from being used in a practical semiconductor-electrolyte junction solar cell. Only the low donicity organic solvents propylene carbonate and methyl nitrate reduce the corrosion rate significantly. A stable photocurrent can be obtained using a solution of ferrocene in these two solvents but analysis of photoelectrolyzed solutions revealed a slow photocorrosion. The dependence of the flatband potential and of the practical significance with respect to solar cell applications considered.

  10. Study of rectification at the metal-cadmium telluride contact

    International Nuclear Information System (INIS)

    The barrier heights at the contact between metals and N or P type cadmium telluride have been determined. Various surface treatments have been used for the semiconductor: lapping, polishing and etching in a bromine in methanol solution. Depending on these preparation differences of about 0.1 eV have been observed for the barrier height which in any case was no more than 0.9 - 1.0 eV. These results can not be explained by only considering the Schottky theory of rectification

  11. An evaluation of cadmium telluride detectors for computer assisted tomography.

    Science.gov (United States)

    Chu, D; Kaufman, L; Hosier, K; Hoenninger, J

    1978-11-01

    Cadmium telluride (CdTe) presents a set of extremely attractive features as an X-ray detector for computer assisted tomography (CAT). It is stable and easily handled; has a high detection efficiency and very efficient conversion of energy to charge; and permits a high element density in a compact configuration. Unfortunately, effects due to "polarization," "tailing," high and variable leakage currents, and long "memory" are incompatible with the needs of CAT instrumentation. Pulse-processing techniques have allowed us to eliminate these problems in positive-sensitive detectors, thus opening the way for utilization of CdTe in CAT. PMID:711945

  12. Surface Passivation of Mercury-Cadmium-Telluride Infrared Detectors

    Directory of Open Access Journals (Sweden)

    R. Singh

    1991-07-01

    Full Text Available The theoretical considerations and practical aspects of passivating insulator films, in the context of their use on high-performance mercury cadmium telluride (MCT infrared detectors are reviewed. The methods of growth, the interface properties and the applications of both native and deposited passivant films have been discussed. Native films include anodic, chemical, photochemical, and plasma oxides as well as anodic sulphides and fluoro-oxides. Deposited films include ZnS, photo-CVD-grown SiO2, CDTe, and SiN/sub x/. The properties of all these passivant films on MCT have been summarized.

  13. Design, construction, and characterization of a facility for neutron capture gamma ray analysis of sulfur in coal using californium-252

    International Nuclear Information System (INIS)

    A study of neutron capture gamma ray analysis of sulfur in coal using californium-252 as a neutron source is reported. Both internal and external target geometries are investigated. The facility designed for and used in this study is described. The external target geometry is found to be inappropriate because of the low thermal neutron flux at the sample location, which must be outside the biological shielding. The internal target geometry is found to have a sufficient thermal neutron flux, but an excessive gamma ray background. A water filled plastic facility, rather than the paraffin filled steel one used in this study, is suggested as a means of increasing flexibility and decreasing the beackground in the internal target geometry

  14. The study and development of cadmium telluride detectors for gamma ray spectrometry

    International Nuclear Information System (INIS)

    The purpose of this work is the study of possibility of cadmium telluride's utilisation in gamma ray spectroscopy. This material has some superiorities in comparison with germanium which is utilised in (Ge Li) structures. In a first chapter we study the interaction of rays with matter in the particular case of cadmium telluride. The range of α and β rays in the some way as the effect cross section of gamma ray versus energy are deducted from data tabulated for tin which has a density and an atomic weight very near. The problems related with creation and collection of charges in a cadmium telluride structure are discussed in the same way as the resolution in nuclear spectroscopy, acting the different parameters characterising the detector. In the second chapter, after some indications in the metallurgy of cadmium telluride, we describe the realisation of several structures types, evaporation of a cadmium telluride's layer, diffusion of gold or copper, metal semiconductor contact. Measures of current-voltage characteristics and capacity allow the determination of possibility of nuclear detection with this structures and state precisely some parameters. In the third chapter range's measures of α rays are compared with the first chapter's theoretical results. Results of α ray spectroscopy obtained with three detectors are described and show the possibility of cadmium telluride in this way. Detection of gamma ray at last justify the choice of this material, but the results obtained here show the progress to do in cadmium telluride metallurgy. (author)

  15. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    International Nuclear Information System (INIS)

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light

  16. TOP as ligand and solvent to synthesize silver telluride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shutang, E-mail: shutang.chen@uconn.edu [Division of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of); Department of Chemistry, University of Connecticut, Storrs 06269 (United States); Lee, Soonil, E-mail: soonil@ajou.ac.kr [Division of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-15

    Highlights: • Silver telluride nanosheets were prepared through one-pot synthetic strategy. • TOP as both ligand and solvent favors silver telluride nanosheets growth. • The I–V curve of an Ag{sub 2}Te-nanosheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity. - Abstract: Ag{sub 2}Te nanosheets are synthesized by a simple one-pot route using trioctylphosphine (TOP) as both solvent and stabilizer. Various controlling parameters were examined, such as molar ratios of AgNO{sub 3} to tellurium powder, reaction temperature and time, and precursor concentration. The morphology and composition of the products were characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. On the basis of a series of synthesis and characterizations, the formation mechanism of the Ag{sub 2}Te nanosheets are discussed. The I–V curve of an Ag{sub 2}Te-nan osheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity.

  17. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  18. Superconductivity in oxygen doped iron telluride by molecular beam epitaxy

    Science.gov (United States)

    Zheng, Mao

    Iron base superconductor have gained much attention in the research community. They offer great potentials to improve our understanding of the subject of superconductivity by having another family of high temperature superconductors to compare and contrast to the cuprates. Practically, the iron based superconductors seems to be even better candidates for applications in power generation and power transmission. Iron telluride is regarded as the parent compound of the "11" family, the family of iron chalcogenide that has the simplest structure. Iron telluride itself is not a superconductor, by can become one when doped with oxygen. In this investigation, we developed the growth recipe of thin film iron telluride by Molecular Beam Epitaxy (MBE). We found the growth to be self-regulated, similar to that of GaAs. The initial layers of growth seem to experience a spontaneous crystallization, as the film quickly go from the initial polycrystalline phase to highly crystalline in just a few unit cells. We studied oxygen doping to the iron telluride thin films and the resultant superconductivity. We characterized the sample with AFM, XRD, transport, and STEM-EELS, and we found that interfacial strain is not an essential ingredient of superconductivity in this particular case. We investigated the doping conditions for two candidate oxygen doping modes: substitution and interstitial. We found that substitution occurs when the film grown in oxygen, while interstitial oxygen is primarily incorporated during annealing after growth. The substitutional oxygen are concentrated in small local regions where substitution is around 100%, but does not contribute to superconductivity. We estimated substitutional oxygen to be about 5%, and is the proximate cause of superconductivity. Hall experiment on our sample showed a shift of dominant carrier type from holes to electrons around 35 K, but the transition was set in motion as early as the structural phase transition around 70 K. We

  19. Abnormal physics of group-II telluride system:valence contribution of d electrons

    Institute of Scientific and Technical Information of China (English)

    Duan He; Dong You-Zhong; Huang Yan; Chen Xiao-Shuang

    2011-01-01

    The physical trend of group-II tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-II telluride compounds present special properties upon mixing the d valence character.Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.

  20. Effect of metallic coatings on thermoelectric properties of lead telluride films

    International Nuclear Information System (INIS)

    Effect of sprayed coatings of different metals on thermoelectric properties of lead telluride films was investigated. The basic films were prepared by the method of vacuum thermal evaporation of sample of stoichiometric lead telluride at 5x10-4 Pa residual pressure on mica (muscovite) sublayer at 330-350 deg C and approximately 10 nm/s deposition rate. It was established that fine coatings of copper, silver and gold modify sufficiently electric properties of lead telluride films. The effect is conditioned mainly by decoration and electric shunting of grain boundaries by metal island, which removes the contribution of grain boundaries to film electric conductivity

  1. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  2. Ion implantation of erbium into polycrystalline cadmium telluride

    International Nuclear Information System (INIS)

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries

  3. Study of oxide films on the surface of cadmium telluride

    International Nuclear Information System (INIS)

    Study of oxide films on surfaces of CdTe monocrystals is continued by methods of ellipsometry and by absorption in IR-spectral range. Index values of refruction of oxide films, produced by cadmium telluride oxidation in hydrogen peroxide solutions, in oxigen flow at 673 K and by anode oxidation, as a rule, differ essentially in dependence on method of production, that gives evidence of differences in these films composition. Oxide films, produced in oxygen flow, as opposed to films, produced by two other methods, have intensive absorption, characteristic for tellurite group. Film thickness, produced by oxidation in hydrogen peroxide and in oxygen flow, varies within rather wide limits with observance of externally similar conditions of production. By contrast to it, thickness of anode films is regulated reliably by anode potential

  4. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  5. Optical properties of thermally evaporated cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, D.S.; Vaidya, R.U.; Bhavsar, G.P

    2003-05-26

    Polycrystalline CdTe films have been deposited onto glass substrates at 373 K by vacuum evaporation technique. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 200-2500 nm. The dependence of absorption coefficient, {alpha} on the photon energy have been determined. Analysis of the result showed that for CdTe films of different thicknesses, direct transition occurs with band gap energies in the range 1.45-1.52 eV. Refractive indices and extinction coefficients have been evaluated in the above spectral range. The XRD analysis confirmed that CdTe films are polycrystalline having hexagonal structure. The lattice parameters of thin films are almost matching with the JCPDS 82-0474 data for cadmium telluride.

  6. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  7. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Science.gov (United States)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  8. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  9. a dislocation loops in electron irradiated cadmium telluride

    International Nuclear Information System (INIS)

    In order to observe the radiation damage in undoped cadmium telluride created by an electron beam, irradiation experiments have been carried out in a high voltage electron microscope. After exposure to the electron beam during 15 min dislocation loops can be observed. The nature of these agglomerates has been determined by diffraction analysis and computer simulations. The loops have generally a Burgers vector parallel to (111) or (110) directions. Some rare specimens whose Burgers vector is a (100) and which are of interstitial type have also been characterized. A direct comparison of experimental micrographs with calculated intensities has been made based on the two-beam dynamical theory of electron diffraction in the case of the isotropic elasticity

  10. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    Science.gov (United States)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  11. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    Science.gov (United States)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  12. Long-term effects of an intracavitary treatment with californium-252 on normal tissue. [Swine, /sup 226/Ra

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with /sup 252/Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from /sup 252/Cf and 7000 rad from /sup 226/Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for /sup 252/Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from /sup 252/Cf and 5000 rad from /sup 226/Ra.

  13. Magnetic properties of Cr telluride-selenide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mankovsky, Sergey; Polesya, Svetlana; Ebert, Hubert [Dept. Chemie und Biochemie, Universitaet Muenchen, Butenandtstr. 5-13, D-81377 Muenchen (Germany); Huang, Zhong-Le; Bensch, Wolfgang [Institute for Anorganic Chemistry, Olshausenstr. 40, D-24098, Kiel (Germany)

    2007-07-01

    Results of a theoretical study of the magnetic properties of Cr telluride-selenide alloys having trigonal crystal structure are presented in comparison with experimental results. Both ground state and temperature-dependent magnetic properties of Cr{sub 1-{delta}}Te and Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} (with ratio {alpha}:{beta}=7:1,6:2,5:3) have been investigated in a wide region of chromium content. For the alloys Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} a transition to the state with antiferromagnetic order in a fully occupied sub-lattice and with no order in a partially occupied sub-lattice was obtained. For the alloys Li{sub x}Cr{sub 0.5}Ti{sub 0.75}Se{sub 2}, a non-monotonic dependence of structural and magnetic properties have been found upon increase of Li concentration x, that is in agreement with experimental results. The ground state properties have been studied on the basis of electronic structure calculations using the Korringa-Kohn-Rostoker (KKR) band structure method combined with the CPA alloy theory. Using Monte Carlo simulations we obtained the magnetic configuration at T=0 K and studied the magnetic properties at T>0 K as well. The required exchange coupling parameters were obtained from our ab-initio electronic structure calculations.

  14. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  15. Review of the field performance of one cadmium telluride module

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, J.A. del [National Renewable Energy Lab., Golden, CO (United States)

    1998-12-01

    Performance data gathered in situ from a large-area cadmium telluride (CdTe) thin-film photovoltaic (PV) module that has been deployed outdoors since February 1995 are investigated. It appears that the module's performance has been stable over the last 2 years but it exhibits a semi-cyclical variation whereby the efficiency appears to peak between the autumnal equinox and winter solstice. Analyses are performed that dissect module current-voltage parameters by irradiance and examine their dependence on temperature. The temperature coefficient of the efficiency is quite small and negative from 80% of 1-sun intensity and upwards. Its meager value is the outcome of the sizes and opposite sings of the temperature coefficients of the open-circuit voltage and fill factor. Average module series resistance is quantified and shown to be a determinant in power loss of 11% at 1-sun intensity. It is demonstrated to constrain the fill factor at illumination intensities above 60% of 1-sun, which occurs in the same range of illumination intensities that the temperature coefficients of the fill factor exhibit positive values. Evidence is presented that points to some spectrally-induced variations in the efficiency. (Author)

  16. Using atomistic simulations to model cadmium telluride thin film growth

    Science.gov (United States)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  17. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  18. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  19. Self-Organization and Ovonic Switching in Telluride Glasses

    Science.gov (United States)

    Liuchun, Cai; Boolchand, P.

    2003-03-01

    Self-organization [1] in glasses raises the interesting possibility to look for such effects in Telluride glasses where Ovonic switching is observed [2]. Ternary Al20 (As or Ge)xTe80-x glasses have been synthesized in 0MDSC. In As based glasses Tgs increase monotonically with x in the 140 0C < Tg < 216 0C range. And the non-reversing enthalpy [1], DHnr, shows a broad but shallow minimum in the 0.15 < x < 0.25 range. In the same range, the threshold electric field for switching, Ec, shows [2] a mild reduction from a monotonic behavior. In Ge based glasses, Tg displays a global maximum near x = 0.075, to decrease at higher x. Here Ec also displays a global maximum near x=0.075. As-based glasses may be self-organized in 0.15

  20. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lavietes, A.D.; McQuaid, J.H. [Lawrence Livermore National Lab., CA (United States); Paulus, T.J. [EG& G ORTEC, Oak Ridge, TN (United States)

    1995-09-08

    Lawrence Livermore National Laboratory (LLNL) and EG&G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems.

  1. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  2. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    International Nuclear Information System (INIS)

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci 252Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into 85Rb17+ and 2.9% into 133Cs20+.

  3. Process for obtaining oxygen doped zinc telluride monocrystals and scintillator crystals obtained by this process

    International Nuclear Information System (INIS)

    A process is described for obtaining oxygen doped zinc telluride monocrystals, for use as scintillator crystals for ionising radiation detectors. The following operations are carried out in succession: one or several zinc telluride crystals are introduced into a silica ampoule together with a ternary mixture of zinc tellurium and oxygen, as an oxide or hydroxide of these elements; the ampoule is pumped down to a high vacuum and sealed; the sealed ampoule containing the mixture and monocrystals is placed in a kiln and brought to a uniform temperature sufficient to make the mixture three-phased, depending on its composition; the zinc telluride crystalline compound remains solid; the ampoule is then tempered to bring it quickly back to ambient temperature

  4. X-ray computed tomography system utilizing a cadmium telluride detector

    OpenAIRE

    佐藤, 英一; 野宮, 聖一郎; 人見, 啓太朗; 尾鍋, 秀明; 河合, 敏明; 小川, 彰; 佐藤, 成大; 市丸, 俊夫; サトウ, エイイチ; ノミヤ, セイイチロウ; ヒトミ, ケイタロウ; オナベ, ヒデアキ; カワイ, トシアキ; オガワ, アキラ; サトウ, シゲヒロ

    2007-01-01

    A simple x-ray computed tomography(CT) system utilizing a cadmium telluride detector is described. The CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation table, a motor drive unit, a cadmium telluride detector, an interface unit for the detector, and a personal computer(PC). Tomography was performed by the repetition of the translation and rotation of an object. The maximum values of the tube voltage and the tube current were 110kV and 2....

  5. On the potentialities of cadmium telluride using for pulsed X-radiation detection in medical tomographs

    International Nuclear Information System (INIS)

    The possibility of usage of cadmium telluride as detectors for pulsed x-radiation detection in tomographic systems are considered. Experimental results of photoelectric characteristics of detectors of M-P-M structures on the base of semi- isolating CdTe(Cl) crystals are presented. The dependences of dark current and photocurrent on a bias voltage, detector lux-ampere characteristics and dependence of the induced current in the cadmium telluride detector on x-radiation flux intensity are presented. The determining effect of crystal purity on all detector characteristics is pointed out

  6. Dental x-ray spectrometry with cadmium telluride detectors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) semiconductor detectors provide high detection efficiency for use in the diagnostic x-rays energy range, due to the high atomic number and density of the crystal. This kind of detector has been utilized in diagnostic x-ray spectroscopy, mainly in the mammography energy range, but only scarce information about its use in dental x-ray beams has been published. In this way, a portable 3x3x1 mm3 CdTe solid state detector (XR-100T CdTe, Amptek, Inc.) with electronic system, tungsten pinhole collimators, alignment device and associated software was utilized in this work. A single-phase dental unit with adjustable kVp and mA was employed and the x-ray spectra were experimentally determined at 50, 60 and 70 kVp with a tube current of 0.5 mA and 1.5mm Al additional filtration. An experimental setup was developed to guarantee a perfect alignment between the detector and the focal spot. The detector to focal spot distance was 3.0 m. Two 2mm thick tungsten pinholes (Amptek EXVC kit) with 0.4 mm and 1.0 mm collimator aperture diameters were positioned close to the detector in order to reduce the pulse pile-up events at high counting rates. A stripping procedure was implemented to correct the pulse height distribution in order to determine the photon spectra. The calculation of the CdTe response, used to correct the measured spectra, was simulated using the GEANT4 Monte Carlo toolkit. The x-ray spectra were compared with the spectra obtained with a high-purity germanium detector (EGP200-13-TR, Eurisys Mesures) with associated electronic devices and software. The reasonable agreement between the results obtained with both detectors shows that CdTe detectors can be successfully utilized for dental x-ray spectrometry. (author)

  7. Cadmium zinc telluride detector for low photon energy applications

    Science.gov (United States)

    Shin, Kyung-Wook; Wang, Kai; Reznic, Alla; Karim, Karim S.

    2010-04-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a polycrystalline radiation detector that has been investigated over the years for a variety of applications including Constellation X-ray space mission [1] and direct-conversion medical imaging such as digital mammography [2]. Due to its high conversion gain and low electron-hole pair creation energy (~4.43 eV) [3], it has found use in high end, photon counting medical imaging applications including positron emission tomography (PET), computed tomography (CT) and single photon emission computed tomography (SPECT). However, its potential in low photon energy applications has not been fully explored. In this work, we explore the capacity of the CZT material to count low photon energies (6 keV - 20 keV). These energies are of direct relevance to applications in gamma ray breast brachytheraphy and mammography, X-ray protein crystallography, X-ray mammography and mammography tomosynthesis. We also present a design that integrates the CZT direct conversion detector with an inhouse fabricated amorphous silicon (a-Si:H) thin film transistor (TFT) passive pixel sensor (PPS) array. A CZT photoconductor (2 cm x 2 cm size, 5-mm-thick) prepared by the traveling heat method (THM) from RedlenTM is characterized. The current-voltage characteristics reveal a resistivity of 3.3 x 1011 Ω•cm and a steady state dark current in the range of nA. Photocurrent transients under different biases and illumination pulses are studied to investigate photogeneration and the charge trapping process. It is found that charge trapping plays a more significant role in transient behavior at low biases and low frequency.

  8. Ab initio full-potential study of mechanical properties and magnetic phase stability of californium monopnictides (CfN and CfP)

    Science.gov (United States)

    Amari, S.; Bouhafs, B.

    2016-09-01

    Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young's modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.

  9. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  10. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  11. Stable, high efficiency thin film solar cells produced by electrodeposition of cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A.K.; Woodcock, J.M.; Ozsan, M.E.; Summers, J.G.; Barker, J.; Binns, S.; Buchanan, K.; Chai, C.; Dennison, S.; Hart, R.; Johnson, D.; Marshall, R.; Oktik, S.; Patterson, M.; Perks, R.; Roberts, S.; Sadeghi, M.; Sherborne, J.; Szubert, J.; Webster, S. (BP Solar, Solar House, Leatherhead (United Kingdom))

    1991-12-01

    The highest known efficiency of 9.5% for a 300x300 mm series interconnected cadmium telluride solar cell is reported. In addition, efficiencies of up to 13% have been measured for small cells based on electrodeposited CdTe. The stability of modules in outdoor tests is discussed and an outline is given of the device fabrication procedure. (orig.).

  12. IR Laser-Induced Synthesis of Nanostructured Gemanium Telluride in the Gas Phase

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Pokorná, Dana; Diánez, M.J.; Sayagués, M.J.; Bastl, Zdeněk; Vorlíček, Vladimír

    2005-01-01

    Roč. 19, č. 7 (2005), s. 854-858. ISSN 0268-2605 R&D Projects: GA AV ČR(CZ) IAA4072107 Institutional research plan: CEZ:AV0Z40720504 Keywords : laser-induced decomposition * germanium telluride * pyrolysis Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.190, year: 2005

  13. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  14. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  15. Anatomy of a controversy: Application of the Langevin technique to the analysis of the Californium-252 Source-Driven Noise Analysis method for subcriticality determination

    International Nuclear Information System (INIS)

    The expressions for the power spectral density of the noise equivalent sources have been calculated explicitly for the (a) stochastic transport equation, (b) the one-speed transport equaton, (c) the one-speed P1 equations, (d) the one-speed diffusion equation and (e) the point kinetic equation. The stochastic nature of Fick's law in (d) has been emphasized. The Langevin technique has been applied at various levels of approximation to the interpretation of the Californium-252 Source-Driven Noise Analysis (CSDNA) experiment for determining the reactivity in subcritical media. The origin of the controversy surrounding this method has been explained. The foundations of the CSDNA method as a viable experimental technique to infer subcriticality from a measured ratio of power spectral densities of the outputs of two neutron detectors and a third external source detector has been examined by solving the one-speed stochastic diffusion equation for a point external Californium-252 source and two detectors in an infinite medium. The expression relating reactivity to the measured ratio of PSDs was found to depend implicitly on k itself. Through a numerical analysis fo this expression, the authors have demonstrated that for a colinear detector-source-detector configuration for neutron detectors far from the source, the expression for the subcritical multiplication factor becomes essentially insensitive to k, hence, demonstrating some possibility for the viability of this technique. However, under more realistic experimental conditions, i.e., for finite systems in which diffusion theroy is not applicable, the measurement of the subcritical multiplication factor from a single measured ratio of PSDs, without extensive transport calculations, remains doubtful

  16. Application of SCGE assay, classical cytogenetics and FISH for studying in vitro californium-252 neutrons irradiations and BSH pretreatment on human lymphocytes

    International Nuclear Information System (INIS)

    Recently, there has been observed a tendency to apply various energy neutrons for tumor therapy and particularly low energy neutrons from various sources, including californium-252 source, for cancer radiotherapy based on the neutron capture. In this study peripheral blood lymphocytes were used as a model for human cells and three methods were applied to assess the effectiveness of californium-252 neutrons irradiations in vitro in normal cells or pre-treated with compound enriched in B-10 ion. Human blood samples or isolated lymphocytes were irradiated with neutrons from isotopic 252Cf source at the Faculty of Nuclear Physics and Technics at University of Mining and Metallurgy (both neutron source and samples were placed in polyethylene block). Chemical pretreatment with BSH (Na210B12H11SH) was done to introduce boron-10 ion into cells in order to check any enhancement effect due to the process of boron neutron capture. Comet assay was done to investigate the DNA damage. Classical cytogenetics was applied to assess the frequencies of unstable aberrations (dicentrics and rings). Fluorescence in situ hybridization (FISH) with probes for chromosomes 1, 4 (14.3% of whole genome) and pancentromeric probe was performed to evaluate the frequencies of stable aberrations. Linear (or close to linear) increase of DNA damage and aberration frequency was observed with dose of radiation both for lymphocytes untreated or pre-treated with BSH. Very little differences (statistically insignificant) due to radiation dose and BSH pretreatment were observed in the frequencies of SCEs detected in the second mitosis. There is no significant difference between boron pre-treated and not treated cells, and even slightly higher effects were observed in case of the highest dose without BSH pretreatment. The level of translocations observed is comparable with the frequencies of dicentrics and rings. (author)

  17. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  18. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  19. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  20. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  1. Transport properties of silver telluride in the solid and liquid states

    International Nuclear Information System (INIS)

    Measurements of the electrical resistivity, Hall coefficient and thermoelectric power have been carried out for silver telluride over a large temperature range including both solid and liquid states. The analysis of the experimental data shows that in the solid state the transport properties are governed by an ambipolar process with an electron mobility much higher than the hole mobility (μn = 10*μp). It is found that the temperature dependence of the electron mobility can be represented by a T-3 law. Deviations from the stoichiometric composition Ag2Te have been studied. For all specimens, melting is accompanied by discontinuous variations in the transport properties. Above the melting point, the magnitude of the measured parameters and their temperature dependence show that liquid silver telluride behaves as a semiconductor. The contribution of Ag+ ions to transport phenomena is suggested to account for the behaviour of the electrical properties. Experimental data have been analysed in terms of conventional theories. (author)

  2. Californium-252 neutron sources

    International Nuclear Information System (INIS)

    Major production programs for the Savannah River reactors and the High Flux Isotopes Reactor at Oak Ridge have made 252Cf one of the most available and, at the USAEC's sales price of $10/μg, one of the least-expensive isotopic neutron sources. Reactor production has totaled approximately 2 g, and, based on expected demand, an additional 10 g will be produced in the next decade. The approximately 800 mg chemically separated to date has been used to prepare over 600 neutron sources. Most, about 500, have been medical sources containing 1 to 5 μg of 252Cf plated in needles for experimental cancer therapy studies. The remainder have generally been point sources containing 10 μg to 12 mg of oxide for activation, well logging, or radiography uses. Bulk sources have also been supplied to the commercial encapsulators. The latest development has been the production of 252Cf cermet wire which can be cut into almost contamination-free lengths of the desired 252Cf content. Casks are available for transport of sources up to 50 mg. Subcritical assemblies have been developed to multiply the source neutrons by a factor of 10 to 40, and collimators and thermalizers have also been extensively developed to shape the neutron flux and energy distributions for special applications. (U.S.)

  3. Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector

    OpenAIRE

    Brzymialkiewicz, Caryl N.; Martin P. Tornai; McKinley, Randolph L.; Bowsher, James E.

    2005-01-01

    A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the dete...

  4. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes

    OpenAIRE

    Nguyen, Kathy C; Rippstein, Peter; Tayabali, Azam F.; Willmore, William G.

    2015-01-01

    There are an increasing number of studies indicating that mitochondria are relevant targets in nanomaterial-induced toxicity. However, the underlying mechanisms by which nanoparticles (NPs) interact with these organelles and affect their functions are unknown. The aim of this study was to investigate the effects of cadmium telluride quantum dot (CdTe-QD) NPs on mitochondria in human hepatocellular carcinoma HepG2 cells. CdTe-QD treatment resulted in the enlargement of mitochondria as examined...

  5. On the active volume of cadmium zinc telluride gamma-ray spectrometers

    International Nuclear Information System (INIS)

    In this paper the authors develop quantitative models to predict the active volume of cadmium zinc telluride (CZT) detectors operated as gamma-ray pulse height spectrometers. Three cases are considered: a conventional planar detector, a unipolar device, and a detector in which electronic signal processing has been applied to correct for charge trapping effects. The find that existing detectors are very limited in their maximum attainable active volume, but unipolar devices with charge correction show promise for producing large active volume devices

  6. The first trialkylphosphane telluride complexes of Ag(I): molecular, ionic and supramolecular structural alternatives.

    Science.gov (United States)

    Daniliuc, Constantin; Druckenbrodt, Christian; Hrib, Cristian G; Ruthe, Frank; Blaschette, Armand; Jones, Peter G; du Mont, Wolf-W

    2007-05-28

    The structures of the first phosphane telluride complexes of silver(I), obtained from i-Pr3PTe (1) with AgNMs2 [Ms = SO2CH3] and with AgSbF6, reveal the superior coordinating ability of 1, particularly as a bridging ligand, compared with related i-Pr3PS and i-Pr3PSe ligands. PMID:17713078

  7. Calculations of Nuclear Astrophysics and Californium Fission Neutron Spectrum Averaged Cross Section Uncertainties Using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-fidelity Covariances

    International Nuclear Information System (INIS)

    Nuclear astrophysics and californium fission neutron spectrum averaged cross sections and their uncertainties for ENDF materials have been calculated. Absolute values were deduced with Maxwellian and Mannhart spectra, while uncertainties are based on ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity covariances. These quantities are compared with available data, independent benchmarks, EXFOR library, and analyzed for a wide range of cases. Recommendations for neutron cross section covariances are given and implications are discussed

  8. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    Science.gov (United States)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  9. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by 119Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  10. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    International Nuclear Information System (INIS)

    Tailoring electrical and thermal contact conductivities (Σc and Γc) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi2Te3 and p-Sb2Te3 influence both Σc and Γc. Cu metallization yields the highest Γc and the lowest Σc, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σc with Sb2Te3 due to p-type nickel telluride formation, which diminishes Σc improvement with n-Bi2Te3 interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices

  11. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    Science.gov (United States)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  12. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  13. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  14. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    Science.gov (United States)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be orientation in the instrument.

  15. Deformation and crack mechanisms of nanotwinned cadmium telluride under cyclic nanoindentations

    International Nuclear Information System (INIS)

    The surface energies of monocrystalline (mc) and nanotwinned (nt) cadmium telluride (CdTe or CT) crystals, calculated using molecular dynamics simulations, are 435.08 and 381.8 mJ m−2, respectively. A crack of mc-CT is induced at the second loading cycle, whereas nt-CT with both twin boundaries (TBs) shows a crack at the lower TB under the third unloading condition. However, nt-CT with three TBs is free from cracks after 10 cyclic loading–unloading indentations, due to the combined effect between the hardening and softening nanotwins

  16. Large-volume high-resolution cadmium zinc telluride radiation detectors: recent developments

    Science.gov (United States)

    Chen, H.; Awadalla, S. A.; Iniewski, K.; Lu, P. H.; Harris, F.; Mackenzie, J.; Hasanen, T.; Chen, W.; Redden, R.; Bindley, G.; Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Luke, P.; Amman, M.; Lee, J. S.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; James, R. B.

    2007-09-01

    The excellent room temperature spectral performance of cadmium zinc telluride detectors grown via the Traveling Heater Method (THM) makes this approach suitable for the mass deployment of radiation detectors for applications in homeland security and medical imaging. This paper reports our progress in fabricating thicker and larger area detectors from THM grown CZT. We discuss the performance of such 20x20x10 mm 3, and 10x10x10 mm 3 monolithic pixellated detectors and virtual Frisch-Grid 4x4x12 mm3 devices, and describe the various physical properties of the materials.

  17. Specific features of the photoconductivity of semi-insulating cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Golubyatnikov, V. A.; Grigor’ev, F. I.; Lysenko, A. P., E-mail: aplysenko@hse.ru; Strogankova, N. I.; Shadov, M. B. [National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics (Russian Federation); Belov, A. G. [OAO GIREDMET State Research and Design Institute of the Rare-Metal Industry (Russian Federation)

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  18. Polarity and structure peculiarities of trialkylphosphine oxides, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    Using the quantum-chemical calculations structural characteristics of trialkylphosphine oxides, sulfates, selenides and tellurides (Alk3P=X; X O, S, Se, Te) are obtained, which are in good agreement with literature X-ray structural analysis and gas-phase electron diffraction data. The P=X bonds polarity is determined in the framework of vector-additive scheme on the base of experimental data on components dipole moments and using different base series of molecules geometry parameters. It is shown that increasing of bond moment P=X in the X = O, S, Se, Te series takes place through dipole length increasing

  19. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    International Nuclear Information System (INIS)

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb2Te3) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb2Te3 thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κe) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results

  20. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD. PMID:27166737

  1. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film

    International Nuclear Information System (INIS)

    N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited by co-sputtering simple substance Te and Bi targets. The deposited films were annealed under various temperatures. The composition ratio, micro-structure and thermoelectric properties of the prepared films were systematically investigated by energy dispersive spectrometer, X-ray diffraction, four-probe method and Seebeck coefficient measurement system. When the annealing temperature is 400 °C, the stoichiometric N-type Bi2Te3 film is achieved, which has a maximum thermoelectric power factor of 0.821 × 10−3 W m−1 K−2. Furthermore, the dependence of Seebeck coefficient, electrical conductivity and power factor of the stoichiometric N-type Bi2Te3 film annealed at film 400 °C on the applied temperature ranging from 25 °C to 315 °C was investigated. The results show that a highest power factor of 3.288 × 10−3 W m−1 K−2 is obtained at the applied temperature of 275 °C. The structural and thermoelectric properties of the deposited bismuth telluride thin films are greatly improved by annealing and the Seebeck coefficient, electrical conductivity and power factor increase with the applied temperature rising, which are helpful and could be guidance for preparing the high-performance thin film thermoelectric materials for thermoelectric application.

  2. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.;

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions....../precipitates of these crystals indicate that the THM is suitable for the mass production of CZT radiation detectors that can be used in a variety of applications. Our result also proves that with careful material selection using IR and high-quality fabrication processes, the theoretical energy resolution limit can be achieved....

  3. Telluride buried channel waveguides operating from 6 to 20 μm for photonic applications

    Science.gov (United States)

    Vigreux, C.; Escalier, R.; Pradel, A.; Bastard, L.; Broquin, J.-E.; Zhang, X.; Billeton, T.; Parent, G.; Barillot, M.; Kirschner, V.

    2015-11-01

    One of the technological challenges of direct observation of extra-solar planets by nulling interferometry is the development of a modal filter operating from 6 to 20 μm. In the present paper a candidate technology for the fabrication of such modal filters is presented: Integrated Optics. A solution based on all-telluride buried channel waveguides is considered. In the proposed waveguides, vertical guiding of light is achieved by a 15 μm-thick Te83Ge17 core film deposited onto a lower-index Te75Ge15Ga10 substrate, and covered by a 15 μm-thick Te76Ge24 superstrate. Horizontal guiding of light is obtained by modifying the geometry of the core layer by ion beam etching. As this stage, all-telluride buried channel waveguide prototypes demonstrate light guiding and transmission from 2 to 20 μm. The validity of the technology and the good quality of the fabrication process, in particular the input and output facets surface finish are thus confirmed. These results consolidate the potential of Te-based integrated optics components for nulling interferometry.

  4. Electrodeposition of bismuth telluride nanowires with controlled composition in polycarbonate membranes

    International Nuclear Information System (INIS)

    Bismuth telluride nanowires were potentiostatically deposited from a water/DMSO 50%, v/v electrolyte within polycarbonate etched ion-track membranes covered by a platinum substrate. The presence of DMSO shifts the potentials to more negative values and slows down the cation diffusion. Cyclic voltammetries on recessed Pt nanoelectrodes using polycarbonate membranes highlight a complex electrochemical behavior through several cathodic and anodic peaks which are not observed onto platinum discs macroelectrodes. Analytical investigations enabled the determination of appropriate deposition conditions to finely tune the average composition of the nanowires. Calibrated TEM-EDX analyses evidence high aspect ratio nanowires, whose composition is strongly dependent on the deposition potential. In the same manner as for bismuth telluride film electroplating, bismuth enrichment occurs at more cathodic deposition potential whereas tellurium enrichment is observed at low cathodic potentials. Stoichiometric nanowires of 60 nm diameter were obtained at −100 mV vs Ag/AgCl from an electrolyte which contains [Bi3+] = 1.5[HTeO2+] = 15 mM. The composition is homogeneous along the nanowire except at both edges: the cap is rich in bismuth whereas the base is rich in tellurium. The composition at the nanowire base is adjusted by setting a short initial voltage step (Ui = −300 mV vs Ag/AgCl, ti = 2 s). In the case of stoichiometric compounds, the resulting nanostructures were found to be polycrystalline with a preferential orientation along the direction perpendicular to the planes (0 1 5).

  5. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  6. Biological Efficiency of Californium-252 Source Evaluated by Comet Assay, Classical Cytogenetics and FISH in Human Lymphocytes Irradiated without and with BSH Pretreatment

    International Nuclear Information System (INIS)

    Biological effectiveness of californium-252 source was evaluated after irradiations in vitro of normal or pre-treated with compound enriched in B-10 ion cells. Peripheral blood lymphocytes were used as a model for human cells. DNA and chromosomal damage were studied to compare biological effectiveness of irradiation. Human blood samples or isolated lymphocytes were irradiated with the isotopic source of 252Cf, at the Faculty of Physics and Nuclear Techniques at the University of Mining and Metallurgy (both neutron source and samples were placed in ''infinite'' polyethylene block). Chemical pretreatment with Na210B12H11SH (BSH) was performed to introduce boron-10 ion into cells in order to check any enhancement effect due to the process of boron neutron capture. Single cell gel electrophoresis also known as the Comet assay was done to investigate the DNA damage. Classical cytogenetic analysis was applied to assess the frequencies of unstable aberrations (dicentrics, rings and a centric fragments). To evaluate the frequencies of stable aberrations the fluorescence in situ hybridisation (FISH) with probes for chromosomes 1, 4 (14.3% of the whole genome) was performed. Linear (or close to linear) increase with radiation dose were observed for the DNA damage and aberration frequencies in lymphocytes both untreated or pre-treated with BSH. Levels of translocations evaluated for the whole genome were comparable with the frequencies of dicentrics and rings. No significant differences were detected due to radiation dose in the frequencies of sister chromatid exchanges (SCE) detected in the second mitosis. No statistically significant differences were observed in various biological end-points between normal or boron pre-treated cells. (author)

  7. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    International Nuclear Information System (INIS)

    Glasses with the chemical composition 35Li2O-(45-x)V2O5−20PbO-xTeO2 (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li+ ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples

  8. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    Science.gov (United States)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  9. Evaluation of DAST and zinc telluride nonlinear crystals for efficient terahertz generation

    International Nuclear Information System (INIS)

    Terahertz (THz) signal is generated from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (i.e. DAST Crystal) and Zinc telluride (ZnTe) nonlinear crystals by employing 140 fs laser pulses at 800 nm with 80 MHz repetition rate. The semi insulating gallium arsenide photoconductive stripline antennas (gap =5 µm, length = 20 µm) is used as a Terahertz detector. The detected temporal profile of Terahertz radiation generated from DAST crystal is high as compared to ZnTe crystal in terms of amplitude. THz effective bandwidths of these crystals are extended up to 1.1 THz range. The potential of THz generation of DAST and ZnTe crystals are evaluated with respect to incident laser power

  10. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra.

    Science.gov (United States)

    Di Castro, E; Pani, R; Pellegrini, R; Bacci, C

    1984-09-01

    A method is introduced for the evaluation of x-ray spectra from x-ray machines operating in the range 50-100 kVp using a cadmium telluride (CdTe) detector with low detection efficiency. The pulse height distribution obtained with this kind of detector does not represent the true photon spectra owing to the presence of K-escape, Compton scattering, etc.; these effects were evaluated using a Monte Carlo method. A stripping procedure is described for implementation on a Univac 1100/82 computer. The validity of our method was finally tested by comparison with experimental results obtained with a Ge detector and with data from the literature; the results are in good agreement with published data. PMID:6483976

  11. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  12. Electronic properties of chlorine doped cadmium telluride used as high energy photoconductive detector

    International Nuclear Information System (INIS)

    A new high energy X-ray chlorine doped Cadmium Telluride (CdTe:Cl) photoconductor is described. We discuss different deposition techniques (Sputtering, Evaporation, Electroless) to realize ohmic contacts which have low leakage current and which allow high applied electric field. The temperature dependence of the dark current give an activation energy of 0.6 eV for standard CdTe:Cl. The transient response of photoconductors under high X-ray energy beams has been characterized using three different pulse duration 150 ps, 30 ns and 4 μs. Sensitivity and speed of response are studied as a function of neutron pre-irradiated doses (0, 1014, 1015, 1016 n/cm2): neutron irradiations reduce the carrier lifetime at the expense of a lower sensitivity

  13. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  14. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  15. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    International Nuclear Information System (INIS)

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F0/F) with concentration of tiopronin was linear in the range of 0.15-20 μg mL-1(0.92-122.5 μmol L-1) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/k) was 0.15 μg mL-1(0.92 μmol mL-1). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value

  16. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance

    Science.gov (United States)

    Kulsi, Chiranjit; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali; Goswami, Shyamaprosad

    2015-10-01

    Thin films of bismuth telluride using various surfactants such as sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) have been electrochemically deposited. The influence of different surfactants on crystal orientation and morphology was investigated and correlated with the thermoelectric performance of the electrodeposited films. Since thickness affects the thermoelectric performance compared to the surfactant, thickness- dependent thermoelectric performance has also been investigated. The carrier mobilities of the films obtained are significantly enhanced due to improved surface morphology using different surfactants. Between the two surfactants, films with SDS exhibited the higher value of thermoelectric power, power factor, and figure of merit, which is due to the effect of micelle formation. The XRD pattern of all the films, which are electrodeposited without surfactant or using SDS and PVP, showed preferred crystal orientation along the (018) direction. The roles of organic molecules in the development of nanoparticles with improved thermoelectric properties have been investigated.

  17. Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Giamarchi, T.; /Geneva U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions and umklapp processes might play a relevant role in the formation of the charge-density-wave state in these compounds.

  18. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  19. Study of transport properties co - evaporated lead telluride (PbTe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, G.P. [Thin film laboratory, Physics Department Pratap College, Amalner (India); Pawar, P.H. [Department of Electronics, Jai-Hind College, Dhule (India)

    2002-07-01

    Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 A to 2500 A have been prepared by co-evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four-probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p-type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X-ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Feasibility of using cadmium-zinc-telluride detectors in electronically collimated SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Radiology; Doty, F.P.; Friesenhahn, S.J.; Butler, J.F. [Aurora Technologies Inc., San Diego, CA (United States)

    1995-08-01

    Replacing cryogenically cooled germanium (Ge) with room-temperature operable cadmium-zinc-telluride (CZT) semiconducting detectors as the first detector of an electronically collimated SPECT system would have certain practical advantages. To determine the feasibility of this approach, the authors have performed a theoretical and experimental study comparing the resolution and detection efficiency of a Ge based system to that of a CZT based system. The results indicate that the detection efficiency of a CZT based system would be a factor of 2.5 lower than a comparable Ge based system at 140keV and the spatial resolution would also be approximately a factor of two worse. However, at higher energies, the difference between CZT and Ge would decrease, and at 662keV, for example, the CZT and the Ge systems could have nearly equal detection efficiency and resolution.

  1. Feasibility of using cadmium-zinc-telluride detectors in electronically collimated SPECT

    International Nuclear Information System (INIS)

    Replacing cryogenically cooled germanium (Ge) with room-temperature operable cadmium-zinc-telluride (CZT) semiconducting detectors as the first detector of an electronically collimated SPECT system would have certain practical advantages. To determine the feasibility of this approach, the authors have performed a theoretical and experimental study comparing the resolution and detection efficiency of a Ge based system to that of a CZT based system. The results indicate that the detection efficiency of a CZT based system would be a factor of 2.5 lower than a comparable Ge based system at 140keV and the spatial resolution would also be approximately a factor of two worse. However, at higher energies, the difference between CZT and Ge would decrease, and at 662keV, for example, the CZT and the Ge systems could have nearly equal detection efficiency and resolution

  2. First experience DaTSCAN imaging using cadmium-zinc-telluride gamma camera SPECT.

    Science.gov (United States)

    Farid, Karim; Queneau, Mathieu; Guernou, Mohamed; Lussato, David; Poullias, Xavier; Petras, Slavomir; Caillat-Vigneron, Nadine; Songy, Bernard

    2012-08-01

    We report our first experience of brain DaTSCAN SPECT imaging using cadmium-zinc-telluride gamma camera (CZT-GC) in 2 cases: a 64-year-old patient suffering from essential tremor and a 73-year-old patient presenting with atypical bilateral extrapyramidal syndrome. In both cases, 2 different acquisitions were performed and compared, using a double-head Anger-GC, followed immediately by a second acquisition on CZT-GC. There were no significant visual differences between images generated by different GC. Our first result suggests that DaTSCAN SPECT is feasible on CZT-GC, allowing both injected dose and acquisition time reductions without compromising image quality. This experience needs to be evaluated in larger series. PMID:22785531

  3. Simple routes to synthesis and characterization of nanosized tin telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Bazarganipour, Mehdi [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Fazl, Alireza Amini [Institute for Colorants, Paint and Coatings (ICPC), Tehran, P.O. Box. 16765/654 (Iran, Islamic Republic of)

    2010-11-15

    Nanosized tin telluride compounds were prepared by chemical reduction process and hydrothermal methods. The nanosized SnTe compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SnTe nanoalloy prepared by chemical reduction process presented quasi-spherical morphology with aggregation. The sizes of particle were 40-50 nm. The powder prepared by hydrothermal process was nearly nanospheres, and the particle sizes were 30-40 nm with narrow distribution. The effect of capping agent, reductant sort, and reaction temperature on the morphology, the particle sizes and the phase of SnTe alloys have been investigated. Experimental results indicated that N{sub 2}H{sub 4}.H{sub 2}O plays a crucial role in the formation of nanosized rode-like SnTe compounds.

  4. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    International Nuclear Information System (INIS)

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  5. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  6. Cd-rich and Te-rich low-temperature photoluminescence in cadmium telluride

    International Nuclear Information System (INIS)

    Low-temperature photoluminescence emission spectra were measured in cadmium telluride (CdTe) samples in which composition was varied to promote either Cd or Te-rich stoichiometry. The ability to monitor stoichiometry is important, since it has been shown to impact carrier recombination. Te-rich samples show transitions corresponding to acceptor-bound excitons (∼1.58 eV) and free-electron to acceptor transitions (∼1.547 eV). In addition to acceptor-bound excitons, Cd-rich samples show transitions assigned to donor-bound excitons (1.591 eV) and Te vacancies at 1.552 eV. Photoluminescence is a noninvasive way to monitor stoichiometric shifts induced by post-deposition anneals in polycrystalline CdTe thin films deposited by close-spaced sublimation

  7. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    International Nuclear Information System (INIS)

    Highlights: • We introduce an intermediate cadmium telluride quantum dots (CdTe QDs) layer between the organic with silicon nanowires of hybrid solar cells as a down-shifting layer. • The hybrid solar cell got the maximum short circuit current density of 33.5 mA/cm2, getting an increase of 15.1% comparing to solar cell without CdTe QDs. • The PCE of the hybrid solar cells with CdTe QDs layer increases 28.8%. - Abstract: We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (Jsc) of solar cells with CdTe QDs layer can reach 33.5 mA/cm2. Compared with the solar cells without CdTe QDs, Jsc has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application

  8. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  9. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    International Nuclear Information System (INIS)

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone

  10. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  11. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  12. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  13. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  14. The effects of surface treatments for low temperature silicon dioxide deposition on cadmium telluride

    International Nuclear Information System (INIS)

    The authors have successfully deposited thin films of SiO2 on a cadmium telluride substrate at low temperature (Ts = 100 degrees C-300 degrees C) by remote plasma enhanced chemical vapor deposition (remote PECVD). The native oxide on the CdTe substrate has been removed, prior to deposition by either chemical etching in methanol and 1% bromine, or by dissolution in deionized water. After removal of the native oxide, the CdTe was inserted into a UHV-compatible deposition chamber and a He+ plasma treatment was performed prior to deposition of an SiO2 film. This treatment promotes strong adhesion between the deposited SiO2 film and CdTe surface. The authors find that the initial oxide removal process does not influence SiO2 adhesion. They report on the effect of the He+ plasma treatment on the CdTe surface studied by Auger electron spectroscopy(AES), and reflection high energy electron diffraction (RHEED)

  15. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  16. Synthesis of the titanium phosphide telluride Ti2PTe2: A thermochemical approach

    International Nuclear Information System (INIS)

    The phosphide telluride Ti2PTe2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti2PTe2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti2PTe2(s) decomposes to Ti2P(s) and Te2(g) in six consecutive steps. The growth of single crystals of Ti2PTe2 is thermodynamically described as a chemical vapour transport with TiCl4(g) acting as the transport agent. - Graphical abstract: Oxygen partial pressure and electrochemical potential above the oxides of titanium, tellurium and phosphorus calculated at 1000 K, marked: level of equalisation of oxygen partial pressure

  17. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  18. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  19. Heart imaging by cadmium telluride gamma cameraEuropean Program ``BIOMED'' consortium

    Science.gov (United States)

    Scheiber, Ch.; Eclancher, B.; Chambron, J.; Prat, V.; Kazandjan, A.; Jahnke, A.; Matz, R.; Thomas, S.; Warren, S.; Hage-Hali, M.; Regal, R.; Siffert, P.; Karman, M.

    1999-06-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3×3 mm, field of view: 15 cm×15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parrallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15° tilt of the collimator with respect to the detector grid. A 16×16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16±0.6 keV (mean ± standard deviation, n=30). Uniformity was ±10%, improving to ±1% when using a correction table. Test objects (emission data: letters 1.8 mm in width) and cold rods in scatter medium have been acquired. The CdTe images have been compared to those acquired with a conventionnal gamma camera.

  20. Thin film cadmium telluride solar cells by two chemical vapor deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-01-15

    Cadmium telluride (CdTe) has long been recognized as a promising thin film photovoltaic material. In this work, polycrystalline p-CdTe films have been deposited by two chemical vapor deposition techniques, namely the combination of vapors of elements (CVE) and close-spaced sublimation (CSS). The CVE technique is more flexible in controlling the composition of deposited films while the CSS technique can provide very high deposition rates. The resistivity of p-CdTe films deposited by the CVE and CSS techniques can be controlled by intrinsic (cadmium vacancies) or extrinsic (arsenic or antimony) doping, and the lowest resistivity obtainable is about 200 ..cap omega.. cm. Both front-wall (CdTe/TCS/glass) and back-wall (TCS/CdTe/substrate) cells have been prepared. The back-wall cells are less efficient because of the high and irreproducible p-CdTe-substrate interface resistance. The CSS technique is superior to the CVE technique because of its simplicity and high deposition rates; however, the cleaning of the substrate in situ is more difficult. The interface cleanliness is an important factor determining the electrical and photovoltaic characteristics of the heterojunction. Heterojunction CdS/CdTe solar cells of area 1 cm/sup 2/ with conversion efficiencies higher than 10% have been prepared and junction properties characterized.

  1. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    International Nuclear Information System (INIS)

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated

  2. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    International Nuclear Information System (INIS)

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16±0.6 keV (mean ± standard deviation, n=30). Uniformity was ±10%, improving to ±1% when using a correction table. Test objects (emission data: letters 1.8 mm in width) and cold rods in scatter medium have been acquired. The CdTe images have been compared to those acquired with a conventionnal gamma camera

  3. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. PMID:27524895

  4. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    International Nuclear Information System (INIS)

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP300 K ≈ 4.5 × 10−10 W/Hz1/2 and NEP78 K ≈ 5 × 10−9 W/Hz1/2. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source

  5. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  6. Theory of the electronic properties of mercury-cadmium-telluride alloys

    Science.gov (United States)

    Chen, A. B.; Sher, A.

    1984-02-01

    An accurate band-structure theory for semiconductor alloys was achieved. It has been successfully applied to Mercury-Cadmium-Telluride alloys (MCT), and is being extended to III-V and other II-VI semiconductor alloys. As a result of this research, ten papers have been published. Several other papers and one book are in progress. The most important finding was the origin of the major disorder and its effects on different parts of the band structure. The large s-energy fluctuation between the Hg and Cd sites was found to cause a large smearing in the density of states about 5 eV below the top of the valence band, but it produced very little bowing and scattering for the states near the band gap. A detailed study of these facts accounts for the lattice instability of MCT and its very high electron mobility. Another significant result is that, while Cd weakens a neighboring Hg-Te bond, Zn strengthens it. Such structural studies may help resolve the adverse structural difficulties affecting MCT as an infrared material.

  7. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide.

    Science.gov (United States)

    Jang, Youn Jeong; Lee, Jaehyuk; Lee, Jinwoo; Lee, Jae Sung

    2016-03-30

    A zinc telluride (ZnTe) film modified with MoS2 and carbon has been studied as a new photocathode for solar hydrogen production from photoelectrochemical (PEC) water splitting. The modification enhances PEC activity and stability of the photocathode. Thus, the MoS2/C/ZnTe/ZnO electrode exhibits highly improved activity of -1.48 mA cm(-2) at 0 VRHE with a positively shifted onset potential up to 0.3 VRHE relative to bare ZnO/ZnTe electrode (-0.19 mA cm(-2), 0.18 VRHE) under the simulated 1 sun illumination. This represents the highest value ever reported for ZnTe-based electrodes in PEC water splitting. The carbon densely covers the surface of ZnTe to protect it against photocorrosion in aqueous electrolyte and improves charge separation. In addition, MoS2 further enhances the PEC performance as a hydrogen evolution co-catalyst. PMID:26909873

  8. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    International Nuclear Information System (INIS)

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. (paper)

  9. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    Science.gov (United States)

    Shao, Cheng; Bao, Hua

    2016-06-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  10. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.; Johnson, James Neil; Zhao, Yu; Korevaar, Bastiaan Arie

    2016-04-26

    A method for forming thin films or layers of cadmium telluride (CdTe) for use in photovoltaic modules or solar cells. The method includes varying the substrate temperature during the growth of the CdTe layer by preheating a substrate (e.g., a substrate with a cadmium sulfide (CdS) heterojunction or layer) suspended over a CdTe source to remove moisture to a relatively low preheat temperature. Then, the method includes directly heating only the CdTe source, which in turn indirectly heats the substrate upon which the CdTe is deposited. The method improves the resulting CdTe solar cell reliability. The resulting microstructure exhibits a distinct grain size distribution such that the initial region is composed of smaller grains than the bulk region portion of the deposited CdTe. Resulting devices exhibit a behavior suggesting a more n-like CdTe material near the CdS heterojunction than devices grown with substrate temperatures held constant during CdTe deposition.

  11. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  12. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  13. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology. PMID:27237438

  14. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  15. Quantitative analysis of defect formation in cadmium telluride during high energy electron irradiation

    International Nuclear Information System (INIS)

    Single crystals of cadmium telluride have been irradiated in a high energy electron microscope. During exposure to the electron beam, extended defects which are interstitial type dislocation loops are created. The influence of experimental parameters on the loops characteristics has been investigated. Chemical Reaction Rate Theory has been developed in order to account for the kinetics of loop growth. In this way the elementary processes and their corresponding activation energies have been identified. It has been shown that the migration energy is modified around point defects and that, as a consequence, the interstitial-interstitial agglomeration energy Ei is different from the interstitial-vacancy annihilation energy Ev:Ei = 0.35 eV, Ev = 0.25 eV. The comparison between experimental and theoretical data has shown that small clusters are not stable and the dissociation energy of an atom from a low size aggregate is Ed 1.1 eV. The effects of surfaces have been considered and two different treatments have been developed. This investigation has allowed us to point out that the surface efficiency is not so high as predicted by diffusion theory and that screening effects have to be considered. These latter could be the local diffusion of interstitial towards the dislocation loops. (author)

  16. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  17. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    International Nuclear Information System (INIS)

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  18. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  19. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors.

    Science.gov (United States)

    Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai

    2013-10-21

    Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs. PMID:24056800

  20. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  1. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: genetic implications in Cu-Au and Au skarns

    Science.gov (United States)

    Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L.

    2006-07-01

    Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi-Te(-Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu-Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu-(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of löllingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.

  2. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  3. The effects of nanoparticle inclusions upon the microstructure and thermoelectric transport properties of bismuth telluride-based composites

    Science.gov (United States)

    Gothard, Nicholas Wesley

    Research into materials that have high efficiencies of thermoelectric heat-energy conversion has been at a plateau since the middle of the last century. During this time, efficiencies have been engineered high enough for several interesting niche applications but not high enough for widespread adaptation into traditional power generation or refrigeration technologies. The past decade has seen considerable advancement, as a number of theoretical works have suggested that lower dimensional structures could hold the key for enhanced efficiency, and several experiments have provided the proof of principle needed to inspire just such a research direction. The benefit of low dimensional structures for thermoelectric efficiency comes from both the potential enhancement of the electronic properties due to quantum confinement effects as well as from the potential for increased scattering of heat-carrying phonons. Widespread application of these principles for technological application requires the creation of composites of nanostructures that can be manufactured easily with dimensions on the bulk materials scale. A good starting point for such materials research is to manufacture composites of materials that are currently known to have high thermoelectric efficiencies by incorporating nanostructures into a bulk matrix. The goal of this project is to create nanocomposites using bismuth telluride, a compound known to have one of the highest thermoelectric efficiencies at room temperature, as a matrix material. Various methods of synthesizing sufficient quantities of bismuth telluride nanostructures were attempted, including pulsed laser vaporization, chemical vapor deposition, and solvothermal synthesis. The method of solvothermal synthesis was found to be the simplest approach for producing high yields of bismuth telluride nanostructures. In the initial stages of the project, cold pressing was tested as a means of compaction, but in the end a uniaxial hot pressing technique

  4. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  5. On the possible role played by tunnel recombination in the loss processes of excess current carriers in cadmium telluride

    Science.gov (United States)

    Novikov, G. F.; Marinin, A. A.; Gapanovich, M. V.; Rabenok, E. V.

    2010-05-01

    The microwave photoconductivity method was used to study the kinetics of the decay of current carriers generated by nitrogen laser pulses in n- and p-type cadmium telluride. The dependences of the shape and amplitude of photoresponse decays on temperature and light intensity were studied. Photoresponse decays contained "fast" (at t 50 ns) components. At long times, the dependence of photoresponse on the logarithm of time was linear. The shape of slow component decays was almost independent of temperature. The slow component of photoresponse decay could correspond to the loss process of entrapped charges in tunnel recombination.

  6. Characterization of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by floating zone method

    Science.gov (United States)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Gul, R.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2014-09-01

    Recently, Cadmium Manganese Telluride (CMT) emerged as a promising material for roomtemperature X- and gamma-ray detectors. However, our studies revealed several material defects primarily related to growth processes that are impeding the production of large single crystals with high resistivity and high mobility-lifetime product. In this work, we characterized various defects in materials grown by the floating zone method, including twins, Te inclusions, and dislocations, using our unique facilities. We also fabricated detectors from selected CMT crystals and tested their performance. This paper discusses our detailed findings on the material's properties and the performance of fabricated CMT detectors.

  7. Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors' performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that 'star' defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

  8. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  9. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction

    OpenAIRE

    Herzog, B A; Buechel, R R; Katz, R.; Brueckner, M; Husmann, L; Burger, I A; Pazhenkottil, A P; Valenta, I; Gaemperli, O; Treyer, V.; Kaufmann, P A

    2009-01-01

    We aimed at establishing the optimal scan time for nuclear myocardial perfusion imaging (MPI) on an ultrafast cardiac gamma-camera using a novel cadmium-zinc-telluride (CZT) solid-state detector technology. METHODS: Twenty patients (17 male; BMI range, 21.7-35.5 kg/m(2)) underwent 1-d (99m)Tc-tetrofosmin adenosine stress and rest MPI protocols, each with a 15-min acquisition on a standard dual-detector SPECT camera. All scans were immediately repeated on an ultrafast CZT camera over a 6-min a...

  10. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Science.gov (United States)

    Whalen, Scott; Jana, Saumyadeep; Catalini, David; Overman, Nicole; Sharp, Jeffrey

    2016-07-01

    Refined grain sizes and texture alignment have been shown to improve transport properties in bismuth-telluride (Bi2Te3) based thermoelectric materials. In this work we demonstrate a new approach, called friction consolidation processing (FCP), for consolidating Bi2Te3 thermoelectric powders into bulk form with a high degree of grain refinement and texture alignment. FCP is a solid-state process wherein a rotating tool is used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the far-from-equilibrium microstructure within the flow can be retained in the material. FCP was demonstrated on n-type Bi2Te3 feedstock powder having a -325 mesh size to form pucks with a diameter of 25.4 mm and thickness of 4.2 mm. Microstructural analysis confirmed that FCP can achieve highly textured bulk materials, with sub-micrometer grain size, directly from coarse feedstock powders in a single process. An average grain size of 0.8 μm was determined for regions of one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure of another sample. These results indicate that FCP can yield ultra-fine grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT = 0.37 at 336 K was achieved for undoped stoichiometric Bi2Te3, which approximates literature values of ZT = 0.4-0.5. These results point toward the ability to fabricate bulk thermoelectric materials with refined microstructure and desirable texture using far-from-equilibrium FCP solid-state processing.

  11. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  12. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  13. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  14. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    International Nuclear Information System (INIS)

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  15. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Manciu, Felicia S., E-mail: fsmanciu@utep.edu [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-08-31

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  16. Selenide and telluride glasses for mid-infrared bio-sensing

    Science.gov (United States)

    Cui, Shuo; Chahal, Radwan; Shpotyuk, Yaroslav; Boussard, Catherine; Lucas, Jacques; Charpentier, Frederic; Tariel, Hugues; Loréal, Olivier; Nazabal, Virginie; Sire, Olivier; Monbet, Valérie; Yang, Zhiyong; Lucas, Pierre; Bureau, Bruno

    2014-02-01

    Fiber Evanescent Wave Spectroscopy (FEWS) is an efficient way to collect optical spectra in situ, in real time and even, hopefully, in vivo. Thanks to selenide glass fibers, it is possible to get such spectra over the whole mid-infrared range from 2 to 12 μm. This working window gives access to the fundamental vibration band of most of biological molecules. Moreover selenide glasses are stable and easy to handle, and it is possible to shape the fiber and create a tapered sensing head to drastically increase the sensitivity. Within the past decades, numerous multi-disciplinary studies have been conducted in collaboration with the City Hospital of Rennes. Clinical trials have provided very promising results in biology and medicine which have led to the creation in 2011 of the DIAFIR Company dedicated to the commercialization of fiber-based infrared biosensors. In addition, new glasses based on tellurium only have been recently developed, initially in the framework of the Darwin mission led by the European Space Agency (ESA). These glasses transmit light further into the far-infrared and could also be very useful for medical applications in the near future. Indeed, they permit to reach the vibrational bands of biomolecules laying from 12 to 16 μm where selenide glasses do not transmit light anymore. However, while Se is a very good glass former, telluride glasses tend to crystallize easily due to the metallic nature of Te bonds. Hence, further work is under way to stabilize the glass composition for fibers drawing and to lower the optical losses for improving their sensitivity as bio-sensors.

  17. Cadmium zinc telluride based infrared interferometry for X-ray detection

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm3 CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes

  18. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  19. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    International Nuclear Information System (INIS)

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  20. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance. PMID:27389820

  1. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson–Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm‑1 K‑2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  2. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    International Nuclear Information System (INIS)

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  3. Chemical and electronic structure of surfaces and interfaces in cadmium telluride based photovoltaic devices

    Science.gov (United States)

    Duncan, Douglas Arthur

    The surface and interface properties are of the upmost importance in the understanding, optimization, and application for photovoltaic devices. Often the chemical, electronic, and morphological properties of the films are empirically optimized, however when progress slows, a fundamental understanding of these properties can lead to breakthroughs. In this work, surfaces and interfaces of solar cell-relevant films are probed with a repertoire of X-ray analytical and microanalysis techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), X-ray emission (XES) spectroscopies, and atomic force (AFM) and scanning electron (SEM) microscopies. Silicon-based devices currently dominate the solar market, which is rather inflexible in application. Cadmium telluride (CdTe)-based technologies offer a cost-effective alternative with additional benefits including roll-to-roll production and high conversion efficiencies. This, like other next generation thin film solar cells, needs more optimization to replace Si. The charge transport across a heterojunction is of great importance to drive up the conversion efficiency of the device. The interface of a CdS buffer layer and SnO2:F front contact was investigated as a function of CdCl2-treatment. In order to measure the fully formed interface, after subsequent layer deposition and heat treatments, mechanical stressing of the layer stack resulted in physical separation at the desired interface. By combining multiple spectroscopic and morphologic methods a complete picture has evolved. CdS is often used as a buffer layer in CdTe based devices. This layer is empirically optimized to be very thin (˜100 nm) due to the parasitic light absorption in and around the 2 eV range. By widening the band gap or replacing it with a more transparent material, more photons can be absorbed by the CdTe layer and significantly increase the overall conversion efficiency of the device. CdS:O and Zn(1-x)MgxO were studied as possible

  4. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: ce_delgado89@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)

    2015-10-15

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  5. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio

    1976-07-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  6. Behaviour of Li residual impurity in high-resistance cadmium telluride under the annealing of short duration

    International Nuclear Information System (INIS)

    The results of study are given on the behaviour of Li residual impurity using PL spectra of high-resistant p-type cadmium telluride at 4.2 K before and after its short-term annealing at 873 K in the atmosphere of saturated cadmium and tellurium vapors, as well as in the atmosphere of Cd, Hg and Te vapors formed above Cd0.2Hg0.8Te solid solution. It is established that short-term annealing of specially nondoped specimens of p-type CdTe, containing Li residual impurity in saturated cadmium vapors at 873 K results in conductivity changes from p-type to n-type in the near-the-surface material layer due to variation of stoichiometry deviation to the cadmium excess, and redestribution of Li impurity from Cd nodes into interstitials

  7. Baseline Evaluation of Thin-Film Amorphous Silicon, Copper Indium Diselenide, and Cadmium Telluride for the 21st Century: Preprint

    International Nuclear Information System (INIS)

    This paper examines three thin-film PV technologies: amorphous silicon, cadmium telluride, and copper indium selenide. The purpose is to: (1) assess their status and potential; (2) provide an improved set of criteria for comparing these existing thin films against any new PV technological alternatives, and examining the longer-term (c. 2050) potential of thin films to meet cost goals that would be competitive with conventional sources of energy without any added value from the substantial environmental advantages of PV. Among the conclusions are: (1) today's thin films have substantial economic potential, (2) any new approach to PV should be examined against the substantial achievements and potential of today's thin films, (3) the science and technology base of today's thin films needs substantial strengthening, (4) some need for alternative technologies exists, especially as the future PV marketplace expands beyond about 30 GW of annual production

  8. The effect of substrate rotation rate on physical properties of cadmium telluride films prepared by a glancing angle deposition method

    International Nuclear Information System (INIS)

    Physical properties of cadmium telluride thin films, deposited on glass substrates by modified glancing angle deposition (GLAD) technique with various substrate rates of rotation, were investigated in this study. In contrast to obliquely columnar thin films fabricated by the conventional GLAD technique, in which higher columnar angle is coupled to higher degree of porosity, this study introduces obliquely deposited thin films which have packed columnar structures despite their highly tilted columns. Structural and optical properties and surface morphology of the CdTe thin films deposited by this technique were studied using X-ray diffraction, UV–visible spectroscopy and field emission scanning electron microscopy. - Highlights: • Glancing angle deposition technique was employed to prepare CdTe thin films. • The effect of substrate rate of rotation on optical properties was studied. • Highly tilted and packed columnar structure was fabricated. • A dramatic decline in refractive index in one of the specimens was observed

  9. Discovery and Structure Determination of an Unusual Sulfide Telluride through an Effective Combination of TEM and Synchrotron Microdiffraction.

    Science.gov (United States)

    Fahrnbauer, Felix; Rosenthal, Tobias; Schmutzler, Tilo; Wagner, Gerald; Vaughan, Gavin B M; Wright, Jonathan P; Oeckler, Oliver

    2015-08-17

    The structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite. Pb8Sb8S15Te5 consists of chains of heterocubane-like units. Cation coordination polyhedra form unusually entwined chains of edge- and face-sharing bicapped trigonal prisms. The structure data are precise enough for bond-valence calculations, which confirm the disordered atom distribution. On this basis, optimization of physical properties becomes feasible. PMID:26214000

  10. Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm

    Science.gov (United States)

    Vigreux, Caroline; Barthélémy, Eléonore; Bastard, Lionel; Broquin, Jean-Emmanuel; Barillot, Marc; Ménard, Stéphane; Parent, Gilles; Pradel, Annie

    2011-08-01

    The feasibility of all-telluride integrated optics devices based on waveguides presenting a single-mode behavior in the spectral range (10-20 μm) is demonstrated. These waveguides are constituted of a several micrometer thick Te82Ge18 film deposited onto a Te75Ge15Ga10 bulk glass substrate by thermal coevaporation and further etched by reactive ion etching under the CHF3/O2/Ar atmosphere. The obtained structures were proven to behave as channel waveguides with a good single-mode transmission over the whole spectral range. These results allowed validating our technological solution for the fabrication of integrated optics modal filters for spatial interferometry.

  11. Thin-film cadmium telluride solar cells: Final subcontract report, 1 May 1985--31 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-06-01

    This report describes results of research performed to demonstrate thin-film cadmium telluride heterojunction solar cells with a total area greater than 1 cm/sup 2/ and efficiencies of 13% or higher. Efforts were directed to (1) the deposition, resistivity control, and characterization of p-CdTe films by combining the vapor of the elements (CVE) and close-spaced sublimation (CSS) techniques; (2) the deposition and characterization of transparent conducting semiconductors; (3) the deposition of p-HgTe as a low-resistance ohmic contact to p-CdTe; (4) the electrical properties of CdS/CdTe heterojunctions; and (5) the preparation and evaluation of heterojunction solar cells. CdS/CdTe solar cells showed the best photovoltaic characteristics, and the best cell had a conversion efficiency of about 10.6%. 20 refs., 30 figs., 1 tab.

  12. Morphology-Controllable Synthesis of Cobalt Telluride Branched Nanostructures on Carbon Fiber Paper as Electrocatalysts for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Wang, Ke; Ye, Zhiguo; Liu, Chenqi; Xi, Dan; Zhou, Chongjian; Shi, Zhongqi; Xia, Hongyan; Liu, Guiwu; Qiao, Guanjun

    2016-02-10

    Cobalt telluride branched nanostructures on carbon fiber paper (CFP) with two different morphologies were synthesized via solution-based conversion reaction. Both the CoTe2 with nanodendrite and CoTe with nanosheet morphologies on the CoTe2 nanotube (CoTe2 NDs/CoTe2 NTs and CoTe NSs/CoTe2 NTs) supported by CFP exhibit high activities toward hydrogen evolution reaction (HER). Particularly, the CoTe NSs/CoTe2 NTs only require an overpotential of 230.0 mV to deliver the current density of 100 mA cm(-2) in acid solution. After cycling for 5000 cycles or 20 h continual electrolysis, only a small performance loss is observed. PMID:26809181

  13. Cuprous Iodide Catalyzed Synthesis of Diaryl Selenide and Telluride from Organoboronic Acids with Diphenyl Diselenide and Ditelluride

    Institute of Scientific and Technical Information of China (English)

    WANG,Lei; WANG,Min; YAN,Jin-Can; LI,Pin-Hua

    2004-01-01

    @@ Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.

  14. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-01

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9 × 10-6-6.1 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor was applied for determination of doxycycline in honey and human serum samples.

  15. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  16. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  17. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    OpenAIRE

    Buechel, R R; Pazhenkottil, A P; Herzog, B A; Husmann, L; Nkoulou, R N; Burger, I A; Valenta, I; Wyss, C A; Ghadri, J R; Kaufmann, P A

    2010-01-01

    PURPOSE: The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. METHODS: A group of 40 patients underwent a 1-day (99m)Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafas...

  18. Impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion SPECT using cadmium-zinc telluride detectors in the rat

    OpenAIRE

    Mizutani, Asuka; Matsunari, Ichiro; Kobayashi, Masato; Nishi, Kodai; Fujita, Wataru; Miyazaki, Yoshiharu; Nekolla, Stephan G; Kawai, Keiichi

    2015-01-01

    Background The aims of this study were (1) to evaluate the impact of injection dose, post-reconstruction filtering, and collimator choice on image quality of myocardial perfusion single-photon emission computed tomography (SPECT) using cadmium-zinc telluride (CZT) detectors and (2) to determine how these factors affect measured infarct size in the in vivo rat. Methods Twenty-four healthy and eight myocardial infarct (MI) rats underwent myocardial perfusion SPECT imaging after injection of var...

  19. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

    Science.gov (United States)

    Chatterjee, Krishanu; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2013-05-01

    Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.

  20. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs Due to Oxidative Stress in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-09-01

    Full Text Available With the applications of quantum dots (QDs expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12. CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2 deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.

  1. Thermoelectrically-cooled Cadmium Zinc Telluride detectors (CZT) for X-ray and gamma-ray detection

    International Nuclear Information System (INIS)

    Recently, Cadmium Zinc Telluride (CZT) became one of the most promising room temperature semiconductor detectors. Although significant progress has been made in the growth and characterization of CZT crystals, the energy resolution of CZT detectors at room temperature is still limited by leakage current and the charge transport effects. To optimize the performance of the room temperature CZT detectors a compromise should be made when selecting the shaping time constant of the spectroscopy amplifier. A short shaping time constant reduces leakage current fluctuations. However, the short pulse shapes are more sensitive to ballistic deficit and charge collection fluctuations. In addition, when short shaping time constants are used, the charge sensitive preamplifier noise limits the energy resolution, especially when low energy X-rays are detected. It is therefore important to reduce the leakage current of the detector and to keep the preamplifier noise as low as possible. One way to do this is to cool the detector, the front stage, and the feedback components of the preamplifier. This paper describes a compact, thermoelectrically-cooled radiation detector using a CZT crystal, designated the XR-100T-CZT. (J.P.N.)

  2. Effect of oxygen on structural stability of nitrogen-doped germanium telluride films with and without silicon nitride layer

    International Nuclear Information System (INIS)

    Nitrogen-doped germanium telluride (N-GeTe) films with and without silicon nitride (SiN) layer were thermally annealed in an air atmosphere. The SiN layer prevented the oxidation of GeTe films despite the massive in-diffusion of oxygen atoms. The phase transition from cubic to rhombohedral phase occurred only in the air-annealed samples, not in the samples annealed at 2.0 mPa. The in-diffused oxygen is probably the leading cause of this phase transition. N-GeTe films without SiN layer showed an increase in sheet resistance after 1000 min of air annealing; this could be attributable to a phase transition from the cubic GeTe phase to the amorphous germanium oxide and metallic tellurium phases. - Highlights: ► SiN layer prevented oxidation of GeTe despite the massive in-diffusion of oxygen. ► The in-diffused oxygen have a critical role in the changes of crystal structure. ► N-GeTe exhibited phase transition into amorphous Ge oxide and metallic Te phase.

  3. Effect of oxygen on structural stability of nitrogen-doped germanium telluride films with and without silicon nitride layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hong [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of); Choi, Sang-Jun, E-mail: sangjun5545.choi@samsung.com [System LSI, Samsung Electronics Co. Ltd., Yong-In, 446-712 (Korea, Republic of); Kyoung, Yong-Koo; Lee, Jun-Ho [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of)

    2012-03-30

    Nitrogen-doped germanium telluride (N-GeTe) films with and without silicon nitride (SiN) layer were thermally annealed in an air atmosphere. The SiN layer prevented the oxidation of GeTe films despite the massive in-diffusion of oxygen atoms. The phase transition from cubic to rhombohedral phase occurred only in the air-annealed samples, not in the samples annealed at 2.0 mPa. The in-diffused oxygen is probably the leading cause of this phase transition. N-GeTe films without SiN layer showed an increase in sheet resistance after 1000 min of air annealing; this could be attributable to a phase transition from the cubic GeTe phase to the amorphous germanium oxide and metallic tellurium phases. - Highlights: Black-Right-Pointing-Pointer SiN layer prevented oxidation of GeTe despite the massive in-diffusion of oxygen. Black-Right-Pointing-Pointer The in-diffused oxygen have a critical role in the changes of crystal structure. Black-Right-Pointing-Pointer N-GeTe exhibited phase transition into amorphous Ge oxide and metallic Te phase.

  4. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  5. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-03-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions.

  6. Measurement of the electrical properties of a polycrystalline cadmium telluride for direct conversion flat panel x-ray detector

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) is one of the best candidate direct conversion material for medical X-ray application because it satisfies the requirements of direct conversion x-ray material such as high atomic absorption, density, bandgap energy, work fuction, and resistivity. With such properties, single crystal CdTe exhibits high quantum efficiency and charge collection efficiency. However, for the development of low-cost large area detector, the study of the improvement of polycrystalline CdTe property is desirable. In this study, in order to improve the properties of polycrystalline CdTe, we produced polycrystalline CdTe with different kinds of raw materials, high purity Cd and Te powder compounds and bulk CdTe compound synthesized from single crystal CdTe. The electric properties including resistivity, x-ray sensitivity, and charge transport properties were investigated. As a result, polycrystalline CdTe exhibited simular level of resistivity and x-ray sensitivity to single crystal CdTe. The carrier transport properties of polycrystalline CdTe showed poorer properties than those of single crystal CdTe due to significant charge trapping. However, the polycrystalline CdTe fabricated with bulk CdTe compound synthesized from single crystal CdTe showed better charge transport properties than the polycrystalline CdTe fabricated with CdTe powder compounds. This is suitable for diagnostic x-ray detectors, especially for digital fluoroscopy

  7. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    International Nuclear Information System (INIS)

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, Iexcess = Ir0 + K1 exp (K2 V), where Ir0, K1, and K2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers

  8. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  9. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  10. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  11. Contribution to the study of the purification of telluride in view of its application in composite semiconductors used in energy and nuclear detectors

    International Nuclear Information System (INIS)

    Different ways to obtain a cadmium telluride with a purity better than 6N were studied in order to improve its physical qualities, as well as the resulting improvements of CdTe. The operating parameters of an economical purification process, which is, however, thorough, with no prior doping, are presented. A sequence of values for the coefficients of segregation, evaporation, and diffusion as a function of melting zone rate and temperature are presented, as well as parameters concerning a final purification: rate, temperature, number of passes, etc. The consequences of the purity of the manufactured CdTe are indicated

  12. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    OpenAIRE

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Todd E. Peterson; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2006-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to ...

  13. Influence of a front buffer layer on the performance of flexible Cadmium sulfide/Cadmium telluride solar cells

    Science.gov (United States)

    Mahabaduge, Hasitha Padmika

    Cadmium telluride (CdTe) solar cells have been developing as a promising candidate for large-scale application of photovoltaic energy conversion and have become the most commercially successful polycrystalline thin-film solar module material. In scaling up from small cells to large-area modules, inevitably non-uniformities across the large area will limit the performance of the large cell or module. The effects of these non-uniformities can be reduced by introducing a thin, high-resistivity transparent buffer layer between the conductive electrodes and the semiconductor diode. ZnO is explored in this dissertation as a high-resistivity transparent buffer layer for sputtered CdTe solar cells and efficiencies over 15% have been achieved on commercially available Pilkington TEC15M glass substrates. The highest open-circuit voltage of 0.858V achieved using the optimized ZnO buffer layer is among the best reported in the literature. The properties of ZnO:Al as a buffer are also investigated. We have shown that ZnO:Al can serve both as a transparent conducting oxide layer as well as a high-resistivity transparent layer for CdTe solar cells. ZnO:Al reactively sputtered with oxygen can give the necessary resistivities that allow it to be used as a high-resistivity transparent layer. Glass is the most common choice as the substrate for solar cells fabricated in the superstrate configuration due to its transparency and mechanical rigidity. However flexible substrates offer the advantages of light weight, high flexibility, ease of integrability and higher throughput through roll-to-roll processing over glass. This dissertation presents significant improvements made to flexible CdTe solar cells reporting an efficiency of 14% on clear KaptonRTM flexible polyimide substrates. Our efficiency of 14% is, to our knowledge, the best for any flexible CdTe cell reported in literature.

  14. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    International Nuclear Information System (INIS)

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  15. The energetic impact of small Cd{sub x}Te{sub y} clusters on Cadmium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: M.Yu2@lboro.ac.uk; Kenny, Steven D., E-mail: S.D.Kenny@lboro.ac.uk

    2015-06-01

    Cadmium Telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to do research on how these defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. Single deposition tests have been performed, to study the behaviour of deposited clusters under different conditions. We deposit a Cd{sub x}Te{sub y} (x,y = 0,1) cluster onto the (100) and (111) Cd and Te terminated surfaces with energies ranging from 1 to 40 eV. More than 1000 simulations have been performed for each of these cases so as to sample the possible deposition positions and to collect sufficient statistics. The results show that Cd atoms are more readily sputtered from the surface than Te atoms and the sticking probability is higher on Te terminated surfaces than Cd terminated surfaces. They also show that increasing the deposition energy typically leads to an increase in the number of atoms sputtered from the system and tends to decrease the number of atoms that sit on or in the surface layer, whilst increasing the number of interstitials observed. - Highlights: • Deposition of Cd, Te and CdTe particles on (100) and (111) Cd and Te surfaces • Cd atoms are more readily sputtered from the surface than Te atoms. • The Te terminated surfaces have a higher sticking probability than the Cd ones. • Higher impact energies imply more sputtered atoms from the surface.

  16. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Wolfrum, Mathias; Kuest, Silke M.; Pazhenkottil, Aju P.; Nkoulou, Rene N.; Herzog, Bernhard A.; Gebhard, Catherine; Fuchs, Tobias A.; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2012-03-15

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  17. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Qiu, WeiCheng; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  18. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    International Nuclear Information System (INIS)

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving 201Tl (n = 120) or 99mTc-sestamibi injected at low dose at stress (99mTc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress (99mTc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, 201Tl 92 %, 99mTc-Low 86 %, 99mTc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p 201Tl or 99mTc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  19. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    International Nuclear Information System (INIS)

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  20. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  1. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  2. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    Science.gov (United States)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  3. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPbmBiTe2+m (BLST-m)

    Science.gov (United States)

    Falkenbach, Oliver; Schmitz, Andreas; Hartung, David; Dankwort, Torben; Koch, Guenter; Kienle, Lorenz; Klar, Peter J.; Mueller, Eckhard; Schlecht, Sabine

    2016-06-01

    We report on the preparation and thermoelectric properties of the quaternary system AgPbmBiTe2+m (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 1019 cm-3, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  4. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  5. Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

    Science.gov (United States)

    Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2016-04-01

    Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8  ×  10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

  6. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj;

    2016-01-01

    age and both left and right ventricular volumes in women (r = -0.4, P < .001) but only for right end systolic ventricular volume in men (r = -0.3, P = .001). CONCLUSION: A set of reference values for cardiac evaluation prior to chemotherapy in cancer patients without other known cardiopulmonary......BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fraction......, using cadmium-zinc-telluride SPECT camera. METHODS AND RESULTS: From routine assessments of left ventricular function in 1172 patients, we included 463 subjects (194 men and 269 women) without diabetes, previous potentially cardiotoxic chemotherapy, known cardiovascular or pulmonary disease. The lower...

  7. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    International Nuclear Information System (INIS)

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (ΦB ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed

  8. Interstudy repeatability of left and right ventricular volume estimations by serial-gated tomographic radionuclide angiographies using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Jensen, Maria M; Haase, Christine; Zerahn, Bo

    2015-01-01

    and ejection fraction estimations, using a cadmium-zinc-telluride (CZT) SPECT camera. MATERIALS AND METHODS: Forty-six patients were scanned twice, interrupted by repositioning. Each acquisition was analysed twice by two experienced technologists. Interstudy and interobserver variations were calculated......·3% (-6·90 to 5·20) and 7·0% (-13·9 to 11·1), respectively. For the right ventricle, the corresponding values were 11·9% (-9·40 to 10·8), 9·8% (-14·9 to 10·8) and 8·1% (-20·7 to 16·3). DISCUSSION: The CZT detector camera has excellent reproducibility with regard to interstudy variation when assessing LV...

  9. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    Science.gov (United States)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  10. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; Coca, Constantine; Burger, Arnold

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  11. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  12. Investigation of the internal electric field in cadmium zinc telluride detectors using the Pockels effect and the analysis of charge transients

    International Nuclear Information System (INIS)

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  13. Material and detector properties of cadmium manganese telluride (Cd1−xMnxTe) crystals grown by the modified floating-zone method

    International Nuclear Information System (INIS)

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1−xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1−xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe

  14. Quantitative High-Efficiency Cadmium-Zinc-Telluride SPECT with Dedicated Parallel-Hole Collimation System in Obese Patients: Results of a Multi-Center Study

    Science.gov (United States)

    Nakazato, Ryo; Slomka, Piotr J.; Fish, Mathews; Schwartz, Ronald G.; Hayes, Sean W.; Thomson, Louise E.J.; Friedman, John D.; Lemley, Mark; Mackin, Maria L.; Peterson, Benjamin; Schwartz, Arielle M.; Doran, Jesse A.; Germano, Guido; Berman, Daniel S.

    2014-01-01

    Background Obesity is a common source of artifact on conventional SPECT myocardial perfusion imaging (MPI). We evaluated image quality and diagnostic performance of high-efficiency (HE) cadmium-zinc-telluride (CZT) parallel-hole SPECT-MPI for coronary artery disease (CAD) in obese patients. Methods and Results 118 consecutive obese patients at 3 centers (BMI 43.6±8.9 kg/m2, range 35–79.7 kg/m2) had upright/supine HE-SPECT and ICA >6 months (n=67) or low-likelihood of CAD (n=51). Stress quantitative total perfusion deficit (TPD) for upright (U-TPD), supine (S-TPD) and combined acquisitions (C-TPD) was assessed. Image quality (IQ; 5=excellent; SPECT MPI with dedicated parallel-hole collimation demonstrated high image quality, normalcy rate, and diagnostic accuracy for CAD by quantitative analysis of combined upright/supine acquisitions. PMID:25388380

  15. Cadmium telluride module development

    Energy Technology Data Exchange (ETDEWEB)

    Albrigth, S.P.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (USA))

    1991-05-01

    Efficiencies of up to 12.3% have been achieved on small devices. It is expected that 14% efficiency will be exceeded on small devices by improving the fill factors on the present devices in the reasonably near future. Efficiencies in the range 16%-18% are expected to be achieved in the longer term. Modules of 6 W, approximately 929 cm{sup 2} in area with an active area efficiency of over 8% (aperture efficiency of 7.3%) have been achieved. The feasibility of producing 4 ft{sup 2} modules of CdS/CdTe has been shown and requires further efforts in order to realize the overall potentials. The structural integrity of the encapsulation design has been studied by thermal cycling and outdoor life testing. Submodules have been life tested for over 270 days with no observable degradation by the SERI Outdoor Reliability and Life Testing Laboratory. In addition to further optimization of materials and device structure, module output in the future will be increased by an improvement in the uniformity of the deposition process, and by minimizing the loss of active area due to cell division interconnections. Module output is expected to attain 135 W m{sup -2} in the mid 1990s and over 150 W m{sup -2} in the long term. (orig.).

  16. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications

    Science.gov (United States)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  17. Silver-rich telluride mineralization at Mount Charlotte and Au-Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia

    Science.gov (United States)

    Mueller, Andreas G.; Muhling, Janet R.

    2013-03-01

    The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite-ankerite alteration and early-stage gold-pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for 30 g/t Au) is characterized by Au/Ag = 2.54 and As/Sb = 2.6-30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag = 0.12-0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz-carbonate veins and are surrounded by early-stage pyrite + pyrrhotite disseminated in a sericite-ankerite zone more than 6 m wide. Gold grade (0.5-0.8 g/t) varies little across the zone, but Au/Ag (0.37-2.40) and As/Sb (1.54-13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830-854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250-300 °C, gold-hessite compositions indicate a fluid log f Te2 of -11.5 to -10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area

  18. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    Science.gov (United States)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1

  19. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography

    International Nuclear Information System (INIS)

    We evaluated the diagnostic accuracy of attenuation corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed tomography (SPECT)/CT device consisting of an ultrafast dedicated cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors integrated onto a multislice CT scanner to detect coronary artery disease (CAD). Invasive coronary angiography served as the standard of reference. The study population included 66 patients (79% men; mean age 63 ± 11 years) who underwent 1-day 99mTc-tetrofosmin pharmacological stress/rest examination and angiography within 3 months. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) as well as accuracy of the CT X-ray based attenuation corrected CZT MPI for detection of CAD (≥50% luminal narrowing) was calculated on a per-patient basis. The prevalence of angiographic CAD in the study population was 82%. Sensitivity, specificity, PPV, NPV and accuracy were 87, 67, 92, 53 and 83%, respectively. In this first report on CZT SPECT/CT MPI comparison versus angiography we confirm a high accuracy for detection of angiographically documented CAD. (orig.)

  20. Apoptosis Induction and Imaging of Cadmium-Telluride Quantum Dots with Wogonin in Multidrug-Resistant Leukemia K562/A02 Cell.

    Science.gov (United States)

    Huang, Bin; Liu, Hongyi; Huang, Dongliang; Mao, Xuhua; Hu, Xianyun; Jiang, Caiyun; Pu, Maomao; Zhang, Gen; Zeng, Xin

    2016-03-01

    Wogonin (5,7-dihydroxy-8-methoxyflavone) is one of the active components of flavonoids isolated from Scutellariae radix and possesses antitumor effect against leukemia. Cadmium-telluride quantum dots (CdTe-QDs) are a kind of nanoparticles with great potential in functioning as an efficient drug delivery vector in biomedical research. In this study, we investigated the synergistic effect of CdTe-QDs with Wogonin on the induction of apoptosis using drug-resistant human leukemia KA cells. Flow cytometry analysis, assay of morphology under electron microscope, quantitative analysis of tumor volume and micro-CT imaging demonstrated that compared with that by pure CdTe-QDs or wogonin, the apoptosis rate increased sharply when treated wirh CdTe-QDs together with wogonin on KA cells. These results proved that the nanocomposites readily overcame the barrier of drug-resistance and provoked cell apoptosis in vitro and in vivo by facilitating the interaction between wogonin and KA cells. As known to all, it is an inevitable tendency that new effective therapies will take the place of conventional chemotherapy and radiotherapy presenting significant disadvantages. According to this article, CdTe-QD combined with wogonin is a possible alternative for some cancer treatments. PMID:27455661

  1. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    Science.gov (United States)

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  2. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  3. High-efficiency cadmium and zinc telluride based thin-film solar cells: Annual report, June 1, 1987--May 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Summers, C.J.; Erbil, A.; Sudharsanan, R.; Ringel. S.

    1989-04-01

    This report contains results of research on high-efficiency cadmium and zinc telluride based thin-film solar cells from June 1987 to May 1988. CdTe and CdZnTe and CdTe and CdMnTe films were grown on CdS/SnO/sub 2//glass substrates by molecular beam epitaxy and metal-organic chemical vapor deposition, respectively. As-grown films were characterized by x-ray diffraction, surface photovoltage spectroscopy, and infrared, Raman, and Auger electron spectroscopy, among others, for composition, bulk uniformity, thickness, and film and interface quality. Single-crystal films were grown simultaneously to understand the growth conditions of the polycrystalline films. Cell efficiencies ranging from 6.0% to 6.7% were achieved with the Cd/sub 0.95/Mn/sub 0.05/Te film employing the glass/SnO/sub 2//CdS/CdMnTe/ZnTe/Au front-wall solar cell structure. Cells fabricated by using CdZnTe films yielded efficiencies from 3.0% to 3.6%. 12 refs., 32 figs., 7 tabs.

  4. Fabrication of large-scale single-crystal bismuth telluride (Bi₂Te₃) nanosheet arrays by a single-step electrolysis process.

    Science.gov (United States)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-07-21

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi₂Te₃)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi₂Te₃ nanosheet arrays (NSAs) on the surface of bulk Bi₂Te₃ with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi₂Te₃ in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi₂Te₃ NSAs for counter electrode has been demonstrated, indicating that Bi₂Te₃ NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries. PMID:24770854

  5. Simulation and experimental characterization of the point spread function, pixel saturation, and blooming of a mercury cadmium telluride focal plane array.

    Science.gov (United States)

    Soehnel, Grant; Tanbakuchi, Anthony

    2012-11-20

    A custom IR spot scanning experiment was constructed to project subpixel spots on a mercury cadmium telluride focal plane array (FPA). The hardware consists of an FPA in a liquid nitrogen cooled Dewar, high precision motorized stages, a custom aspheric lens, and a 1.55 and 3.39 μm laser source. By controlling the position and intensity of the spot, characterizations of cross talk, saturation, blooming, and (indirectly) the minority carrier lifetime were performed. In addition, a Monte-Carlo-based charge diffusion model was developed to validate experimental data and make predictions. Results show very good agreement between the model and experimental data. Parameters such as wavelength, reverse bias, and operating temperature were found to have little effect on pixel crosstalk in the absorber layer of the detector. Saturation characterizations show that these FPAs, which do not have antiblooming circuitry, exhibit an increase in cross talk due to blooming at ∼39% beyond the flux required for analog saturation. PMID:23207309

  6. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Kuest, Silke M.; Pazhenkottil, Aju P.; Wolfrum, Mathias; Nkoulou, Rene N.; Goetti, Robert; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2011-11-15

    We evaluated the diagnostic accuracy of attenuation corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed tomography (SPECT)/CT device consisting of an ultrafast dedicated cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors integrated onto a multislice CT scanner to detect coronary artery disease (CAD). Invasive coronary angiography served as the standard of reference. The study population included 66 patients (79% men; mean age 63 {+-} 11 years) who underwent 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest examination and angiography within 3 months. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) as well as accuracy of the CT X-ray based attenuation corrected CZT MPI for detection of CAD ({>=}50% luminal narrowing) was calculated on a per-patient basis. The prevalence of angiographic CAD in the study population was 82%. Sensitivity, specificity, PPV, NPV and accuracy were 87, 67, 92, 53 and 83%, respectively. In this first report on CZT SPECT/CT MPI comparison versus angiography we confirm a high accuracy for detection of angiographically documented CAD. (orig.)

  7. Magnetic properties of stuffed copper chromium tellurides Cu1+xCr2+yTe4 (x=0-1, y<0.3)

    International Nuclear Information System (INIS)

    We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and yac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure. - Highlights: → Magnetization measurement of ferromagnetic Cu1+xCr2+yTe4, x=0-1 at 2-400 K. → Reduction of TC with no significant changes in the magnetization by the stuffing. → A broad bump in CP around the magnetic transition in the stuffed composition Cu1.9Cr2.2Te4. → Extensive short range ordering in its paramagnetic phase. → Analysis of T3/2-dependence of M(T) and Cp(T) using Bloch's theory of spin-wave.

  8. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity. PMID:27494313

  9. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells.

    Science.gov (United States)

    Tian, Jin-Xiu; Zeng, Guang-Gen; He, Xu-Lin; Zhang, Jing-Quan; Wu, Li-Li; Li, Wei; Li, Bing; Wang, Wen-Wu; Feng, Liang-Huan

    2014-04-01

    The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystalline thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe : Cu/Ni have been studied. Light and dark I-V characteristics, dark C-V characteristics, quantum efficiency (QE), admittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion efficiency (eta). It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo), diode ideal factor (A), quantum efficiency, carrier concentration and the depletion layer width. The decline in short-circuit current was very large and the efficiency of solar cells decreased obviously after irradiation. Reverse saturation current density increased, which indicates that p-n junction characteristics of solar cells were damaged, and diode ideal factor was almost the same, so current transport mechanism of solar cells has not changed. Quantum efficiency curves proved that the damage of solar cells' p-n junction influenced the collection of photo-generated carriers. Irradiation made carrier concentration reduce to 40.6%. The analyses have shown that. A new defect was induced by electron irradiation, whose position is close to 0.58 eV above the valence band in the forbidden band, and capture cross section is 1.78 x 10(-16) cm2. These results indicate that irradiation influences the generation of photo-generated carriers, increases the risk of the carrier recombination and the reverse dark current, and eventually makes the short-circuit current of solar cells decay. PMID:25007593

  10. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    International Nuclear Information System (INIS)

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cmx2.7 cmx∼0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64x64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3x3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5x10-4 with the energy window of ±10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT

  11. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    International Nuclear Information System (INIS)

    The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. A group of 40 patients underwent a 1-day 99mTc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafast CZT camera with and without real-time breath-hold triggering (instead of AC) by intermittent scanning confined to breath-hold at deep inspiration (using list mode acquisition). We studied the use of breath-hold triggering on the CZT camera and its ability to discriminate artefacts from true perfusion defects using AC SPECT MPI as the reference standard. Myocardial tracer uptake (percent of maximum) from CZT was compared to AC SPECT MPI by intraclass correlation and by calculating Bland-Altman limits of agreement. AC of SPECT MPI identified 19 apparent perfusion defects as artefacts. Of these, 13 were correctly identified and 4 were partially unmasked (decrease in extent and/or severity) by breath-hold triggering of the CZT scan. All perfusion defects verified by SPECT MPI with AC were appropriately documented by CZT with and without breath-hold triggering. This was supported by the quantitative analysis, as the correlation (r) of myocardial tracer uptake between CZT and AC SPECT improved significantly from 0.81 to 0.90 (p<0.001) when applying breath-hold triggering. Similarly, Bland-Altman limits of agreement were narrower for CZT scans with breath-hold triggering. This novel CZT camera allows real-time breath-hold triggering as a potential alternative to AC to assist in the discrimination of artefacts from true perfusion defects. (orig.)

  12. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Pazhenkottil, Aju P.; Herzog, Bernhard A.; Husmann, Lars; Nkoulou, Rene N.; Burger, Irene A.; Valenta, Ines; Wyss, Christophe A.; Ghadri, Jelena R. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-10-15

    The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. A group of 40 patients underwent a 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafast CZT camera with and without real-time breath-hold triggering (instead of AC) by intermittent scanning confined to breath-hold at deep inspiration (using list mode acquisition). We studied the use of breath-hold triggering on the CZT camera and its ability to discriminate artefacts from true perfusion defects using AC SPECT MPI as the reference standard. Myocardial tracer uptake (percent of maximum) from CZT was compared to AC SPECT MPI by intraclass correlation and by calculating Bland-Altman limits of agreement. AC of SPECT MPI identified 19 apparent perfusion defects as artefacts. Of these, 13 were correctly identified and 4 were partially unmasked (decrease in extent and/or severity) by breath-hold triggering of the CZT scan. All perfusion defects verified by SPECT MPI with AC were appropriately documented by CZT with and without breath-hold triggering. This was supported by the quantitative analysis, as the correlation (r) of myocardial tracer uptake between CZT and AC SPECT improved significantly from 0.81 to 0.90 (p<0.001) when applying breath-hold triggering. Similarly, Bland-Altman limits of agreement were narrower for CZT scans with breath-hold triggering. This novel CZT camera allows real-time breath-hold triggering as a potential alternative to AC to assist in the discrimination of artefacts from true perfusion defects. (orig.)

  13. Nanotemplated lead telluride thin films

    OpenAIRE

    Li, Xiaohong; Nandhakumar, Iris S.; Attard, George S.; Markham, Matthew L.; Smith, David C.; Baumberg, Jeremy J.

    2009-01-01

    Direct lyotropic liquid crystalline templating has been successfully applied to produce nanostructured IV–VI semiconductor PbTe thin films by electrodeposition both on gold and n-type (100) silicon substrates. The PbTe films were characterized by transmission electron microscopy, X-ray diffraction and polarized optical microscopy and the results show that the films have a regular hexagonal nanoarchitecture with a high crystalline rock salt structure and exhibit strong birefringenc...

  14. Survey of potential markets for devices using Californium-252

    International Nuclear Information System (INIS)

    Potential applications for devices or systems containing 252Cf in the years from 1975 to 1980 are estimated. The estimated number of devices and associated business value were derived from a survey of 46 industrial, educational and governmental organizations conducted from Jan. to May, 1975. Applications for devices and systems based on 252Cf are expected to increase by a factor of 7 in the 6-y period from 1975 to 1980. The annual business value of 252Cf devices should increase from 1.5 million dollars in 1975 to 10.8 million dollars in 1980. The potential European market should be several times as large as the US market, based on actual sales of 252Cf, which have been two to four times greater in Europe than in the US

  15. The protective cell petrus for the production of californium 252

    International Nuclear Information System (INIS)

    The alpha, beta, gamma, neutron cell which is described in the present paper is devoted to the transplutonium element production and study. It is located at the CEN in Fontenay-aux-Roses (France). The 4 feet ordinary concrete shielding made of stacked blocs allows the manipulation of radioactive sources as high as 1000 curies of 1 MeV gamma rays and with a fast neutrons flux of 109 n.cm-2.s-1. The airtight alpha containment box is equipped with two transfer systems, one consists of a parallelepiped shaped airtight box located in a turntable, the other uses standard cylindrical containers made of polyethylene. The general equipment and the main setting up are also described. (authors)

  16. Californium-252 neutron activation facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    A neutron irradiation facility has been established to develop new analytical methods and for the support of research programs. A major component of this facility is a 252Cf source which provides both fission spectrum and thermal neutrons. (U.S.)

  17. Californium-252 brachytherapy for anal and ano-rectal carcinoma

    International Nuclear Information System (INIS)

    Surgery has historically been the standard treatment for anal, ano-rectal and rectal carcinoma but is prone to local or regional failure. Over the past 15 years there has been increasing interest in and success with radiation therapy and combined chemoradiotherapy for treatment of anal and ano-rectal cancers. Cf-252 brachytherapy combined with external beam teletherapy has been investigated for anal and ano-rectal lesions at the Univ. of Kentucky with encouraging results

  18. Mobile equipment for neutron radiography using a californium-252 source

    International Nuclear Information System (INIS)

    The basic requirements for successful neutron radiography are first summarised and the use of 252Cf is placed in perspective by comparing its properties with those of sources based on the Be (γ, n) and Be (α, n) reactions which have a broadly similar range of applications. The more essential design features of mobile neutron radiography equipment are next examined in some detail, to show how the often conflicting requirements of optimum beam production and adequate shielding may be reconciled. An assembly with a maximum dimension around 1 m with a source of 1 mg is used as an example. The design data used are reproduced in graphical form to permit designs to be scaled to suit the source available and the requirements. The selection of suitable image recorders for 252Cf radiography is discussed with the conclusion that the gadolinium foil-film combinations are likely to remain the normal choice. Demonstration radiographs are presented with particular reference to the location of residual casting sand in gas-cooled turbine blades. Finally, it is suggested that other applications for mobile 252Cf-based neutron radiography equipment will be found in the ordnance, aero-space, chemical and nuclear fuel manufacturing industries. (author)

  19. Automated absolute activation analysis with californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    MacMurdo, K.W.; Bowman, W.W.

    1978-09-01

    A 100-mg /sup 252/Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from /sup 17/O. Detection sensitivities of < or = 400 ppB for natural uranium and 8 ppB (< or = 0.5 (nCi/g)) for /sup 239/Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level.

  20. Californium-based neutron radiography for corrosion detection in aircraft

    International Nuclear Information System (INIS)

    In support of an overall program aimed at minimizing disassembly and reducing inspection time during aircraft maintenance, a series of projects has been carried out to determine the feasibility of applying neutron radiographic techniques to the nondestructive (NDT) inspection of aircraft and aircraft components. These investigations have clearly demonstrated the superiority of neutron radiography over all other NDT techniques in its ability to detect surface and subsurface corrosion in aircraft structure. This capability is particularly significant where the corrosion is hidden behind thick metallic structural members. The neutron radiographic technique has been applied successfully to detect corrosion in the wing tank of E-2C, C-130, and DC-9 aircraft; rear stabilators of F-4 and F-111 aircraft; aft spar, starboard and port wing, and rudder of the F-8; fuselage skin of the 727; rotary blades of AH-1 and SH-3 helicopters; rotary tail flaps of the UH-2 helicopter; and nose landing gear of A-7 aircraft

  1. Automated absolute activation analysis with californium-252 sources

    International Nuclear Information System (INIS)

    A 100-mg 252Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from 17O. Detection sensitivities of 239Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level

  2. 133Xenon absorption into rubber-protected portable cadmium telluride (CdTe(Cl)) detectors invalidating the 133Xenon washout method for measurement of cutaneous and subcutaneous blood flow rates in man.

    Science.gov (United States)

    Sørensen, J L

    1991-01-01

    The importance of 133Xenon absorption into rubber detector caps during cutaneous and subcutaneous blood flow measurement was investigated in 46 experiments involving 38 persons. 133Xenon was administered atraumatically. Cutaneous and subcutaneous washout rates were registered by portable Cadmium Telluride detectors without rubber caps, with rubber caps, and with rubber caps with Mylar membranes interposed between the rubber and the tissue investigated. No difference in rate constants obtained by means of various detector types was detected. The accumulation of 133Xenon in the rubber caps was found to take place within the first few minutes after the detectors had been brought into position. The 133Xenon then diffused back into the tissue exhibiting a great variation regarding rate constants. The 133Xenon diffused form rubber into air and perfused tissue tracing a monoexponential course; and again the rate constants would vary considerably. No correlation was found between elimination rates obtained with detectors with and without 133Xenon polluted caps, and no way of correcting for the 133Xenon content in the rubber caps was found. Relative changes in rate constants could still be recognized, but absolute values were not obtainable. PMID:1789123

  3. Material and detector properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te) crystals grown by the modified floating-zone method

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A., E-mail: hossain@bnl.gov; Gu, G.D.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Roy, U.N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R.B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd{sub 1−x}Mn{sub x}Te crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  4. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  5. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Polycrystalline Bi2Te3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi2Te3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  6. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  7. Metallic Ternary Telluride with Sphalerite Superstructure.

    Science.gov (United States)

    Adhikary, Amit; Mohapatra, Sudip; Lee, Seng Huat; Hor, Yew San; Adhikari, Puja; Ching, Wai-Yim; Choudhury, Amitava

    2016-03-01

    A new ternary compound with composition Cu5Sn2Te7 has been synthesized using the stoichiometric reaction of Cu, Sn, and Te. The compound crystallizes in C2 space group with unit cell parameters of a = 13.549(2) Å, b = 6.0521(11) Å, c = 9.568(2) Å, and β = 98.121(2)°. Cu5Sn2Te7 is a superstructure of sphalerite and exhibits tetrahedral coordination of Cu, Sn, and Te atoms, containing a unique adamantane-like arrangement. The compound is formally mixed valent with a high electrical conductivity of 9.8 × 10(5) S m(-1) at 300 K and exhibits metallic behavior having p-type charge carriers as indicated from the positive Seebeck coefficient. Hall effect measurements further confirm holes as charge carriers with a carrier density of 1.39 × 10(21) cm(-3) and Hall mobility of 4.5 cm(2) V(-1) s(-1) at 300 K. The electronic band structure calculations indicate the presence of a finite density of states around the Fermi level and agree well with the p-type metallic conductivity. Band structure analysis suggests that the effective mass of the hole state is small and could be responsible for high electronic conductivity and Hall mobility. The high thermal conductivity of 15.1 W m(-1) K(-1) at 300 K coupled with the low Seebeck coefficient results in a poor thermoelectric figure of merit (ZT) for this compound. Theoretical calculations indicate that if Cu5Sn2Te7 is turned into a valence precise compound by substituting one Cu by a Zn, a semiconducting material, Cu4ZnSn2Te7, with a direct band gap of ∼0.5 eV can be obtained. PMID:26890202

  8. Photorefractive properties of doped cadmium telluride

    Science.gov (United States)

    Bylsma, R. B.; Bridenbaugh, P. M.; Olson, D. H.; Glass, A. M.

    1987-09-01

    The first study of the photorefractive properties of doped CdTe has demonstrated high sensitivity for optical processing applications. Of the binary II-VI and III-V semiconductors, CdTe has the highest electro-optic coefficient r41 in the infrared, some three times larger than that of GaAs and InP. Deep levels introduced into CdTe exhibit appropriate absorption and photoconductivity at 1.06 μm by doping with V and Ti impurities. Photorefractive beam coupling experiments in CdTe:V gave small signal gains of 0.7 cm-1, and diffraction efficiencies with no applied electrical field of 0.7%. Thus, CdTe appears to be superior to previously studied III-V semiconductors, in the near-infrared spectrum. Optimization of doping and trap densities is expected to result in gain which exceeds the absorption loss, thereby allowing phase conjugation with infrared injection lasers.

  9. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  10. Solid-state cadmium telluride radiation detector

    International Nuclear Information System (INIS)

    The growth of CdTe single crystal and its application to CdTe detector array was studied for X-ray computed tomography (XCT) equipment. A p-type CdTe single crystal with 104 ohm.cm specific resistivity was grown in a quartz ampoule under vapor pressure control of Cd in a vertical Bridgman furnace. An 18-element detector array was fabricated with this single crystal. The detector was operated with no bias and the sensitivity was confirmed to be between 2.8 x 10-12 and 14 x 10-12 A.h/(R.mm2). Commercial CdTe single crystal was used to manufacture as 560-element detector array for XCT. Results show that CdTe detector is sensitive, linear and has high resolution. (author)

  11. Silver Indium Telluride Semiconductors and Their Solid Solutions with Cadmium Indium Telluride: Structure and Physical Properties.

    Science.gov (United States)

    Welzmiller, Simon; Hennersdorf, Felix; Schlegel, Robert; Fitch, Andrew; Wagner, Gerald; Oeckler, Oliver

    2015-06-15

    Ag0.8In2.4Te4 (= AgIn3Te5) and Ag0.5In2.5Te4 (= AgIn5Te8) form solid solutions with CdIn2Te4, which are interesting as materials for photovoltaics or with respect to their thermoelectric properties. The corresponding crystal structures are related to the chalcopyrite type. Rietveld refinements of high-resolution synchrotron powder diffraction data measured at K-absorption edges of Cd, Ag, In, and Te and electron diffraction reveal the symmetry as well as the element and vacancy distribution in Ag0.8In2.4Te4 (= AgIn3Te5)/Ag0.5In2.5Te4 (= AgIn5Te8) mixed crystals such as Ag0.25Cd0.5In2.25Te4 and Ag0.2Cd0.75In2.1Te4. All compounds of the solid solution series (CdIn2Te4)x(Ag0.5In2.5Te4)1-x exhibit the HgCu2I4 structure type (space group I4̅2m) with completely ordered vacancies but disordered cations. The uniform cation distribution and thus the local charge balance are comparable to that of CdIn2Te4. In contrast, Ag0.8In2.4Te4 (= AgIn3Te5) crystallizes in the space group P4̅2c with disordered cations and partially ordered vacancies. This is corroborated by bond-valence sum calculations and the fact that there is a Vegard-like behavior for compounds with 0.5 semiconductors with a low electrical conductivity (∼1 S/m) and rather high absolute Seebeck coefficients (up to -750 μV/mK; 225 °C). Electrical band gaps (Eg) determined from the Seebeck coefficients as well as (more reliably) from the electrical conductivity range between 0.19 and 1.13 eV. PMID:26023890

  12. Mercury telluride as an ohmic contact to efficient thin film cadmium telluride solar cells

    International Nuclear Information System (INIS)

    The formation of a stable, reproducible, low-resistance contact to p-CdTe thin films is a major problem in the fabrication of efficient solar cells. Two general approaches to this problem are: the formation of a region of high carrier concentration under the contact to reduce the contact resistance, and the use of contact materials with a higher work function than p-CdTe. The second approach is investigated in this work using p-HgTe as the contact material. The deposition of p-HgTe on p-CdTe was carried out by the direct combination of the elemental vapors in a gas flow system and by the close-spaced sublimation, (CSS) technique. The process parameters in the direct combination technique are more readily controlled than those in the CSS technique. The p-HgTe/p-CdTe contact resistance has been found to be very similar to the Au/p-CdTe contact resistance

  13. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method

    International Nuclear Information System (INIS)

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in 252Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure 252Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure 252Cf spectrum were calculated for 197Au, 232Th, 181Ta, 98Mo, 65Cu and 84Sr. Average cross sections were also calculated with the RR-UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for 197Au, 87.0±1.6 mb for 232Th , 98.0±4.5 mb for 181Ta, 21.2±0.5 mb for 98Mo, 10.3±0.3 mb for 63Cu, and 34.9±6.5 mb for 84Sr. - Highlights: • Average capture cross sections in 252Cf spontaneous fission spectrum were simulated. • Calculations were done using MCNP5 code and ENDF/B-VII.0 library. • Correction factors for self-shielding and room return effects were taken into account. • The revised average radiative capture cross sections for different materials are published

  14. Multi-element neutron activation analysis of sediment using a californium-252 source

    International Nuclear Information System (INIS)

    The application of a 252Cf source to the neutron activation analysis of several elements in small (approximately 1.5 in. in dia) cores was studied using high-resolution gamma ray spectroscopy and manual data reduction. (U.S.)

  15. OER of californium-252 at low dose rate for growth inhibition in Vicia faba

    International Nuclear Information System (INIS)

    OER of 252Cf, at low dose rate, has been determined for growth inhibition in Vicia faba roots. A new strain ''BelB'' was used; it was found to be more resistant to prolonged anoxia. Two sets of linear 252Cf sources were used (linear activity 0.31 and 0.47 (μg.cm-1)) in somewhat different geometrical arrangements. The (n+γ) 252Cf dose rates at the level of the root tips were 0.11 and 0.13 Gy.h-1 respectively. The relative contribution of the γ component Dsub(γ) to the total absorbed dose Dsub(n+γ) at the level of the root tips was evaluated Dsub(γ)/Dsub(n+γ)=0.35 for the first source-geometry and 0.42 for the second source-geometry. The reference radiation was the γ emission of 192Ir, used in the same geometrical conditions and for similar irradiation times. Irradiations performed in aerobic and anoxic conditions were alternated. OER values of 1.4 +- 0.1 and 1.5 +- 0.1 were observed for the 252Cf emission with the first and second source-geometry respectively. The corresponding OER values for 192Ir were 2.3 +- 0.2 and 2.6 +- 0.1; the derived oxygen gain factors were then equal to 1.6 and 1.7 repectively

  16. Characteristics of some selenides and the physical-chemical condition of selenides and tellurides in the Jílové gold metallogenic concentration area,Czech Republic%捷克Jílové金矿集区中硒矿物的特征与硒化物-碲化物的形成物理化学条件

    Institute of Scientific and Technical Information of China (English)

    刘家军; 杨隆勃; 翟德高; 吴杰

    2013-01-01

    the Middle Ages. The important gold de-posits include the Pepf, Bohuliby, Radlik and Rotlev. They exist mainly in the Upper Proterozoic volcano-sed-iment of the Stechovice Group and the granodiorite of the Central Bohemian Pluton. There are three types of gold mineralization in the Jilovegold metallogenic concentration area: veins, stockworks, impregnation. Up to now, more than 70 minerals have been identified. They include not only sulfides and sulfosalts of Cu,Pb,Zn, Fe, As,Mo,Bi, Hg, Au, and Ag-bearing minerals,a variety of oxide,hydroxide, sulfate,carbonate, tungstate and silicate minerals but also telluride,halide, and native metals. Examination of ores by optical microscope, electron probe,X-ray surface scanning,has revealed that there are some selenides in the deposits. The diversity of mineral species in the ores and the occurrence of visible native gold minerals are the outstanding features of the gold deposit. Generally speaking, the more robust correlation is with the chalcogenidic environment and, in most cases, the lesser correlation with specific minerals. Therefore, the highly enrichment of selenide and telluride in the deposits is very characteristic, reflecting a specific condition of their formation. In the early stage of mineralization, f(Se2), f(Te2) and f(O2) are relatively low while f(S2) is relatively high, with f(S2)/f(Se2)>1 and f(S2>/f(Te2)>1. In this circumstance, sulfur would be precipitated as sulfides while selenium and tellurium would tend to be trapped in the sulfides as isomorphous admixture. Therefore, the min-erals are characterized by the association of pyrite, marcasite, pyrrhotite, arsenopyrite, chalcopyrite, galenite, sphalerite and so on. In the late stage of mineralization, f(Se2), f(Te2), and f(O2) are relatively high while f(S2) is relatively low, with f(S2)/f(Se2)<1 and f(S2)/f(Te2)<1. In the main stage of mineralization, f(Se2 )/f(S2), f(Te2 )/f(S2) and f(O2) would increase with the precipitation of sulfides, which would

  17. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  18. Cadmium telluride leaching behavior: Discussion of Zeng et al. (2015).

    Science.gov (United States)

    Sinha, Parikhit

    2015-11-01

    Zeng et al. (2015) evaluate the leaching behavior and surface chemistry of II-VI semiconductor materials, CdTe and CdSe, in response to pH and O2. Under agitation in acidic and aerobic conditions, the authors found approximately 3.6%-6.4% (w/w) solubility of Cd content in CdTe in the Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET), and dissolution test, with lower solubility (0.56-0.58%) under agitation in acidic and anoxic conditions. This range is comparable with prior long-term transformation and dissolution testing and bio-elution testing of CdTe (2.3%-4.1% w/w solubility of Cd content in CdTe). The implications for potential leaching behavior of CdTe-containing devices require further data. Since CdTe PV modules contain approximately 0.05% Cd content by mass, the starting Cd content in the evaluation of CdTe-containing devices would be lower by three orders of magnitude than the starting Cd content in the authors' study, and leaching potential would be further limited by the monolithic glass-adhesive laminate-glass structure of the device that encapsulates the semiconductor material. Experimental evaluation of leaching potential of CdTe PV modules crushed by landfill compactor has been conducted, with results of TCLP and WET tests on the crushed material below regulatory limits for Cd. CdTe PV recycling technology has been in commercial operation since 2005 with high yields for semiconductor (95%) and glass (90%) recovery. PMID:26320011

  19. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  20. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  1. Combustion synthesis and characterization of uranium and thorium tellurides

    International Nuclear Information System (INIS)

    This report describes an investigation of the chemical systems uranium-tellurium and thorium-tellurium. A novel synthesis technique, combustion synthesis, which uses the exothermic heat of reaction rather than externally supplied heat, was utilized to form the phases UTe, U3Te4, and UTe2 in the U-Te system and the phases ThTe, Th2Te3, and ThTe2 in the Th-Te system from reactions of the type U/sub x/ + Te/sub y/ = U/sub x/Te/sub y/. With this synthetic method, U-Te and Th-Te products could be formed in a matter of seconds, and the purity of the products was often greater than that of the starting materials used. Control over final product stoichiometry was found to be very difficult. The product phase distribution observed in combustion products, as determined by x-ray diffraction, electron microprobe, and optical metallographic methods, was found to be spatially complex. Lattice constants were calculated from x-ray diffraction patterns for the compounds UTe, U3Te4, and ThTe. SOLGASMIX thermodynamic equilibrium calculations were performed using available and estimated thermodynamic data on the system U-Te-O in an attempt to understand the products formed by combustion. Adiabatic combustion reaction temperatures for specific U-Te and Th-Te reactions were also calculated utilizing available and estimated thermodynamic data. 71 refs., 31 figs., 15 tabs

  2. Electronic structure and properties of layered gallium telluride

    Science.gov (United States)

    Shenoy, U. Sandhya; Gupta, Uttam; Narang, Deepa S.; Late, Dattatray J.; Waghmare, Umesh V.; Rao, C. N. R.

    2016-05-01

    Layer-dependent electronic structure and properties of gallium monochalcogenides, GaX where X = S, Se, Te, have been investigated using first-principles calculations based on various functionals, with a motivation to assess their use in photocatalytic water splitting. Since hydrogen evolution by water splitting using visible light provides a promising way for solar energy conversion, both theoretical and experimental studies have been carried out on the photochemical hydrogen evolution by GaTe. We also present the Raman spectra of GaTe examined by both theory and experiment.

  3. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined

  4. Induced superconductivity in the topological insulator mercury telluride

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Luis

    2015-07-01

    The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb's superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4π instead of 2π, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2π periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4π regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90 bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d

  5. Polycrystalline cadmium telluride 3n-i-p solar cell

    Science.gov (United States)

    Meyers, P. V.

    1989-06-01

    The CdS/CdTe/ZnTe n-i-p solar cell and its ternary relatives have the potential to meet Department of Energy cost, efficiency, and stability goals. This report describes results of a continuing program to achieve these goals. A record-breaking efficiency of 11 percent has been demonstrated and verified at the Solar Energy Research Institute (SERI). Stability testing for 3000 hours indicates that the n-i-p structure is stable. Improving the short-circuit current by substituting Cd/sub x/Zn/sub 1-x/S for CdS has been successful and has produced 8 plus percent efficient cells with 2.6 eV windows using improved pyrolysis equipment. Transparent n-i-p devices have been produced with a SERI-verified efficiency of 9.4 percent . Collaborations with researchers at the Georgia Institute of Technology, the Institute of Energy Conversion, and Jet Propulsion Laboratory have resulted in jointly produced n-i-p cells. Cells produced by molecular beam epitaxy and metal organic chemical vapor deposition had efficiencies greater than 9 percent; cells produced by thermal vacuum evaporation had efficiencies greater than 7 percent.

  6. Laser-induced grating spectroscopy of cadmium telluride

    Science.gov (United States)

    Petrovic, Mark S.; Suchocki, Andrzej; Powell, Richard C.; Cantwell, Gene; Aldridge, Jeff

    1989-08-01

    Laser-induced transient gratings produced by two-photon absorption of picosecond pulses at 1.064 μm were used to examine the room-temperature nonlinear optical responses of CdTe crystals with different types of conductivity. Pulse-probe degenerate four-wave mixing measurements of grating dynamics on subnanosecond time scales were used to measure the ambipolar diffusion coefficient (Da) of charge carriers in the crystals. The value of Da =3.0 cm2 s-1 which was obtained is in very good agreement with theoretical estimates. A long-lived contribution to the signal consistent with a trapped charge photorefractive effect was observed at large grating spacings for n-type conductivity, and is tentatively attributed to a larger trap density in this sample. Measurements of the relative scattering efficiencies of successive diffracted orders in the Raman-Nath regime allowed for calculation of the laser-induced change in the index of refraction, due to the creation of free carriers. The value of Δn=4×10-4 which was obtained is in good agreement with theoretical estimates.

  7. High efficiency indium oxide/cadmium telluride solar cells

    Science.gov (United States)

    Nakazawa, T.; Takamizawa, K.; Ito, K.

    1987-02-01

    Solar cells have been fabricated by reactive deposition of thin-film n-In2O3 onto single-crystal p-CdTe. The cell has a total area solar power conversion efficiency of 13.4 percent which corresponds to an active area efficiency of 14.4 percent at air mass 1.5 without antireflection coatings. The cell consists of a buried homojunction structure with low dark saturation current density.

  8. Study and microscopic characterization of the cadmium telluride deep levels

    International Nuclear Information System (INIS)

    The spectroscopic methods PICTS, QTS and CTS were developed and perfected to investigate deep level analysis of high resistivity CdTe crystals which were either undoped, or doped with chlorine and copper. Crystals which were grown in space were also investigated. The main characterization of defect levels was determined and different correlations were established between the material's resistivity, chemical residues, dopant concentration and the nuclear radiation detector parameters. Using PICTS and CTS techniques, the generation of defects, under strong gamma-ray irradiation and particle bombardment was also studied. The influence of hydrogen on the main electrical characteristics of CdTe, in particular its ability to passivate the electrical activity of many deep defect and impurity states have been demonstrated. The compensation effects of Cl, Cu and H+ are interpreted using the qualitative models based on different possibilities of pairing or triplet formation between the ions of these dopants and those of defects

  9. The origin of incipient ferroelectricity in lead telluride.

    Science.gov (United States)

    Jiang, M P; Trigo, M; Savić, I; Fahy, S; Murray, É D; Bray, C; Clark, J; Henighan, T; Kozina, M; Chollet, M; Glownia, J M; Hoffmann, M C; Zhu, D; Delaire, O; May, A F; Sales, B C; Lindenberg, A M; Zalden, P; Sato, T; Merlin, R; Reis, D A

    2016-01-01

    The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties. PMID:27447688

  10. Phase transitions in rare earth tellurides under pressure

    International Nuclear Information System (INIS)

    Using first-principles calculations we have studied the valence and structural transitions of the rare earth monotellurides RTe (R = Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) under pressure. The self-interaction corrected local spin-density approximation is used to establish the ground state valence configuration as a function of volume for the RTe in both the NaCl (B1) and CsCl (B2) structures. We find that in ambient conditions all the RTe are stabilized in the B1 structure. A trivalent (R3+) rare earth ground state is predicted for the majority of the RTe, with the exception of SmTe, EuTe, DyTe, TmTe and YbTe, where the fully localized divalent (R2+) rare earth configuration is found to be energetically most favourable. Under pressure, the trivalent RTe undergo structural transitions to the B2 structure without associated valence transition. The divalent RTe on the other hand are characterized by a competition between the structural and electronic degrees of freedom, and it is the degree of f-electron delocalization that determines the sequence of phase transitions. In EuTe and YbTe, where respectively the half-filled and filled shells result in a very stable divalent configuration, we find that it is the structural B1 → B2 transition that occurs first, followed by the R2+ → R3+ valence transition at even higher pressures. In SmTe, DyTe and TmTe, the electronic transition occurs prior to the structural transition. With the exception of YbTe, the calculated transition pressures are found to be in good agreement with experiment. (paper)

  11. MBE-Grown Lead Tin Telluride Infrared Devices

    Directory of Open Access Journals (Sweden)

    T. Srinivasan

    1989-01-01

    Full Text Available An attempt was made to examine the performance of the Pb0.82sn0.18Te films grown by Molecular Beam Epitaxy (MBEtechnique as infrared (IR band pass filter and photoconductive IR detector. Films of required thickness for these purposes were precalculated and were grown by controlling the growth time. The fabricated band-pass filters were with Full Width at Half Maximum(FWHM of 20-25 per ent centred at 6.5, 8 and 10 microns. The measured detectivity of the film was of the order of 10 power 8 cm H Z (1/2W(-1 for 500 K black body temperature with 800 Hz chopping frequencyand 10 per cent electrical bandwidth at 77 K. All these films weregrown on freshly cleaved KC1 (100 substrates.

  12. Kinetics of plastic flow in cadmium telluride single crystal

    International Nuclear Information System (INIS)

    To identify the microscopic mechanism of plastic flow, we have analyzed temperature dependence of the critical resolved shear stress (CRSS) and of the activation volume for CdTe single crystals deformed in compression at various temperatures between 150 and 275K in terms of the kink-pair nucleation model of plastic flow in intrinsically strong crystals. In this model, stress-assisted thermally -activated kink-pair nucleation is considered to facilitate the passage of screw dislocation over a Peierls barrier. It is found that the yield stress tow depends on temperature T as tow/sup 0.5/ = A - BT, where A and B are positive constants, whereas the activation volume v varies with temperature T through the relation v/sup -I/ = C - DT, where C and D are positive constants. However, the slope of the straight line fitted to the data point in each case undergoes a change at a critical temperature 200K, indicating a transition in the rate process of yielding. For T direction in slip plane (Ill) was nearly equal to the distance between two neighboring Peierls valleys. But for T >200K, the maximum kink-pair height was almost twice the intervalley separation. We believe that the formation of kink-pair having a height larger than intervalley distance is hardly possible. Most probably stress-assisted thermally-activated breakaway of edge- dislocation segments from localized barriers, e.g. vacancies in above-equilibrium concentration, solid and gaseous residual impurities, dislocation debris formed during the stage of anelastic deformation of the specimen in the process of raising the stress from zero to the macro yield-point etc. determines the CRSS of nominally pure CdTe crystals in the temperature range 200 to 275K. (author)

  13. Electronic Properties of Tin Telluride: a First Principles Study

    OpenAIRE

    Sharma, G; Bhambhani, P.; N. Munjal; Sharma, V.; Sharma, B. K.

    2011-01-01

    In this paper, using the linear combination of atomic orbitals (LCAO) method, the electronic structure and ground state properties of the IV-VI semiconductor, SnTe are reported. To study the electron momentum density, autocorrelation function, the ab initio calculations are performed within the exchange scheme of Becke and the correlation energy functional of Perdew-Burke-Ernzerhof (PBE). The calculated Compton profiles are used to discuss the electronic properties of the SnTe. On the basis o...

  14. Electronic Properties of Tin Telluride: a First Principles Study

    Directory of Open Access Journals (Sweden)

    G. Sharma

    2011-01-01

    Full Text Available In this paper, using the linear combination of atomic orbitals (LCAO method, the electronic structure and ground state properties of the IV-VI semiconductor, SnTe are reported. To study the electron momentum density, autocorrelation function, the ab initio calculations are performed within the exchange scheme of Becke and the correlation energy functional of Perdew-Burke-Ernzerhof (PBE. The calculated Compton profiles are used to discuss the electronic properties of the SnTe. On the basis of equal-valence-electron-density profiles and valence-electron charge-density maps, we examined the nature of bonding in this compound. Our study suggests that SnTe shows more ionicity in comparison to GeTe, which is found to be in agreement with earlier data.

  15. Deposition of antimony telluride thin film by ECALE

    Institute of Scientific and Technical Information of China (English)

    GAO Xianhui; YANG Junyou; ZHU Wen; HOU Jie; BAO Siqian; FAN Xi'an; DUAN Xingkai

    2006-01-01

    The process of Sb2Te3 thin film growth on the Pt substrate by electrochemical atomic layer epitaxy (ECALE) was studied. Cyclic voltammetric scanning was performed to analyze the electrochemical behavior of Te and Sb on the Pt substrate. Sb2Te3 film was formed using an automated flow deposition system by alternately depositing Te and Sb atomic layers for 400 circles. The deposited Sb2Te3 films were characterized by XRD, EDX, FTIR and FESEM observation. Sb2Te3 compound structure was confirmed by XRD pattern and agreed well with the results of EDX quantitative analysis and coulometric analysis. FESEM micrographs showed that the deposit was composed of fine nano particles with size of about 20 nm. FESEM image of the cross section showed that the deposited films were very smooth and dense with thickness of about 190 nm. The optical band gap of the deposited Sb2Te3 film was determined as 0.42 eV by FTIR spectroscopy, and it was blue shifted in comparison with that of the bulk Sb2Te3 single crystal due to its nanocrystalline microstructure.

  16. 1.7 MeV电子辐照对CdTe太阳电池电流传输特性影响的图谱分析%Spectral Analysis of the Effects of 1.7 MeV Electron Irradiation on the Current Transfer Characteristic of Cadmium Telluride Solar Cells

    Institute of Scientific and Technical Information of China (English)

    田金秀; 曾广根; 何绪林; 张静全; 武莉莉; 李卫; 黎兵; 王文武; 冯良桓

    2014-01-01

    研究了1.7 MeV的电子辐照对具有Anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe∶Cu/Ni结构的碲化镉多晶薄膜太阳电池器件性能的影响。抗辐照玻璃的使用,有效防止了普通玻璃受辐照后性能变化对测试结果的影响。利用光、暗I-V ,C-V ,QE ,AS等测试手段,分析了包括开路电压、短路电流、转换效率在内的电池性能。通过对比研究暗电流密度、分析了辐照对电池电流传输特性的影响。辐照后短路电流下降很大,电池效率明显降低。反向饱和电流密度有所增加,表明太阳电池的pn结特性受到损伤,而二极管理想因子几乎不变,说明太阳电池电流的输运机制未发生了变化。量子效率曲线证明是由于太阳电池结区损伤影响了光生载流子的收集。辐照使载流子浓度下降为原来的40.6%。导纳谱研究最终发生辐照会引入Cd2+缺陷能级,其位置为 Et -Ev =(0.58±0.02)eV ,俘获截面为1.78×10-16 cm2,表明辐照会影响光生载流子的产生,增加了载流子复合的概率,使得反向暗电流增大,最终导致电池的短路电流衰减。%The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystal-line thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe∶Cu/Ni have been studied .Light and dark I-V characteristics ,dark C-V characteristics ,quantum efficiency (QE) ,ad-mittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-cir-cuit voltage (Voc) ,short-circuit current (Isc) ,fill factor (FF) and conversion efficiency (η) .It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo) ,diode ideal factor (A) ,quantum efficiency ,carrier concentration and the depletion layer width .The decline in short-circuit current was very

  17. The determination of americium, curium and californium in biological samples by combined solvent extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    A method has been developed to extract Am, Cm and Cf from ashed biological samples dissolved in 8 M LiN03-10-2 M HN03 into a liquid/scintillation cocktail. This new method reduces tissue and instrument background and allows use of a larger sample for analysis than when using a commercial gelling cocktail. The extractant cocktail is 20% N,N,N-trioctyl-N-methylammonium chloride dissolved in toluene containing the scintillators p-terphenyl and 1,4-bis-2-(5-phenyl-oxazolyl)-benzene. Several different types of biological samples were analyzed and radionuclide recoveries greater than 90% were obtained in all cases. (author)

  18. Oxidation-reduction properties of americium, curium, berkelium, californium, einsteinium and fermium, and thermodynamic consequences for the 5f series

    International Nuclear Information System (INIS)

    The amalgamation of 5f elements from Am to Fm has been studied by using 241Am, 244Cm, 249Bk, 249Cf, 252Cf, 253Es, 254Es, 252Fm and 255Fm with two electrochemical methods, radiocoulometry and radiopolarography, perfectly adapted to investigate extremely diluted solutions when the concentration of electroactive species is as low as 10-16M. The theory of radiocoulometry has been developed in the general cases of reversible and irreversible electrode process. It has been used to interpret the experimental data on the kinetic curves of amalgamation, and to estimate the standard rate constant of the electrode process in complexing medium (citric). On the other hand the radiopolarographic method has been applied to study the mechanism of reduction at the dropping mercury electrode of cations M3+ in aqueous medium to the metal M with formation of amalgam. The results are exploited into two directions: 1- Acquisition of some data concerning the oxidation-reduction properties of elements from Am to Fm. Therefore the standard electrode E0 [M(III-0)] potentials for Bk, Cf and Es, and the standard electrode E0 [M(II-0)] potential for Fm are estimated and the relative stability of each oxidation state (from II to VII) of 5f elements is discussed; 2- Acquisition of unknown thermodynamic data on transcalifornium elements. Correlations between 4f and 5f elements are precised and some divergences appear for the second half of 4f and 5f series (i.e. for 65<=Z<=71 and 97<=Z<=103)

  19. Raman and absorption spectrophotometric studies of selected lanthanide, californium-doped lanthanide, and actinide trihalides in the solid state

    International Nuclear Information System (INIS)

    The solid-state absorption spectra of Cf(III) ions as a dopant in lanthanide trihalide hosts (LnCl3: Ln = Ce, Sm, and Y; LnBr3: Ln = Ce, Sm, Tb, and Y; LnI3: Ln = Ce and Y) have been recorded. The spectra of Cf(III) have been correlated with the various crystal structures. The phonon Raman spectra and solid-state absorption spectra of PmF3, PmCl3, PmBr3, and two crystal modifications of PmI3 have been recorded. Symmetry assignments have been made for the Raman-active bands for these trihalides and also the sesquioxide. The room-temperature absorption spectra have been correlated to crystal field effects. The symmetry assignments of the Raman-active phonon modes have been made based on polarized Raman spectra from single crystals of YF3-type orthorhombic TbF3 and PuBr3-type orthorhombic NdBr3. Raman spectra of other isostructural lanthanide compounds have been recorded and compared. Symmetry assignments for these compounds have been made by analogy to the single-crystal assignments. Raman spectra have been obtained and catalogued for a number of actinide compounds. Symmetry assignments have been made for the observed Raman-active phonon bands in this work based on the assignments made for isostructural lanthanide compounds. 29 figs., 22 tabs

  20. Optical Transitions in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-Structure Constant

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2012-08-01

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  1. Optical transitions in highly-charged californium ions with high sensitivity to variation of the fine-structure constant

    CERN Document Server

    Berengut, J C; Flambaum, V V; Ong, A

    2012-01-01

    We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.

  2. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    International Nuclear Information System (INIS)

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  3. Integral range, energy, residual range, and linear energy transfer distributions for Californium fission fragments in microelectronics materials

    International Nuclear Information System (INIS)

    This report discusses the advantages and limitations of using Cf-252 radiation sources for single event testing of microelectronics for space environments. Integral distributions for the range, energy, residual range, and linear energy transfer of Cf-252 fission fragments in absorber and microelectronic materials have been calculated. Techniques are suggested for determining when single event testing using Cf-252 is appropriate; also, techniques are given for estimating the saturation cross section and thresh old linear energy transfer from test data. 10 refs., 25 figs., 2 tabs

  4. Research and experimental work at Groote Schuur Hospital and the University of Cape Town using californium-252 sources

    International Nuclear Information System (INIS)

    Experiments have been undertaken to determine the high-LET and low-LET components of the absorbed dose from neutron beams. This is achieved by measuring the fluxes of the high-LET and low-LET radiations in a tissue-equivalent phantom individually and simultaneously using a scintillation probe fitted with a pulse shape discriminator. This system was successfully used with a 22 MeV neutron beam from the T(d,n) reaction and has been employed with 252Cf sources. Results obtained in the low-energy ranges (up to 3 MeV) indicate that the electron counts exceed the high-LET counts by a factor of 2 to 3. These results are related to the absorbed dose. Calculations have also been undertaken to establish whether the Paterson-Parker system could be used for the design of 252Cf treatments and the optimum needle activities to yield the desired dose. Experiments are under way to determine the variation of RBE and OER for 252Cf radiations around the source. The inhibition of root growth in Vicia Faba is being used to determine any such effects. Dose rates comparable to that employed in interstitial radiotherapy are being aimed at. A study of dose fractionation effects is also being undertaken. (author)

  5. Effective performance for undoped and boron-doped double-layered nanoparticles-copper telluride and manganese telluride on tungsten oxide photoelectrodes for solar cell devices.

    Science.gov (United States)

    Srathongluan, Pornpimol; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab; Tubtimtae, Auttasit

    2016-11-01

    This work demonstrates the synthesis of a novel double-layered Cu2-xTe/MnTe structure on a WO3 photoelectrode as a solar absorber for photovoltaic devices. Each material absorber is synthesized using a successive ionic layer adsorption and reaction (SILAR) method. The synthesized individual particle sizes are Cu2-xTe(17) ∼5-10nm and MnTe(3) ∼2nm, whereas, the aggregated particle sizes of undoped and boron-doped Cu2-xTe(17)/MnTe(11) are ∼50 and 150nm, respectively. The larger size after doping is due to the interconnecting of nanoparticles as a network-like structure. A new alignment of the energy band is constructed after boron/MnTe(11) is coated on boron/Cu2-xTe nanoparticles (NPs), leading to a narrower Eg equal to 0.58eV. Then, the valence band maximum (VBM) and conduction band minimum (CBM) with a trap state are also up-shifted to near the CBM of WO3, leading to the shift of a Fermi level for ease of electron injection. The best efficiency of 1.41% was yielded for the WO3/boron-doped [Cu2-xTe(17)/MnTe(11)] structure with a photocurrent density (Jsc)=16.43mA/cm(2), an open-circuit voltage (Voc)=0.305V and a fill factor (FF)=28.1%. This work demonstrates the feasibility of this double-layered structure with doping material as a solar absorber material. PMID:27451035

  6. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    International Nuclear Information System (INIS)

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in 248Cm (∼97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  7. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  8. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  9. The development and medical applications of a simple facility for partial body in vivo neutron activation analysis using californium-252 sources

    International Nuclear Information System (INIS)

    A simple and cheap facility for partial body neutron activation analysis has been designed, based on the use of two 100 μg 252Cf neutron sources. The results reported show that calcium can be measured in parts of the body such as the tibia with a precision as good as +- 1.6 % for a radiation dose of 2 rem. The uniformity of the thermal neutron flux density is better than +- 3 % over 10 cm. Some applications of this irradiation facility for studies of trace elements, in particular cadmium in liver and aluminium in liver or brain, have also been explored. However, the sensitivity attainable is not yet sufficient for the study of normal levels, but could be of interest in toxicological investigations

  10. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in Cm-248 samples for transmutation studies

    International Nuclear Information System (INIS)

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (Incineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in 248Cm (similar to 97%) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides' formations ranged from 0. 3% to 1. 3%. This uncertainties' range is quite acceptable for the nuclear data to be used in transmutation studies. (authors)

  11. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  12. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  13. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide

    International Nuclear Information System (INIS)

    The electronic structures of the two thermoelectric materials Bi2Te3 and Bi2Se3 are studied using density-functional theory with the spin - orbit interaction included. The electron states in the gap region and the chemical bonding can be described in terms of ppσ interaction between the atomic p orbitals within the 'quintuple' layer. For Bi2Se3, we find both the valence-band maximum as well as the conduction-band minimum, each with a nearly isotropic effective mass, to occur at the zone centre in agreement with experimental results. For Bi2Te3, we find that the six valleys for the valence-band maximum are located in the mirror planes of the Brillouin zone and they have a highly anisotropic effective mass, leading to an agreement between the de Haas-van Alphen data for the p-doped samples and the calculated Fermi surface. The calculated conduction band, however, has only two minima, instead of the six minima indicated from earlier experiments. The calculated Seebeck coefficients for both p-type and n-type materials are in agreement with the experiments. (author)

  14. Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films

    International Nuclear Information System (INIS)

    In this study, the effect of the presence of secondary phases on the structural, electrical, and thermoelectric properties of nanocomposite Bi2Te3 films prepared by co-sputtering of silicon and carbon with Bi2Te3 has been investigated. Growth temperature and the presence of Si and C phase are observed to have a strong effect on the topography and orientation of crystallites. X-ray diffraction study demonstrates that Bi2Te3 and Bi2Te3:C samples have preferred (0 0 15) orientation in comparison to Bi2Te3:Si sample, which have randomly oriented crystallites. Atomic force, conducting atomic force, and scanning thermal microscopy analysis show significant differences in topographical, electrical, and thermal conductivity contrasts in Bi2Te3:Si and Bi2Te3:C samples. Due to the randomly oriented crystallites and the presence of Si along the crystallite boundaries, appreciable Seebeck coefficient, higher electrical conductivity, and lower thermal conductivity is achieved resulting in relatively higher value of power factor (3.71 mW K−2 m−1) for Bi2Te3:Si sample. This study shows that by incorporating a secondary phase along crystallite boundaries, microstructural, electrical, and thermoelectric properties of the composite samples can be modified

  15. Photoconductivity of vanadium-doped lead telluride in the terahertz spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Artamkin, A. I.; Dobrovolsky, A. A.; Vinokurov, A. A.; Zlomanov, V. P. [Moscow State University (Russian Federation); Danilov, S. N. [University of Regensburg (Germany); Bel' kov, V. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Ryabova, L. I.; Khokhlov, D. R., E-mail: khokhlov@mig.phys.msu.ru [Moscow State University (Russian Federation)

    2013-03-15

    It is shown that PbTe:V single crystals are photosensitive in the terahertz spectral region up to the wavelength 280 {mu}m. The measurements are conducted in the temperature range from 8 to 300 K. In this temperature range, the dark conductivity of the crystals exhibits the activation character of the temperature dependence and varies by four orders of magnitude, which is due to Fermi-level pinning 20 meV below the bottom of the conduction band. As the temperature is elevated and, correspondingly, the conductivity increases, the amplitude of the photoresponse substantially increases. This result is interpreted in the context of the model that takes into account significant broadening of the vanadium impurity level and its shift to the bottom of the conduction band with increasing temperature.

  16. 78 FR 68052 - Town of Telluride, Colorado; Notice of Preliminary Determination of a Qualifying Conduit...

    Science.gov (United States)

    2013-11-13

    ... the distribution of water for agricultural, municipal, or industrial consumption and not primarily for... Hydropower Facility Description: The proposed project would consist of: (1) A 10-inch intake pipe branching... Regulatory Efficiency Act of 2013 (HREA). The Pandora Water System Project would be located within...

  17. Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Filip; Kadlec, Christelle; Kužel, Petr; Petzelt, Jan

    2011-01-01

    Roč. 84, č. 20 (2011), 205209/1-205209/8. ISSN 1098-0121 R&D Projects: GA ČR GC202/09/J045 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz spectroscopy * phase transition * semiconductor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  18. Preparation of lead-tin telluride Pbsub(1-x)Snsub(x)Te at low temperature

    International Nuclear Information System (INIS)

    A new method for the preparation of Pbsub(1-x)Snsub(x)Te at low temperature is described. The experiments were carried out in the concentration range 0.12 as solvent. The alloy obtained was a polycrystallized powder of 20-100 *mm. The material prepared in this way can be used as a source for the growth of single crystals for the manufacture of electro-optical devices. (B.G.)

  19. Induced superconductivity in the surface state of mercury telluride (HgTe)

    International Nuclear Information System (INIS)

    It has been recently shown that the strained epitaxial growth of bulk HgTe layers opens a band gap in the normally semi-metallic material. This means that strained HgTe meets all prerequisites of a topological insulator, i.e. surface states and an insulating bulk, which does not contribute to transport measurements. The interfaces between topological insulators and superconductors are especially interesting due to the possibility of creation and detection of majorana fermions. Our current work is focussing on investigating contacts between strained HgTe and Nb as a superconducting material. First results show proximity effect and multiple sub gap features which are discussed in detail.

  20. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    International Nuclear Information System (INIS)

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn96.5Ag3Cu0.5 solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γc than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γc. Finite element modeling of thermoelectric coolers metallized with Sn96.5Ag3Cu0.5/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics

  1. Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Vijay; Nguyen, Thuy-Anh; Mansell, Rhodri; Ritchie, David [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Mussler, Gregor [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425, Juelich (Germany)

    2016-03-15

    There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi{sub 2}Se{sub 3}. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures. (copyright 2016 The Authors. Phys. Status Solidi RRL published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: Size distributions and nanoscale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D.H.; Rouleau, C.M.; Duscher, G. [and others

    1997-08-01

    Size distributions of Si and ZnTe nanoparticles produced by low energy density ArF (193 nm) pulsed laser ablation into ambient gases were measured as a function of the gas pressure and target-substrate separation, D{sub ts}, using atomic force microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). For low energy density (Ed = 1.04 J/cm{sup 2}) ablation of Si into He at pressures of 0.5, 1.5, 4 and 10 torr, large nanoparticles were most numerous at D{sub ts} = 10 mm, with smaller nanoparticles found at 20 mm and 40 mm. For each D{sub ts} value a maximum of the mean nanoparticle diameter occurred for a He pressure near 6 torr, in contrast to other recent measurements in which the size of Si nanoparticles increased monotonically with the He pressure. High resolution Z-contrast transmission electron microscopy (HRZTEM) and electron energy loss spectroscopy (EELS) revealed that ZnTe nanoparticles formed by ablation into nitrogen at E{sub d} = 0.74 J/cm{sup 2} consisted of a crystalline ZnTe core surrounded by an amorphous ZnO shell. Growth defects and surface steps were clearly visible in the ZnTe crystalline core. The dependences of the mean diameter of ZnTe nanocrystals on nitrogen pressure and D{sub ts}, were qualitatively similar to those found for Si in He.

  3. Finite solid angle correction factors and efficiencies for cadmium telluride detectors

    International Nuclear Information System (INIS)

    Finite solid angle correction factors and absolute detection efficiencies of the CdTe detectors of right circular cylindrical geometry for point sources placed on the axis of the detector, has been calculated for γ-ray energies from 100keV to 10MeV, taking into account various source to detector distances, ranging from 1 to 10cm. CdTe detectors of several area between 0.12 and 2.5cm2 of various thickness were considered

  4. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  5. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo;

    2016-01-01

    -rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  6. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Li, Shanghua; Toprak, Muhammet S.; Muhammed, Mamoun [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Soliman, Hesham M.A. [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab, 21934 Alexandria (Egypt); Platzek, Dieter; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany)

    2008-07-01

    Phosphorous-alloyed Bi{sub 2}Te{sub 3} thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi{sub 2}Te{sub 3} thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 {mu}V/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    International Nuclear Information System (INIS)

    Phosphorous-alloyed Bi2Te3 thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi2Te3 thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 μV/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  9. Electrodeposition and characterization of nano-crystalline antimony telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lensch-Falk, J.L.; Banga, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Hopkins, P.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Robinson, D.B.; Stavila, V. [Sandia National Laboratories, Livermore, CA 94550 (United States); Sharma, P.A. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Medlin, D.L., E-mail: dlmedli@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2012-07-31

    Electrodeposition is a promising low-cost method to fabricate nanostructured thermoelectric thin films such as Sb{sub 2}Te{sub 3}. However, electrodeposition of crystalline Sb{sub 2}Te{sub 3} without the need for additional processing and with good compositional control has presented a challenge. Here we report on the electrodeposition of crystalline Sb{sub 2}Te{sub 3} thin films at room temperature from a tartaric-nitric acid electrolyte using a pulsed, potentiostatic process. The effects of synthesis conditions on the resulting microstructure and compositional homogeneity are investigated using x-ray diffraction, electron diffraction, electron microscopy, and energy dispersive x-ray spectroscopy. The composition of the Sb-Te films was found to be dependent on the interval between pulses, a result that is likely due to the slow kinetics associated with Sb{sub 2}Te{sub 3} formation at the surface. We also observed a change in texture and microstructure with varied applied pulse duration: for short pulse durations a lamellar microstructure with a {l_brace}000 Script-Small-L {r_brace} texture forms, whereas for longer pulse durations a more equiaxed and randomly oriented microstructure forms. The thermal conductivities of the pulsed electrodeposited films are surprisingly low at less than 2 W/K{center_dot}m and are found to systematically decrease with reduced pulse time. - Highlights: Black-Right-Pointing-Pointer We investigate the growth, microstructure, and thermal conductivity of Sb{sub 2}Te{sub 3} films. Black-Right-Pointing-Pointer Pulsed electrodeposition is used to grow crystalline Sb{sub 2}Te{sub 3} films. Black-Right-Pointing-Pointer Film composition and microstructure depend on the growth conditions. Black-Right-Pointing-Pointer Kinetics and thermodynamics are used to explain these observations. Black-Right-Pointing-Pointer The low thermal conductivities observed are correlated to microstructure and texture.

  10. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes

    Science.gov (United States)

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).

  11. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    International Nuclear Information System (INIS)

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10−11 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9943 and a detection limit of 5 × 10−12 mol L−1. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder and pet feeds with satisfactory results

  12. Microwave photoconductivity of cadmium telluride doped by gallium studied at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Marinin, Alexander; Radychev, Nikolay; Novikov, Gennadii; Gapanovich, Mikhail [IPCP RAS, Chernogolovka, Moscow (Russian Federation)

    2009-07-01

    The number of charges reaching the electrodes is a key parameter for detector quality characteristics. Solid solutions of CdTe-GaTe are considered as a perspective medium for X-ray detection. The kinetics of photogenerated charges was studied at different temperatures and for different doping concentrations. The samples were made by CdTe and GaTe vacuum sintering. The sintering temperature and duration were 1010 K and 300 h, respectively. The microwave photoconductivity (f=36 GHz) was investigated. The temporal resolution of the experimental facility was decreased to 5 ns. Investigations were made in a wide temperature range, T=140-295 K. A nitrogen laser was used for photoexcitation. Generally, the experimental curves of the photoresponse P(t) consist of fast and slow components after switching of the laser light. The temperature and the Ga content were found to influence the form, amplitude and characteristical decay time of P(t) considerably. The photoresponse decay analysis shows that a self-compensation effect is present and this effect results in a decrease of the depth of traps. The active medium parameters take a turn for the better by this effect.

  13. Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Tobias [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Welzmiller, Simon [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Neudert, Lukas [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Urban, Philipp [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany)

    2014-11-15

    A superstructure of the rocksalt-type observed in quenched CVT-grown single crystals of Ge{sub 3.25(7)}Sn{sub 1.10(3)}Sb{sub 1.10(3)}Te{sub 6} was elucidated by X-ray diffraction using fourfold twinned crystals (space group P3{sup ¯}m1, a=4.280(1) Å, c=20.966(3) Å). The structure is built up of distorted rocksalt-type building blocks typical for long-range ordered GST materials and substitution variants thereof. In contrast to those phases, an exclusive ABC-type cubic stacking sequence of the Te-atom layers is present. High-resolution electron microscopy reveals spheroidal domains with this structure (average diameter 25 nm) whose stacking direction is perpendicular to the 〈1 1 1〉 directions of the basic rocksalt-type structure. Additional slab-like domains with a lateral extension up to 1 µm occasionally result in a hierarchical structure motif. Due to the similar electron counts of the elements involved, resonant diffraction was used in order to elucidate the element distribution in rocksalt-type building blocks of the stable layered compound 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7} (R3{sup ¯}m, a=4.24990(4) Å, c=73.4677(9) Å). Sb tends to occupy the atom site close to the van der Waals gaps while Ge concentrates in the center of the building blocks. - Graphical abstract: High-resolution transmission electron micrograph, SAED pattern and reciprocal lattice section of X-ray single crystal data of Ge{sub 3.25}Sn{sub 1.1}Sb{sub 1.1}Te{sub 6} with an 11P-type superstructure of the rocksalt type. - Highlights: • A novel superstructure of the rocksalt-type in the system Ge–Sn–Sb–Te is elucidated. • It combines the cubic stacking of the HT phase with building blocks of the RT phase. • It indicates the ordering mechanism during the phase transition of GST materials. • A hierarchical structure motif is promising with respect to the reduction of κ{sub L}. • Resonant diffraction reveals the element distribution in 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7}.

  14. Tellurium-evaporation-annealing for p-type bismuth–antimony–telluride thermoelectric materials

    International Nuclear Information System (INIS)

    Highlights: ► Tellurium evaporation annealing method for sintered p-type (Bi,Sb)2Te3 is reported. ► This method is based on the control of carrier concentrations. ► The underlying mechanism is also determined using ab initio calculation. - Abstract: A tellurium evaporation annealing method has been investigated to control the carrier concentration of sintered (Bi,Sb)2Te3 compounds. Hot-pressed (Bi,Sb)2Te3 bulk alloys and tellurium powders located in an evacuated ampoule, were heated to 673 K and held for 3, 12 and 48 h. The crystal structure and chemical composition in the annealed specimens were preserved, while the carrier concentrations were varied between 1.53 × 1019 and 2.57 × 1019 cm−3, and the thermal conductivity at 300 K ranged between 1.20 and 1.25 W m−1 K−1. The figure of merit at 300 K was enhanced from 0.86 to 1.06 when the specimens were annealed for 3 h. To identify the underlying mechanism, we utilized ab initio density functional theory calculations. These computations indicated that a Te ad-layer on top of the Bi2Te3 energetically favors bulk Bi atoms to migrate to the surface. Our experimental measurements and the first-principles validations consistently indicate that the tellurium evaporation annealing method is a novel process for enhancing the thermoelectric performance of Bi–Te compounds by controlling their carrier concentrations, which is particularly useful in dealing with nano-scale composites.

  15. Modeling effects of solute concentration in Bridgman growth of cadmium zinc telluride

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2016-07-01

    Numerical modeling is used to investigate the effect of solute concentration on the melt convection and interface shape in Bridgman growth of Cd1-x Znx Te (CZT). The numerical analysis is compared to experimental growth in cylindrical ampoules having a conical tip performed by Komar et al. (2001) [15]. In these experiments, the solidification process occurs at slow growth rate (V = 2 ṡ10-7 m / s) in a thermal field characterized by a vertical gradient GT = 20 K / cm at the growth interface. The computations performed by accounting the solutal effect show a progressive damping of the melt convection due to the depleted Zn at the growth interface. The computed shape of the crystallization front is in agreement with the experimental measurement showing a convex-concave shape for the growth through the conical part of the ampoule and a concave shape of the interface in the cylindrical region. The distribution of Zn is nearly uniform over the crystal length except for the end part of the ingots. The anomalous zinc segregation observed in some experiments is explained by introducing the hypothesis of incomplete charge mixing during the homogenization time which precedes the growth process. When the crystallization is started in ampoules having a very sharp conical tip, the heavy CdTe is accumulated at the bottom part of the melt, giving rise to anomalous segregation patterns, featuring very low zinc concentration in the ingots during the first stage of the solidification.

  16. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  17. Physical characterization of cadmium telluride/cadmium sulfide photovoltaics: Defects, fields, and micrononuniformities

    Science.gov (United States)

    Shvydka, Diana

    Recent advances in large area thin-film photovoltaic manufacturing have raised a number of problems related to the physical parameters and processes behind the device efficiency and stability. The characteristics of interest include the defect spectra and related optical absorption, the built-in electric field distribution, the degree of lateral uniformity of the device, and the device stability. Established in this thesis is a set of techniques appropriate for the physical characterization of the above features in CdTe/CdS solar cells, addressing the issues of device spectra vs. energy (as revealed in the optical absorption, photoluminescence (PL), and admittance spectroscopy); the electric field distribution analyzed by means of bias dependent PL, and, indirectly, by capacitance measurements; device lateral resistivity and uniformity, through the phenomenon of nonlocal optical response and PL mapping; local parameter fluctuations as appear in virtually all of the above cases. The most important physical conclusions made are: energy spectra of polycrystalline CdTe based photovoltaics combine the features of crystalline materials, such as identifiable point defects, and amorphous materials, which exhibit continuous spectra of localized states; the concept of a single-defect (elemental) capacitance is for the first time defined and applied to estimate the density of states in polycrystalline p-n junctions; a phenomenon of bias-dependent PL in CdTe based photovoltaics is for the first time observed and modeled; a new phenomenon of nonlocal photovoltaic response is observed and interpreted. The results suggest several practical applications, such as: absorption and PL measurements as a diagnostic tool for monitoring the CdCl2, quality of treatments; admittance spectroscopy techniques to diagnose the material quality and degradation through its defect spectra and concentration; bias-dependent PL as a sensitive nondestructive accelerated life testing tool; nonlocal PV response as a transparent contact diagnostic tool in a finished device.

  18. Thickness scalability of large volume cadmium zinc telluride high resolution radiation detectors

    Science.gov (United States)

    Awadalla, S. A.; Chen, H.; Mackenzie, J.; Lu, P.; Iniewski, K.; Marthandam, P.; Redden, R.; Bindley, G.; He, Z.; Zhang, F.

    2009-06-01

    This work focuses on the thickness scalability of traveling heater method (THM) grown CdZnTe crystals to produce large volume detectors with optimized spectroscopic performance. To meet this challenge, we have tuned both our THM growth process, to grow 75 mm diameter ingots, and our postgrowth annealing process. We have increased the thickness of our sliced wafers from 6 to 12 and 18 mm allowing the production of 10 and 15 mm thick detectors. As the detectors' thickness is scaled up, the energy resolution of both types, as pseudo-Frisch grid and pixelated monolithic detectors showed no degradation indicating improved materials uniformity and transport properties.

  19. Polycrystalline thin film cadmium telluride n-i-p solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.V. (Ametek, Inc., Harleysville, PA (USA))

    1990-06-01

    This paper discusses experiments and analyses of technical, economic and environmental issues relating to CdTe n-i-p solar cells and their potential to satisfy the DOE PV program goals. The basic cell structure is CdS-CdTe-ZnTe. Included is an experimental and theoretical study of the operation of these devices. Experiments related to deposition of the CdS and ZnTe layers, cascaded solar cells, and module fabrication are described. Manufacturing issues relating to costs, worker safety, and environmental security are discussed. 40 refs., 25 figs., 16 tabs.

  20. High efficiency cadmium and zinc telluride-based thin film solar cells

    Science.gov (United States)

    Rohatgi, A.; Summers, C. J.; Erbil, A.; Sudharsanan, R.; Ringel, S.

    1990-10-01

    Polycrystalline Cd(1-x)Zn(x)Te and Cd(1-x)Mn(x)Te films with a band gap of 1.7 eV were successfully grown on glass/SnO2/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd(1-x)Zn(x)Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd(1-x)Mn(x)Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd(1-x)Mn(x)Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5 percent. MBE-grown CdTe cells also produced 8 to 9 percent efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl2 + ZnCl2 chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  1. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    Science.gov (United States)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  2. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiafei; Li, Jin; Kuang, Huiyan; Feng, Lei; Yi, Shoujun; Xia, Xiaodong; Huang, Haowen [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); Chen, Yong; Tang, Chunran [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Zeng, Yunlong, E-mail: yunlongzeng1955@126.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-11-13

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10{sup −11} to 1.0 × 10{sup −5} mol L{sup −1} with a correlation coefficient of 0.9943 and a detection limit of 5 × 10{sup −12} mol L{sup −1}. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder and pet feeds with satisfactory results.

  3. Contribution to cadmium telluride characterizations by ion beams and nuclear detection

    International Nuclear Information System (INIS)

    A short survey of the thermodynamics and crystal growth of CdTe is followed by the description of high mass and depth resolution Rutherford backscattering (RBS) with light and heavy ions. Energy losses in CdTe have been measured. Analysis of CdTe surfaces by RBS, SIMS, ellipsometry have also been performed. Diffused, implanted, or simply contacted CdTe junctions have been analyzed and then investigated as gamma spectrometers. The problem of polarization was specially studied

  4. Nanoscale Phase Immiscibility in High-ZT Bulk Lead Telluride Thermoelectric Materials

    Science.gov (United States)

    Girard, Steven Neal

    Renewable energy initiatives have increased interest in thermoelectric materials as an option for inexpensive and environmentally friendly waste heat-to-power generation. Unfortunately, low efficiencies have limited their wide-scale utilization. This work describes the synthesis and characterization of bulk nanostructured thermoelectric materials wherein natural phase immiscibility is manipulated to selectively generate nanoscale inclusions of a second phase that improve their efficiency through reductions in lattice thermal conductivity. The PbTe-PbS system exhibits natural phase separation by nucleation and growth or spinodal decomposition phase transformations depending on composition and temperature treatment. Through rapid quenching, nearly ideal solid solution alloys of PbTe-PbS are observed by powder X-ray diffraction. However, characterization by solid-state NMR and IR reflectivity show that solid solutions are obtained for rapidly quenched samples within the nucleation and growth region of the phase diagram, but samples within the spinodal decomposition region exhibit very slight phase immiscibility. We report the temperatures of phase separation using high temperature powder X-ray diffraction. Microscopy reveals that phase separation in PbTe-PbS naturally produces nanoinclusions. A decrease in lattice thermal conductivity is observed as a result of the solid solution-to-nanostructured phase transformation in this materials system, increasing thermoelectric figure of merit. Sn addition to PbTe-PbS produces a pseudobinary system of PbTe-PbSnS 2. This materials system produces microscale lamellae that effectively reduce lattice thermal conductivity. Unfortunately, the PbSnS2 inclusions also scatter electrons, reducing electrical conductivity and producing only a minimal increase in thermoelectric figure of merit. We additionally investigate PbSnS2 as prepared through Bridgman crystal growth. PbTe-PbS doped with Na appears to increase the kinetic rate of phase separation, so that rapid quenching does not produce solid solutions. Na segregation in and at the interfaces of PbS nanocrystals results in the formation of cuboctahedral nanostructures that reduce lattice thermal conductivity. Additionally, at high temperatures Na incorporation in PbTe-PbS appears to promote carriers into a different electronic energy band of PbTe, significantly enhancing the electronic transport. The enhancement in thermoelectric figure of merit by concurrent reductions in lattice thermal conductivity and enhancement in electronic properties make this material particularly attractive for future device fabrication.

  5. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  6. Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides

    OpenAIRE

    A. Sacchetti; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; Ru, N.; Fisher, I. R.; Degiorgi, L.

    2006-01-01

    We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice com...

  7. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  8. Large-area and high-quality 2D transition metal telluride

    OpenAIRE

    Zhou, Jiadong; Liu, Fucai; Lin, Junhao; Huang, Xiangwei; Xia, Juan; Zhang, Bowei; Zeng, Qingsheng; Wang, Hong; Zhu, Chao; Niu, Lin; Wang, Xuewen; Fu, Wei; Yu, Peng; Chang, Tay-Rong; Hsu, Chuang-Han

    2016-01-01

    Atomically thin transitional metal ditellurides like WTe2 and MoTe2 have triggered tremendous research interests because of their intrinsic nontrivial band structure. They are also predicted to be 2D topological insulators and type-II Weyl semimetals. However, most of the studies on ditelluride atomic layers so far rely on the low-yield and time-consuming mechanical exfoliation method. Direct synthesis of large-scale monolayer ditellurides has not yet been achieved. Here, using the chemical v...

  9. Ion beam etching system for mercury cadmium telluride and III-V compound semiconductors

    International Nuclear Information System (INIS)

    This paper describes a laboratory built ion beam etching system and its performance when used for etching Hg1-xCdxTe, GaAs and InP. The etching system provides a means for forming device mesas on a wide range of semiconductors without having to resort to wet chemical etches. The system uses a Kaufmann ion source, a rotating platform and two flow controllers to allow the variation of gas ratios and flows

  10. Superconductivity in Pd-intercalated charge-density-wave rare earth poly-tellurides RETe n

    Science.gov (United States)

    He, J. B.; Wang, P. P.; Yang, H. X.; Long, Y. J.; Zhao, L. X.; Ma, C.; Yang, M.; Wang, D. M.; Shangguan, X. C.; Xue, M. Q.; Zhang, P.; Ren, Z. A.; Li, J. Q.; Liu, W. M.; Chen, G. F.

    2016-06-01

    Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids, which are generally considered to remove electrons from the Fermi level, and thus preclude a superconducting state. However, in a variety of CDW materials, such as the prototypical transition metal chalcogenides, superconductivity has also been observed at very low temperature (Yokoya et al 2001 Science 294 2518; Morosan et al 2006 Nat. Phys. 2 544; Kiss et al 2007 Nat. Phys. 3 720), in which, although the two electronic correlated states are believed to occur in different parts of Fermi surface sheets derived mainly from chalcogen p-states and transition metal d-states, the nature of the relationship between them has not yet been unambiguously determined. Here we report the discovery of superconductivity in Pd-intercalated RETe n (RE = rare earth; n = 2.5, 3) CDW systems, in which the chalcogen layers alone are responsible for both superconductivity and CDW instability. Our finding could provide an ideal model system for comprehensive study of the interplay between CDW and superconductivity due to the remarkable simplicity of the electronic structure of Te planes.

  11. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    CERN Document Server

    Bürger, A; Chattopadhyay, K; Shi, D; Morgan, S H; Collins, W E; James, R B

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd sub x Zn sub 1 sub - sub x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of...

  12. Determination of deep levels in semi-insulating cadmium telluride by thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Thermally stimulated current (TSC) measurements have been performed in high resistivity (rho approximately 107ohms.cm) CdTe γ-ray detectors between 35 and 300K. The TSC curves have been analyzed by different methods, including those taking into account the retrapping of the carriers. The trap characteristics have been determined; especially three levels located at E(v)+0.13eV, E(v)+0.30eV and E(c)-0.55eV have been investigated

  13. Quantum-chemical basis of adsorption mechanism of hydrogen and carbon oxide on cadmium telluride

    International Nuclear Information System (INIS)

    Results of quantum-chemical calculations of the cluster model of H2 and CO adsorption on CdTe surface enabled to support the basic conclusions concerning the nature of adsorption centers and adsorption mechanism, made on the basis of experimental investigation of the system: 1) hydrogen can be adsorbed in two forms - molecular and dissociative ones versus carbon monoxide which doesn't dissociate during adsorption: 2) predominant centers of molecular hydrogen adsorption are presented by surface VTe vacancies and F-centers; 3) formed hydrogen atoms can advantageously bind with surface coordination-ionsaturated Te atoms: 4) hydrogen adsorption result in the positive charging of the surface

  14. Space processing of electronic materials. [determining ther themal conductivity of mercury cadmium tellurides and furnace design

    Science.gov (United States)

    Workman, G. L.; Holland, L. R.

    1981-01-01

    The relative values of thermal conductivity of solid and liquid HgCdTe are critically important in the design configuration of the furnaces used for Bridgman crystal growth. The thermal diffusivity of the material is closely linked to the conductivity by the defining relation D = k/rho c, where D is the diffusivity, K is the thermal conductivity, rho is the density, and c is the specific heat. The use of transient and periodic heating approaches to measure the diffusivity are explored. A system for securing and extracting heat from silica or glass tubes under high C vacuum conditions is described.

  15. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    Science.gov (United States)

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm-2) compared with the melt-quench strategy (~50 MA cm-2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  16. High efficiency cadmium and zinc telluride-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Summers, C.J.; Erbil, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (USA). School of Electrical Engineering)

    1990-10-01

    Polycrystalline Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Mn{sub x}Te films with a band gap of 1.7 eV were successfully grown on glass/SnO{sub 2}/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd{sub 1-x}Zn{sub x}Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd{sub 1-x}Mn{sub x}Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd{sub 1-x}Mn{sub x}Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5%. MBE-grown CdTe cells also produced 8%--9% efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl{sub 2} + ZnCl{sub 2} chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

  17. Enhancement in Thermoelectric Power in Lead Telluride Nanocomposite: Role of Oxygen Vis-À-Vis Nanostruct

    Directory of Open Access Journals (Sweden)

    B. Paul

    2011-01-01

    Full Text Available The present work reports enhanced power factor and reduced value of room temperature thermal conductivity in undoped PbTe nanocomposite, prepared from PbTe nanocrystals, synthesized via chemical route. The highest power factor is found to be 19.21 x 10 –4 Wm –1K –2 with room temperature thermal conductivity of 1.53 Wm –1K –1. The potential barrier at the sharp interfaces of the grains of the nanocomposites, occurred due to the adsorption of oxygen by the grain surfaces, have been found to play the main role to produce the high value of Seebeck coefficient (416 μV/K at 500 K by preferentially scattering the lower energy electrons and thus enhancing the power factor. The lattice destruction at the grain interfaces has been found to cause the remarkable reduction in thermal conductivity, through scattering a wide spectrum of phonon wavelength.

  18. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  19. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.

    Science.gov (United States)

    Böhm, Marcus L; Jellicoe, Tom C; Tabachnyk, Maxim; Davis, Nathaniel J L K; Wisnivesky-Rocca-Rivarola, Florencia; Ducati, Caterina; Ehrler, Bruno; Bakulin, Artem A; Greenham, Neil C

    2015-12-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump-probe transient absorption and pump-push-photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  20. Density Functional Study of Electronic and Structural Properties of Gold-Cadmium Selenide/Telluride Nanoclusters

    Directory of Open Access Journals (Sweden)

    Shimeles T. Bulbula

    2015-01-01

    gold electrodes decrease as cluster size increases, whereas the binding energy shows a reverse relationship with the cluster size. However, a few clusters show special properties like AuCd2Se3 and AuCd2Te3 clusters.

  1. Prognostic evaluation in obese patients using a dedicated multipinhole cadmium-zinc telluride SPECT camera.

    Science.gov (United States)

    De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L

    2016-02-01

    The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality. PMID:26424491

  2. Characterization of Cadmium-Zinc Telluride Crystals Grown by 'Contactless' PVT Using Synchrotron White Beam Topography

    Science.gov (United States)

    Palosz, W.; Gillies, D.; Grasza, K.; Chung, H.; Raghothamachar, B.; Dudley, M.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te grown by Physical Vapor Transport (PVT) using self-seeding 'contactless' techniques were characterized using synchrotron radiation (reflection, transmission, and Laue back-reflection X-ray topography). Crystals of low (x = 0.04) and high (up to x approx. = 0.4) ZnTe content were investigated. Twins and defects such as dislocations, precipitates, and slip bands were identified. Extensive inhomogeneous strains present in some samples were found to be generated by interaction (sticking) with the pedestal and by composition gradients in the crystals. Large (up to about 5 mm) oval strain fields were observed around some Te precipitates. Low angle grain boundaries were found only in higher ZnTe content (x greater than or equal to 0.2) samples.

  3. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.

    2009-08-13

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  4. Reaction Mechanism Underlying Atomic Layer Deposition of Antimony Telluride Thin Films.

    Science.gov (United States)

    Han, Byeol; Kim, Yu-Jin; Park, Jae-Min; Yusup, Luchana L; Ishii, Hana; Lansalot-Matras, Clement; Lee, Won-Jun

    2016-05-01

    The mechanism underlying the deposition of SbTe films by alternating exposures to Sb(NMe2)3 and Te(GeMe3)2 was investigated. Sb(NMe2)3 and Te(GeMe3)2 were selected because they have very high vapor pressure and are free of Si, Cl, and O atoms in the molecules. The mechanism of deposition was proposed by density functional theory (DFT) calculation and was verified by in-situ quartz crystal microbalance (QCM) analysis. DFT calculation expected the ligand-exchange reactions between the Sb and Te precursors to form Me2NGeMe3 as the byproduct. QCM analysis indicated that a single -NMe2 group in Sb(NMe2)3 reacts with -TeGeMe3 on the surface to form an Sb2Te3 film, and that a small fraction of Sb is incorporated into the film by the thermal decomposition of Sb(NMe2)3. The Te(GeMe3)2 molecules were thermally stable up to 120 degrees C, while the Sb(NMe2)3 molecules decomposed at temperatures of 60 degrees C and higher. Sb-rich SbTe films with different Sb contents were prepared by controlling the partial decomposition of Sb(NMe2)3 molecules, which was enhanced by increasing the pulse time of the precursor. PMID:27483847

  5. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Jun-you; GAO Xian-hui; HOU Jie; ZHANG Tong-jun; CUI Kun

    2005-01-01

    An automated thin-layer flow cell electrodeposition system was developed for growing Bi2 Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt,this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4: 3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO2+ reduction excludes the possibility of Bi2 Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO2+ occurs in Te direct deposition. The effective way of depositing Bi2 Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2 : 3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about 0.3 - 0.4 μm in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.

  6. Er17Ru6Te3: A highly condensed metal-rich ternary telluride

    International Nuclear Information System (INIS)

    Er17Ru6Te3 is obtained from high-temperature solid-state reactions in tantalum ampoules. The structure according to single-crystal X-ray diffraction is monoclinic, C2/m (no. 12), Z=4, a=40.185(8) A, b=3.9969(8) A, c=16.037(3) A, β=95.12(3)o, V=2565.5(9) A3. The condensed structure consists of a complex intermetallic network of intergrown sheets of edge-sharing tetrakaidecahedra (tricapped trigonal prisms, TCTP), and pairs of rectangular-face-sharing bicapped trigonal prisms (BCTP) built of erbium and centered by ruthenium. This array also contains isolated columns of TCTP erbium normal to these sheets that contain tellurium. Basal face sharing of all Er polyhedra along the short b-axis gives rise to the three-dimensional network. Synthesis and the crystal structure of the compound are discussed. - Graphical abstract: A 3D structure built of bi- and tricapped trigonal prisms centered by Ru or Te

  7. Film thickness and chemical processing effects on the stability of cadmium telluride solar cells

    International Nuclear Information System (INIS)

    The performance and stability of CdS/CdTe solar cells as a function of layer thickness, back contact etch, and oxygen during the CdCl2 anneal was determined. Multiple linear regression models were used to analyze the statistical significance of various first order effects and interactions. With stress, all devices showed a reduction in open-circuit voltage (V oc) and fill factor (FF) characteristic of increased recombination. Devices using thinner CdS were vulnerable to shunt formation. Oxygen during the CdCl2 anneal minimizes this effect. A thermodynamic model involving the formation of Cu-oxide is presented to explain the latter

  8. Powder processing and mechanical properties of Silver0.86Lead19Antimony telluride20 (LAST) and Lead0.95Tin0.05Tellurium - Lead sulfide 8% (Lead telluride -Lead sulfide) thermoelectric materials

    Science.gov (United States)

    Ni, Jennifer Elisabeth

    Thermoelectric (TE) materials convert between thermal and electrical energy and when used with existing processes will increase the efficiency via waste heat recovery. Ag0.86Pb19SbTe20 (LAST) and Pb0.95Sn0.05Te - PbS 8% (PbTe-PbS) materials exhibit good thermoelectric (TE) properties and have potential applications as thermoelectric generators in waste heat recovery. However, to fully characterize the thermo-mechanical behavior of LAST and PbTe-PbS materials under in-service conditions, knowledge is needed of the mechanical and thermal properties at room and high temperature. As fracture strength is inversely proportional to the square root of grain size, cast ingots were powder processed to reduce powder particle size. Three different powder processing methods were used (1) dry milling only, (2) wet milling only, or (3) dry milling and wet milling The specimens were fabricated using hot pressing or pulsed electric current sintering (PECS) from planetary ball milled powders. In this study, elastic moduli, including Young's modulus, shear modulus, and Poisson's ratio, were measured dynamically using resonant ultrasound spectroscopy (RUS) at room temperature and as a function of temperature up to 663 K. The room temperature porosity dependence for Young's modulus followed the empirical exponential relationships common for brittle materials, with a material dependent constant bPE of 3.5 and 1.3 for LAST and PbTe-PbS, respectively. The room temperature Young's modulus for a theoretically dense specimen was 58.4 +/- 0.6 GPa and 56.2 +/- 0.4 GPa for for LAST and PbTe-PbS, respectively. For hot pressed PbTe-PbS specimens, the Vickers indentations mean hardness and fracture toughness was 1.18 + 0.09 GPa and 0.35 +/- 0.04 MPa·m 1/2. The coefficient of thermal expansion is important for understanding the mechanical response of a material to a thermal gradient or a thermal transient. For PbTe-PbS the coefficient of thermal expansion measured using dilatometry and high temperature x-ray diffraction was 21.5 x 10-6 K -1. Bloating during post-densification annealing was measured indirectly using resonant ultrasound spectroscopy and dilatometry and directly using scanning electron microscopy. Dry milled only PECS-processed PbTe-PbS specimens did not bloat during post-densification anneals up to 936 K. Hot pressed and PECS-processed specimens processed from wet milled and dry and wet milled powder bloated during densification anneals at temperatures over 603 K.

  9. A TEM investigation of the nucleation, growth and structure of HWE grown lead-tin telluride films

    Science.gov (United States)

    Snyman, H. C.; Gouws, G. J.; Muller, R. J.

    1984-12-01

    The epitaxial growth of thin films is usually explained in terms of the interfacial energy of the critical nucleus. In a systematic TEM study of the nucleation and growth of (PbSn)Te on (111) BaF 2 substrates strong evidence is found that the post nucleation stage of recrystallisation and reorientation, rather than nucleation, is dominant in determining the degree of epitaxy. Thin films of various thicknesses were grown, in a hot wall epitaxial (HWE) system, onto (111) BaF 2 substrates at 250°C. Using dark field techniques and microdiffraction the recrystallisation processes and degree of epitaxy were studied as a function of overgrowth thickness. It was found that the degree of epitaxy was critically dependent on the film thickness. Films grown on pre-baked substrates changed from completely polycrystalline at an average thickness of 10 nm to a good epitaxially oriented overgrowth at 150 nm. The driving force for this recrystallisation process is explained in terms of the relative stability of (001) and (111) islands. Electron microscopy and microdiffraction provides direct confirmation of the proposed mechanism and its direction.

  10. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  11. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Michael David Petersen

    2001-06-27

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  12. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Michael David Petersen

    2001-05-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  13. 76 FR 46288 - Adequacy Determination for Colorado Springs, Cañon City, Greeley, Pagosa Springs, and Telluride...

    Science.gov (United States)

    2011-08-02

    ... Rule Amendments (69 FR 40004). In addition, in certain areas with monitored ambient carbon monoxide... timely attainment of the National Ambient Air Quality Standard (NAAQS). The criteria by which we...; Carbon Monoxide and PM 10 Maintenance Plans' Motor Vehicle Emissions Budgets for...

  14. High-efficiency, thin-film cadmium telluride photovoltaic cells. Annual subcontract report, 20 January 1994--19 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G.; Rajakarunanayake, Y. [Toledo Univ., OH (United States)

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  15. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J U; Mao, D [Colorado School of Mines, Golden, CO (United States)

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  16. Low dose in nuclear cardiology: state of the art in the era of new cadmium-zinc-telluride cameras.

    Science.gov (United States)

    Acampa, Wanda; Buechel, Ronny R; Gimelli, Alessia

    2016-06-01

    The use of myocardial perfusion imaging has seen a tremendous growth during the last decade and has become the most commonly used non-invasive imaging tool for risk stratification in patients with suspected and known coronary artery disease. Adherence to radiation safety best practices varied significantly between laboratories but the possibility to use the new cameras in nuclear cardiology can reduce dramatically the radiation dose without losing accuracy. Moreover, the physical characteristics of ultrafast technology could be able to open new doors for the evaluation of old parameters, changing the impact of nuclear cardiology in the diagnostic strategies. PMID:26985078

  17. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    LI TaiShan; LIU ShaoPu; LIU ZhongFang; HU XiaoLi; ZHANG LiPing

    2009-01-01

    CdTe nanocrystals (CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate. The product was detected by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), fluorescence spectra, ultraviolet-visible spectra and X-ray diffraction (XRD). The CdTe NCs are of cubic structure and the average size is about 5 nm. The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light. The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm. CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator. The resonance Rayleigh scattering (RRS) of CdTe NCs in the aqueous solution was investigated. The maximum scattering peak was located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate (AS) and micronomicin sulfate (MS) were in-vestigated respectively. The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed. It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs. Under optimum conditions, there are linear relationships between quenching intensity (F0-F), intensity of RRS (1-10) and concentration of AS and MS. The detection limits (3σ) of AS and MS are re-spectively 3.4 ng.mL-1 and 2.6 ng.mL-1 by the fluorescence quenching method, and 15.2 ng.mL-1 and 14.0 ng.mL-1 by the RRS method. The methods have high sensitivity, thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  18. An assessment of the environmental impacts on thin film cadmium telluride modules based on life cycle analysis

    International Nuclear Information System (INIS)

    Life cycle analysis has identified the production and decommissioning/disposal of thin film CdTe modules as the stages which have potentially the most severe environmental impacts. This paper investigates these stages with respect to materials, energy input and possible environmental and health implications

  19. Effect of Nanosized Tin Oxide Layer on the Efficiency of Photovoltaic Processes in Film Solar Cells Based on Cadmium Telluride

    Directory of Open Access Journals (Sweden)

    G.S. Khrypunov

    2015-03-01

    Full Text Available The influence of the thickness of the nanosized layer on the efficiency of photoelectric processes in solar cells (SC ITO / SnO2 / CdS / CdTe / Cu / Au formed on different substrates was investigated. For device structures formed on the glass substrates, the maximum efficiency of 11.4 % is achieved when thickness of the tin oxide layer is 80 nm. For flexible solar cells formed on a polyimide film, the maximum efficiency of 10.8 % is observed when thickness of the tin oxide layer is 50 nm. This paper discusses the physical mechanisms of the observed differences in efficiency.

  20. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Schmidt, Ulla; Huang, Chenxi;

    2014-01-01

    of agreement between each sequence of analyses for each of the three cameras. RESULTS: The lowest intraobserver variations in LVEF for the two NaI-detector cameras were 3.1% (-4.0% to 3.5%) for the planar and 3.4% (-4.2% to 4.5%) for SPECT (P ≤ 0.001-0.019), the highest result for the CZT SPECT camera was 2.......6% (-2.9% to 3.1%). Similarly, interobserver variation was 4.8% (-4.8% to 6.4%) and 4.9% (-5.4% to 7.5%), respectively, for each of the NaI-detector cameras and 3.3% (-3.4% to 4.3%) for the CZT SPECT camera (P ≤ 0.001-0.008). DISCUSSION: The CZT detector camera was superior to both NaI detector cameras...... regarding intra- and interobserver variation. The CZT SPECT camera may identify changes in LVEF with greater certainty than its NaI detector-equipped counterparts....

  1. Structural, electronic transport and magnetoresistance of a 142nm lead telluride nanowire synthesized using stress-induced growth

    International Nuclear Information System (INIS)

    In this study, structurally uniform single crystalline PbTe nanowires (NWs) were synthesized using a stress-induced growth. Selected-area electron diffraction patterns show that the PbTe NWs were grown along the [100] direction. The electrical conductivity σ of a NW with 142 nm in diameter exhibited a semiconducting behavior at 50–300 K. An enhancement of electrical conductivity σ up to 2383 S m−1 at 300 K is much higher than σ [0.44–1526 S m−1, Chen et al., Appl. Phys. Lett. 103, p023115, (2013)] in previous studies. The room temperature magnetoresistance of the 142 nm NW was ∼0.8% at B = 2 T, which is considerably higher than that [0.2% at B = 2 T, Ovsyannikov et al., Sol. State Comm. 126, 373, (2003)] of the PbTe bulk reported

  2. The ^{55}Fe X-ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays

    CERN Document Server

    Fox, Ori D; Wen, Yiting; Foltz, Roger D; Hill, Robert J; Kimble, Randy A; Malumuth, Eliot; Rauscher, Bernard J

    2009-01-01

    A technique involving ^{55}Fe X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e^- ADU^{-1}), as well as aid detector design and performance studies. We calibrate the ^{55}Fe X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 \\micron flight grade detectors. The results show that each K$\\alpha$ X-ray generates 2273 \\pm 137 electrons, which corresponds to a pair-production energy of 2.61 \\pm 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.

  3. Effects of annealing conditions of electrodes on the photovoltaic properties of sintered cadmium sulfide/cadmium telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Im, H.B. (Korea Advanced Inst. of Science, Seoul (Republic of Korea). Dept. of Materials Science)

    1990-01-01

    Polycrystalline n-CdS/p-CdTe solar cells with a commercial carbon paint on the p-CdTe layer and an In- Ag paint on the n-CdS layer were fabricated by a coating and sintering method. Electrical properties of the conducting paints and solar cell parameters of the heterojunction solar cells were investigated as a function of electrode annealing conditions. The sintered CdS/CdTe solar cells whose electrode contacts were annealed at 350{degrees}C for 10 min in nitrogen showed maximum values of short-circuit current density, fill factor, and solar efficiency. Commercial carbon and silver paints can be used as electrodes to fabricate sintered CdS/CdTe solar cells with efficiency over 10%.

  4. Cadmium sulfide thin films deposited by close spaced sublimation and cadmium sulfide/cadmium telluride solar cells

    Science.gov (United States)

    Marinskiy, Dmitriy Nikolaevich

    1998-12-01

    One of the applications of CdS films is as a window layer in CdTe and Cu(In,Ga)Sesb2 solar cells. The study of the optical and structural properties of CdS films deposited by close spaced sublimation as well as their influence on CdS/CdTe solar cell performance is part of the CdTe solar cell program at the University of South Florida. CdS films have been deposited by the close-spaced sublimation technique. The influence of the main process parameters, the substrate and source temperatures, and the ambient in the deposition chamber has been investigated. As-deposited films have been subjected to heat treatments in Hsb2 ambient, in CdClsb2 atmosphere, and in atmosphere with small amounts of oxygen. A special annealing chamber was built to carry out the annealing experiments in the presence of CdClsb2 vapor and oxygen. Several CSS chambers were assembled to study the influence of various process parameters simultaneously and validate the results. Results of scanning electron microscopy and photoluminescence measurements have been used as the primary characterization techniques. X-ray diffraction, electron microprobe analysis, and transmission measurements have also been carried out. It was found that as deposited CdS films have a hexagonal structure independent of the process parameters used. The presence of a CdO phase was detected in the samples grown with the highest oxygen concentration in the ambient. The resistivity of CdS films is controlled by intergrain barriers. Photoluminescence measurements showed the presence of oxygen-acceptor transition and a wide variation in the intensity of deep emission bands. The variation in the intensities was correlated with the variation in the deposition and annealing conditions. However, no correlation was found between the PL intensities of defect bands and cell performance. CdS/CdTe junctions have been fabricated using standard deposition and postgrowth techniques developed in the USF solar cells laboratory. All cells have been characterized by light and dark current-voltage (I-V) measurements. Based on the I-V results samples were selected for Quantum Efficiency (QE), and I-V-T measurements. The goal of this project was to understand what properties of CdS are important for the formation of a good electrical CdS/CdTe junction and high efficiency solar cells. It was found that passivation of the CdS/CdTe interface is essential to obtain efficient devices. The passivation can be achieved by promoting mixing at the interface or by performing a heat treatment of the CdS surface prior to the CdTe deposition. For the latter case no noticeable intermixing at the CdS/CdTe interface occurs. Therefore, it is suggested that the CdS/CdTe interface is the most critical part of the device and the condition of the CdS surface just before CdTe deposition is one of the factors controlling its formation. To date, the best device has shown an efficiency of 15.1% as verified at the National Renewable Energy Laboratory. It is the highest efficiency reported for an all CSS fabricated solar cell. The best all CSS device fabricated on LOF glass substrate demonstrated an efficiency of 14.3%, which is a new record for the USF solar cell laboratory.

  5. Polycrystalline cadmium telluride n-i-p solar cell: Annual subcontract report, 1 June 1987--31 August 1988

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.V.

    1989-06-01

    The CdS/CdTe/ZnTe n-i-p solar cell and its ternary relatives have the potential to meet Department of Energy cost, efficiency, and stability goals. This report describes results of a continuing program to achieve these goals. A record-breaking efficiency of 11% has been demonstrated and verified at the Solar Energy Research Institute (SERI). Stability testing for 3000 hours indicates that the n-i-p structure is stable. Improving the short-circuit current by substituting Cd/sub x/Zn/sub 1-x/S for CdS has been successful and has produced 8+% efficient cells with 2.6 eV windows using improved pyrolysis equipment. Transparent n-i-p devices have been produced with a SERI-verified efficiency of 9.4%. Collaborations with researchers at the Georgia Institute of Technology, the Institute of Energy Conversion, and Jet Propulsion Laboratory have resulted in jointly produced n-i-p cells. Cells produced by molecular beam epitaxy and metal organic chemical vapor deposition had efficiencies greater than 9%; cells produced by thermal vacuum evaporation had efficiencies greater than 7%. 18 refs., 35 figs., 13 tabs.

  6. Quantum Hall effect in volume semiconductors of bismuth and antimony tellurides: evidence of presence of current carriers reservoir

    International Nuclear Information System (INIS)

    Quantization of diagonal ρxx and non-diagonal ρxy components of resistance tensor of volumetric semiconductors Bi2Te3, Sb2Te3 and Bi2-xSbxTe3 at low temperatures in a strong magnetic field was studied. In semiconductors Bi2Te3 and Sb2Te3 quantization of the Hall resistance ρxy in the form of a plateau in dependence of ρxy on magnetic field B is observed. Beginning of the plateau corresponds to minima of transverse magnetic resistance ρxx. The presence of a current carrier reservoir, impurity zone with a high density of states or another zone with essentially higher effective mass of current carriers playing the role of the reservoir, is the reason for ρxy quantization

  7. Crystal growth and analysis of ohmic contact and magneto-optical isolator properties of cadmium manganese telluride

    Science.gov (United States)

    Prakasam, Mythili; Viraphong, Oudomsack; Teulé-Gay, Lionel; Decourt, Rodolphe; Veber, Philippe; Víllora, Encarnación G.; Shimamura, Kiyoshi

    2011-03-01

    Cd1-xMnxTe (x=0.1, 0.3, 0.5, 0.7 and 0.9) (CMT) single crystals were grown by the vertical Bridgman method. The optical studies reveal that with the increase in Mn concentration, the band gap values increase, which is attributed to s, p-d exchange interaction between the band carriers and Mn ions. Faraday rotation angle of the grown CMT (x=0.5) crystals were measured at the following wavelengths: 825, 1060 and 1575 nm. It was inferred that CMT exhibit larger Faraday effect (3-6 times larger than terbium-gallium garnet (TGG) currently used for optical isolators) making it as an efficient material for optical isolator at longer wavelengths. Field-cooled and zero field-cooled magnetizations of CMT were measured as a function of temperature and magnetic field. The spin-glass like behavior of CMT and their tendency to decrease in magnitude with increasing Mn concentration have been analyzed. The metal contacts on the Cd1-xMnxTe (x=0.1, 0.5, 0.7 and 0.9) crystals have been made with various metals and metal alloys to establish the ohmic contact. The detector characteristics of CMT have been tested using γ-rays with 511 keV (22 Na) and 59.5 keV (241 Am).

  8. Palladium telluride quantum dots and cytochrome P450 biosensor for the detection of breast cancer drug – tamoxifen.

    OpenAIRE

    Felini, Usisipho; Beni, Valerio; Iwuoha, Emanuel; Turner, Anthony

    2015-01-01

    Tamoxifen is an oral non-steroidal anti-estrogen drug used in the prevention and treatment of all stages of breast cancer. This drug acts by competing with estrogen for binding to the estrogen receptor (ER) and reduces the transcription of estrogen dependent genes. However, approximately 30-50% of ER-positive breast cancer patients either fail to respond or eventually become resistant to tamoxifen resulting in a serious clinical challenge in breast cancer management. This, therefore, calls fo...

  9. MIS structure as a N-P junction and an electrode of a cadmium telluride nuclear detector

    International Nuclear Information System (INIS)

    The surface of a high resistivity CdTe is investigated by AES and ELS. The ELS spectra have demonstrated the presence of TeO2 layer on an outer side of the electrochemically etching surface. The interface TeO2/CdTe represents thick region of inverse or depleted conductivity. The thickness of TeO2 layer can be reduced by anodic treatment. By evaporating a metallic layer the metal-oxide-semiconductor structure is obtained. The electrical characteristics of a metal-CdTe surface are as of a MIS structure ones and an electrode of a nuclear detector. The advantage of such detector with a metal-dielectric-semiconductor electrode is emphasized. 9 refs., 5 figs. (orig.)

  10. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    CdTe nanocrystals(CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate.The product was detected by transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),fluorescence spectra,ultraviolet-visible spectra and X-ray diffraction(XRD).The CdTe NCs are of cubic structure and the average size is about 5 nm.The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light.The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm.CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator.The resonance Rayleigh scattering(RRS) of CdTe NCs in the aqueous solution was investigated.The maximum scattering peak was located at about 554 nm.The interactions of CdTe NCs with amikacin sulfate(AS) and micronomicin sulfate(MS) were investigated respectively.The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed.It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs.Under optimum conditions,there are linear relationships between quenching intensity(F0-F),intensity of RRS(I-I0) and concentration of AS and MS.The detection limits(3б) of AS and MS are respectively 3.4 ng·mL-1 and 2.6 ng·mL-1 by the fluorescence quenching method,and 15.2 ng·mL-1 and 14.0 ng·mL-1 by the RRS method.The methods have high sensitivity,thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  11. High-efficiency thin-film cadmium telluride photovoltaic cells. Annual technical report, January 20, 1996--January 19, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A D; Bohn, R G; Contreras-Puente, G [Univ. of Toledo, OH (United States)

    1997-08-01

    The University of Toledo photovoltaics group has been instrumental in developing rf sputtering for CDs/CdTe thin-film solar cells. During the third phase of the present contract our work focussed on efforts to determine factors which limit the efficiency in our {open_quotes}all-sputtered{close_quotes} thin-film CdTe solar cells on soda-lime glass. We find that our all-sputtered cells, which are deposited at substantially lower temperature than those by sublimation or vapor deposition, require less aggressive CdCl{sub 2} treatments than do other deposition techniques and this is presumably related to CDs/CdTe interdiffusion. The CDs/CdTe interdiffusion process has been studied by several methods, including photoluminescence and capacitance-voltage measurements. Furthermore, we have deposited special thin bilayer films on quartz and borosilicate glass. Interdiffusion in these thin bilayers have been probed by Rutherford backscattering, with collaborators at Case Western Reserve University, and grazing incidence x-ray scattering (GIXS), with collaborators at the University at Buffalo and Brookhaven National Lab. Also, in order better to understand the properties of the ternary alloy material, we used laser physical vapor deposition to prepare a series of CdS{sub x}Te{sub 1-x} films on borosilicate glass. The composition of the alloy films was determined by wavelength dispersive x-ray spectroscopy at NREL. These films are currently being investigated by us and other groups at NREL and IEC.

  12. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.

    Science.gov (United States)

    Ren, Jie; Fu, Li; Bian, Guang; Su, Jie; Zhang, Hao; Velury, Saavanth; Yukawa, Ryu; Zhang, Longxiang; Wang, Tao; Zha, Gangqiang; Guo, Rongrong; Miller, Tom; Hasan, M Zahid; Chiang, Tai-Chang

    2016-01-13

    The surface cleansing treatment of non-natural cleavage planes of semiconductors is usually performed in vacuum using ion sputtering and subsequent annealing. In this Research Article, we report on the evolution of surface atomic structure caused by different ways of surface treatment as monitored by in situ core-level photoemission measurements of Cd-4d and Te-4d atomic levels and reflection high-energy electron diffraction (RHEED). Sputtering of surface increases the density of the dangling bonds by 50%. This feature and the less than ideal ordering can be detrimental to device applications. An effective approach is employed to improve the quality of this surface. One monolayer (ML) of Te grown by the method of molecular beam epitaxy (MBE) on the target surface with heating at 300 °C effectively improves the surface quality as evidenced by the improved sharpness of RHEED pattern and a reduced diffuse background in the spectra measured by high-resolution ultraviolet photoemission spectroscopy (HRUPS). Calculations have been performed for various atomic geometries by employing first-principles geometry optimization. In conjunction with an analysis of the core level component intensities in terms the layer-attenuation model, we propose a "vacancy site" model of the modified 1 ML-Te/CdTe(111)A (2 × 2) surface. PMID:26672795

  13. Photocurrent mapping as a probe of transport properties and electric field distributions in cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    A chief concern related to the use of alloy materials for nuclear spectrometer applications is degradation of detector resolution due to material nonuniformity. The authors have performed two-dimensional cross-sectional photocurrent mapping of Cd0.9Zn0.1Te detectors grown by the high-pressure Bridgman method as a means of probing the electric field distribution. They have analyzed the results using a model based on the drift-diffusion equation. In the case of a uniform electric field and excitation far from the electrodes, the result is virtually identical in form to the Hecht relation. They adapt the Hecht relation to analyze photocurrent data and generalize it to the case of a nonuniform electric field. The spatial distribution of photocurrent for the material that they have examined suggests a nonuniformity in either the electric field or the electron mobility-lifetime product. These observations may help to explain the slope changes observed in detector response pulses

  14. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    Directory of Open Access Journals (Sweden)

    Michele D. Nielsen

    2015-05-01

    Full Text Available AgSbTe2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ∼ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe2 is a two carrier system having both holes (concentration p and electrons (n. Good thermoelectric performance requires heavy p-type doping (p > > n. This can be achieved with native defects or with extrinsic doping, e.g. with transition metal element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb2Te3-Ag2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. Additionally, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.

  15. Effect of Annealing On Thin Film Fabrication of Cadmium Zinc Telluride by Single-R.F. Magnetron Sputtering Unit

    Directory of Open Access Journals (Sweden)

    Dr. Monisha Chakraborty A,

    2014-01-01

    Full Text Available In this work, formation of Cd1-xZnxTe thin films under various annealing-environments, created by layer by layer deposition of individual CdTe and ZnTe targets from a Single-R.F. Magnetron Sputtering unit is investigated. Structural and optical characterization results show that Vacuum Annealing is the best suitable for the formation of better Cd1-xZnxTe XRD peaks of higher intensities in comparison to Argon or Nitrogen-Annealing, for a bi-layered deposited CdTe and ZnTe film on glass substrate. The crystallography of the Cd1-xZnxTe films formed appeared to be either Cubic or Rhombohedral type. Also, it has been noticed, that the more inert the annealing-environment is, the lesser is the heat loss by the film-substrate and this results in better fusing of the deposited particles to move more from the poly-crystalline to the mono-crystalline structure. Also higher inert environment causes more Cadmium evaporation and this consequently drives the lattice-constant and the band-gap energy of the formed Cd1-xZnxTe thin film to move from the CdTe side to the ZnTe side. The method developed here with proper annealing ambiance for Cd1-xZnxTe fabrication can be implemented in laboratories lacking in Co-Sputtering machine.

  16. Micro-Raman and UV-VIS Studies of 100 MeV Ni4+ Irradiated Cadmium Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    Neelam Pahwa

    2011-01-01

    Full Text Available CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with Swift (100 MeV Ni 4 + ions for fluences in the range 1.0 × 1011 - 1.0 × 1013 cm – 2. The modification in the structure and optical properties has been studied as a function of ion fluence using Micro-Raman spectroscopy and UV-VIS spectroscopy. In Micro Raman spectrum, weak LO and TO modes of CdTe and A1 & E modes of Te were observed with blue shift which was found to increase with increase in fluence. Intensity of these modes decreased with increase in ion fluence. UV-transmission showed pronounced interference fringes, indicating a good quality of the films. The bandgap was found to increase in the range 1.4-1.75 eV with increase in fluence.

  17. Band gap engineering and \\vec{k}\\cdot \\vec{\\pi } electronic structure of lead and tin tellurides

    Science.gov (United States)

    Behera, S. S.; Tripathi, G. S.

    2016-06-01

    We study the effect of the variation of energy gap on the k\\cdot π electronic structure of PbTe and SnTe, using a six-level basis at the L point. The basis functions in both the systems have the same transformation properties. However, the basis functions of the band edge states in SnTe are reversed with respect to the same in PbTe. Band dispersions are obtained analytically for a two band model. As the band gap decreases, the bands become linear. Far bands are included in the electronic dispersion, using perturbation theory. Fermi energy and the Density of States at the Fermi energy, { D }({\\varepsilon }F), are calculated for different carrier concentrations and energy gaps through a self-consistent approach. Interesting results are seen when the energy gap is reduced from the respective equilibrium values. For both the systems, the Fermi energy increases as the gap is decreased. The behavior of { D }({\\varepsilon }F) is, however, different. It decreases with the gap. It is also on expected lines. Calculated values of the electronic effective mass, as a function of temperature, energy gap and carrier concentration, are compared with previously published data. As distinguished from a first principles calculation, the work has focused on the carrier dependent electronic parameters for use both by theorists and experimenters as well.

  18. Characterization of nanocrystalline cadmium telluride thin films grown by successive ionic layer adsorption and reaction (SILAR) method

    Indian Academy of Sciences (India)

    A U Ubale; R J Dhokne; P S Chikhlikar; V S Sangawar; D K Kulkarni

    2006-04-01

    Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous medium. In this process hydrazine hydrate is used as reducing agent and NH4OH as the catalytic for the decomposition of hydrazine. By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was done. In this paper the structural, optical and electrical properties of CdTe film are reported. The XRD pattern shows that films are nanocrystalline in nature. The resistivity is found to be of the order of 4.11 × 103 -cm at 523 K temperature with an activation energy of ∼ 0.2 eV. The optical absorption studies show that films have direct band gap (1.41 eV).

  19. Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing

    International Nuclear Information System (INIS)

    Highlights: • Ag serves as a promising bonding material for PbTe operating at THot ⩽ 400 °C. • The Ag foils reacted vigorously with PbTe to form Ag2Te at 550 °C. • The Seebeck coefficient of Ag/PbTe/Ag is slightly higher than that of pure PbTe. • A cost-effective way for long-term operations at high temperature. - Abstract: We use the rapid hot-pressing method to bond Ag foil onto pure PbTe in order to assess its effectiveness as a bonding layer material for thermoelectric module applications. Scanning electron microscopy and X-ray diffraction are employed to examine intermetallic compound formation and microstructure evolution during isothermal aging at 400 °C and 550 °C. We find that Ag is a promising bonding material for PbTe modules operating at THot ⩽ 400 °C. Additionally, our approach highlights a highly effective and inexpensive method to metallize PbTe prior to module assembly

  20. Crystal Chemistry of Natural Tellurides. I: Refinement of the Crystal Structure of Sylvanite, AuAgTe4

    International Nuclear Information System (INIS)

    Electron microprobe analyses and the refinement of the crystal structure indicate, that sylvanite, AuAgTe4, from Baia de Aries (=Offenbanya), Romania, has a stoichiometric composition and an ordered crystal structure (a-8.95(1) A, b=4.478(5) A, c=14.62(2) A; β=145.35(5)supo; Z-2; space group P2/c-Csub(2h)4). The Au atom is surrounded by six Te atoms in a [4+2] coordination as characteristic for oxidation state III. Around the Ag atom (oxidation state I) are also six Te atoms, but arranged in a [2+2+2] coordination. Via common edges the AuTe6 and AgTe6 polyhedra build up 'sheets' parallel to (100). These 'sheets' are combined to a network of Te2 dumbbells (Te-Te=2.82 A). (Author)

  1. Freeze drying method for preparing radiation source material

    International Nuclear Information System (INIS)

    Fabrication of a neutron source is specifically claimed. A palladium/californium solution is freeze dried to form a powder which, through conventional powder metallurgy, is shaped into a source containing the californium evenly distributed through a palladium metal matrix. (E.C.B.)

  2. Review of RBE and OER values for Cf-neutrons

    International Nuclear Information System (INIS)

    Californium-252, an isotope emitting neutrons, gamma photons and alpha particles, is being investigated for its practical use in intracavitary and interstitial brachytherapy. A review of published RBE and OER values for californium neutrons as a function of dose rate for a variety of biological endpoints is given. (Auth.)

  3. Thermoelectric materials and methods for synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  4. Rich structural phase diagram and thermoelectric properties of layered tellurides Mo{sub 1−x}Nb{sub x}Te{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ikeura, Koji; Sakai, Hideaki [Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656 (Japan); Bahramy, Mohammad Saeed [Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 (Japan); Ishiwata, Shintaro, E-mail: ishiwata@ap.t.u-tokyo.ac.jp [Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656 (Japan); JST, PRESTO, Kawaguchi, Saitama 332-0012 (Japan)

    2015-04-01

    MoTe{sub 2} is a rare transition-metal ditelluride having two kinds of layered polytypes, hexagonal structure with trigonal prismatic Mo coordination and monoclinic structure with octahedral Mo coordination. The monoclinic distortion in the latter is caused by anisotropic metal-metal bonding. In this work, we have examined the Nb doping effect on both polytypes of MoTe{sub 2} and clarified a structural phase diagram for Mo{sub 1−x}Nb{sub x}Te{sub 2} containing four kinds of polytypes. A rhombohedral polytype crystallizing in polar space group has been newly identified as a high-temperature metastable phase at slightly Nb-rich composition. Considering the results of thermoelectric measurements and the first-principles calculations, the Nb ion seemingly acts as a hole dopant in the rigid band scheme. On the other hand, the significant interlayer contraction upon the Nb doping, associated with the Te p-p hybridization, is confirmed especially for the monoclinic phase, which implies a shift of the p-band energy level. The origin of the metal-metal bonding in the monoclinic structure is discussed in terms of the d electron counting and the Te p-p hybridization.

  5. Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Annealing-induced change in optical parameters of CdTe film was derived from UV–vis study. • Optical constants of the films were evaluated using Swanepoel method. • Dispersion energy data obeyed the single oscillator of the Wemple−Didomenico model. • Cd deficiency of the film confirmed the p-type conductive nature. - Abstract: In this work, we report on post-deposition heat treatment (annealing)-induced change in optical properties derived from UV–vis study of CdTe thin films prepared on amorphous glass substrate by electron beam evaporation technique. Annealing effect gives rise to the enhancement in crystalline nature (zinc blende structure) of CdTe films with (1 1 1) preferred orientation. The average transmittance was increased with the annealing temperature and the slight shift in transmission threshold towards higher wavelength region revealed the systematic reduction in optical energy band gap. The existence of shallow level just below the conduction band, within the band gap was identified in the range of 0.23 and 0.14 eV for the films annealed at 200 and 450 °C, respectively. The optical quality of deposited films was confirmed by the photoluminescence study. In addition, the scanning electron microscopic measurement supports the result of X-ray diffraction study. The Swanepoel, Hervé-Vandamme, and Wemple−DiDomenico models have been employed to evaluate the various optical parameters of CdTe films. These results are correlated well with other physical properties and discussed with the possible concepts underlying the phenomena

  6. Experimental charge density determination in iso-structural Tellurides: Hf0.85GeTe4 and ZrGeTe4

    International Nuclear Information System (INIS)

    Hf0.85GeTe4 is isostructural with stoichiometric ZrGeTe4 and their crystal structure adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face sharing Hf/Zr-centered bicapped trigonal prisms and corner sharing Ge- centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. Single crystal XRD is used for the refinement of the structural parameters. The space group Cmc21 was considered and the structure was the refined using the harmonic model by the software called JANA2006. The refined structure factors were then subsequently used in MEM (Maximum Entropy Method) technique for the construction of the charge density in the unit cell using software called PRIMA and then visualized with the help of visualization software called VESTA

  7. Electronic transport properties of stuffed compositions of ferromagnetic copper chromium telluride: Cu1+xCr2Te4 (x=0-1)

    International Nuclear Information System (INIS)

    We present here a detailed study of electronic transport properties of the metallic-ferromagnetic compounds Cu1+xCr2Te4, having excess Cu atoms with x=0-1, from 2 to 400 K. The stuffing of the copper atoms in the parent structure reduces the ferromagnetic ordering temperature TC from 325 to 156 K, while for the entire range the dependence of the electrical resistance and the thermopower with temperature and the anomalies in them on the magnetic ordering remain similar. All the compounds show a magnon-drag contribution in thermopower as a positive maximum around TC/3, and a T2 - dependence of resistivity at low temperatures. The increasing effects of the short range magnetic ordering in the paramagnetic resistivity are seen with the increase in the stuffing of atoms in these compounds. The transport properties are explained by the current carriers -the holes in a wide energy band dominated by the p-state of Te-atoms, which are scattered by the spindisorder in the paramagnetic phase and from the magnons in the ferromagnetic phase. - Highlights: → Resistivity and the thermopower of series of Cu1+xCr2Te4x=0-1 from 2to600 K. → Spin-disorder scattering of conduction electrons in the paramagnetic phase. → Magnon-drag effects, as a positive maximum at TC/3 in thermopower. → Short range ordering caused by the frustration effects of the interactions by interstitial atoms. → Alloy-like structural and electronic properties by the increase in stuffing of the copper atoms.

  8. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

    Science.gov (United States)

    Albright, S. P.; Johnson, S. X.

    1994-06-01

    This report describes work performed under a three-phase subcontract. The objectives of the program include (1) achievement of active-area efficiencies of greater than 14% on small cells; (2) achievement of aperture-area efficiencies of greater than 13% on 0.09-sq m (1 sq ft) modules; (3) achievement of aperture-area efficiencies of greater than 12.5% on 0.37-sq m (4 sq ft) modules; and achievement of greater than 20-year module life (based on life testing extrapolations) with no greater than 10% efficiency degradation. The results obtained and described herein include the following: (1) efficiencies of 12.7% were achieved on small-area devices; (2) 0.09-sq m(1 sq ft) modules achieved greater than 8% aperture-area efficiency, but work for further efficiency improvement was redirected toward the 0.37-sq m(4 sq ft) modules; (3) 0.37-sq m (4 sq ft) modules achieved 26.5-W output, which calculates to 8.0% aperture-area efficiency; (4) consistent prototype production was focused on and substantially achieved within Phase 2; (5) life testing at the National Renewable Energy Laboratory showed no inherent stability problems with the CdTe technology, and the accuracy of module measurement was satisfactorily resolved; and (6) a 'cradle-to-cradle' recycling program was begun based upon the philosophy that the establishment of such mechanisms will be required to ensure maximum recapture and recycling of all manufacturing waste materials and/or modules returned from the field.

  9. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets.

    Science.gov (United States)

    Wu, Kaifeng; Li, Qiuyang; Jia, Yanyan; McBride, James R; Xie, Zhao-xiong; Lian, Tianquan

    2015-01-27

    Colloidal cadmium chalcogenide nanosheets with atomically precise thickness of a few atomic layers and size of 10-100 nm are two-dimensional (2D) quantum well materials with strong and precise quantum confinement in the thickness direction. Despite their many advantageous properties, excitons in these and other 2D metal chalcogenide materials are short-lived due to large radiative and nonradiative recombination rates, hindering their applications as light harvesting and charge separation/transport materials for solar energy conversion. We showed that these problems could be overcome in type-II CdSe/CdTe core/crown heteronanosheets (with CdTe crown laterally extending on the CdSe nanosheet core). Photoluminesence excitation measurement revealed that nearly all excitons generated in the CdSe and CdTe domains localized to the CdSe/CdTe interface to form long-lived charge transfer excitons (with electrons in the CdSe domain and hole in the CdTe domain). By ultrafast transient absorption spectroscopy, we showed that the efficient exciton localization efficiency could be attributed to ultrafast exciton localization (0.64 ± 0.07 ps), which was facilitated by large in-plane exciton mobility in these 2D materials and competed effectively with exiton trapping at the CdSe or CdTe domains. The spatial separation of electrons and holes across the CdSe/CdTe heterojunction effectively suppressed radiative and nonradiative recombination processes, leading to a long-lived charge transfer exciton state with a half-life of ∼ 41.7 ± 2.5 ns, ∼ 30 times longer than core-only CdSe nanosheets. PMID:25548944

  10. Removal of CdTe in acidic media by magnetic ion-exchange resin: a potential recycling methodology for cadmium telluride photovoltaic waste.

    Science.gov (United States)

    Zhang, Teng; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste. PMID:25128764

  11. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    International Nuclear Information System (INIS)

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste

  12. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 3, October 9, 1979-January 8, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K; Das, M B; Krishnaswamy, S V

    1980-02-01

    The main emphasis during the third quarter of the program was on the improvement of the quality of sputtered films, their characterization and use in the fabrication of Schottky barrier type diodes and solar cell structures. Films prepared under different conditions and on different substrates were examined by SEM showing nodular growths under certain conditions. I-V, C-V and photovoltaic characteristics were measured on numerous samples based on n- and p-type films on Ni substrates having top metallization of either evaporated Au and Al. The n-type samples showed up to 200mV V/sub oc/ and small short-circuit currents. The characteristics observed are indicative of the presence of interfacial layer and surface states. Surface state's capacitance were measured on p-type samples metallized with Au.

  13. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of 13C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on 13C chemical shifts in eleven isological series of R1-Eh-R2 unsaturated compounds are compared. A linear relation between 13C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on 13C chemical shifts of R1 and R2 substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms

  14. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  15. Dual-channel optical sensing platform for detection of diminazene aceturate based on thioglycolic acid-wrapped cadmium telluride/cadmium sulfide quantum dots.

    Science.gov (United States)

    Hao, Chenxia; Zhou, Tao; Liu, Shaopu; Wang, Linlin; Huang, Bowen; Kuang, Nianxi; He, Youqiu

    2016-06-15

    A dual-channel optical sensing platform which combines the advantages of dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) and fluorescence has been designed for the detection of diminazene aceturate (DA). It is based on the use of thioglycolic acid-wrapped CdTe/CdS quantum dots (Q-dots). In the absence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots exhibit the high fluorescence spectrum and low RRS spectrum, so are selected to develop an easy-to-get system. In the presence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots and DA form a complex through electrostatic interaction, which result in the RRS intensity getting enhanced significantly with new RRS peaks appearing at 317 and 397nm; the fluorescence is powerfully quenched. Under optimum conditions, the scattering intensities of the two peaks are proportional to the concentration of DA in the range of 0.0061-3.0μgmL(-1). The detection limits for the two single peaks are 4.1ngmL(-1) and 3.3ngmL(-1), while that of the DWO-RRS method is 1.8ngmL(-1), indicating that the DWO-RRS method has high sensitivity. Besides, the fluorescence also exhibits good linear range from 0.0354 to 10.0μgmL(-1) with a detection limit of 10.6ngmL(-1). In addition, the system has been applied to the detection of DA in milk samples with satisfactory results. PMID:27016631

  16. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  17. Cadmium telluride quantum dots (CdTe-QDs and enhanced ultraviolet-B (UV-B radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    Directory of Open Access Journals (Sweden)

    Huize Chen

    Full Text Available Nanoparticles (NPs are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs, a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L or UV-B radiation (10 KJ/m(2/d induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.

  18. Segregation of the Eu impurity as function of its concentration in the melt for growing of the lead telluride doped crystals by the Bridgman method

    OpenAIRE

    Zayachuka, D. M.; Ilyinaa, O. S.; Pashuka, A. V.; Mikityukb, V. I.; Shlemkevychb, V. V.; Csik, A.; Kaczorowskid, D.

    2014-01-01

    Behaviour of a rare earth impurity of Eu in the PbTe single crystals grown by the Bridgman method from the melt with different initial concentrations of impurity N about 1*10+19 cm-3 and less is investigated with X-ray fluorescent element analysis, Secondary Neutral Mass Spectroscopy (SNMS), and magnetic measurements. The impurity distributions along and across the doped ingots are established. It is revealed that doping impurity enters into the bulk of doped crystals only if its initial conc...

  19. Segregation of the Eu impurity as function of its concentration in the melt for growing of the lead telluride doped crystals by the Bridgman method

    Science.gov (United States)

    Zayachuk, D. M.; Ilyina, O. S.; Pashuk, A. V.; Mikityuk, V. I.; Shlemkevych, V. V.; Csik, A.; Kaczorowski, D.

    2013-08-01

    Behavior of a rare earth impurity of Eu in the PbTe single crystals grown by the Bridgman method from the melt with different initial concentrations of impurity NEuint(ml) of about 1×1020 cm-3 and less is investigated with X-ray fluorescent element analysis, Secondary Neutral Mass Spectroscopy (SNMS), and magnetic measurements. The impurity distributions along and across the doped ingots are established. It is revealed that doping impurity enters into the bulk of doped crystals only if its initial concentration in the melt is high enough, approximately 1×1020 cm-3. If this concentration is lower, about 1×1019 cm-3 and less, the doping Eu impurity is pushed out onto the surface of doped ingot. The thickness of the doped surface layer is estimated to be in the order of several microns or somewhat more. The longitudinal distributions of Eu impurity along the axis of doped ingot-for NEuint(ml)=1×1020 cm-3, as well as the transverse one in the surface layer where entire doping impurity is pushed out-for NEuint(ml)=1×1019 cm-3, are strongly non-monotonic. Possible reasons for this unusual behavior of Eu doping impurity during the growth of PbTe:Eu crystals from the melt are analyzed.

  20. Synthesis and physical properties of the new layered ternary tellurides MIrTe 4 ( M = Nb, Ta), and the structure of NbIrTe 4

    Science.gov (United States)

    Mar, Arthur; Ibers, James A.

    1992-04-01

    Two new ternary transition-metal chalcogenides, niobium iridium tetratelluride (NbIrTe 4) and tantalum iridium tetratelluride (TaIrTe 4), have been prepared by reaction of the elemental powders at 1000°C. The structure of NbIrTe 4 has been determined by single-crystal X-ray diffraction methods. The compound crystallizes in space group C72 v- Pmn2 1 of the orthorhombic system with four formula units in a cell of dimensions a = 3.768(3), b = 12.486(10), c = 13.077(9) Å at 294 K. NbIrTe 4 is a layered compound with a structure closely related to those of WTe 2 and β-MoTe 2, variants of the CdI 2 structure type. The layers comprise buckled sheets of Te atoms, with the Nb and Ir atoms residing in distorted octahedral sites. Metal-metal bonding appears to be responsible for a close association of the Nb and Ir atoms. From Weissenberg photography, the compound TaIrTe 4 is found to be isostructural to NbIrTe 4, with cell dimensions a = 3.77(3), b = 12.37(6), c = 13.17(3) Å. Electrical resistivity measurements along the a axis of both compounds show that they are metallic: ϱ 298 = 8.1 × 10 -5and 1.2 × 10 -4 Ω cm for NbIrTe 4 and TaIrTe 4, respectively. Magnetic susceptibility measurements indicate essentially temperature-independent Pauli paramagnetism for both compounds: χm = 1.9 × 10 -3 and 8.9 × 10 -4 emu mol -1 for NbIrTe 4 and TaIrTe 4, respectively. The compounds NbIrTe 4 and TaIrTe 4 appear to belong to a larger class of compounds MM'Te 4 with M = Nb, Ta and M' = Ru, Os, Rh, Ir.

  1. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Science.gov (United States)

    Wang, Mengmeng; Wang, Jilong; Sun, Hubo; Han, Sihai; Feng, Shuai; Shi, Lu; Meng, Peijun; Li, Jiayi; Huang, Peili; Sun, Zhiwei

    2016-01-01

    A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs. PMID:27307732

  2. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    OpenAIRE

    Wang M; Wang J; Sun H; Han S; Feng S; Shi L; Meng P; Li J; Huang P; Sun Z

    2016-01-01

    Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally ...

  3. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    OpenAIRE

    Huang, Peili

    2016-01-01

    Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equa...

  4. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs. Keywords: quantum dot, cadmium ion, metallothionein, hydroxyl radical, toxicity

  5. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    International Nuclear Information System (INIS)

    Graphical abstract: The staining effect of the control group (a), QDs-SiO2 (b) and QDs-PDADMAC-SiO2(c). Highlights: ► The fluorescence intensity of QDs-PDADMAC-SiO2 is stronger than that of QDs-SiO2. ► The fluorescence stability of QDs-PDADMAC-SiO2 is better than that of QDs-SiO2. ► The cytotoxicity of QDs-PDADMAC-SiO2 was lower than that of QDs-SiO2 ► The staining effect of QDs-PDADMAC-SiO2 was much better than that of QDs-SiO2. - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO2) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO2 (QDs-SiO2), the QDs-PDADMAC-SiO2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO2 exhibits good biological compatibility which promotes their application in cellular imaging.

  6. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang Jianhua; Xie Lian; Zhang Bin; Qiu Ting [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Qi Bin [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nangchong 637002 (China); Xie Hongping, E-mail: hpxie@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China)

    2012-03-30

    Graphical abstract: The staining effect of the control group (a), QDs-SiO{sub 2} (b) and QDs-PDADMAC-SiO{sub 2}(c). Highlights: Black-Right-Pointing-Pointer The fluorescence intensity of QDs-PDADMAC-SiO{sub 2} is stronger than that of QDs-SiO{sub 2}. Black-Right-Pointing-Pointer The fluorescence stability of QDs-PDADMAC-SiO{sub 2} is better than that of QDs-SiO{sub 2}. Black-Right-Pointing-Pointer The cytotoxicity of QDs-PDADMAC-SiO{sub 2} was lower than that of QDs-SiO{sub 2} Black-Right-Pointing-Pointer The staining effect of QDs-PDADMAC-SiO{sub 2} was much better than that of QDs-SiO{sub 2}. - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO{sub 2}) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of -35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO{sub 2} (QDs-SiO{sub 2}), the QDs-PDADMAC-SiO{sub 2} nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO{sub 2} exhibits good biological compatibility which promotes their application in cellular imaging.

  7. A new shipping container for an intense neutron emitter

    International Nuclear Information System (INIS)

    Californium-252 is an intense neutron emitter (2.34 x 1012 n/s·g) used in medicine, research, and industry. The western world's sole source of this rare radioisotope is the Californium Facility at Oak Ridge National Laboratory's Radiochemical Engineering Development Center (REDC). A project has been initiated at the REDC to design a new Type B Californium Shipping Container. This effort is essential for future transportation of californium to meet the needs of users all over the world. The shipping container must meet all requirements for transport by motor freight, air, vessel, and rail, both domestic and foreign. There are unique problems in the design, fabrication, and licensing of a new Type B shipping container that will accommodate up to 60 milligrams of californium-252. One of the first challenges in the design phase of the project is the selection of a material to shield the high neutron flux. The more stringent safety precautions of today's world impel us to consider more exotic materials for such a purpose. The candidate materials must be examined not just for their neutron shielding properties, but also in conjunction with other properties such as thermal and structural requirements to withstand the hypothetical accident conditions. The design and building of such a container is a formidable task requiring much planning. The licensing process, with the complex, interactive federal codes, is a special challenge and may be the biggest on the project in terms of time and money

  8. Application of Cf for the quantitative measurement of nuclear reactor fuel materials

    International Nuclear Information System (INIS)

    Sensitive and rapid measurements of the quantity and geometric distribution of nuclear reactor fuel materials can be made using neutrons from californium. The neutron-induced fission rate in these materials may be measured by detection of either prompt radiations from fission or delayed radiations from radioactive fission products. A number of californium-based instruments are presently in use by the nuclear industry for purposes of process control, quality control, nuclear materials safeguards, and environmentl assessment. An Automated Fuel Rod Scanner (AFRS) is used for high-speed measurement of the uniformity of loading and total fissile content of reactor fuel rods. The fuel rods are moved first through an irradiator containing about 1 mg of californium, and subsequently through high-efficiency detectors for the measurement of fission-product gamma-rays. Multiple detectors on each of two irradiation channels are used to reduce the californium source strength requirement. The fuel loading of each 15-mm-long pellet is tested to +-10% on 100% of the plant throughput. By summing the response over length, the total fissile material content of the fuel rod is measured to better than 0.5%. An on-line computer for data processing allows the instrument to measure about 150 rods per hour with a single operator. The same activation concept is used with a 25-μg californium source in a Small Sample Assay System (SSAS) which measures the fissile content of fuel pellet sized samples with a precision of 0.5%

  9. Synthesis, crystal structure, and electrical and magnetic properties of BaMo{sub 6}Te{sub 6}: A novel reduced molybdenum telluride containing infinite chains of trans-face shared Mo{sub 6} octahedra

    Energy Technology Data Exchange (ETDEWEB)

    Gall, Philippe; Guizouarn, Thierry; Potel, Michel; Gougeon, Patrick, E-mail: Patrick.Gougeon@univ-rennes1.fr

    2014-12-15

    Powder samples and single crystals of the new ternary compound BaMo{sub 6}Te{sub 6} were obtained by solid state reaction. The structure was determined by single-crystal X-ray diffraction. BaMo{sub 6}Te{sub 6} crystallizes in the hexagonal space group P6{sub 3}/m (No. 176) with unit-cell parameters a=9.3941(2) Å, c=4.5848(1) Å and Z=1. Full-matrix least-squares refinement on F{sup 2} using 452 independent reflections for 17 refinable parameters resulted in R1=0.0208 and wR2=0.0539. The structure consists of one-dimensional infinite chains of trans-face shared Mo{sub 6} octahedra capped by Se atoms. These chains that are running along the c axis are separated from each other by nine-coordinate Ba atoms. Resistivity measurements on a single crystal indicated that the BaMo{sub 6}Te{sub 6} compound is metallic down to 160 K and semiconductor below. Magnetic susceptibility measurements showed that BaMo{sub 6}Te{sub 6} is weakly diamagnetic with no anomaly at the metal–semiconductor transition. - Graphical abstract: We present here the synthesis, the crystal structure, and the electrical and magnetic properties of the new compound BaMo{sub 6}Te{sub 6} containing infinite chains of trans-face shared Mo{sub 6} octahedra. - Highlights: • BaMo{sub 6}Te{sub 6} contains infinite chains of trans-face-sharing Mo{sub 6} octahedra |Mo{sub 6/2}|{sub ∞}{sup 1}. • Synthesis by solid state reaction. • Single-crystal X-ray study. • Continuous metal–nonmetal transition. • Anderson localization.

  10. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    International Nuclear Information System (INIS)

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents

  11. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    Science.gov (United States)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  12. Development of CMOS Readout Circuits for Mercury Cadmium Telluride Focal Plane Array Devices%碲镉汞焦平面器件CMOS读出电路的发展

    Institute of Scientific and Technical Information of China (English)

    王忆锋; 钱明

    2011-01-01

    通过对近年来的部分文献资料进行归纳分析,介绍了碲镉汞焦平面器件CMOS读出电路(ROIC)的发展动态.讨论了读出电路的有关概念.列出了部分前放电路的单元结构,并分析了它们的工作特点.介绍了积分时间、积分电容以及多路传输等因素对读出电路设计的影响.

  13. Application of PGNAA to preincineration assay of combustible waste for chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, R.J.; Pawelko, R.J.; Greenwood, R.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    A prompt gamma neutron activation analysis method is being developed for on-stream pre-incineration assay of low level radioactive combustible waste for it`s chlorine content. The assay system consists of three californium 252 sources and a germanium or scintillation gamma-ray spectrometer.

  14. Magnetic measurements of the transuranium elements. Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Measurements of the magnetic properties of dhcp californium-249 metal indicated the presence of three regions of differing magnetic character. Additional measurements are also reported. Magnetic moments and valence states of terbium in TbF3, BaTbO3, and TbO18 are discussed. Progress on high-field operation of the micro-magnetic susceptometer is reported

  15. Source storage and transfer cask: Users Guide

    International Nuclear Information System (INIS)

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of 252Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs

  16. Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98

    OpenAIRE

    Fry, C; Thoennessen, M

    2012-01-01

    One hundred and five isotopes of the transuranium elements neptunium, plutonium, americium, curium, berkelium and californium have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  17. Oxidation of microquantities of transplutonium elements to tetravalent state in mineral acid solutions and their stability

    International Nuclear Information System (INIS)

    Kinetics of americium(3) microquantity oxidation and stability of forming americium(4), as well as possibility of curium and californium oxidation to tetravalent state in solutions of sulfuric and nitric acids depending on the concentration of mineral acid, potassium tungstophosphate and ammonium persulfate are studied by the extraction method. It is shown that curium(3) and californium(3) in solutions of 0.05-2.5 mol/l H2SO4 and HNO3 containing 10-3 mol/l potassium tungstophosphate is not practically oxidized by the mixture of silver nitrate and ammonium persulfate. Americium(3) is oxidized to the utmost to Am(4) for 2-3 min at room temperature, but stability of Am(4) depends on the concentration of sulfuric acid and potassium tungstophosphate

  18. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state.

    Science.gov (United States)

    Silver, Mark A; Cary, Samantha K; Johnson, Jason A; Baumbach, Ryan E; Arico, Alexandra A; Luckey, Morgan; Urban, Matthew; Wang, Jamie C; Polinski, Matthew J; Chemey, Alexander; Liu, Guokui; Chen, Kuan-Wen; Van Cleve, Shelley M; Marsh, Matthew L; Eaton, Teresa M; van de Burgt, Lambertus J; Gray, Ashley L; Hobart, David E; Hanson, Kenneth; Maron, Laurent; Gendron, Frédéric; Autschbach, Jochen; Speldrich, Manfred; Kögerler, Paul; Yang, Ping; Braley, Jenifer; Albrecht-Schmitt, Thomas E

    2016-08-26

    Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state. PMID:27563098

  19. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  20. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.