WorldWideScience

Sample records for californium tellurides

  1. Californium-252

    International Nuclear Information System (INIS)

    1975-01-01

    This meeting constituted the third phase of a project initiated by the Dosimetry Section of the IAEA in 1973. The first step, early in 1973, consisted of the development of a programme for the loan of Cf-252 sources to the Member States in support of education, training and some limited research. To date, 14 institutions in 13 Member States have participated in this loan programme. In August last year, the Agency published an instructional syllabus and laboratory manual authored by Professors Eric J. Hall and Harald H. Rossi of Columbia University (Californium-252 in Teaching and Research, Technical Reports Series No. 159). The appearance of this publication, including guidance on the design and construction of a storage and use facility, was the second phase of this programme aimed at providing some support to potential users in the fields of radiation biology and dosimetry. The objective of the programme's third phase - the convening of an Educational Seminar - was to provide a forum to bring together participants in the Agency's loan programme and experts in various scientific fields. Specifically, the Seminar consisted of a series of expert presentations in spectrometry, activation and prompt gamma analyses, on-stream analysis, dosimetry, health physics, radiology and radiotherapy. (author)

  2. Magnetism in californium

    International Nuclear Information System (INIS)

    Moore, J.R.

    1988-03-01

    A SQUID-based magnetic susceptometer has been constructed for studying small radioactive samples at temperatures below 350 K and in magnetic fields up to 50 kilogauss. The device has been used to study californium (element 98) in a number of solid-state forms: the dhcp metal, several oxides (Cf 2 O 3 in both the bcc and monoclinic structures, Cf 7 O 12 , CfO 2 and BaCfO 3 ), several monopnictides (CfN, CfAs and CfSb) and the trichloride (in both the hexagonal and orthorhombic structures). All of these materials were studied in polycrystalline form, and hexagonal CfCl 3 was studied in single-crystal form as well. The susceptometer has the sensitivity to measure samples containing less than 10 micrograms of californium. The magnetic susceptibilities of all of the californium materials at temperatures above about 100 K are described well by the Curie-Weiss relationship. This behavior is consistent with the assumption that the magnetic 5f electrons are localized and that the paramagnetic behavior can be interpreted in terms of the properties of the free ion. The measured values of the effective paramagnetic moment, μ/sub eff/, for all the californium materials that were studied are reasonably consistent with theoretical values based on intermediate coupling models. All of the californium materials showed some indications of cooperative magnetic effects. The dhcp metal was observed to order ferromagnetically at 52 K, and all of the californium compounds studied showed signs of antiferromagnetic ordering, mostly at temperatures below 25 K. 91 refs., 50 figs., 19 tabs

  3. Medical applications of californium-252

    International Nuclear Information System (INIS)

    Oliver, G.D. Jr.

    1975-01-01

    Primarily, californium-252 sources have been utilized in medicine for the treatment of neoplastic lesions. For five years, a coordinated effort between several cancer research institutions and national laboratories has developed the necessary physics, radiobiology, and engineering skills to establish an evaluation program for californium. Several more years of combined effort are required before it is known whether californium therapy is as good as or better than conventional therapy with sources like radium. Recently, development of diagnostic applications of californium in medicine has received attention. Studies comparing neutron decay activation analysis versus prompt capture gamma ray analysis are in progress. A hopeful application of prompt analysis with reasonable quantities (200 μg) of californium is the elemental analysis of bone in the human body. (U.S.)

  4. Californium loan programme

    International Nuclear Information System (INIS)

    1974-01-01

    The offer of the United States to loan Californium-252 sources to the IAEA was made by Dr. Glenn T. Seaborg, then chairman of the USAEC, in his opening statement at the 15th. General Conference of the IAEA held in Vienna in 1971. The purpose of this loan was to make neutron emitting sources available to universities in the Member States for use in educational programmes. The sources, in the form of small needles designed for medical use in radiation therapy, were judged highly suitable for didactic applications due to their small size, limited activity and well documented radiological parameters. Subsequently, in May 1973, the Director General announced the availability of the Californium sources to the Member States. To date, numerous sources have been loaned to universities in Czechoslovakia, Costa Rica, the Federal Republic of Germany, Ghana, India, Iran, Israel, Japan, South Africa, Switzerland, the United Kingdom and Uruguay; additional applications for loans are being processed. It is anticipated that the loan programme will be terminated in 1975 once all the available sources have been distributed. n order to provide guidance for the Member States on the safe exploitation of these sources, a prototype use and storage facility was designed by IAEA staff of the Dosimetry Section of the Division of Life Sciences, and constructed at the IAEA laboratory in Seibersdorf, Austria. Figures 2-5 illustrate some of the details of this container, which is being given to the Ghana Nuclear Centre in support of a training programme for students at the university in Accra. Further advice to users of these sources will be provided by the publication of an instructional syllabus, a laboratory manual for experiments and the safety precautions inherent in the proper handling of neutron emitting radionuclides, authored by Professors Erich J. Hall and Harald H. Rossi of Columbia University. The syllabus and manual will be published as part of the IAEA Technical Series in September

  5. Californium source transfer

    International Nuclear Information System (INIS)

    Wallace, C.R.

    1995-01-01

    In early 1995, the receipt of four sealed californium-252 sources from Oak Ridge National Lab was successfully accomplished by a team comprised of Radiological Engineering, Radiological Operations and Health Physics Instrumentation personnel. A procedure was developed and walked-down by the participants during a Dry Run Evolution. Several special tools were developed during the pre-planning phases of the project which reduced individual and job dose to minimal levels. These included a mobile lifting device for attachment of a transfer ball valve assembly to the undercarriage of the Cannonball Carrier, a transfer tube elbow to ensure proper angle of the source transfer tube, and several tools used during emergency response for remote retrieval and handling of an unshielded source. Lessons were learned in the areas of contamination control, emergency preparedness, and benefits of thorough pre-planning, effectiveness of locally creating and designing special tools to reduce worker dose, and methods of successfully accomplishing source receipt evolutions during extreme or inclement weather

  6. Californium-252 progress, report No. 7, April 1971

    Energy Technology Data Exchange (ETDEWEB)

    1971-12-31

    This report contains discusses of the following topics on Californium-252: First sales of californium-252; encapsulation services discussed; three new participants in market evaluation program; summer training programs to use californium; Californium-252 shipping casks available; Californium-252 questions and answers, radiotherapy; neutron radiography; natural resources exploration; nuclear safeguards; process control; dosimetry; neutron radiography; neutron shielding; and nuclear safeguards.

  7. Uranium standards for Californium Shuffler

    International Nuclear Information System (INIS)

    Gibbs, A.; Boynton, S.P.

    1978-10-01

    The Laboratories Department analyzed pieces of a U-Al log which were to be canned and used as a set of standards for the nondestructive Californium Shuffler instrument. Evaluation of this instrument is part of an on-going Safeguards Program and is a joint project between LASL and SRP. A U-Al casting of a nominal 30% to 70% composition was made with enriched uranium (56 wt % 235 U). The log was 6 in. in diameter and approximately 2 ft long. A 1/4-in. slice was made before and after each 1-in. slice taken for use as a standard. The 1-in. slices were scanned nondestructively by collimated gamma pulse height analysis. The 1/4-in. slices were divided into quadrants and one quadrant for each slice was destructively analyzed. Results from these tests showed an approximate 1.5% relative variation in uranium concentration from the high to the low point. Successive pieces showed less than 1% relative difference. The 1-in. pieces have been canned and shipped to LASL for testing and will be returned with the Californium Shuffler. The remaining 1/4-in. slices have been sent to NBL and LASL for destructive analysis

  8. Radiography using californium-252 neutron sources

    International Nuclear Information System (INIS)

    Ray, J.W.

    1975-01-01

    The current status in the technology of neutron radiography using californium-252 neutron sources is summarized. Major emphasis is on thermal neutron radiography since it has the widest potential applicability at the present time. Attention is given to four major factors which affect the quality and useability of thermal neutron radiography: source neutron thermalization, neutron beam extraction geometry, neutron collimator dimensions, and neutron imaging methods. Each of these factors has a major effect on the quality of the radiographs which are obtained from a californium source neutron radiography system and the exposure times required to obtain the radiographs; radiograph quality and exposure time in turn affect the practicality of neutron radiography for specific nondestructive inspection applications. A brief discussion of fast neutron radiography using californium-252 neutron sources is also included. (U.S.)

  9. Californium-252 radiotherapy sources for interstitial afterloading

    International Nuclear Information System (INIS)

    Permar, P.H.; Walker, V.W.

    1976-01-01

    Californium-252 neutron sources for interstitial afterloading were developed to investigate the value of this radionuclide in cancer therapy. Californium-252 seed assemblies contain essentially point sources of 252 Cf permanently sealed on 1-cm centers within a flexible plastic tube. The seed assemblies are fabricated with remotely operated, specially designed machines. The fabrication process involves the production of a Pt-10 percent Ir-clad wire with a 252 Cf 2 O 3 -Pd cermet core. The wire is swaged and drawn to size, cut to length, and welded in a Pt-10 percent Ir capsule 0.8 mm in diameter and 6 mm long. Each seed capsule contains approximately 0.5 microgram of 252 Cf. Because the effective half-life of 252 Cf is 2.6 years, the seed assemblies are not disposable and must be reused until their activities have decreased to unsuitable levels. The flexible plastic components must therefore have sufficient resistance to radiation damage to survive the neutron-plus-gamma radiation from 252 Cf. On the basis of accelerated irradiation tests with a large 252 Cf source, a recently developed fluoropolymer, ''Tefzel'' (trademark of E. I. du Pont de Nemours and Company) has adequate radiation resistance for this application. Californium-252 seed assembly systems are loaned by the United States Energy Research and Development Administration for clinical investigations under a protocol of the Radiation Therapy Oncology Group, U.S. National Cancer Institute

  10. Historical review of californium-252 discovery and development

    International Nuclear Information System (INIS)

    Stoddard, D.H.

    1985-01-01

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving 252 Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed

  11. Californium-252: a remarkable versatile radioisotope

    International Nuclear Information System (INIS)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-01-01

    A product of the nuclear age, Californium-252 ( 252 Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, 252 Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of 252 Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the 252 Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, 252 Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of 252 Cf from ORNL is summarized herein

  12. Californium-252: a remarkable versatile radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-10-10

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.

  13. Doping of germanium telluride with bismuth tellurides

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  14. Californium-252 sales and loans at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    King, L.J.

    1987-01-01

    The production and distribution in the United States of 252 Cf has recently been consolidated at the Oak Ridge National Laboratory (ORNL). The 252 Cf Industrial Sales/Loan Program and the 252 Cf University Load Program, which were formerly located at the Savannah River Plant (SRP), have been combined with the californium production and distribution activities of the Transuranium Element Production Program at ORNL. Californium-252 is sold to commercial users in the form of bulk californium oxide, palladium-californium alloy pellets, or alloy wires. Neutron source capsules, which are fabricated for loans to DOE or other US government agencies, are still available in all forms previously available. The consolidation of all 252 Cf distribution activities at the production site is expected to result in better service to users. In particular, customers for neutrons sources will be ale to select from a wider range of neutron source forms, including custom designs, through a single contact point

  15. Calibration of a Modified Californium Shuffler

    International Nuclear Information System (INIS)

    Sadowski, E.T.; Armstrong, F.; Oldham, R.; Ceo, R.; Williams, N.

    1995-01-01

    A californium shuffler originally designed to assay hollow cylindrical pieces of UA1 has been modified to assay solid cylinders. Calibration standards were characterized via chemical analysis of the molten UA1 taken during casting of the standards. The melt samples yielded much more reliable characterization data than drill samples taken from standards after the standards had solidified. By normalizing one well-characterized calibration curve to several standards at different enrichments, a relatively small number of standards was required to develop an enrichment-dependent calibration. The precision of this shuffler is 0.65%, and the typical random and systematic uncertainties are 0.53% and 0.73%, respectively, for a six minute assay of an ingot containing approximately 700 grams of 235 U. This paper will discuss (1) the discrepancies encountered when UA1 standards were characterized via melt samples versus drill samples, (2) a calibration methodology employing a small number of standards, and (3) a comparison of results from a previously unused shuffler with an existing shuffler. A small number of UA1 standards have been characterized using samples from the homogeneous molten state and have yielded enrichment-dependent and enrichment-independent calibration curves on two different shufflers

  16. Californium production at the transuranium processing plant

    International Nuclear Information System (INIS)

    King, L.J.

    1976-01-01

    The Transuranium Processing Plant (TRU) at ORNL, which is the production, storage, and distribution center for the ERDA heavy element research program, is described. About 0.5 percent of 252 Cf is currently being produced. TRU is a hot-cell, chemical processing facility of advanced design. New concepts have been incorporated into the facility for absolute containment, remote operation, remote equipment installation, and remote maintenance. The facilities include a battery of nine heavily shielded process cells served by master-slave manipulators and eight laboratories, four on each of two floors. Processing includes chemical dissolution of the targets followed by a series of solvent extraction, ion exchange, and precipitation steps to separate and purify the transuranium elements. The transcurium elements Bk, Cf, Es, and Fm are distributed to users. Remote techniques are used to fabricate the Am and Cm into target rods for reirradiation in the HFIR. Californium-252 that is in excess of the needs of the heavy element research program and the Cf sales program is stored at TRU and processed repeatedly to recover the daughter product 248 Cm, which is a highly desirable research material

  17. Fabrication of californium-252 sources in the United Kingdom

    International Nuclear Information System (INIS)

    Ainsworth, A.; Brady, M.W.; Thornett, W.H.

    1975-01-01

    The advent of californium-252 in weighable quantities and at a reasonable price has caused some rethinking among neutron source suppliers. To explore this market the Radiochemical Center Ltd. has purchased 2 mg of californium-252, and subdivided this into a wide range of sources. To take advantage of its high specific neutron emission, a small double welded stainless steel capsule 7.8mm diameter x 10mm high was chosen for stock sources and this entailed the use of a microdispensing technique which had to be specially developed. The apparatus and procedure for subdividing milligram amounts of californium-252 are described. Some details of our experience in processing these one milligram shipments are given. 100 sources with activities from 200 microgram to 0.01 microgram have been produced. Losses have been small. Measurement of neutron spectra gamma spectra and dose rates from encapsulated sources has confirmed published data. Though it is early days, little industrial interest in californium-252 sources has been detected, most of the sources have so far been required for research into activation analysis and two examples of this are given. (U.S.)

  18. Californium Multiplier. Part I. Design for neutron radiography

    International Nuclear Information System (INIS)

    Crosbie, K.L.; Preskitt, C.A.; John, J.; Hastings, J.D.

    1982-01-01

    The Californium Multiplier (CFX) is a subcritical assembly of enriched uranium surrounding a californium-252 neutron source. The function of the CFX is to multiply the neutrons emitted by the source to a number sufficient for neutron radiography. The CFX is designed to provide a collimated beam of thermal neutrons from which the gamma radiation is filtered, and the scattered neutrons are reduced to make it suitable for high resolution radiography. The entire system has inherent safety features, which provide for system and personnel safety, and it operates at moderate cost. In Part I, the CFX and the theory of its operation are described in detail. Part II covers the performance of the Mound Facility CFX

  19. Production, Distribution, and Applications of Californium-252 Neutron Sources

    International Nuclear Information System (INIS)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-01-01

    The radioisotope 252 Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10 11 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252 Cf to commercial reencapsulators domestically and internationally. Sealed 252 Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252 Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations

  20. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    Zamyatnin, Yu.S.; Kroshkin, N.I.; Korostylev, V.A.; Nefedov, V.N.; Ryazanov, D.K.; Starostov, B.I.; Semenov, A.F.

    1976-01-01

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252 Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252 Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252 Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  1. A californium-252 source for radiobiological studies at Hiroshima University

    International Nuclear Information System (INIS)

    Kato, Kazuo; Takeoka, Seiji; Kuroda, Tokue; Tsujimura, Tomotaka; Kawami, Masaharu; Hoshi, Masaharu; Sawada, Shozo

    1987-01-01

    A 1.93 Ci (3.6 mg) californium-252 source was installed in the radiation facility of the Research Institute for Nuclear Medicine and Biology, Hiroshima University. This source produces fission neutrons (8.7 x 10 9 n/s at the time of its installation), which are similar to neutron spectrum of the atomic bombs. It is useful for studying biological effects of fission neutrons and neutron dosimetry. An apparatus was dosigned to accomodate this source and to apply it to such studies. It has resulted in profitable fission neutron exposures, while suppressing scattered neutrons and secondary gamma rays. This apparatus incorporates many safety systems, including one which interlocks with all of doors and an elevator serving the exposure room, so as to prevent accidents involving users. (author)

  2. Rise time spectroscopy in cadmium telluride detectors

    International Nuclear Information System (INIS)

    Scharager, Claude; Siffert, Paul; Carnet, Bernard; Le Meur, Roger.

    1980-11-01

    By a simultaneous analysis of rise time and pulse amplitude distributions of the signals issued from various cadmium telluride detectors, it is possible to obtain informations about surface and bulk trapping, field distribution within the detectors, as well as charge collection and transport properties. These investigations have been performed on both pure and chlorine doped and materials for various surfaces preparation conditions [fr

  3. Application of californium-252 neutron sources for analytical chemistry

    International Nuclear Information System (INIS)

    Ishii, Daido

    1976-01-01

    The researches made for the application of Cf-252 neutron sources to analytical chemistry during the period from 1970 to 1974 including partly 1975 are reviewed. The first part is the introduction to the above. The second part deals with general review of symposia, publications and the like. Attention is directed to ERDA publishing the periodical ''Californium-252 Progress'' and to a study group of Cf-252 utilization held by Japanese Radioisotope Association in 1974. The third part deals with its application for radio activation analysis. The automated absolute activation analysis (AAAA) of Savannha River is briefly explained. The joint experiment of Savannha River operation office with New Brunswick laboratory is mentioned. Cf-252 radiation source was used for the non-destructive analysis of elements in river water. East neutrons of Cf-252 were used for the quantitative analysis of lead in paints. Many applications for industrial control processes have been reported. Attention is drawn to the application of Cf-252 neutron sources for the field search of neutral resources. For example, a logging sonde for searching uranium resources was developed. the fourth part deals with the application of the analysis with gamma ray by capturing neutrons. For example, a bore hole sonde and the process control analysis of sulfur in fuel utilized capture gamma ray. The prompt gamma ray by capturing neutrons may be used for the nondestructive analysis of enrivonment. (Iwakiri, K.)

  4. Teratogenic effect of Californium-252 irradiation in rats

    International Nuclear Information System (INIS)

    Satow, Yukio; Lee, Juing-Yi; Hori, Hiroshi; Okuda, Hiroe; Tsuchimoto, Shigeo; Sawada, Shozo; Yokoro, Kenjiro

    1989-01-01

    The teratogenicity of Californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of Cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD 50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays. (author)

  5. Experimental studies on californium bioavailability to marine benthic invertebrates

    International Nuclear Information System (INIS)

    Fowler, S.W.; Carvalho, F.P.; Aston, S.R.

    1986-01-01

    252 Cf is readily taken up by benthic invertebrates from sea water, reaching whole-body concentration factors of 763 in the polychaete Hermione hystrix, 220 in the shrimp Lysmata seticaudata, 665 in the crab Pilumnus hirtellus and 78 in the bivalve mollusc Venerupis decussata after 3 weeks exposure. Surface sorption plays a predominant role in the uptake process. Depuration in clean sea water was a relatively slow process. The shrimp Lysmata eliminated 252 Cf very rapidly due to moulting. Absorption coefficients for ingested 252 Cf were high, approx. 23% in crabs and approx. 97% in brittlestars. The absorbed fraction was excreted twice as fast from crabs as brittlestars. Exposure of organisms to labelled sediment resulted in low transfer factors that were species dependent. There is some evidence to suggest that uptake from sediments is primarily due to 252 Cf transfer from the pore water. Comparison of these results with published experimental data on other transuranic nuclides in the same or similar species suggests that californium bioavailability is roughly equivalent to that of plutonium and americium. (author)

  6. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  7. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-01-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252 Cf neutron source for university and research loans. Within the CF, the 252 Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  8. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  9. Occurency and aqueous processing of tellurides from Sonora (Mexico)

    International Nuclear Information System (INIS)

    Aguayo, S.; Perez, E.; Ecinas, M.A.

    1996-01-01

    Tellurium production is limited mainly to that obtained from the treatment of electrolyte muds from copper refineries. however, there are several other sources from which the precious metal tellurides are potentially attractive. This work presents a review of the main localitiesin Sonora (Mexico), where tellurides have been found. In addition, based upon the physical chemistry fundamentals for tellurium and precious metal tellurides, the aqueous extraction and recovery routes are discussed. (Author) 51 refs

  10. X-ray-diffraction study of californium metal to 16 GPa

    International Nuclear Information System (INIS)

    Peterson, J.R.; Benedict, U.; Dufour, C.; Birkel, I.; Haire, R.G.

    1983-01-01

    The first series of measurements to determine the structural behavior of californium (Cf) metal under pressure has been carried out. The initial dhcp structure transformed sluggishly with increasing pressure to a fcc structure. A bulk modulus of 50(5) GPa was derived for dhcp Cf metal from the relative volume (V/V 0 ) data to 10 GPa

  11. Study of the shielding for spontaneous fission sources of Californium-252

    International Nuclear Information System (INIS)

    Davila R, I.

    1991-06-01

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  12. Assessment of the neutron component in a neutron-gamma field of a californium-252 source

    International Nuclear Information System (INIS)

    Tetteh, G.K.

    1978-12-01

    Experiments have been performed to determine the percentages of the different components in the radiation field of californium-252 which has now some clinical applications. Using Rossi Chambers in conjunction with absorption investigations involving lead and aluminium thimbles, it is observed that the dose rates due to the different components are: neutrons 54%; gammas 30%; betas 16%

  13. Tellurium self-diffusion and point defects in lead telluride

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1982-01-01

    Method of radioactive indicators was used to determine factors of tellurium self-diffusion in lead telluride with different deviation of the composition from stoichiometric in the range of enrichment by tellurium. It was found that at 973 K factors of tellurium self-diffusion in lead telluride depend slightly on the vapor pressure of tellurium equilibrium with solid phase

  14. Development of planar waveguides in zinc telluride

    International Nuclear Information System (INIS)

    Valette, Serge

    1977-02-01

    Zinc telluride (ZnTe) is one of the most attractive semi-conductors for monolithic integrated optics. In this study, the general characteristics of the planar optical waveguides achieved by implantation of light ions in ZnTe are investigated. Different aspects of prism-coupling and coherent light guiding have been taken up theoretically and experimentally. Some assumptions about the physical origin of these structures are discussed in order to explain all these results and the weak losses which have been measured. [fr

  15. Local Structure in Americium and Californium Hexa-cyanoferrates - Comparison with Their Lanthanide Analogues

    International Nuclear Information System (INIS)

    Dupouy, G.; Bonhoure, I.; Dumas, Th.; Moisy, Ph.; Petit, S.; Den Auwer, Ch.; Conradson, St.D.; Hennig, Ch.; Scheinost, A.C.; Le Naour, C.; Simoni, E.

    2011-01-01

    Metal hexa-cyanoferrates are well known molecular solids for a large variety of cations, although very little has been described for actinide adducts. Two new members of actinide(III) hexa-cyanoferrates were synthesized with the cations americium and californium. They were structurally characterized by infrared and X-ray absorption spectroscopy. Combined EXAFS data at the iron K edge and actinide L 3 edge provide evidence for a three-dimensional model for these two new compounds. Structural data in terms of bond lengths were compared to those reported for the parent lanthanide(III) compounds, neodymium and gadolinium hexa-cyanoferrates, respectively: the americium compound with (KNd(III)Fe(II)-Fe-III(CN) 6 .4H 2 O and the californium compound with (KGd(III)Fe(II)(CN) . 3.5H 2 O and (KGd(III)Fe(II)(CN) 6 .3H 2 O. This comparison between actinide and lanthanide homologues has been carried out on the basis of ionic radii considerations. The americium and neodymium environments appear to be very similar and are arranged in a tri-capped trigonal prism polyhedron of coordination number 9 (CN: 9), in which the americium atom is bonded to six nitrogen atoms and to three water molecules. For the californium adduct, a similar comparison and bond length and angle values derived from EXAFS studies suggest that the californium cation sits in a bi-capped trigonal prism (CN: 8) as in (KGd(III)Fe(II)(CN) 6 . 3H 2 O. This arrangement differs from that in the structure of (KGd(III)Fe(II)(CN) 6 .3.5H 2 O, in which the gadolinium atom is surrounded by 9 atoms. This is one of the rare pieces of information revealed by EXAFS spectroscopy for americium and californium in comparison to lanthanide atoms in molecular solid compounds. A discussion on the decrease in bond length and coordination number from americium to californium is also provided, on the basis of crystallographic results reported in the literature for actinide(III) and lanthanide(III) hydrate series. (authors)

  16. Atlantic Richfield Hanford Company californium multiplier/delayed neutron counter safety analysis

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-08-01

    The Californium Multiplier (CFX) is a subcritical assembly of uranium surrounding 252 Cf spontaneously fissioning neutron sources; its function is to multiply the neutron flux to a level useful for activation analysis. This document summarizes the safety analysis aspects of the CFX, DNC, pneumatic transfer system, and instrumentation and to detail all the aspects of the total facility as a starting point for the ARHCO Safety Analysis Review. Recognized hazards and steps already taken to neutralize them are itemized

  17. Instrumental neutron activation determination of gold in mineral raw materials using a californium neutron source

    International Nuclear Information System (INIS)

    Shilo, N.A.; Ippolitov, E.G.; Ivanenko, V.V.; Kustov, B.N.; Zheleznov, V.V.; Aristov, G.N.; Kovalenko, V.V.; Kondrat'ev, N.B.

    1983-01-01

    A facility using a californium neutron source and a method for the neutron activation analysis of gold were developed. The sensitivity of the determination is 0.1 g/t. The causes of random and systematic errors have been studied. It is concluded that in prospection and evaluation of gold ore deposists, the traditional test tube analysis for gold may be replaced with the developed method. (author)

  18. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations

  19. Mercury telluride as a zero-gap semiconductor

    International Nuclear Information System (INIS)

    Berchenko, N.N.; Pashkovskij, M.V.

    1976-01-01

    The paper presents a review of main properties of mercury telluride which is a representative of a new class of substances - gapless semiconductors. The causes leading to the appearance of a gapless state in mercury chalcogenides are considered; it is demonstrated that the main role in the formation of the inverse band structure belongs to relativistic corrections. The specific properties of mercury telluride are associated with the zero forbidden band, p-like nature of electron states of the conduction band and its nonparabolicity, resonance states of impurities and anomalies of dielectric permittivity. Conditions of forbidden band appearing in mercury telluride under the effect external factors are analyzed

  20. Spectroscopic and redox properties of curium and californium ions in concentrated aqueous carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Hobart, D.E.; Varlashkin, P.G.; Samhoun, K.; Haire, R.G.; Peterson, J.R.

    1983-01-01

    Multimilligram quantities of trivalent curium-248 and californium-249 were investigated by absorption spectroscopy, cyclic voltammetry, and bulk solution electrolysis in concentrated aqueous carbonate-bicarbonate solution. Actinide concentrations between 10 -4 and 10 -2 M were studied in 2 M sodium carbonate and 5.5 M potassium carbonate solutions at pH values from 8 to 14. The solution absorption spectra of Cm(III) and Cf(III) in carbonate media are presented for the first time and compared to literature spectra of these species in noncomplexing aqueous solution. It was anticipated that carbonate complexation of the actinide ions could provide a sufficient negative shift in the formal potentials of the M(IV)/M(III) couples of Cm and Cf to permit the generation and stabilization of their tetravalent states in aqueous carbonate-bicarbonate medium. No conclusive evidence was found in the present work to indicate the existence of any higher oxidation states of curium or californium in carbonate solution. Some possible reasons for our inability to generate and detect oxidized species of curium and californium in this medium are discussed

  1. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  2. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Catrangiu, Adriana-Simona; Sin, Ion [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Cotarta, Adina [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Cojocaru, Anca, E-mail: a_cojocaru@chim.upb.ro [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Anicai, Liana [Center of Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest (Romania); Visan, Teodor [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania)

    2016-07-29

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the deposition of antimony telluride or copper telluride from ionic liquid consisting in mixture of choline chloride with oxalic acid. In addition, the cathodic process during copper telluride formation was studied in the mixture of choline chloride with ethylene glycol. The results indicate that the Pt electrode is first covered with a Te layer, and then the more negative polarisation leads to the deposition of Sb{sub x}Te{sub y} or Cu{sub x}Te{sub y} semiconductor compounds. Thin films were deposited on copper and carbon steel at 60–70 °C and were characterised by scanning electron microscopy, energy X-ray dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Their stoichiometry depends on the bath composition and applied potential. EDS and XRD patterns indicate the possible synthesis of stoichiometric Sb{sub 2}Te{sub 3} phase and Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, and Cu{sub 2.8}Te{sub 2} phases, respectively, by controlling the ratio of ion concentrations in ionic liquid electrolytes and deposition potential. - Highlights: • Sb{sub x}Te{sub y} and Cu{sub x}Te{sub y} films electrodeposited from choline-chloride-based ionic liquids. • The stoichiometry of film depends on the bath composition and deposition potential. • Sb{sub 2}Te{sub 3}, Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, Cu{sub 2.8}Te{sub 2} phases were identified in X-ray diffraction patterns.

  3. Telluride School, Telluride, Colorado solar-energy-system performance evaluation, February 1982-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.

    1982-01-01

    The Telluride School solar site is an elementary/junior-senior high school in Colorado with a passive/active hybrid solar energy system designed to supply 40% of the heating load. It is equipped with a 1428 square foot, double glazed Trombe wall, a 1392 square foot greenhouse with collection tube, and an auxiliary oil-fired boiler. Monthly performance data are tabulated for the overall system and for the Trombe wall, greenhouse, and greenhouse storage. System operation is illustrated by graphs of typical Trombe wall insolation and temperatures and typical greenhouse insolation and temperatures. (LEW)

  4. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  5. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  6. Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.

    1990-01-01

    The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined

  7. Neutron emission in fission of highly excited californium nuclei (E* = 76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, E.M.; Levitovich, M.; Mozhaev, A.N.; Muzychka, Yu.A.; Penionzhkevich, Yu.E.; Pustyl'nik, B.I.

    1990-01-01

    Differential cross sections for neutron production have been measured in fission of excited californium nuclei produced in the reaction 238 U + 12 C (105 MeV). It follows from analysis of the experimental results that the number of neutrons emitted before fission considerably exceeds the number obtained in the framework of the standard statistical model. On the basis of the multiplicity of neutrons they authors have estimated the time of fission of the excited nucleus. The dependence of the number of neutrons and their average energies on the mass of the fragments is determined

  8. Californium oxygen system for 1.50 < O/Cf < 1.72

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Haire, R.G.

    1975-01-01

    The californium-oxygen system was studied as a function of temperature, oxygen pressure, and stoichiometry by manometric and x-ray diffraction methods. The results establish rhombohedral Cf 7 O 12 as the stable compound obtained by heating Cf 2 O 3 in air. The isobaric oxidation-reduction cycles Cf 2 O 3 → Cf 7 O 12 → Cf 2 O 3 , observed in constant rate of heating (cooling) experiments, occur with large hysteresis. A close parallel to other fluorite related lanthanide and actinide oxide systems is established. (auth)

  9. Possible stabilization of the tetravalent oxidation state of berkelium and californium in acetonitrile with triphenylarsine oxide

    International Nuclear Information System (INIS)

    Payne, G.F.; Peterson, J.R.

    1987-01-01

    It appears that we may have prepared Bk(IV) nitrate.nTPAs0 and Bk(IV) perchlorate.nTPAs0 complexes which formed the corresponding Cf(IV) complexes through the beta decay of Bk-249. Definitive proof should come from similar experiments with quantities of Bk-249 large enough to allow spectrophotometric detection of the characteristic f→f transitions in these berkelium and californium species. It is clear, however, that TPAs0 and acetonitrile can play a pivotal role in the stabilization of lanact(IV) species

  10. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  11. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    Science.gov (United States)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  12. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    Science.gov (United States)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  13. Comparison of the Savannah River Site billet active well coincidence counter and two Californium Shufflers

    International Nuclear Information System (INIS)

    Sadowski, E.T.; Griffin, J.C.; Rinard, P.M.

    1991-01-01

    A Scrap Californium Shuffler at the Savannah River Site (SRS) was calibrated to assay the U-Al cores of billets (an intermediate step in the SRS reactor fuel fabrication cycle.) The precision of the Scrap Shuffler over several years has been approximately 0.50%. A typical total uncertainty for the assay of a core on the Scrap Shuffler is approximately 0.33% for a twelve minute assay. The precision over several months and a typical total uncertainty for the Billet Active Well (neutron) Coincidence Counter (BAWCC) are approximately 1.0% and 1.9%, respectively, for a fifteen minute assay. A new Billet Californium Shuffler specifically designed for assaying SRS billets has yielded precision (over one month) and total uncertainty results of 0.40% and 0.69%, respectively, for an eight minute assay. The introduction of a measurement point into the fuel fabrication cycle to replace estimates based upon material weight will greatly enhance material and process control in the Reactor Materials area of SRS. The use of all three instruments provides a comparison of the relative merits of Active Well (neutron) Coincidence Counters (AWCCs) and shufflers for assay of homogeneous and geometrically simple material containing 235 U. The measurement precisions, systematic and random uncertainties, as well as the procurement and operation of each instrument will be compared. 3 refs., 5 figs., 1 tab

  14. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  15. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb 1-x Ca x Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties

  16. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    International Nuclear Information System (INIS)

    Ganguly, Shreyashi; Zhou Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-01-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2−x Sb x Te 3 ) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2−x Sb x Te 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties. - Graphical abstract: PbTe nanoparticles introduced into p-type Bi 2 Te 3 by incipient wetness results in decreased lattice thermal conductivity, but also acts as an electronic dopant, resulting in an overall decrease in thermoelectric performance. Highlights: ► Composites of PbTe nanoparticles in Bi 2−x Sb x Te 3 were formed by incipient wetness. ► PbTe nanoparticles leads to decreased κ l , consistent with phonon scattering. ► PbTe nanoparticles lead to decreased S and ρ, due to increased carriers. ► Collateral doping from PbTe leads to decreased ZT with increasing concentration. ► Immiscible systems are preferred for improved ZT.

  17. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    The central problem in thermoelectric material research is the selection of ... temperature range (400–1000 K), and bismuth telluride-based materials .... parent from the results that band non-parabolicity has a significant effect on the .... M P Singh thankfully acknowledges financial assistance from the Council of Scien-.

  18. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  19. Spectral investigation of neutron radiation in three-sectional concrete labyrinth from a californium-252 source

    International Nuclear Information System (INIS)

    Belogorlov, E.A.; Britvich, G.I.; Getmanov, V.B.

    1985-01-01

    Construction of labyrinths in points of communication output from the storage-ring under construction is accompanied by numerous difficulties due to a considerable number of gas and cryogenic pipelines, which require large cross sections at the minimal length of the pipelines proper for their location. It results in unfavourable for radiation attenuation ratios between cross section and length of the labyrinth separate sections. Neutron spectra in a model concrete labyrinth, at the entrance to which a neutron source with fission spectrum (californium-252) and the same source in a polyethylene moderator are located, are measured. On the basis of the spectra obtained the formation of fluence and equivalent dose along the labyrinth geometric axis is analyzed. Conditions permitting actually to reduce radiation dose in the labyrinth (dead end provision, the use of cover materials, construction of diaphragms and shielding plates) are simulated

  20. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  1. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan; Ghafouri, Niloufar; Smith, Casey; Peterson, Rebecca Lorenz; Hussain, Muhammad Mustafa; Najafi, Khalil

    2013-01-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning

  2. About thermo-electric properties of bismuth telluride doped by gadolinium

    International Nuclear Information System (INIS)

    Akperov, M.M.; Ismailov, Sh.S.; Shukyurova, A.A.

    2004-01-01

    Results of study of the Gd impurities effect on the bismuth telluride thermo-electric properties are presented. The experiment was carried out within the temperature range T=300-700 K. It is determined, that at temperature increase the energy level is appreciably closing up to bismuth telluride forbidden zone which makes up 0.16-0.24 eV. Such anomalous energy properties of gadolinium in telluride affect on material thermoelectric properties

  3. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  4. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-01-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  5. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source

    International Nuclear Information System (INIS)

    Cardoso, Antonio

    1976-01-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction 55 Mn (n.gamma) 56 Mn, high concentration of manganese in the matrix and short half - life of 56 Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions 56 Fe(n,p) 56 Mn and 59 Co (n, α) 56 were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  6. Long-term effects of an intracavitary treatment with californium-252 on normal tissue

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with 252 Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from 252 Cf and 7000 rad from 226 Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for 252 Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from 252 Cf and 5000 rad from 226 Ra

  7. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  8. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  9. Electrical properties of cadmium telluride films doped with antimony

    International Nuclear Information System (INIS)

    Atdaev, B.S.; Garyagdyev, G.; Grin', V.F.; Noskov, A.I.

    1989-01-01

    Effect of cadmium telluride doping with antimony on electric and photoelectric properties is investigated. Temperature dependence of dark (σ d ) and photoconductivity (σ p ) during excitation from the range of proper absorption in the temperature range 77-300 K and spectral distribution of photoconductivity at 300 K are investigated. It is shown that in the process of doping antimony diffusses intensively over CdTe grain boundaries, decreasing potential barriers between them and due to diffusion into CdTe grains it changes their electrical properties. The acceptor character of antimony impurity can be caused by antimony diffusion into tellurium sublattice owing to proximity of their ionic and covalent radii

  10. XAFS studies of nickel-doped lead telluride

    International Nuclear Information System (INIS)

    Radisavljevic, Ivana; Novakovic, Nikola; Ivanovic, Nenad; Romcevic, Nebojsa; Manasijevic, Miodrag; Mahnke, Heinz-Eberhard

    2009-01-01

    The problem of impurities and defect states in lead telluride-based semiconductors is of crucial importance for their practical applications. X-ray absorption fine structure (XAFS) techniques are capable to address some of the key issues regarding impurities position, their valent state, as well as the local structural changes of the host lattice in the immediate surrounding of the impurity atoms. In this paper we present the results of the Ni K-absorption edge XAFS studies of Ni-doped PbTe at different temperatures. Analysis of near edge and extended XAFS regions of the measured spectra provided information about exact local environment and lattice ordering around Ni atoms.

  11. Application of cadmium telluride detectors to high energy computed tomography

    International Nuclear Information System (INIS)

    Glasser, F.; Thomas, G.; Cuzin, M.; Verger, L.

    1991-01-01

    15 years ago, Cadmium Telluride detectors have been investigated in our laboratory as possible detectors for medical scanners [1]. Today most of these machines are using high pressure Xenon gas as multicells detectors, BGO or CdWO 4 scintillators for industrial computerized tomography. Xenon gas detectors are well suited for detection of 100 KeV X-rays and enables to build 1000 cells homogeneous detector with a dynamic range of 3 decades. BGO and CdWO 4 scintillators, associated with photomultipliers or photodiodes are used for higher energy (400 KeV). They present a low afterglow and a dynamic range of 4 to 5 decades. Non destructive testing of very absorbing objects (eg 2 m diameter solid rocket motor) by X-ray tomography requires much higher energy X-rays (16 MeV) and doses up to 12000 rads/min at 1 meter. For this application Cadmium Telluride detectors operating as photoconductors are well suited. A prototype of tomograph machine, able to scan 0.5 m diameter high density objects has been realized with 25 CdTe detectors (25x15x0.8 mm 3 ). It produces good quality 1024x1024 tomographic images

  12. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  13. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    Science.gov (United States)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  14. Feasibility and market potential of protein determination of wheat using californium-252

    International Nuclear Information System (INIS)

    Roberts, T.C. Jr.; Eckhoff, N.D.; Clack, R.W.; Roberts, T.C. Sr.

    1976-01-01

    To evaluate the feasibility of protein determination by capture gamma-ray analysis using californium-252 neutrons, an in-situ protein analysis system for use by grain handlers has been examined. Three 227 kilogram (approximately) lots of wheat were used to determine the amount of nitrogen present. Protein analyses by the Kjeldahl method were obtained from samples taken before and after the capture gamma-ray analyses. The 5.267-MeV gamma-ray was selected for use in this study as a compromise between efficiency and interference from other elements. The associated counting equipment was a multichannel analyzer with pulse shaping electronic and analysis computing equipment. A linear regression program was used to compare the regions of interest to the Kjeldahl protein averages. The counts composing each peak were summed and normalized using the total count of the hydrogen peak. The normalized nitrogen percentages indicate a significant correlation between the spectral regions and the Kjeldahl analyses. To a first approximation, the value of wheat is the wheat protein. At the present time, protein testing of wheat is destructive, cumbersome, and time-consuming as compared to the potential for capture gamma-ray analysis testing. Assuming that such a protein analysis unit can analyze 42 tonne of wheat per hour, over 120 units would be needed to monitor one-half the U.S. annual wheat production. A 0.5% improvement in processor realizations and grain throughput value of $167.00 per tonne will result in a projected savings of $150,000 per year per unit

  15. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  16. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  17. Hypoxic versus normoxic external-beam irradiation of cervical carcinoma combined with californium-252 neutron brachytherapy. Comparative treatment results of a 5-year randomized study

    Czech Academy of Sciences Publication Activity Database

    Tačev, T.; Vacek, Antonín; Ptáčková, B.; Strnad, V.

    2005-01-01

    Roč. 181, č. 5 (2005), s. 273-284 ISSN 0179-7158 Institutional research plan: CEZ:AV0Z50040507 Keywords : cervical carcinoma * hypoxyradiotherapy * californium-252 Subject RIV: BO - Biophysics Impact factor: 3.490, year: 2005

  18. Study of the shielding for spontaneous fission sources of Californium-252; Estudio de blindaje para fuentes de fision espontanea de Californio-252

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, I

    1991-06-15

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  19. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  20. Effect of thallium impurity on hole scattering in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.

    1981-01-01

    Hole mobility in PbTe monocrystalline specimens in the temperature range from 4.2 to 300 K has been investigated. Detected is a sharp increase in scattering cross section of light and heavy holes in the specimens having the Hall hole concentration p approximately (5+-9)x10 19 cm -3 explained by resonant scattering into a band of quasilocal states of thallium located lower than the ceiling of heavy carrier zone by 0.01+-0.01 eV. Very large differences in resonant scattering of current carriers into the quasilocal states of In and Tl in PbTe result from the inertial polarizability of a crystal. The same mechanism is used to explain long-lived relaxation of zone electron concentration in lead telluride and Pbsub(1-x)Snsub(x)Te doped with indium [ru

  1. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    International Nuclear Information System (INIS)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; James, R.B.

    2010-01-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  2. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  3. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  4. Neutron activation analysis of the calcium content in vivo, using a 50μg source of californium 252

    International Nuclear Information System (INIS)

    Guey, A.; Zech, P.Y.; Meary, M.F.; Leitienne, P.

    1975-01-01

    Owing to the recent commercialisation of californium 252 it is now possible to obtain neutron fluxes strong enough for precise activation of the calcium content of biological targets. After the preliminary measurements necessary to establish the most suitable conditions for irradiating 3 to 5cm thick targets, two parallel sets of experiments were developed. In the first the medium-term total calcium variation was studied in 20 rats, 16 suffering from chronic kidney deficiency. In the second the precision expected as a function of the calcium content of the irradiated target was examined, using 3 sets of tissue equivalent standards of calcium contents 5, 20 and 50g respectively. The first results obtained on calcium 49 in vivo show that a calcium content variation can be followed with a sensitivity threshold below that obtained by conventional methods [fr

  5. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  6. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    International Nuclear Information System (INIS)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu; Wang Dong

    2011-01-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ( 252 Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with 252 Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7–12 Gy per insertion per week, with a total dose of 29–45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16–38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44–56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of 252 Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  7. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  8. A cadmium-zinc-telluride crystal array spectrometer

    International Nuclear Information System (INIS)

    McHugh, H. R.; Quam, W.; DeVore, T.; Vogle, R.; Weslowski, J.

    2003-01-01

    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5

  9. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  10. Cadmium zinc telluride as a mid-infrared variable retarder

    Science.gov (United States)

    FitzGerald, William; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis

    2018-04-01

    The electro-optic behavior of cadmium zinc telluride is examined in the mid-infrared region between 3 and 11 μm, for applied DC field strengths of up to 106 V/m. The measurements performed here include full characterization of the polarization state of the transmitted light by means of the Stokes vector. We demonstrate the suitability of this material for DC variable retarder applications such as those achieved by quarter- or half-wave retardation. A comparison of two different metallic coatings for electrodes, gold and indium, reveals important differences in performance that are attributed to the homogeneity of the field through the bulk of the crystal. We illustrate that, in the case of both metals, the same electro-optic coefficients are measured, but regions of higher and lower retardation result in significant depolarization in the case of gold. Such depolarization may adversely affect the contrast ratio in a light valve, or increase the voltage necessary for the operation of an arbitrary polarization state generator.

  11. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  12. Niobium and zirconium telluride thin films prepared by sputtering

    International Nuclear Information System (INIS)

    Kassem, M.; Pailharey, D.; Mathey, Y.

    2000-01-01

    A versatile procedure of sputter deposition, well adapted for getting a large of Te/M ratios (with M = Zr or Nb), has led to the synthesis of several highly anisotropic zirconium and niobium poly tellurides in thin film form. Upon tuning the two key parameters of the process, i.e., the Te percentage in the target and the substrate temperature during the deposition, preparation of systems ranging from ZrTe 0 .72 to ZrTe 6 .7, on the one hand, and from NbTe 1 .28 to NbTe 7 .84, on the other, has been achieved. Besides their amorphous or crystalline (with or without preferential orientations) behavior and their relationship to known structural types, the most striking feature of these films is their large departure from the stoichiometry of the bulk Mte x reference compounds. This peculiarity, together with the possible changes of composition under annealing, are described and interpreted in terms of variable of Te and M atoms trapped or intercalated within the parent structures. (author)

  13. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  14. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  15. Development of a cadmium telluride pixel detector for astrophysical applications

    Science.gov (United States)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  16. Special features of self-compensation of halogen donor action in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.; Ravich, Yu.I.; Dereza, A.Yu.

    1985-01-01

    Specific features of self-compensation of halogen donor action in lead telluride are investigasted. Lead telluride samples with chlorine additions (with tellurium excess) and, besides, with bromine- and iodine additions were studied in order to reveal general regularities in alloyind with all halogen donor impurities. Experimental dependences of the difference between the electron and hole concentrations (n-p) in PbTe as a function of an amount of introduced halogen impurities (Ni) are presented for samples with a maximum compensation at 295 K. General features of the n-p=f(Ni) dependence are presented for all halogens. The hypothesis on the kinetic mechanism of increasing the efficiency of self-compensation of halogen donor action in lead telluride is suggested

  17. Process for obtaining oxygen doped zinc telluride monocrystals and scintillator crystals obtained by this process

    International Nuclear Information System (INIS)

    Schneider, Maurice; Moreau, Roland; D'Haenen, J.-P.; Merenda, Pierre.

    1976-01-01

    A process is described for obtaining oxygen doped zinc telluride monocrystals, for use as scintillator crystals for ionising radiation detectors. The following operations are carried out in succession: one or several zinc telluride crystals are introduced into a silica ampoule together with a ternary mixture of zinc tellurium and oxygen, as an oxide or hydroxide of these elements; the ampoule is pumped down to a high vacuum and sealed; the sealed ampoule containing the mixture and monocrystals is placed in a kiln and brought to a uniform temperature sufficient to make the mixture three-phased, depending on its composition; the zinc telluride crystalline compound remains solid; the ampoule is then tempered to bring it quickly back to ambient temperature [fr

  18. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  19. Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide

    International Nuclear Information System (INIS)

    Danilova, M.G.; Sveshnikova, L.L.; Stavitskaya, T.A.; Repinskij, S.M.

    1991-01-01

    Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide was investigated. Dependences of change of PbTe dissolution rate on concentration of hydrogen peroxide and alkali in the solution were obtained. It is shown that dissolution rate of lead telluride is affected by dissolution rate of lead oxide, representing the product of ReTe dissolution. The obtained regularities can be explained by change of solution structure with increase of KOH concentration and by the state of hydrogen peroxide in the solution

  20. Simulation of core-level binding energy shifts in germanium-doped lead telluride crystals

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Dedyulin, S.N.; Yashina, L.V.; Shtanov, V.I.

    2007-01-01

    To simulate the changes in core-level binding energies in germanium-doped lead telluride, cluster calculations of the changes in the electrostatic potential at the corresponding centers have been performed. Different locations of the Ge atom in the crystal bulk have been considered: near vacancies, near another dopant site, and near the surface. For calculating the potential in the clusters that model the bulk and the surface of the lead telluride crystal (c-PbTe), the electron density obtained in the framework of the Hartree-Fock and hybrid density functional theory (DFT) methods has been used [ru

  1. Use of californium-252 neutron irradiator for in-vivo analysis of the bone calcium content of the hand

    International Nuclear Information System (INIS)

    Guey, A.; Leitienne, P.; Zech, P.Y.; Traeger, J.; Doyen, J.B.; Breton, J.P.

    1979-01-01

    With californium-252 it is easy to obtain a high neutron flux of the order of 10 9 n/s. The mean energy of this radiation, which is close on 2 MeV, activates calcium very well. The authors describe a storage and irradiator unit with a 100 μg californium source, with which it will henceforth be possible to develop this technique of measuring the calcium of the hand in a hospital. The test programme has three distinct phases: (1) irradiation of the biological target for 10 min; (2) after a transfer period of 30 s, detection of the radiation emitted by the 49 Ca for 600 s; (3) processing of the numerical data received, which are transmitted on line to a T 1600 calculator. The weight is found by comparing the activity induced in the unknown calcium mass with that induced in a phantom chosen as the activity standard. The reproducibility of the method is of the order of 3% (5% at the worst). The gross standardized result is edited automatically. For physical and clinical reasons, the hand is chosen as the reference part of the body in 70 control subjects. The local irradiation dose is less than 2 rem. The bone calcium content is 14.3+-1.9 g in men and 10.1+-1.3 g in women. In clinical application of the technique it is necessary to differentiate between the normal calcium content and the calcium content found with a pathological state. This makes it necessary to express the measurement in the form of a volume mass (rho). The volume of the hand skeleton (V in cm 3 ) is calculated from the corresponding bone surface (S in cm 2 ) measured by planimetry with the relationship V=8.925 exp 0.0205.S, found after studying 80 hand skeletons. In our control subjects the calcium bone volume mass was 0.288 g/cm 3 in men and 0.282 g/cm 3 in women. There is a very significant difference (p<0.001) in a population of 88 subjects with chronic renal insufficiencies at the terminal stage: rho=0.233 in men and 0.235 in women

  2. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  3. Long-term effects of an intracavitary treatment with californium-252 on normal tissue. [Swine, /sup 226/Ra

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with /sup 252/Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from /sup 252/Cf and 7000 rad from /sup 226/Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for /sup 252/Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from /sup 252/Cf and 5000 rad from /sup 226/Ra.

  4. Neutron flux characterization of californium-252 Neutron Research Facility at the University of Texas - Pan American by nuclear analytical technique

    Science.gov (United States)

    Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad

    2014-03-01

    In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.

  5. Processing and Characterization of Thin Cadmium Telluride Solar Cells

    Science.gov (United States)

    Wojtowicz, Anna

    Cadmium telluride (CdTe) has the highest theoretical limit to conversion efficiency of single-junction photovoltaic (PV) technologies today. However, despite a maximum theoretical open-circuit voltage of 1.20 V, record devices have historically had voltages pinned around only 900 mV. Voltage losses due to high recombination rates remains to be the most complex hurdle to CdTe technology today, and the subject of on-going research in the physics PV group at Colorado State University. In this work, an ultrathin CdTe device architecture is proposed in an effort to reduce bulk recombination and boost voltages. By thinning the CdTe layer, a device's internal electric field extends fully towards the back contact. This quickly separates electrons-hole pairs throughout the bulk of the device and reduces overall recombination. Despite this advantage, very thin CdTe layers also present a unique set of optical and electrical challenges which result in performance losses not as prevalent in thicker devices. When fabricating CdTe solar cells, post-deposition treatments applied to the absorber layer are a critical step for achieving high efficiency devices. Exposure of the polycrystalline CdTe film to a chlorine species encourages the passivation of dangling bonds and larger grain formation, while copper-doping improves device uniformity and voltages. This work focuses on experiments conducted via close-space sublimation to optimize CdCl2 and CuCl treatments for thin CdTe solar cells. Sweeps of both exposure and anneal time were performed for both post-deposition treatments on CdTe devices with 1.0 mum absorber layers. The results demonstrate that thin CdTe devices require substantially less post-deposition processing than standard thicker devices as expected. Additionally, the effects of CdTe growth temperature on thin devices is briefly investigated. The results suggest that higher growth temperatures lead to both electrical and stoichiometric changes in CdTe closely associated

  6. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Zweibel, K.; Moskowitz, P.; Fthenakis, V.

    1998-02-01

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  7. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liyan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Lu, Tao; Shi, Yi; Wang, Jianyu [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2014-03-15

    hydrogen storage, compared with the nanowires. The nanotube device also has a broad light detection range from 300 nm to 1100 nm, covering the UV–visible–NIR region. This good performance of In{sub 2}Te{sub 3} nanotubes may enable significant advancements of new photodetection and photosensing applications. Highlights: • The In{sub 2}Te{sub 3} nanotube device also has a broad light detection range from 300 nm to 1100 nm. • The nanotube is 137.85 m{sup 2} g{sup −1}, which makes it suitable for gas sensing and hydrogen storage. • A possible growth mechanism of the indium telluride nanotubes was proposed. • In addition, no In{sub 2}Te{sub 3} nanotubes have been reported until now.

  8. Ab initio full-potential study of mechanical properties and magnetic phase stability of californium monopnictides (CfN and CfP)

    Energy Technology Data Exchange (ETDEWEB)

    Amari, S., E-mail: siham_amari@yahoo.fr [Faculté des Sciences de la Nature et de la Vie, Université Hassiba Benbouali, Chlef, 02000 (Algeria); Bouhafs, B. [Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Université Djillali Liabès de Sidi Bel-Abbés, Sidi Bel-Abbés, 22000 (Algeria)

    2016-09-15

    Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young’s modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.

  9. Use of polyethylene pellets in the design and construction of a storage safe, a transport vessel and a portable shield for californium-252

    International Nuclear Information System (INIS)

    Sharma, S.

    1986-01-01

    A storage and shielding facility for 300 μg of Californium-252 sources was designed and constructed. Though the safe was in a permanent location, the fact that it consisted of a lead bucket surrounded by polyethylene pellets made it simple, movable and inexpensive. If need be, more quantities of Cf-252 could be added without altering the basic design and sacrificing the radiation protection guidelines. The measured radiation levels from 300 μg of stored Cf-252 in and around the storage vault were lower than the expected dose rates by a factor of 5. The measured radiation levels around the occupied environs of the facility were below the maximum permissible yearly dose of 500mrem for non-occupational workers. A transport vessel was designed and constructed to carry up to 50 μg of Californium-252 sources. It consisted of a standard 55 gallon steel drum on casters containing cylindrical lead shield surrounded by polyethylene pellets. The measured maximum surface dose rates on the drum and at one meter away were within the radiation protection guidelines and were less than the expected dose rates. A portable shield was designed and constructed to protect the body in afterloading operations and handling of the sources. It consisted of polyethylene pellets in an aluminum box and an attached 10 cm thick plexiglass eye shield. The simple design, with the ease of using polyethylene pellets can be extended to construct bedside shields

  10. Mechanism of manganese (mono and di) telluride thin-film formation and properties

    Science.gov (United States)

    Sharma, Raj Kishore; Singh, Gurmeet; Shul, Yong Gun; Kim, Hansung

    2007-03-01

    Mechanistic studies on the electrocrystallization of manganese telluride (MnTe) thin film are reported using aqueous acidic solution containing MnSO 4 and TeO 2. Tartaric acid was used for the inhibition of hydrated manganese oxide anodic growth at counter electrode. A detailed study on the mechanistic aspect of electrochemical growth of MnTe using cyclic voltametry is carried out. Conditions for electrochemical growth of manganese mono and di telluride thin films have been reported using cyclic voltammetric scans for Mn 2+, Te 4+ and combined Mn 2+ and Te 4+. X-ray diffraction showed the formation of polycrystalline MnTe films with cubic, hexagonal and orthorhombic mixed phases. MnTe film morphology was studied using scanning electron microscope. Susceptibility and electrical characterization supports the anti-ferromagnetic behavior of the as-deposited MnTe thin film.

  11. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  12. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  13. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  14. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    International Nuclear Information System (INIS)

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  15. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  16. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  17. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  18. Cadmium telluride gamma-radiation detectors with a high energy resolution

    International Nuclear Information System (INIS)

    Alekseeva, L.A.; Dorogov, P.G.; Ivanov, V.I.; Khusainov, A.K.

    1985-01-01

    This paper considers the possibility of improving the energy resolution of cadmium telluride gamma-radiation detectors through the choice of the geometry and size of the sensitive region of the detector. The optimum ratio of the product of the mobility and lifetime for electrons to the same product for holes from the point of view of energy resolution is greater than or equal to 10 2 for a detector of spherical geometry and should be less than or equal to 10 for a cylindrical geometry and approximately 1 for a planar geometry. The optimum values of the major and minor radii of a spherical detector are calculated

  19. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  20. Specific features of the photoconductivity of semi-insulating cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Golubyatnikov, V. A.; Grigor’ev, F. I.; Lysenko, A. P., E-mail: aplysenko@hse.ru; Strogankova, N. I.; Shadov, M. B. [National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics (Russian Federation); Belov, A. G. [OAO GIREDMET State Research and Design Institute of the Rare-Metal Industry (Russian Federation)

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  1. Iron telluride nanorods-based system for the detection of total mercury in blood

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prathik; Lin, Zong-Hong [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Liang, Chi-Te [Department of Physics, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Chang, Huan-Tsung, E-mail: changht@ntu.edu.tw [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2012-12-15

    Graphical abstract: Elucidation of the detection of mercury using iron telluride nanorods (FeTe NRs), and dose-response curve for varying concentrations of Hg{sup 2+}. Highlights: Black-Right-Pointing-Pointer Iron telluride nanorods (FeTe NRs) are prepared from tellurium nanowires (Te NWs). Black-Right-Pointing-Pointer Mercury telluride nanorods (HgTe NRs) form by cation exchange reaction of FeTe NRs. Black-Right-Pointing-Pointer Fe{sup 2+} ions released catalyze the oxidation of ABTS by H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Mercury is effectively determined in blood with an LOD of 1.31 nM at S/N ratio 3. - Abstract: We have developed a simple, colorimetric iron telluride (FeTe) nanorods (NRs) based system for the detection of mercury, mainly based on the cation exchange reaction between FeTe NRs and Hg{sup 2+}. FeTe NRs (length, 105 {+-} 21 nm) react with Hg{sup 2+} to form HgTe NRs (length, 112 {+-} 26 nm) and consequently release Fe{sup 2+} ions that catalyzes the oxidation between a peroxidase substrate 2,2 Prime -azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and H{sub 2}O{sub 2}. The concentration of Fe{sup 2+} and thereby Hg{sup 2+} can be determined by measuring the absorbance of the ABTS oxidized product at 418 nm. This approach allows the detection of Hg{sup 2+}, with a limit of detection of 1.31 nM at a signal-to-noise ratio 3 and a linear range 5-100 nM (R{sup 2} = 0.99). The low-cost, simple, sensitive, and reproducible assay has been validated for the detection of Hg{sup 2+} in a blood sample (SRM 955c), with the result being in good agreement with that provided by National Institute of Standards and Technology.

  2. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  3. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric

  4. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  5. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  6. Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole

    Science.gov (United States)

    Fang, Te-Hua; Chang, Win-Jin; Wang, Kuan-Yu; Huang, Chao-Chun

    2018-06-01

    We investigated the mechanical behavior of bismuth telluride nanofilms with holes by using an equilibrium molecular dynamics (MD) approach. The holes had diameters of 20, 30, 40, and 50 Å. The thermal conductivity values of the nanofilms were calculated under different strains at different temperatures using a nonequilibrium MD simulation. The simulation revealed that the thermal conductivity of a bismuth telluride nanofilm with a hole decreases with an increase in hole diameter at different strains. For a film with a perfect structure at 300 K, a 48% reduction (from 0.33 to 0.17 W/m K) in the thermal conductivity was observed at a 7% tensile strain. In addition, the thermal conductivity increased by approximately 39% (from 0.33 to 0.46 W/m K) at a 7% compressive strain. A very low value (0.11 W/m K) of thermal conductivity is obtained for the nanofilm with a hole diameter of 50 Å at a 7% tensile strain at 300 K.

  7. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  8. Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kee-Ryung; Cho, Hong-Baek; Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr

    2017-03-01

    Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag{sub 2}Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. - Highlights: • High throughput synthetic route of hollow CdTe nanotubes with ultra-long aspect ratio. • Chemical combination of electrospinning, electrodeposition & cation exchange reaction. • Pure zinc blende CdTe by controlled dimension & structural variation of Ag nanofibers. • Potential for the high throughput synthesis of new exotic chalcogenide nanotubes.

  9. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Christopher B. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, Adriana [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a TS higher than the temperature TN where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ12 between the monoclinic lattice strain and an orbital-nematic order parameter with B2g symmetry. Monte Carlo simulations show that with increasing ˜λ12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.

  10. The use of cadmium telluride γ spectrometers in monitoring activity deposited in nuclear power stations

    International Nuclear Information System (INIS)

    Jones, L.T.

    1977-01-01

    The ability to inspect and test key components and when necessary repair or replace them is a significant factor in the safety case submitted before consent is given for construction of a nuclear reactor. A knowledge of the probable rate of deposition and isotopic composition of radioactive contamination in these areas is necessary and since it is not always practicable to take samples away to the laboratory for analysis, direct gamma ray spectroscopy in the contaminated environment is sometimes used. The experience of direct monitoring with a cadmium telluride spectrometer in two such reactor situations is reported. In the first situation, a remotely cooled intrinsic Germanium spectrometer was used in equivalent positions and spectra from both systems are presented. The relative merits of the two systems are discussed. In the second situation, measurements were made in an environment at 70 deg C in radiation levels of 10Rh -1 . An improvised cooling system was used to maintain the Cadmium Telluride at about 20 deg C and Pile-up Rejection was used to enable count rates of about 10 5 s -1 to be handled. It is noted that the usually quoted detector parameters, resolution and crystal volume, are not necessarily the most important in practical spectrometry of mixed isotopes. As with germanium detectors, the most useful parameter is probably the Peak-to-Compton ratio

  11. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  12. Charge sharing and charge loss in a cadmium-zinc-telluride fine-pixel detector array

    International Nuclear Information System (INIS)

    Gaskin, J.A.; Sharma, D.P.; Ramsey, B.D.

    2003-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a cadmium-zinc-telluride multi-pixel detector is ideal for hard X-ray astrophysical observation. As part of on-going research at MSFC to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750 μm pitch), 1 mm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300 μm pitch). Future work will enable us to compare the simulated results for the finer array to measured values

  13. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  14. Heavily doped GaAs:Te layers grown by MOVPE using diisopropyl telluride as a source

    Energy Technology Data Exchange (ETDEWEB)

    Daniltsev, V. M.; Demidov, E. V.; Drozdov, M. N.; Drozdov, Yu. N., E-mail: drozdyu@ipmras.ru; Kraev, S. A.; Surovegina, E. A.; Shashkin, V. I.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    The capabilities of GaAs epitaxial layers extremely heavily doped with tellurium by metal-organic vapor-phase epitaxy using diisopropyl telluride as a source are studied. It is shown that tellurium incorporation into GaAs occurs to an atomic concentration of 10{sup 21} cm{sup –3} without appreciable diffusion and segregation effects. Good carrier concentrations (2 × 10{sup 19} cm{sup –3}) and specific contact resistances of non-alloyed ohmic contacts (1.7 × 10{sup –6} Ω cm{sup 2}) give grounds to use such layers to create non-alloyed ohmic contacts in electronic devices. A sharp decrease in the electrical activity of Te atoms, a decrease in the electron mobility, and an increase in the contact resistance at atomic concentrations above 2 × 10{sup 20} cm{sup –3} are detected.

  15. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    Science.gov (United States)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  16. High pressure and doping effects on the Curie temperature in chromium telluride

    International Nuclear Information System (INIS)

    Grazhdankina, N.P.; Bersenev, Yu.S.

    1976-01-01

    Results of an experimental investigation of the effect of hydrostatic pressure (up to 12 kbars) on the Curie temperature Tsub(c) of solid CrTsub(1-x)Xsub(x) solutions (X=Se, Sb) are presented for x concentration values up to 0.5. The baric coefficients γ=Tsub(c)sup(-1)(dTsub(c)/dP) for all alloys investigated are negative. However the γ(x) dependence is determined by the X alloy component and correspondingly by the nature of the compression which may be either isotropic (X=Se) or anisotropic (X=Sb). Possible mechanisms of exchange spin coupling in the alloys investigated are discussed on the basis of the data obtained. It is concluded that two types of exchange interactions coexist in chromium telluride: indirect exchange of localized electrons via the anion and interaction between collectivized electrons in the narrow 3d band energy determines the Curie temperature

  17. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  18. Trace analysis in cadmium telluride by heavy ion induced X-ray emission and by SIMS

    International Nuclear Information System (INIS)

    Scharager, C.; Stuck, R.; Siffert, P.; Cailleret, J.; Heitz, Ch.; Lagarde, G.; Tenorio, D.

    1979-01-01

    The possibilities of using both selective heavy ion induced X-ray emission and secondary ion mass spectroscopy (SIMS), for the identification of impurities present at low concentrations in cadmium telluride are examined. The relative concentrations of the impurities along CdTe crystals have been determined by exciting the X-ray emission of the elements in several slices with Ar and Kr ions and by comparing the relative characteristic X-ray emission yields. As a consequence of the quasimolecular inner shell ionization mechanism in heavy ion-atom collisions, Ar and Kr ions allow a strong excitation of the main impurities seen by SIMS namely Si, Cl and Ge, As, with only a minor contribution of Cd and Te. From the changes of the concentrations of the various impurities along the crystal, informations about segregation coefficients and compensation can be obtained

  19. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  20. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  1. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef; Feizi, Shahzad [Nuclear Science and Technology Research Institute (NSTRI), Radiation Application Research School, Karaj (Iran, Islamic Republic of); Zare, Hakimeh; Karimi, Shokufeh [Yazd University, Department of Physics, Yazd (Iran, Islamic Republic of); Rahighi, Reza [Sharif University of Technology, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with {sup 68}Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with {sup 68}Ga NPs ({sup 68}Ga rate at CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the {sup 68}Ga rate at CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The {sup 68}Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the {sup 68}Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of {sup 68}Ga radionuclide, the {sup 68}Ga rate at CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy. (orig.)

  2. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Science.gov (United States)

    Fazaeli, Yousef; Zare, Hakimeh; Karimi, Shokufeh; Rahighi, Reza; Feizi, Shahzad

    2017-08-01

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 68Ga@ CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The 68Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the 68Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of 68Ga radionuclide, the 68Ga@ CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy.

  3. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Termentzidis, K; Pokropivny, A; Xiong, S-Y; Chumakov, Y; Volz, S; Woda, M; Cortona, P

    2012-01-01

    We use molecular dynamics and ab-initio methods to predict the thermal and electronic properties of new materials with high figures of merit. The simulated systems are bulk bismuth tellurides with antisite and vacancy defects. Optimizations of the materials under investigation are performed by the SIESTA code for subsequent calculations of force constants, electronic properties, and Seebeck coefficients. The prediction of the thermal conductivity is made by Non-Equilibrium Molecular Dynamics (NEMD) using the LAMMPS code. The thermal conductivity of bulk bismuth telluride with different stoichiometry and with a number of substitution defects is calculated. We have found that the thermal conductivity can be decreased by 60% by introducing vacancy defects. The calculated thermal conductivities for the different structures are compared with the available experimental and theoretical results.

  4. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  5. Diffusion of iron in β-iron telluride (Fe1.12Te) by Moessbauer spectroscopy and tracer method

    International Nuclear Information System (INIS)

    Magara, Masaaki; Tsuji, Toshihide; Naito, Keiji

    1993-01-01

    The diffusion coefficient of iron in a β-iron telluride (Fe 1.12 Te) polycrystalline sample was measured by Moessbauer diffusional line broadening method which relates to the collapse of coherence in gamma-ray photon by the atomic jump at local sites. The diffusion coefficient of iron along the c-axis in nearly single crystal of β-iron telluride was also measured by tracer technique which shows the results of an atom transport in long distance. The activation energies for the diffusion of iron in Fe 1.12 Te obtained by the Moessbauer spectroscopy and the tracer method were 91.5±5.4 and 106±23 kJ/mol, respectively. The diffusion coefficients of iron in β-iron telluride obtained by Moessbauer line broadening are in fair agreement with the values averaged from that along c-axis obtained by tracer method and that along a- and b-axes obtained from reaction rate constant between iron and tellurium by the previous study of the present authors. (orig.)

  6. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  7. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel—Design concept and experimental demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, D., E-mail: henzlova@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Menlove, H.O.; Rael, C.D.; Trellue, H.R.; Tobin, S.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong [Korea Atomic Energy Research Institute, Daejeong (Korea, Republic of)

    2016-01-11

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  8. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel—Design concept and experimental demonstration

    International Nuclear Information System (INIS)

    Henzlova, D.; Menlove, H.O.; Rael, C.D.; Trellue, H.R.; Tobin, S.J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  9. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    International Nuclear Information System (INIS)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh; Tahmasbi Rad, Armin; Tayebi, Lobat

    2014-01-01

    Nanocomposite thermoelectric compound of bismuth telluride (Bi 2 Te 3 ) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi 2 Te 3 were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  10. N-hydroxysuccinimide-mediated photoelectrooxidation of aliphatic alcohols based on cadmium telluride nanoparticles decorated graphene nanosheets

    International Nuclear Information System (INIS)

    Navaee, Aso; Salimi, Abdollah

    2013-01-01

    A simple nonenzymatic electrochemical protocol is proposed for the oxidation of aliphatic alcohols using formed N-hydroxysuccinimide (NHS) radical cation on the graphene nanosheets/L-cysteine/cadmium telluride quantum dot (QD) nanocomposite (GNs/Cys/CdTe) modified glassy carbon (GC) electrode. At first, graphene oxide (GO) is chemically synthesized from graphite after which Cys is covalently functionalized to GO through formation of amide bonds between carboxylic acid groups of GO and amine groups of Cys. The resulting GNs/Cys is used as a capping agent to synthesize CdTe QD nanoparticles. After the characterization of the as-made nanocomposite which confirmed the successful attachment of CdTe nanoparticles to the GNs, the ability of the GNs/Cys/CdTe modified GC electrode toward the nonenzymatic ethanol electrooxidation is examined in the presence of NHS as an effective mediating system. Our results revealed that the proposed system possess a good activity to NHS electrooxidation and subsequently, ethanol oxidation. Moreover, the GNs/Cys/CdTe modified electrode displayed a significant photoelectrocatalytic activity toward the ethanol oxidation upon illumination by visible light. The photoactive GNs/Cys/CdTe nanohybrid presented here showing favorable photoelectrochemical features for nonenzymatic aliphatic alcohols oxidation may hold great promise to the development of electrochemical sensors and biofuel cells

  11. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    Brunett, B.A.; Lund, J.C.; Van Scyoc, J.M.; Hilton, N.R.; Lee, E.Y.; James, R.B.

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  12. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  13. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  14. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  15. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  16. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  17. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    Science.gov (United States)

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  18. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  19. Effect of reducing agent strength on the growth and thermoelectric performance of nanocrystalline bismuth telluride

    Science.gov (United States)

    Nour, Asmaa; Hassan, Nazly; Refaat, Heba M.; Soliman, Hesham M. A.; El-Dissouky, A.

    2018-03-01

    A novel combination of Trizma, as an environmentally friendly chelating agent, with either weak or strong reducing agent was used to produce n-type bismuth telluride (Bi2Te3) nanocrystals via water-based chemical route. The synthesized powders were consolidated into pellets utilizing spark plasma sintering (SPS). The sintered n-type pellets exhibited potentially high electrical conductivities (5.29 × 105 and 5.23 × 105 S.m‑1) and low lattice thermal conductivities (0.12 and 0.25 Wm‑1K‑1) respectively. These thermoelectric (TE) properties suggested that the partially coherent boundaries permitted significant phonons scattering and electrons transfer. These led to an enhanced figure-of-merit (ZT) values (0.52 and 0.97), which are considered to be significant among the reported ZT values at room-temperature for the undoped synthesized n-type Bi2Te3 nanoparticles. Therefore, the current investigation displayed an efficient method to improve ZT of TE materials via nanostructure orchestrating, resulting in a worthy candidate n-type nanostructured Bi2Te3 for room-temperature TE applications.

  20. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    International Nuclear Information System (INIS)

    BRUNETT, BRUCE A.; DOYLE, BARNEY L.; JAMES, RALPH B.; VIZKELETHY, GYORGY; WALSH, DAVID S.

    1999-01-01

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated

  1. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films

    Science.gov (United States)

    Lai, Tang-Yu; Wang, Kuan-Yu; Fang, Te-Hua; Huang, Chao-Chun

    2018-02-01

    Bismuth telluride (Bi2Te3) is a type of thermoelectric material used for energy generation that does not cause pollution. Increasing the thermoelectric conversion efficiency (ZT) is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the mechanical properties and thermal conductivity of quintuple layers of Bi2Te3 nanofilms with different atomic arrangements at the interface and study the effects of varying layers, angles, and grain boundaries. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity, and the maximum yield stress is observed for a thickness of ∼90 Å. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. The results of this investigation are helpful for the application of Bi2Te3 nanofilms as thermoelectric materials.

  2. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    Rousset, J.

    2007-04-01

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  3. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  4. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    Bojsen, J.

    1985-01-01

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  5. A Fumonisins Immunosensor Based on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Quantum Dots

    Science.gov (United States)

    Masikini, Milua; Mailu, Stephen N.; Tsegaye, Abebaw; Njomo, Njagi; Molapo, Kerileng M.; Ikpo, Chinwe O.; Sunday, Christopher Edozie; Rassie, Candice; Wilson, Lindsay; Baker, Priscilla G. L.; Iwuoha, Emmanuel I.

    2015-01-01

    An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs) and poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes (PDMA-MWCNT). Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA) gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI) for fumonisins (the sum of FB1, FB2, and FB3) established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA) for protection of human consumption (2–4 mg L−1). PMID:25558993

  6. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  7. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  8. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    International Nuclear Information System (INIS)

    Manciu, Felicia S.; Salazar, Jessica G.; Diaz, Aryzbe; Quinones, Stella A.

    2015-01-01

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  9. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  10. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  11. Reaction of 1-bromo-3-chloropropane with tellurium and dimethyl telluride in the system of hydrazine hydrate-alkali

    International Nuclear Information System (INIS)

    Russavskaya, N.V.; Levanova, E.P.; Sukhomazova, Eh.N.; Grabel'nykh, V.A.; Elaev, A.V.; Klyba, L.V.; Zhanchipova, E.R.; Albanov, A.I.; Korotaeva, I.M.; Toryashinova, D.S.D.; Korchevin, N.A.

    2006-01-01

    A synthesis of oligomeric substance of thiocol type, the poly(trimethyleneditelluride), from 1-bromo-3-chloropropane and elemental tellurium is performed using a hydrazine hydrate-alkali system. Reductive splitting of the tellurocol followed by alkylation with methyl iodide give rise to preparation of bis(methyltelluro)propane, which was synthesized also from dimethyl telluride and 1,3-dihalopropanes using the N 2 H 4 ·H 2 O/KOH system. The reaction products were characterized by elementary analysis, NMR, and IR spectra. Mass spectra of the synthesized low molecular weight organotellurium compounds are considered [ru

  12. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Igal; Brandon, Simon [Dept. of Chemical Engineering, Technion, Haifa 32000 (Israel); Ben Dov, Anne; Grimberg, Ilana; Klin, Olga; Weiss, Eliezer [SCD-Semi-Conductor Devices, P.O. Box 2250/99, Haifa 31021 (Israel)

    2010-07-01

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  13. Scientific/Technical Report: Improvement in compensation and crystal growth of cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Kelvin G. Lynn; Kelly A. Jones

    2007-01-01

    Comparison of actual accomplishments with goals and objectives: (1) Growth of 12 ingots--Washington State University (WSU) more than met this goal for the project by growing 12 final ingots for the year. Nine of the twelve crystal growth ingots resolved gamma radiation at room temperature. The other three ingots where resistivity of ∼ 3 x 10 8 Ohm*cm for CG32a, CG36, and CG42 lower than expected, however none of these were tried with blocking contacts. All ingots were evaluated from tip to heel. In these three cases, the group III, dopant Aluminum (Al) was not detected to a level to compensate the Cd vacancies in the cadmium zinc telluride (CZT) thus the ingots were lower resistivity. The nine ingots that were successful radiation detectors averaged a bulk resistivity of 1.25 x 10 10 Ohm*cm and with a average μτ product for electrons of ∼ 2 x 10 -4 cm 2 /V with a 1/4 microsecond shaping time with samples ∼2 mm in thickness. (2) Attempt new compensations techniques--WSU also met this goal. Several doping schemes were attempted and investigated with various amounts of excess Tellurium added to the growth. The combination of Al and Erbium (Er) were first attempted for these ingots and subsequently CG34 was grown with Al, Er and Holmium. These compensation techniques produced radiation detectors and are currently under investigation. These growths were made with significant different doping levels to determine the affect of the dopants. CG43 was doped with Indium and Er. Indium was introduced instead of Al to determine if Indium is more soluble than Al for CZT and was less oxidized. This may decrease the amount of low resistivity ingots grown by doping with Indium instead of Al. (3) Grow large single crystals--Several changes in approach occurred in the crystal growth furnace. Steps were taken to maximize the crystal growth interface during growth by modifying liners, quartz, heat sinks, crucibles and various growth steps and temperature profiles. CG39 ingot

  14. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  15. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  16. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    Science.gov (United States)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  17. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    International Nuclear Information System (INIS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-01-01

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  18. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  19. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  20. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  1. Irradiation-induced doping of Bismuth Telluride Bi2Te3

    International Nuclear Information System (INIS)

    Rischau, Carl Willem

    2014-01-01

    Bismuth Telluride Bi 2 Te 3 has attracted enormous attention because of its thermoelectric and topological insulator properties. Regarding its bulk band structure Bi 2 Te 3 is a band insulator with an energy gap of around 150-170 meV. However, the native anti-site defects that are present in real samples always dope this band insulator and shift the chemical potential into the valence or conduction band. In this PhD, the Fermi surface of as-grown and electron irradiated p-type Bi 2 Te 3 single crystals has been investigated extensively using electrical transport experiments. For moderate hole concentrations (p ∼< 5 x 10 18 cm -3 ), it is confirmed that electrical transport can be explained by a six-valley model and the presence of strong Zeeman-splitting. At high doping levels (p≅5 x 10 18 cm -3 ), the hole concentrations determined from Hall and Shubnikov-de Haas (SdH) effect differ significantly which is attributed to an impurity/defect band introduced by the anti-site defects. In this work, we show that it is possible to dope p-type Bi 2 Te 3 in a very controlled manner using electron-irradiation by performing detailed in- and ex-situ electrical transport studies on samples irradiated at room and at low temperatures with 2.5 MeV electrons. These studies show that the defects induced at both irradiation temperatures act as electron donors and can thus be used to convert the conduction from p- to n-type. The point of optimal compensation is accompanied by an increase of the low-temperature resistivity by several orders of magnitude. Irradiation at room temperature showed that both the p-type samples obtained after irradiation to intermediate doses as well as the samples in which the conduction has been converted to n-type by irradiation, still have a well defined Fermi surface as evidenced by SdH oscillations. By studying the Hall coefficient in-situ during low temperature electron irradiation, the coexistence of electron- and hole-type carriers was evidenced

  2. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi{sub 2}Te{sub 3}) single crystals for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Anuj [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Budhendra [TEMA-NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro (Portugal); Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Maurya, K.K. [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2016-03-07

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi{sub 2}Te{sub 3}) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  3. Ag-tellurides at the site Treibolc near the village Hodrusa-Hamre; Ag-teluridy na lokalite Treibolc pri obci Hodrusa-Hamre

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra mineralogie a petrologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Ag-tellurides were described in association with galenite, sphalerite, chalcopyrite and bornite samples during examining hydrothermal mineralization of Stiavnica stratovolcano (Hodrusa-Hamre settlement) in heavily silicified sediments of Permian age. They were found and confirmed by WDS analysis. Their presence on the site is very unique with no economic use. Paragenesis originated at 250-270 grad C in the presence of fluid and zero salinity. (authors)

  4. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio

    1976-07-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  5. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: ce_delgado89@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)

    2015-10-15

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  6. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio

    1976-07-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  7. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    International Nuclear Information System (INIS)

    Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida

    2014-01-01

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I excess  = I r0  + K 1 exp (K 2 V), where I r0 , K 1 , and K 2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers

  8. Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses

    International Nuclear Information System (INIS)

    Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E.; Hidalgo, P.

    2010-01-01

    The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10 8 Ω cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10 5 Ω cm).

  9. A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Susmita [Jadavpur University, Department of Instrumentation Science (India); Das, Rashmita [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Bhar, Radhaballabh [Jadavpur University, Department of Instrumentation Science (India); Bandyopadhyay, Rajib [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [GLA University, Department of Chemistry and Nanoscience (India)

    2017-02-15

    A new simple chemical method for synthesis of nanocrystalline bismuth telluride (Bi{sub 2}Te{sub 3}) has been developed by microwave assisted reduction of homogeneous tartrate complexes of bismuth and tellurium metal ions with hydrazine. The reaction is performed at pH 10. The nano-crystallites have rhombohedral phase identified by XRD. The size distribution of nanoparticle is narrow and it ranges between 50 to 70 nm. FESEM shows that the fine powders are composed of small crystallites. The TEM micrographs show mostly deformed spherical particles and the lattice fringes are found to be 0.137 nm. Energy dispersive X-ray spectroscopy (EDX) analysis shows the atomic composition ratio between bismuth and tellurium is 2:3. Thermoelectric properties of the materials are studied after sintering by spark plasma sintering method (SPS). The grain size of the material after sintering is in the nanometer range. The material shows enhanced Seebeck coefficient and electrical conductivity value at 300 K. The figure of merit is found to be 1.18 at 300 K.

  10. Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2006-01-01

    A single step non-aqueous electrodeposition of cadmium zinc telluride (CZT) nanowires on nanoporous TiO 2 substrate was investigated under pulsed-potential conditions. Propylene carbonate was used as the non-aqueous medium. Cyclic voltammogram studies were carried out to understand the growth mechanism of CZT. EDAX and XRD measurements indicated formation of a compound semiconductor with a stoichiometry of Cd 1-x Zn x Te, where x varied between 0.04 and 0.2. Variation of the pulsed-cathodic potentials could modulate the composition of the CZT. More negative cathodic potentials resulted in increased Zn content. The nanowires showed an electronic band gap of about 1.6 eV. Mott-Schottky analyses indicated p-type semiconductor properties of both as-deposited and annealed CZT materials. Increase in Zn content increased the charge carrier density. Annealing of the deposits resulted in lower charge carrier densities, in the order of 10 15 cm -3

  11. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  12. CsAg{sub 5}Te{sub 3}: a new metal-rich telluride with a unique tunnel structure

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li [Rutgers Univ., Camden, NJ (United States). Dept. of Chem.; Hongyou, Guo [Rutgers Univ., Camden, NJ (United States). Dept. of Chem.; Xiang, Zhang [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry; Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry

    1995-02-15

    The synthesis and structure of a new ternary silver telluride, CsAg{sub 5}Te{sub 3}, is described. The compound was prepared from a Cs{sub 2}Te-CaTe-Te flux but it can also be prepared from a direct combination of Cs{sub 2}Te and Ag{sub 2}Te under vacuum at 600 C. The crystal data for CsAg{sub 5}Te{sub 3} at 20 C (Mo K{alpha} radiation) are as follows: a=14.672(2) A and c=4.601(3) A; V=990.5(8) A{sup 3}; Z=4; D{sub calc}=7.075 g cm{sup -3}; space group, P4{sub 2} /mnm (No. 136); 2{theta}{sub max}=50 ; number of independent data collected, 572; number of data observed with I>3{sigma}(I), 267; number of variables, 32; {mu}=218.51 cm{sup -1}; extinction coefficient, 0.585x10{sup -7}; final R=0.040; R{sub w}=0.046; goodness of fit, 1.42. The compound features a new structure type with Cs{sup +}-filled, relatively large tunnels running through the lattice. The material is a semiconductor with a band gap of about 0.65 eV. ((orig.))

  13. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline–bismuth telluride nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Krishanu; Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2013-01-01

    Bismuth telluride (Bi 2 Te 3 ) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi 2 Te 3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV–vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi 2 Te 3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI–Bi 2 Te 3 nanocomposite with a core–shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi 2 Te 3 . At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI–Bi 2 Te 3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials. (paper)

  14. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiantao; Gross, Simon; Withford, Michael J.; Fuerbach, Alexander [Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) and MQ Photonics Research Centre, Dept. of Physics and Astronomy, Macquarie Univ., NSW (Australia); Zhang, Han; Guo, Zhinan [SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen Univ. (China)

    2016-08-15

    Nanosheets of bismuth telluride (Bi{sub 2}Te{sub 3}), a topological insulator material that exhibits broadband saturable absorption due to its non-trivial Dirac-cone like energy structure, are utilized to generate short pulses from Tm:ZBLAN waveguide lasers. By depositing multiple layers of a carefully prepared Bi{sub 2}Te{sub 3} solution onto a glass substrate, the modulation depth and the saturation intensity of the fabricated devices can be controlled and optimized. This approach enables the realization of saturable absorbers that feature a modulation depth of 13% and a saturation intensity of 997 kW/cm{sup 2}. For the first time to our knowledge, Q-switched mode-locked operation of a linearly polarized mid-IR ZBLAN waveguide chip laser was realized in an extended cavity configuration using the topological insulator Bi{sub 2}Te{sub 3}. The maximum average output power of the laser is 16.3 mW and the Q-switched and mode-locked repetition rates are 44 kHz and 436 MHz, respectively. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve.

    Science.gov (United States)

    Tanaka, Hirokazu; Chikamori, Taishiro; Tanaka, Nobuhiro; Hida, Satoshi; Igarashi, Yuko; Yamashita, Jun; Ogawa, Masashi; Shiba, Chie; Usui, Yasuhiro; Yamashina, Akira

    2014-01-01

    Although the novel cadmium-zinc-telluride (CZT) camera system provides excellent image quality, its diagnostic value using thallium-201 as assessed on coronary angiography (CAG) and fractional flow reserve (FFR) has not been validated. METHODS AND RESULTS: To evaluate the diagnostic accuracy of the CZT ultrafast camera system (Discovery NM 530c), 95 patients underwent stress thallium-201 single-photon emission computed tomography (SPECT) and then CAG within 3 months. Image acquisition was performed in the supine and prone positions after stress for 5 and 3 min, respectively, and in the supine position at rest for 10 min. Significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or a lesion with <90% and ≥50% stenosis and FFR ≤0.75. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 90%, 64%, and 78% for left anterior descending coronary artery stenosis, 78%, 84%, and 81% for left circumflex stenosis, and 83%, 47%, and 60% for right coronary artery (RCA) stenosis. The combination of prone and supine imaging had a higher specificity for RCA disease than supine imaging alone (65% vs. 47%), with an improvement in accuracy from 60% to 72%. Using thallium-201 with short acquisition time, combined with prone imaging, CZT SPECT had a high diagnostic yield in detecting significant coronary stenosis as assessed using FFR.

  16. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J.

    2008-01-01

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  17. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J. [O' Brien and Gere, Ecological Sciences, E. 512 Township Line Road, Two Valley Square, Suite 120, Blue Bell, PA 19422 (United States)

    2008-01-15

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted. (author)

  18. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  19. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B.; Lund, J. [Sandia National Labs., Livermore, CA (United States); Yoon, H. [Sandia National Labs., Livermore, CA (United States)]|[Univ. of California, Los Angeles, CA (United States)] [and others

    1997-09-01

    The material showing the greatest promise today for production of large-volume gamma-ray spectrometers operable at room temperature is cadmium zinc telluride (CZT). Unfortunately, because of deficiencies in the quality of the present material, high-resolution CZT spectrometers have thus far been limited to relatively small dimensions, which makes them inefficient at detecting high photon energies and ineffective for weak radiation signals except in near proximity. To exploit CZT fully, it will be necessary to make substantial improvements in the material quality. Improving the material involves advances in the purity, crystallinity, and control of the electrical compensation mechanism. Sandia National Laboratories, California, in close collaboration with US industry and academia, has initiated efforts to develop a detailed understanding of the underlying material problems limiting the performance of large volume gamma-ray spectrometers and to overcome them through appropriate corrections therein. A variety of analytical and numerical techniques are employed to quantify impurities, compositional and stoichiometric variations, crystallinity, strain, bulk and surface defect states, carrier mobilities and lifetimes, electric field distributions, and contact chemistry. Data from these measurements are correlated with spatial maps of the gamma-ray and alpha particle spectroscopic response to determine improvements in the material purification, crystal growth, detector fabrication, and surface passivation procedures. The results of several analytical techniques will be discussed. The intended accomplishment of this work is to develop a low-cost, high-efficiency CZT spectrometer with an active volume of 5 cm{sup 3} and energy resolution of 1--2% (at 662 keV), which would give the US a new field capability for screening radioactive substances.

  20. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    International Nuclear Information System (INIS)

    Verger, Antoine; Karcher, Gilles; Djaballah, Wassila; Fourquet, Nicolas; Rouzet, Francois; Le Guludec, Dominique; Koehl, Gregoire; Roch, Veronique; Imbert, Laetitia; Poussier, Sylvain; Fay, Renaud; Marie, Pierre-Yves

    2013-01-01

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving 201 Tl (n = 120) or 99m Tc-sestamibi injected at low dose at stress ( 99m Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ( 99m Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, 201 Tl 92 %, 99m Tc-Low 86 %, 99m Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p 201 Tl or 99m Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  1. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  2. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  3. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance

    International Nuclear Information System (INIS)

    James, R.B.; Lund, J.; Yoon, H.

    1997-01-01

    The material showing the greatest promise today for production of large-volume gamma-ray spectrometers operable at room temperature is cadmium zinc telluride (CZT). Unfortunately, because of deficiencies in the quality of the present material, high-resolution CZT spectrometers have thus far been limited to relatively small dimensions, which makes them inefficient at detecting high photon energies and ineffective for weak radiation signals except in near proximity. To exploit CZT fully, it will be necessary to make substantial improvements in the material quality. Improving the material involves advances in the purity, crystallinity, and control of the electrical compensation mechanism. Sandia National Laboratories, California, in close collaboration with US industry and academia, has initiated efforts to develop a detailed understanding of the underlying material problems limiting the performance of large volume gamma-ray spectrometers and to overcome them through appropriate corrections therein. A variety of analytical and numerical techniques are employed to quantify impurities, compositional and stoichiometric variations, crystallinity, strain, bulk and surface defect states, carrier mobilities and lifetimes, electric field distributions, and contact chemistry. Data from these measurements are correlated with spatial maps of the gamma-ray and alpha particle spectroscopic response to determine improvements in the material purification, crystal growth, detector fabrication, and surface passivation procedures. The results of several analytical techniques will be discussed. The intended accomplishment of this work is to develop a low-cost, high-efficiency CZT spectrometer with an active volume of 5 cm 3 and energy resolution of 1--2% (at 662 keV), which would give the US a new field capability for screening radioactive substances

  4. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang; Radar, Kelly; Hussain, Muhammad Mustafa

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  5. Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties

    Science.gov (United States)

    Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho

    2018-04-01

    A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.

  6. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    Science.gov (United States)

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  7. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  8. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  9. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Peng Hao; Levin, Craig S

    2010-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm 2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ∼32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ∼94.2 kcts s -1 (breast volume: 720 cm 3 and activity concentration: 3.7 kBq cm -3 ) for a ∼10% energy window around 511 keV and ∼8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σ rms /mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within

  10. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  11. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  12. and Cadmium Zinc Telluride

    African Journals Online (AJOL)

    Bheema

    INTRODUCTION. Semiconductor nanoparticles or Quantum Dots (QDs), in particular II-VI materials, have ... the study of structural, electronic transport and optical properties of Zn doped CdTe thin films, ...... Bhattacharya, S.K & Anjali, K. 2007.

  13. Nanolithography on mercury telluride

    International Nuclear Information System (INIS)

    Muehlbauer, Mathias Josef

    2015-01-01

    Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e"2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure's properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments.

  14. Structure data of elements and intermetallic phases. SubVol. B. Sulfides, selenides, tellurides. Pt. 1. Ag-Al-Cd-S. Cu-Te-Yb

    Energy Technology Data Exchange (ETDEWEB)

    Hellwege, K H; Hellwege, A M [eds.; Eisenmann, B; Schaefer, H

    1986-01-01

    Volume III/14 'Structure data of elements and intermetallic phases' is a supplement to and extension of Volume III/6. Since the publication of III/6 in 1971 (considering original papers up to 1967), the amount of new information for these substances has increased rapidly. Therefore the data had to be divided into several parts. The first part, III/14b1, is presented herewith. In Volume III/6, simple sulfides, selenides and tellurides were treated together with the intermetallic phases. The data are compiled in the same way as in III/6: for each substance the space group, lattice constants, their dependence on temperature and pressure, and other information is listed in the tables. In several cases, mostly for solid solutions, diagrams are given which are added in a separate chapter. Original papers containing a complete structure analysis are referred to in the tables. (orig./GSCH).

  15. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    age and both left and right ventricular volumes in women (r = -0.4, P right end systolic ventricular volume in men (r = -0.3, P = .001). CONCLUSION: A set of reference values for cardiac evaluation prior to chemotherapy in cancer patients without other known cardiopulmonary......BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fraction......, using cadmium-zinc-telluride SPECT camera. METHODS AND RESULTS: From routine assessments of left ventricular function in 1172 patients, we included 463 subjects (194 men and 269 women) without diabetes, previous potentially cardiotoxic chemotherapy, known cardiovascular or pulmonary disease. The lower...

  16. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  17. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode

    Directory of Open Access Journals (Sweden)

    P. Piot

    2013-01-01

    Full Text Available We report the experimental generation, acceleration, and characterization of a uniformly filled electron bunch obtained via space-charge-driven expansion (often referred to as “blow-out regime” in an L-band (1.3-GHz radiofrequency photoinjector. The beam is photoemitted from a cesium-telluride semiconductor photocathode using a short (<200  fs ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character are observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ∼0.5  nC corresponding to a ∼20-fold increase compared to previous experiments with metallic photocathodes.

  19. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  20. Preparation and study of elemental californium-249

    International Nuclear Information System (INIS)

    Noe, M.; Peterson, J.R.

    1975-01-01

    Bulk samples of 249 Cf metal were prepared on the 10 μg scale via the Li metal vapor reduction of 249 CfF 3 . Above about 725 0 C elemental Cf exhibits a face-centered cubic (fcc) structure with an average, room-temperature lattice parameter of 5.75(1)A. Between about 600 0 C and 725 0 C, the stable form of Cf metal is another fcc structure with an average, room-temperature lattice parameter of 4.94(1)A. Below 600 0 C metallic Cf exhibits a double hexagonal closest packed (dhcp) structure with average, room temperature lattice parameters of a 0 = 3.39(1)A and c 0 = 11.01(5)A. By comparison of the metallic radii calculated for these three forms with those of the receding transuranium elements, it is suggested that the two, lower temperature modifications represent Cf with a metallic valence of three, while the highest temperature form represents a metallic valence of two. Although the data reported here are from the most complete study to date of elemental Cf, the limitations accompanying such microscale research are duly noted. (U.S.)

  1. Californium Cf-252 for pelvic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y; Feola, J M; Tai, D; Wilson, L C; Van Nagell, J R; Yoneda, J

    1978-01-01

    Clinical data about therapy concerning tumors of the female gynecological cancers of the cervix, vagina and uterus are reviewed. Dosimetric, laboratory and radiobiological research data form the basis for an approach to such tumors using Cf-252 as a form of boost brachytherapy. Extreme personnel hazards are a real and important consideration and indicate that maximal containment and isolation procedures should be exercised in its use.

  2. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, Francois; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver

    2016-01-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  3. The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kiprotich, Sharon, E-mail: KiprotichS@qwa.ufs.ac.za [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Dejene, Francis B.; Ungula, Jatani [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Onani, Martin O. [Departments of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2016-01-01

    This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.

  4. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  5. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.

    Science.gov (United States)

    Chikamori, Taishiro; Hida, Satoshi; Tanaka, Nobuhiro; Igarashi, Yuko; Yamashita, Jun; Shiba, Chie; Murata, Naotaka; Hoshino, Kou; Hokama, Yohei; Yamashina, Akira

    2016-04-25

    Although stress single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride (CZT) camera facilitates radiation dose reduction, only a few studies have evaluated its diagnostic accuracy in Japanese patients by applying fractional flow reserve (FFR) measurements. We prospectively evaluated 102 consecutive patients with suspected or known coronary artery disease with a low-dose stress/rest protocol ((99m)Tc radiotracer 185/370 MBq) using CZT SPECT. Within 3 months, coronary angiography was performed and a significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or as a lesion of <90% and ≥ 50% stenosis with FFR ≤0.80. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 86%, 75%, and 82% for left anterior descending artery stenosis, 76%, 81%, and 79% for left circumflex artery stenosis, and 87%, 92%, and 90% for right coronary artery stenosis. When limited to 92 intermediate stenotic lesions in which FFR was measured, stress SPECT showed 77% sensitivity, 91% specificity, and 84% accuracy, whereas the diagnostic value decreased to 52% sensitivity, 68% specificity, and 58% accuracy based only on visual estimation of ≥75% diameter narrowing. CZT SPECT demonstrated a good diagnostic yield in detecting hemodynamically significant coronary stenoses as assessed by FFR, even when using a low-dose (99m)Tc protocol with an effective dose ≤5 mSv. (Circ J 2016; 80: 1217-1224).

  6. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  7. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  8. (99m)Tc-MDP bone scintigraphy of the hand: comparing the use of novel cadmium zinc telluride (CZT) and routine NaI(Tl) detectors.

    Science.gov (United States)

    Koulikov, Victoria; Lerman, Hedva; Kesler, Mikhail; Even-Sapir, Einat

    2015-12-01

    Cadmium zinc telluride (CZT) solid-state detectors have been recently introduced in the field of nuclear medicine in cardiology and breast imaging. The aim of the current study was to evaluate the performance of the novel detectors (CZT) compared to that of the routine NaI(Tl) in bone scintigraphy. A dual-headed CZT-based camera dedicated originally to breast imaging has been used, and in view of the limited size of the detectors, the hands were chosen as the organ for assessment. This is a clinical study. Fifty-eight consecutive patients (total 116 hands) referred for bone scan for suspected hand pathology gave their informed consent to have two acquisitions, using the routine camera and the CZT-based camera. The latter was divided into full-dose full-acquisition time (FD CZT) and reduced-dose short-acquisition time (RD CZT) on CZT technology, so three image sets were available for analysis. Data analysis included comparing the detection of hot lesions and identification of the metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joints. A total of 69 hot lesions were detected on the CZT image sets; of these, 61 were identified as focal sites of uptake on NaI(Tl) data. On FD CZT data, 385 joints were identified compared to 168 on NaI(Tl) data (p < 0.001). There was no statistically significant difference in delineation of joints between FD and RD CZT data as the latter identified 383 joints. Bone scintigraphy using a CZT-based gamma camera is associated with improved lesion detection and anatomic definition. The superior physical characteristics of this technique raised a potential reduction in administered dose and/or acquisition time without compromising image quality.

  9. Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation.

    Science.gov (United States)

    Shin, Weon Ho; Roh, Jong Wook; Ryu, Byungki; Chang, Hye Jung; Kim, Hyun Sik; Lee, Soonil; Seo, Won Seon; Ahn, Kyunghan

    2018-01-31

    It has been a difficulty to form well-distributed nano- and mesosized inclusions in a Bi 2 Te 3 -based matrix and thereby realizing no degradation of carrier mobility at interfaces between matrix and inclusions for high thermoelectric performances. Herein, we successfully synthesize multistructured thermoelectric Bi 0.4 Sb 1.6 Te 3 materials with Fe-rich nanoprecipitates and sub-micron FeTe 2 inclusions by a conventional solid-state reaction followed by melt-spinning and spark plasma sintering that could be a facile preparation method for scale-up production. This study presents a bismuth antimony telluride based thermoelectric material with a multiscale structure whose lattice thermal conductivity is drastically reduced with minimal degradation on its carrier mobility. This is possible because a carefully chosen FeTe 2 incorporated in the matrix allows its interfacial valence band with the matrix to be aligned, leading to a significantly improved p-type thermoelectric power factor. Consequently, an impressively high thermoelectric figure of merit ZT of 1.52 is achieved at 396 K for p-type Bi 0.4 Sb 1.6 Te 3 -8 mol % FeTe 2 , which is a 43% enhancement in ZT compared to the pristine Bi 0.4 Sb 1.6 Te 3 . This work demonstrates not only the effectiveness of multiscale structuring for lowering lattice thermal conductivities, but also the importance of interfacial band alignment between matrix and inclusions for maintaining high carrier mobilities when designing high-performance thermoelectric materials.

  10. Studies on focal alveolar bone healing with technetium (Tc)-99m labeled methylene diphosphonate and gold-collimated cadmium telluride probe

    International Nuclear Information System (INIS)

    Tsuchimochi, M.; Hosain, F.; Engelke, W.; Zeichner, S.J.; Ruttimann, U.E.; Webber, R.L.

    1991-01-01

    The benefit of using a collimator for a miniaturized cadmium telluride probe was evaluated by monitoring the bone-healing processes for 13 weeks after the induction of small iatrogenic alveolar bone lesions in one side of the mandible in beagles. Technetium (Tc)-99m labeled methylene diphosphonate (200 to 300 MBq, 5.1 to 8.1 mCi, in a solution of 0.5 to 1 ml, intravenously) was used as a bone-seeking radiopharmaceutical. The radioactivity over the bone lesion (L) and the contralateral normal site (C) in the mandible were measured between 1.5 and 2 hours after injection of the tracer, and the activity ratio L/C served as an index of relative bone uptake. A study of six dogs revealed that the healing response to a hemispheric bone defect of 2 mm diameter in the cortical bone could not be detected by an uncollimated probe, and in a repeated study in two dogs the use of a gold collimator (5 mm in diameter, 5 mm in length) did not increase the L/C ratio significantly. A second study in six dogs with 5 mm lesions showed that although systematic trends in the time courses of the L/C ratio obtained both with and without the collimator could be demonstrated, the L/C ratio of collimated versus uncollimated measurements was significantly (p less than 0.005) increased. In three of the latter six dogs, abscesses developed after 9 weeks, leading to a second increase (p less than 0.05) of the L/C ratio with collimation compared with the noninflammation group; without collimation no significant (p greater than 0.15) difference between the two groups could be demonstrated

  11. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    Science.gov (United States)

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  12. Reaction of 1-bromo-3-chloropropane with tellurium and dimethyl telluride in the system of hydrazine hydrate-alkali; Reaktsiya 1-brom-3-khlorpropana s tellurom i dimetilditelluridom v sisteme gidrazin-gidrat-shcheloch'

    Energy Technology Data Exchange (ETDEWEB)

    Russavskaya, N V; Levanova, E P; Sukhomazova, Eh N; Grabel' nykh, V A; Elaev, A V; Klyba, L V; Zhanchipova, E R; Albanov, A I; Korotaeva, I M; Toryashinova, D S.D.; Korchevin, N A [SO RAN, Irkutskij Inst. Khimii imeni A.E. Favorskogo, Irkutsk (Russian Federation)

    2006-05-15

    A synthesis of oligomeric substance of thiocol type, the poly(trimethyleneditelluride), from 1-bromo-3-chloropropane and elemental tellurium is performed using a hydrazine hydrate-alkali system. Reductive splitting of the tellurocol followed by alkylation with methyl iodide give rise to preparation of bis(methyltelluro)propane, which was synthesized also from dimethyl telluride and 1,3-dihalopropanes using the N{sub 2}H{sub 4}{center_dot}H{sub 2}O/KOH system. The reaction products were characterized by elementary analysis, NMR, and IR spectra. Mass spectra of the synthesized low molecular weight organotellurium compounds are considered.

  13. Preparation and study of the properties of lead telluride and cadmium telluride diodes for use in nuclear spectrometry; Preparation et etude des proprietes de diodes au tellurure de plomb et au tellurure de cadmium en vue d'une utilisation en spectrometrie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lancon, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This work studies the possibility of using high atomic number compound semiconductors, like lead telluride and cadmium telluride as to realize nuclear radiation detectors, specially in gamma ray spectrometry because of their high absorption coefficient. The problems related to the preparation of binary compounds are exposed. Experiments on PbTe show the influence of the conditions of preparation on the electrical properties of the semiconductor which are greatly dependent on the stoichiometry of the compound. PbTe surface-barrier diodes were realized and have been used to study the surface properties of this semiconductor. These diodes cannot detect nuclear radiations because of the too weak resistivity of our material. Different types of devices made of Cd Te have been studied. One of these diodes has been used as an alpha particle detector. We explain the relative poor performances of that detector by the presence of lattice defects in Cd Te where charge carriers may recombine themselves. By analysing the properties of gold diffused Cd Te diodes we identified this defect, the cadmium vacancy, the presence of which is due to the deviation from stoichiometry during the preparation of the material. (author) [French] Ce travail etudie la possibilite d'utiliser des semiconducteurs composes d'elements a numero atomique eleve, tels que le tellurure de plomb et le tellurure de cadmium pour la realisation de detecteurs de rayonnements nucleaires, grace notamment a la section efficace de capture elevee qu'ils presentent vis-a-vis des rayons gamma. On souligne les problemes relatifs a la preparation des composes binaires. Les experiences realisees sur PbTe mettent en evidence l'influence des conditions de preparation sur les proprietes electriques du semiconducteur qui dependent fortement de la stoechiometrie du compose. Nous avons realise des diodes au PbTe a barriere de surface qui ont permis de preciser les proprietes de surface de ce semiconducteur. La trop faible

  14. A potential method using Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2}, (Et{sub 3}Si){sub 2}Te and anhydrous hydrazine for germanium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liyong; Du, Shulei; Ding, Yuqiang [School of Chemical and Material Engineering, Jiangnan University, Wuxi (China)

    2017-12-29

    A germanium(II)-guanidine derivative of formula Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2} (1) was synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, elemental analysis, and X-ray diffraction method. Thermal property was also studied to identify its thermal stability and volatility. More importantly, compound 1 was synthesized to develop a new method for germanium tellurides, where anhydrous hydrazine was introduced to prompt the activity of germanium(II) guanidines (or derivatives) towards (Et{sub 3}Si){sub 2}Te. Solution reaction of compound 1, (Et{sub 3}Si){sub 2}Te, and anhydrous hydrazine was investigated to pre-identify the feasibility of this combination for ALD process. The EDS data of the black precipitate from this reaction verified the potential of this method to manufacture germanium tellurides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPb{sub m}BiTe{sub 2+m} (BLST-m)

    Energy Technology Data Exchange (ETDEWEB)

    Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Schmitz, Andreas [Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany); Hartung, David; Klar, Peter J. [Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Dankwort, Torben; Kienle, Lorenz [Institute for Material Science, Christian-Albrechts-University, Kaiserstrasse 2, D-24143 Kiel (Germany); Mueller, Eckhard, E-mail: Eckhard.Mueller@dlr.de [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2016-06-07

    We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  16. Mechanical properties of bismuth telluride (Bi{sub 2}Te{sub 3}) processed by high pressure torsion (HPT); Propiedades mecanicas del telururo de bismuto (Bi{sub 2}Te{sub 3}) procesado mediante torsion bajo alta presion (HPT)

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J. A.; Alkorta, J.; Gil Sevillano, J.

    2013-06-01

    Bismuth telluride, Bi{sub 2}Te{sub 3}, is the main thermoelectric material currently in use for commercial cooling devices or for energy harvesting near room temperature. Because of its highly anisotropic layered structure, Bi{sub 2}Te{sub 3} is very brittle, failing by cleavage along its basal plane. Refining its grain size is expected to increase its toughness with the advantage that, simultaneously, its thermoelectric figure of merit results increased. In this work, powders of the compound have been compacted by conventional methods as well as by severe plastic deformation under high pressure (3 GPa) using high pressure torsion (HPT, one turn at room temperature). Near-theoretical density has been achieved. The hardness and toughness of the compacts have been assessed by micro and nano-indentation. (Author) 11 refs.

  17. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    Science.gov (United States)

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  18. Savannah River Plant californium-252 Shuffler electronics manual

    International Nuclear Information System (INIS)

    Bourret, S.C.; Crane, T.W.; Eccleston, G.W.; Gallegos, E.A.; Garcia, D.L.

    1980-03-01

    Detailed information is presented in this report, an electronics manual for the Savannah River Plant Shuffler, about the electronics associated with the various control and data acquisition functions of the Shuffler subsystems. Circuit diagrams, interconnection information, and details about computer control and programming are included

  19. Survey of potential markets for devices using Californium-252

    International Nuclear Information System (INIS)

    Permar, P.H.

    1975-01-01

    Potential applications for devices or systems containing 252 Cf in the years from 1975 to 1980 are estimated. The estimated number of devices and associated business value were derived from a survey of 46 industrial, educational and governmental organizations conducted from Jan. to May, 1975. Applications for devices and systems based on 252 Cf are expected to increase by a factor of 7 in the 6-y period from 1975 to 1980. The annual business value of 252 Cf devices should increase from 1.5 million dollars in 1975 to 10.8 million dollars in 1980. The potential European market should be several times as large as the US market, based on actual sales of 252 Cf, which have been two to four times greater in Europe than in the US

  20. The protective cell petrus for the production of californium 252

    International Nuclear Information System (INIS)

    Sontag, R.; Berger, R.

    1967-01-01

    The alpha, beta, gamma, neutron cell which is described in the present paper is devoted to the transplutonium element production and study. It is located at the CEN in Fontenay-aux-Roses (France). The 4 feet ordinary concrete shielding made of stacked blocs allows the manipulation of radioactive sources as high as 1000 curies of 1 MeV gamma rays and with a fast neutrons flux of 10 9 n.cm -2 .s -1 . The airtight alpha containment box is equipped with two transfer systems, one consists of a parallelepiped shaped airtight box located in a turntable, the other uses standard cylindrical containers made of polyethylene. The general equipment and the main setting up are also described. (authors) [fr

  1. Automated absolute activation analysis with californium-252 sources

    International Nuclear Information System (INIS)

    MacMurdo, K.W.; Bowman, W.W.

    1978-09-01

    A 100-mg 252 Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from 17 O. Detection sensitivities of 239 Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level

  2. Savannah River Plant Californium-252 Shuffler software manual

    International Nuclear Information System (INIS)

    Johnson, S.S.; Crane, T.W.; Eccleston, G.W.

    1979-03-01

    A software manual for operating the Savannah River Plant Shuffler nondestructive assay instrument is presented. The procedures for starting up the instrument, making assays, calibrating, and checking the performance of the hardware units are described. A list of the error messages with an explanation of the circumstances prompting the message and possible corrective measures is given. A summary of the software package is included showing the names and contents of the files and subroutines. The procedure for modifying the software package is outlined

  3. Californium-252 interstitial implants in carcinoma of the tongue

    International Nuclear Information System (INIS)

    Vtyurin, B.M.; Ivanov, V.N.; Medvedev, V.S.; Galantseva, G.F.; Abdulkadyrov, S.A.; Ivanova, L.F.; Petrovskaya, G.A.; Plichko, V.I.

    1985-01-01

    A clinical study using 252 Cf sources in brachytherapy of tumors began in the Research Institute of Medical Radiology of the Academy of Medical Sciences of the USSR in 1973. 252 Cf afterloading cells were utilized by the method of simple afterloading. Dosimetry and radiation protection of medical personnel were developed. To substantiate optimal therapeutic doses of 252 Cf neutrons, a correlation of dose, time, and treatment volume factors with clinical results of 252 Cf interstitial implants in carcinoma of the tongue for 47 patients with a minimum follow-up period of 1 year was studied. Forty-nine interstitial implants have been performed. Seventeen patients received 252 Cf implants alone (Group I), 17 other patients received 252 Cf implants in combination with external radiation (Group II), and 15 patients were treated with interstitial implants for recurrent or residual tumors (Groups III). Complete regression of carcinoma of the tongue was obtained in 48 patients (98%). Thirteen patients (27%) developed radiation necrosis. The therapeutic dose of neutron radiation from 252 Cf sources in interstitial radiotherapy of primary tongue carcinomas (Group I) was found to be 7 to 9 Gy. Optimal therapeutic neutron dose in combined interstitial and external radiotherapy of primary tumors (Group II) was 5 to 6 Gy with an external radiation dose of 40 Gy. For recurrent and residual tumors (Group III), favorable results were obtained with tumor doses of 6.5 to 7 Gy

  4. Undergraduate experiments using the neutron radiation from californium-252

    International Nuclear Information System (INIS)

    Rossel, J.; Golecki, I.

    1976-01-01

    Three experiments designed to demonstrate and measure several properties of the neutron radiation emitted by a 3μg 252 Cf source are described. The experiments constitute a special project carried out by a third-year undergraduate student at the Institute of Physics of the University of Neuchatel. The 252 Cf source is enclosed in a shield which allows a pencil of fast neutrons to pass through a central tube, while reducing the ambient radiation below the tolerance level. The shield consists of layers of borated paraffin wax, iron and cadmium. The first experiment uses an air-alcohol diffusion cloud chamber for the demonstration of tracks of recoil protons produced by the neutrons. Semi-quantitative measurements of track lengths give the correct order of magnitude of the proton energies. In the second experiment a liquid scintillator detector is used to scan the beam profile across the radiation shield enclosing the source. A pulse-shape-discrimination system discriminates between neutrons and gamma photons. The third experiment makes use of the nuclear emulsion technique to study the neutron energy distribution of 252 Cf. Preliminary results are compared with published values. (author)

  5. Mixed nickel-gallium tellurides Ni{sub 3−x}GaTe{sub 2} as a matrix for incorporating magnetic cations: A Ni{sub 3−x}Fe{sub x}GaTe{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation); Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kirdyankin, Denis I.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation)

    2017-06-15

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in x tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.

  6. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Cyrs, William D.; Avens, Heather J.; Capshaw, Zachary A.; Kingsbury, Robert A.; Sahmel, Jennifer; Tvermoes, Brooke E.

    2014-01-01

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  7. Tunable Terahertz Metamaterials with Germanium Telluride Components

    Science.gov (United States)

    2016-03-24

    successful inspection of the pattern under the microscope, the sample is placed under the deep- UV flood exposure lamp for 200 seconds, and then developed...state digital memory applications, and have led the ubiquity of devices such as CDs and DVDs. The general temperature profiles required to switch...manufacturing methods has led to a recent rise in its popularity [125]. There are several types of additive manufacturing processes. One of the first to be

  8. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  9. Solid-state cadmium telluride radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Yoji; Kitamoto, Hisashi; Hosomatsu, Haruo

    1984-09-01

    The growth of CdTe single crystal and its application to CdTe detector array was studied for X-ray computed tomography (XCT) equipment. A p-type CdTe single crystal with 10/sup 4/ ohm.cm specific resistivity was grown in a quartz ampoule under vapor pressure control of Cd in a vertical Bridgman furnace. An 18-element detector array was fabricated with this single crystal. The detector was operated with no bias and the sensitivity was confirmed to be between 2.8 x 10/sup -12/ and 14 x 10/sup -12/ A.h/(R.mm/sup 2/). Commercial CdTe single crystal was used to manufacture as 560-element detector array for XCT. Results show that CdTe detector is sensitive, linear and has high resolution.

  10. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Picht, Oliver

    2010-01-01

    Polycrystalline Bi 2 Te 3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi 2 Te 3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  11. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  12. Nonelastic electron scattering in mercury telluride

    CERN Document Server

    Malik, O P

    2002-01-01

    By exact solution of the Boltzmann equation, the nonequilibrium charge carrier distribution function is obtained. In the temperature range 4.2 - 300 K, main electron scattering mechanisms are considered by taking into account the nonelastic electron interaction with optical vibrations of the crystal lattice.

  13. Left ventricular function assessment using 123I/99mTc dual-isotope acquisition with two semi-conductor cadmium–zinc–telluride (CZT cameras: a gated cardiac phantom study

    Directory of Open Access Journals (Sweden)

    Tanguy Blaire

    2016-11-01

    Full Text Available Abstract Background The impact of increased energy resolution of cadmium–zinc–telluride (CZT cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I remains unknown. The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques, Boxtel, The Netherlands was successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc. A total of 12 datasets was acquired with each commercially available CZT camera (DNM 530c, GE Healthcare and DSPECT, Biosensors International using both energy windows (99mTc or 123I with ejection fraction set to 33, 45, and 60 %. End-diastolic (EDV and end-systolic (ESV volumes, ejection fraction (LVEF, and regional wall motion and thickening (17-segment model were assessed using Cedars-Sinai QGS Software. Concordance between single- and dual-isotope acquisitions was tested using Lin’s concordance correlation coefficient (CCC and Bland–Altman plots. Results There was no significant difference between single- or simultaneous dual-isotope acquisition (123I and 99mTc for EDV, ESV, LVEF, or segmental wall motion and thickening. Myocardial volumes using single- (123I, 99mTc and dual-isotope (reconstructed using both 123I and 99mTc energy windows acquisitions were, respectively, the following: EDV (mL 88 ± 27 vs. 89 ± 27 vs. 92 ± 29 vs. 90 ± 26 for DNM 530c (p = NS and 82 ± 20 vs. 83 ± 22 vs. 79 ± 19 vs. 77 ± 20 for DSPECT (p = NS; ESV (mL 40 ± 1 vs. 41 ± 2 vs. 41 ± 2 vs. 42 ± 1 for DNM 530c (p = NS and 37 ± 5 vs. 37 ± 1 vs. 35 ± 3 vs. 34 ± 2 for DSPECT (p = NS; LVEF (% 52 ± 14 vs. 51 ± 13 vs. 53 ± 13 vs. 51 ± 13 for DNM 530c (p = NS and 52 ± 16 vs. 54 ± 13 vs. 54 ± 14 vs. 54 ± 13 for DSPECT (p = NS; regional motion (mm 6.72 ± 2.82 vs. 6.58 ± 2.52 vs. 6.86 ± 2.99 vs. 6.59 ± 2

  14. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe{sub 1-x}Te{sub x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [Institute of Physical Biology-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kityk, I.V. [Electrical Engineering Department, Technical University of Czestochowa, Al. Armii Krajowej 17/19, Czestochowa (Poland); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique de la Matiere (LPQ3 M), universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2011-06-16

    Highlights: > Theoretical study of effect of vary Te content on band structure, density of states, linear and nonlinear optical susceptibilities of CdSe{sub 1-x}Te{sub x}. > Increasing Te content leads to a decrease in the energy band gap. > Significant enhancement of the electronic properties as a function of tellurium concentration - Abstract: An all electron full potential linearized augmented plane wave method, within a framework of GGA (EV-GGA) approach, has been used for an ab initio theoretical study of the effect of increasing tellurium content on the band structure, density of states, and the spectral features of the linear and nonlinear optical susceptibilities of the cadmium-selenide-telluride ternary alloys CdSe{sub 1-x}Te{sub x} (x = 0.0, 0.25, 0.5, 0.75 and 1.0). Our calculations show that increasing Te content leads to a decrease in the energy band gap. We find that the band gaps are 0.95 (1.76), 0.89 (1.65), 0.83 (1.56), 0.79 (1.44) and 0.76 (1.31) eV for x = 0.0, 0.25, 0.5, 0.75 and 1.0 in the cubic structure. As these alloys are known to have a wurtzite structure for x less than 0.25, the energy gaps are 0.8 (1.6) eV and 0.7 (1.55) eV for the wurtzite structure (x = 0.0, 0.25) for the GGA (EV-GGA) exchange correlation potentials. This reduction in the energy gaps enhances the functionality of the CdSe{sub 1-x}Te{sub x} alloys, at least for these concentrations, leading to an increase in the effective second-order susceptibility coefficients from 16.75 pm/V (CdSe) to 18.85 pm/V (CdSe{sub 0.75}Te{sub 0.25}), 27.23 pm/V (CdSe{sub 0.5}Te{sub 0.5}), 32.25 pm/V (CdSe{sub 0.25}Te{sub 0.75}), and 37.70 pm/V (CdTe) for the cubic structure and from 12.65 pm/V (CdSe) to 21.11 pm/V (CdSe{sub 0.75}Te{sub 0.25}) in the wurtzite structure. We find a nonlinear relationship between the absorption/emission energies and composition, and a significant enhancement of the electronic properties as a function of tellurium concentration. This variation will help in

  15. Transport properties of silver telluride in the solid and liquid states; Etude des proprietes de transport dans le tellurure d'argent Ag{sub 2}Te aux hautes temperatures a l'etat solide et a l'etat liquide

    Energy Technology Data Exchange (ETDEWEB)

    Pham, N T [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Measurements of the electrical resistivity, Hall coefficient and thermoelectric power have been carried out for silver telluride over a large temperature range including both solid and liquid states. The analysis of the experimental data shows that in the solid state the transport properties are governed by an ambipolar process with an electron mobility much higher than the hole mobility ({mu}{sub n} = 10*{mu}{sub p}). It is found that the temperature dependence of the electron mobility can be represented by a T{sup -3} law. Deviations from the stoichiometric composition Ag{sub 2}Te have been studied. For all specimens, melting is accompanied by discontinuous variations in the transport properties. Above the melting point, the magnitude of the measured parameters and their temperature dependence show that liquid silver telluride behaves as a semiconductor. The contribution of Ag{sup +} ions to transport phenomena is suggested to account for the behaviour of the electrical properties. Experimental data have been analysed in terms of conventional theories. (author) [French] Les mesures de la resistivite electrique, du coefficient de Hall et du pouvoir thermoelectrique ont ete effectuees sur le tellurure d'argent dans un large domaine de temperature couvrant l'etat solide et l'etat liquide. L'analyse des resultats experimentaux obtenus a l'etat solide montre que les proprietes de transport sont gouvernees par le processus ambipolaire avec une mobilite des electrons beaucoup plus grande que celle des trous ({mu}{sub n} 10*{mu}{sub p}). On trouve que la mobilite des electrons varie avec la temperature suivant la loi T{sup -3}. Les ecarts de la composition stoechiometrique Ag{sub 2}Te ont ete etudies. Pour tous les echantillons, la fusion est caracterisee par des variations discontinues des proprietes de transport. Au dessus du point de fusion, la grandeur des parametres mesures ainsi que leur variation avec la temperature montrent que le tellurure d'argent liquide se

  16. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  17. The protective cell petrus for the production of californium 252; Cellule blindee petrus pour la production et l'etude du californium 252

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, R; Berger, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The alpha, beta, gamma, neutron cell which is described in the present paper is devoted to the transplutonium element production and study. It is located at the CEN in Fontenay-aux-Roses (France). The 4 feet ordinary concrete shielding made of stacked blocs allows the manipulation of radioactive sources as high as 1000 curies of 1 MeV gamma rays and with a fast neutrons flux of 10{sup 9} n.cm{sup -2}.s{sup -1}. The airtight alpha containment box is equipped with two transfer systems, one consists of a parallelepiped shaped airtight box located in a turntable, the other uses standard cylindrical containers made of polyethylene. The general equipment and the main setting up are also described. (authors) [French] La cellule alpha, beta, gamma, neutron, qui fait l'objet du present article, est destinee a la production et a l'etude des elements transplutoniens. Elle est construite au C.E.N. de Fontenay-aux-Roses (France). La protection biologique, calculee pour une activite de 1000 curies de rayonnement gamma d'energie 1 MeV accompagnee d'un flux de neutrons rapides de 10{sup 9}/cm{sup 2}s, est constituee par des parois en beton de 1,20 m d'epaisseur. L'enceinte alpha est une boite etanche qui comporte devx systemes de transferts: l'un consiste en une boite parallelepipedique etanche logee dans un barillet, l'autre fait appel a des recipients cylindriques standard en polyethylene. L'equipement general et les installations les plus importantes sont ensuite decrits. (auteurs)

  18. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads mg -1 h -1 +- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads mg -1 h -1 . These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  19. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads micrograms-1 h-1 +/- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads micrograms-1 h-1. These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  20. Neutron Protection Factor Determination and Validation for a Vehicle Surrogate Using a Californium Fission Source

    Science.gov (United States)

    2017-06-01

    study the laws governing shock wave propagation, and evaluate the suitability of military operations after being subjected to their use. During...14]. MCNP6.1 then outputs a dose spectrum, instead of the standard fluence spectrum created from the “ f4 ” tally [14]. In order to produce the dose...manually, an unmodified fluence tally ( f4 ) was exported externally to a spreadsheet. The energy bins were summed and grouped to mimic the energy bin

  1. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    International Nuclear Information System (INIS)

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  2. Multiplicity and correlated energy of gamma rays emitted in the spontaneous fission of Californium-252

    International Nuclear Information System (INIS)

    Brunson, G.S. Jr.

    1982-06-01

    An array of eight high-speed plastic scintillation detectors has been used to infer a mathematical model for the emission multipliciy of prompt gammas in the spontaneous fission of 252 Cf. Exceptional time resolution and coincidence capability permitted the separation of gammas from fast neutrons over a flight path of approximately 10 cm. About 20 different distribution models were tested. The average energy of the prompt gammas is inversely related to the number emitted; however, this inverse relationship is not strong and the total gamma energy does increase with increasing gamma number. An extension of the experiment incorporated a lithium-drifted germanium gamma spectrometer that resolved nearly 100 discrete gammas associated with fission. Of these gammas, some were preferentially associated with fission in which few gammas were emitted. Certain others were more frequent when many gammas were emitted. Results are presented

  3. Use of californium-252 sources in Hungary for teaching and research

    International Nuclear Information System (INIS)

    Csikai, J.

    1976-01-01

    An activation facility was designed to accommodate up to 50 mg of 252 Cf; it contains at present a 500 μg source. The absolute values of thermal, epithermal and fast neutron fluxes were determined by the foil activation method using In, Dy, Au, Al and Fe detectors. Cross-sections averaged for unmoderated 252 Cf neutrons were determined for 22 different reactions for elements with atomic weights lying between A=27 and 204. The sensitivity for determination of Al, Ti, Cu, As, Sr, Mo, In, Cd, Ba, Au, Hg and Pb was calculated for NaI(Tl) and Ge(Li) detectors. Average (n,2n) cross-sections for 252 Cf spectrum were calculated for 49 nuclei lying between A=14 and 204. Angular distributions and cross-sections for the fragments from 252 Cf neutron-induced fission of 232 Th and 238 U were measured. Titanium in bauxite and manganese in aluminium alloys were determined with a 252 Cf source. The applicability of solid-state track detectors for neutron dosimetry, radiography and for the determination of fuel burn-up were investigated using 252 Cf neutron and fragment sources. Characteristics of a jumping spark counter for counting fission fragments were studied with 252 Cf sources. (author)

  4. Chromatographic cation exchange separation of decigram quantities of californium and other transplutonium elements

    Energy Technology Data Exchange (ETDEWEB)

    Benker, D.E.; Chattin, F.R.; Collins, E.D.; Knauer, J.B.; Orr, P.B.; Ross, R.G.; Wiggins, J.T.

    1980-01-01

    Decigram quantities of highly radioactive transplutonium elements are routinely partitioned at TRU by chromatographic elution from cation resin using AHIB eluent. By using two high-pressure ion exchange columns, a small one for the initial loading of the feed and a large one for the elution, batch runs containing up to 200 mg of /sup 252/Cf can be made in about 5 hours (2 hours to load the feed and 3 hours for the elution). The number of effluent product fractions and the amount of actinides that must be collected in intermediate fractions are minimized by monitoring response from a flow-through alpha-detector. This process has been reliable and relatively easy to operate, and will continue to be used for partitioning transplutonium elements at TRU.

  5. Determination of the average number of neutrons per fission event for californium-252

    International Nuclear Information System (INIS)

    Aleksandrov, B.M.; Belov, L.M.; Drapchinskij, L.V.

    1982-01-01

    By means of a separate determination of neutron yields and fission event rates, the value of #betta#-bar( 252 Cf) has been measured for a series of new high-purity sources. The improved quality of the source active layers has reduced the error in determining the fission rate to 0.35%. The value obtained for #betta#-bar( 252 Cf) is 3.747+-0.036. A description is given of the design and the parameters of a spherical manganese bath in which the work on refining the value of #betta#-bar( 252 Cf) will be continued. (author)

  6. Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium.

    Science.gov (United States)

    Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K

    2017-12-06

    Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Californium-252: isotope for modern radiotherapy of cervix, uterine and vaginal carcinomas

    International Nuclear Information System (INIS)

    Maruyama, J.; Beach, J.L.; Nagell, J.R. van

    1984-01-01

    Cf-252 is an isotope that can easily be afterloaded into available gynecological applicators and used for bulky cervix, uterus or vaginal cancer therapy. It is economical, time and cost effective in use, and can be applied to the therapy of many patients throughout the world. It is more effective for neutron therapy than machine fast neutron therapy and is the only form of neutron therapy producing consistent complication-free 5-year cure of advanced cancers currently available. Cf-252 is an isotope for modern gynecological tumor therapy for the future. Isodose curves for Cf-252 implants revealed dose distributions conforming well to tumor. (orig.) [de

  8. Testing of ENDF/B cross section data in the Californium-252 neutron benchmark field

    International Nuclear Information System (INIS)

    Mannhart, W.

    1979-01-01

    The fission neutron field of 252 Cf presently represents one of the most well-known neutron benchmark fields. For 13 neutron reactions which are of importance in reactor metrology, measurements of spectrum-averaged cross sections, [sigma], performed in this neutron field were compared with calculated average cross sections. This comparison allows one to draw conclusions as to the quality of different sigma(E) data taken from ENDF/B-IV, from ENDF/B-V, and from recent experiments and used in the calculation of average cross sections. The comparison includes an uncertainty analysis regarding the different uncertainty contributions of [sigma], of sigma(E), and of the spectral distribution of 252 Cf fission neutrons. Additionally, in a few examples, sensitivity studies were carried out. The sensitivity of the spectrum-averaged cross sections to individual characteristics of the sigma(E) data, such as normalization factors or shifts in the energy scale, was investigated. Similarly, the sensitivity of [sigma] to the spectral distribution of 252 Cf was determined. 4 figures, 2 tables

  9. Total neutron cross sections of berkelium-249 and californium-249 below 100 eV

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Carlton, R.F.

    1979-01-01

    The neutron total cross sections of 249 Bk and 249 Cf have been measured from 0.03 to 100 eV using the Oak Ridge Electron Linear Accelerator (ORELA) as a source of pulsed neutrons. The 1.6 mm dia. cylindrical transmission samples contained initially up to 5.3 mg of 98% 249 Bk and 2% 249 Cf: 4.5 years later, when the final measurements were made, the composition of the samples had become 2.5% 249 Bk, 96.9% 249 Cf, and 0.6% 245 Cm. Samples were cooled with liquid nitrogen to reduce Doppler broadening. Thirty-nine resonances were identified in 249 Bk and analyzed using a single-level Breit-Wigner formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. The resonance parameters obtained have been used to determine the average level spacings and the s-wave neutron and fission strength functions. Where possible, bound-level parameters were derived to fit the thermal neutron total cross section data

  10. Measurements of Thermal Emittance for Cesium Telluride Photocathodes at PITZ

    CERN Document Server

    Miltchev, V; Grabosch, H J; Han, J H; Krasilnikov, M; Oppelt, A; Petrosian, B; Staykov, L; Stephan, F

    2005-01-01

    The thermal emittance determines the lower emittance limit and its measurement is of high importance to understand the ultimate injector performance. In this contribution we present results of thermal emittance measurements under rf operation conditions for various Cs2Te cathodes and different accelerating gradients. Measurements of thermal emittance scaling with the cathode laser spot size are presented and analysed. The significance of the Schottky effect in the emittance formation process is discussed.

  11. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  12. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  13. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    Aug 31, 2017 ... method for the deposition of ZnTe thin film as compared to other methods. ... the advantages and disadvantages of different deposition process, it was ... by a spiral resistance heater and the temperature was measured by a ...

  14. Cadmium telluride leaching behavior: Discussion of Zeng et al. (2015).

    Science.gov (United States)

    Sinha, Parikhit

    2015-11-01

    Zeng et al. (2015) evaluate the leaching behavior and surface chemistry of II-VI semiconductor materials, CdTe and CdSe, in response to pH and O2. Under agitation in acidic and aerobic conditions, the authors found approximately 3.6%-6.4% (w/w) solubility of Cd content in CdTe in the Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET), and dissolution test, with lower solubility (0.56-0.58%) under agitation in acidic and anoxic conditions. This range is comparable with prior long-term transformation and dissolution testing and bio-elution testing of CdTe (2.3%-4.1% w/w solubility of Cd content in CdTe). The implications for potential leaching behavior of CdTe-containing devices require further data. Since CdTe PV modules contain approximately 0.05% Cd content by mass, the starting Cd content in the evaluation of CdTe-containing devices would be lower by three orders of magnitude than the starting Cd content in the authors' study, and leaching potential would be further limited by the monolithic glass-adhesive laminate-glass structure of the device that encapsulates the semiconductor material. Experimental evaluation of leaching potential of CdTe PV modules crushed by landfill compactor has been conducted, with results of TCLP and WET tests on the crushed material below regulatory limits for Cd. CdTe PV recycling technology has been in commercial operation since 2005 with high yields for semiconductor (95%) and glass (90%) recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deposition of antimony telluride thin film by ECALE

    Institute of Scientific and Technical Information of China (English)

    GAO; Xianhui; YANG; Junyou; ZHU; Wen; HOU; Jie; BAO; Siqian; FAN; Xi'an; DUAN; Xingkai

    2006-01-01

    The process of Sb2Te3 thin film growth on the Pt substrate by electrochemical atomic layer epitaxy (ECALE) was studied. Cyclic voltammetric scanning was performed to analyze the electrochemical behavior of Te and Sb on the Pt substrate. Sb2Te3 film was formed using an automated flow deposition system by alternately depositing Te and Sb atomic layers for 400 circles. The deposited Sb2Te3 films were characterized by XRD, EDX, FTIR and FESEM observation. Sb2Te3 compound structure was confirmed by XRD pattern and agreed well with the results of EDX quantitative analysis and coulometric analysis. FESEM micrographs showed that the deposit was composed of fine nano particles with size of about 20 nm. FESEM image of the cross section showed that the deposited films were very smooth and dense with thickness of about 190 nm. The optical band gap of the deposited Sb2Te3 film was determined as 0.42 eV by FTIR spectroscopy, and it was blue shifted in comparison with that of the bulk Sb2Te3 single crystal due to its nanocrystalline microstructure.

  16. Mechanisms of antimony interstitial penetration into cadmium telluride crystals

    CERN Document Server

    Nikonyuk, E S; Zakharuk, Z I; Fochuk, P M; Rarenko, A I

    2001-01-01

    The results of electrophysical investigations of CdTe crystals, grown by Bridgman method and doped with Sb impurity in concentrations for 10 sup 1 sup 7 -3 x 10 sup 1 sup 9 cm sup - sup 3 are presented. The analysis of the temperature dependence of Hall coefficient, current carrier mobility and photoconductivity at intrinsic excitation for samples taken from different parts of ingots allows to conclude, that Sb sub T sub e , Sb sub C sub d centers and (Sb sub T sub e Sb sub C sub d) associated appear in CdTe crystal during its doping by antimony impurity. The hole conductivity in doped crystals is controlled by A sub 3 (Sb sub T sub e) acceptors, their density not exceeding 5 x 10 sup 1 sup 6 cm sup - sup 3 , and is essentially less than the real impurity content. The ionization energy of A sub 3 acceptors is (0.28 +- 0.01) eV. In non-equilibrium conditions these acceptors play the role of adhesion centers for holes (at high temperatures) and the slow recombination centers for electrons (at low temperatures)

  17. Mechanisms of component diffusion in mercury cadmium telluride

    International Nuclear Information System (INIS)

    Tang, M.S.; Stevenson, D.A.

    1989-01-01

    The component diffusion coefficients for the Hg/sub 0.8/Cd/sub 0.2/Te (MCT) system are measured using radioactive tracers. Multiple branches are observed in the tracer diffusion profiles which are related to fast and slow-diffusing components. Diffusion models for each component are proposed based on the defect chemistry of MCT, a calculation of the thermodynamic factor, and the relationship between component diffusion coefficients and the interdiffusion coefficients for pseudobinary systems. The model provides insight into the thermodynamic properties of the system, the mechanisms for diffusion, and the practical application of tracer diffusion data to interdiffusion and p-to-n conversion by Hg annealing

  18. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    International Nuclear Information System (INIS)

    William Quam

    2001-01-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large source to detector distances. The usual laboratory measurements are done with small sources at 20 to 50 cm ranges. Practical ranges for aerial work will be 50 to 100 meters or greater. These distances will require correction for air attenuation for most of the low energy isotopes. The approximations used in the present note for aerial measurements involve small diameter sources (diameter approximately equal to the altitude), a 1 kt pass, and a planar array with no aircraft attenuation material in the field of view. The array will have a collimator to limit the side-looking sensitivity to enable a more accurate extrapolation from the laboratory data. Large arrays will have significant physical size and weight compared to the small hand-held instruments thus far constructed. We estimate these parameters and extrapolate the power consumption to provide a realistic estimate of a suitable airborne system. In all cases these larger systems are lighter and physically more compact than the usual NaI or high purity Germanium (HPGe) systems used in aerial work. Thus deployment should be simple. The power consumption is much less as well

  19. Impurity states of vanadium in cadmium and zinc tellurides

    International Nuclear Information System (INIS)

    Gnatenko, Yu.P.; Farina, I.A.

    1996-01-01

    Low-temperature optical (4.5 K) and photoelectrical properties of CdTe and ZnTe crystals doped by vanadium are invetigated. The energies of carrier transition to valence and conduction bands, Mott-Habbard energy for 3d 3 -ion vanadium in both crystals are determined. The resonance of the excited 4 T l ( 4 P)-state of V 2+ -ion with the conduction band of CdTe crystal is found. 8 bibl.; 4 figs

  20. Study and microscopic characterization of the cadmium telluride deep levels

    International Nuclear Information System (INIS)

    Biglari, B.

    1989-05-01

    The spectroscopic methods PICTS, QTS and CTS were developed and perfected to investigate deep level analysis of high resistivity CdTe crystals which were either undoped, or doped with chlorine and copper. Crystals which were grown in space were also investigated. The main characterization of defect levels was determined and different correlations were established between the material's resistivity, chemical residues, dopant concentration and the nuclear radiation detector parameters. Using PICTS and CTS techniques, the generation of defects, under strong gamma-ray irradiation and particle bombardment was also studied. The influence of hydrogen on the main electrical characteristics of CdTe, in particular its ability to passivate the electrical activity of many deep defect and impurity states have been demonstrated. The compensation effects of Cl, Cu and H + are interpreted using the qualitative models based on different possibilities of pairing or triplet formation between the ions of these dopants and those of defects [fr

  1. Induced superconductivity in the topological insulator mercury telluride

    International Nuclear Information System (INIS)

    Maier, Luis

    2015-01-01

    The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb's superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4π instead of 2π, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2π periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4π regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90 bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable.

  2. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  3. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B.; Prat, V.

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  4. Combustion synthesis and characterization of uranium and thorium tellurides

    International Nuclear Information System (INIS)

    Czechowicz, D.G.

    1985-10-01

    This report describes an investigation of the chemical systems uranium-tellurium and thorium-tellurium. A novel synthesis technique, combustion synthesis, which uses the exothermic heat of reaction rather than externally supplied heat, was utilized to form the phases UTe, U 3 Te 4 , and UTe 2 in the U-Te system and the phases ThTe, Th 2 Te 3 , and ThTe 2 in the Th-Te system from reactions of the type U/sub x/ + Te/sub y/ = U/sub x/Te/sub y/. With this synthetic method, U-Te and Th-Te products could be formed in a matter of seconds, and the purity of the products was often greater than that of the starting materials used. Control over final product stoichiometry was found to be very difficult. The product phase distribution observed in combustion products, as determined by x-ray diffraction, electron microprobe, and optical metallographic methods, was found to be spatially complex. Lattice constants were calculated from x-ray diffraction patterns for the compounds UTe, U 3 Te 4 , and ThTe. SOLGASMIX thermodynamic equilibrium calculations were performed using available and estimated thermodynamic data on the system U-Te-O in an attempt to understand the products formed by combustion. Adiabatic combustion reaction temperatures for specific U-Te and Th-Te reactions were also calculated utilizing available and estimated thermodynamic data. 71 refs., 31 figs., 15 tabs

  5. Growth of cadmium zinc telluride by liquid phase electroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, Faculty of Engineering, University of Victoria, Victoria BC, V8W 3P6 (Canada); Sheibani, H. [Department of Industrial Engineering, Alhosn University, Abu Dhabi (United Arab Emirates)

    2006-10-15

    This study was undertaken to examine the feasibility of growing CdZnTe by liquid phase electroepitaxy. Based on our successful LPEE system of GaInAs, a new crucible to grow CdZnTe was developed. The development presented numerous difficulties. The physical properties of CdZnTe make this material very difficult to grow. All components of the system were investigated. Electromigration of the solute across the solution carries species towards the growth interface. In liquid Cd-Zn-Te, the CdTe and ZnTe species remain associated, contrary to the GaInAs system. Experiments showed that LPEE growth of CdZnTe is possible and the electromigration mechanism functions well in the CdZnTe solution. Despite this, other problems remained with the new LPEE system. The preparation of the solution proved difficult without pressurizing the LPEE crucible. Control of the reaction required the use of pre-compounded CdTe and ZnTe. Proper control of the solution saturation is imperative to ensure minimal dissolution of the seed prior to growth initiation and a reasonable growth rate during growth. The solution remained an issue during the duration of growth due to the high vapor pressures of the constituents. Tellurium evaporation during growth could lower solution volume until electrical contact across the solution is broken. Careful preparation of appropriate solution volume was imperative for successful growth. In LPEE, a uniform electric current passage across the growth interface is necessary for uniform and stable growth interface. This requires the design of a uniform contact zone between the bottom graphite electrode and the seed crystal. The contact zone issue was not adequately resolved in this study. However, a number of successful growth runs were achieved despite the electrical contact problems. Results show that the LPEE of growth CdZnTe is feasible. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Growth of cadmium zinc telluride by liquid phase electroepitaxy

    International Nuclear Information System (INIS)

    Armour, N.; Dost, S.; Sheibani, H.

    2006-01-01

    This study was undertaken to examine the feasibility of growing CdZnTe by liquid phase electroepitaxy. Based on our successful LPEE system of GaInAs, a new crucible to grow CdZnTe was developed. The development presented numerous difficulties. The physical properties of CdZnTe make this material very difficult to grow. All components of the system were investigated. Electromigration of the solute across the solution carries species towards the growth interface. In liquid Cd-Zn-Te, the CdTe and ZnTe species remain associated, contrary to the GaInAs system. Experiments showed that LPEE growth of CdZnTe is possible and the electromigration mechanism functions well in the CdZnTe solution. Despite this, other problems remained with the new LPEE system. The preparation of the solution proved difficult without pressurizing the LPEE crucible. Control of the reaction required the use of pre-compounded CdTe and ZnTe. Proper control of the solution saturation is imperative to ensure minimal dissolution of the seed prior to growth initiation and a reasonable growth rate during growth. The solution remained an issue during the duration of growth due to the high vapor pressures of the constituents. Tellurium evaporation during growth could lower solution volume until electrical contact across the solution is broken. Careful preparation of appropriate solution volume was imperative for successful growth. In LPEE, a uniform electric current passage across the growth interface is necessary for uniform and stable growth interface. This requires the design of a uniform contact zone between the bottom graphite electrode and the seed crystal. The contact zone issue was not adequately resolved in this study. However, a number of successful growth runs were achieved despite the electrical contact problems. Results show that the LPEE of growth CdZnTe is feasible. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  8. Neutron activation analysis of manganese-mercury telluride

    International Nuclear Information System (INIS)

    Sadykov, I. I.

    2003-01-01

    The triple semiconductor compound Mn x Hg 1-x Te is a worthwhile material for the development of infra-red detectors. It's properties, as well as other semiconductors ones depend on impurity elements content. So, analytical Purity control of Mn x Hg 1-x Te is required. Some procedures of the neutron activation analysis of Te[1], Hg [2] and that of their compounds (Cd x Hg 1-x Te [3], for instance) have been developed recently. However, no papers on the NAA of Mn x Hg 1-x Te have been found. This paper describes the procedure of the NAA of Mn x Hg 1-x Te based on anion-exchange chromatographic separation of impurity and matrix elements. Experimental The following reagents were used: commerciality available strongly based anion-exchange resin AW-17 (50-100 meash), hydrochloride hydrasine of analytical grade, solutions of HCl and HNO 3 prepared from concentrated acids of reagent grade. Separation processes were studied by radioactive tracers. The gamma-activity was measured on a HPGe detector GC1518 (efficiency 15 %, resolution 1,7 keV at 1332,5 keV line of 6 0C o) using DSA-1000 digital multichannel analyzer (Canberra, USA). Radioactive tracers were produced by irradiation of metals, salts or oxides of corresponding elements in WWR-SM water-water nuclear reactor. Irradiation of Mn x Hg 1-x Te samples and standards was carried out in a channel of WWR-SM reactor with a neutron flux density of 1.10 14 cm 2 .s -1 for 10 h. Solutions of manganese and mercury were prepared by dissolving their oxides in concentric hydrochloric acid. Solutions of tellurium were prepared by dissolving metallic tellurium in HCl:HNO 3 (3:1) mixture. Solution obtained was evaporated to dryness, the reside was dissolved in conc. HCl. To reduce tellurium to Te(IV) 1-2 mg of hydrazine were dissolved in solution at slight heating. Then, distilled water was added in a required quantities to get a desired concentration of HCl. The chromatographic behaviour of matrix and impurity elements was studied using chromatographic columns, filled with AW-17 resin (columns' i. d. 1.2 cm , resin layer height 10 cm, mobil phase volume 5.5 cm 3 ), prepared according to recommendations of [4]. 10 ml of the solution containing 61 mg of Te, 86 mg of Hg and 2.6 mg of Mn (That corresponds to 150 mg of Mn x Hg 1-x Te) and radioactive tracers were placed into chromatographic column and then impurities were eluted with 4 M HCl. Eluation rate was about 0.5-0.6 ml/min. Eluated was collected in a portions of 1 ml, followed by measuring it's gamma-activity. To study the distribution of matrix radionuclides along the column their activity was measured using a lead collimator

  9. Sheet resistance effects in mercury cadmium telluride implanted photodiodes

    International Nuclear Information System (INIS)

    Fiorito, G.; Gasparrini, G.; Svelto, F.

    1977-01-01

    The frequency response of Hg + implanted Hgsub(1-x)Cdsub(x)Te photodiodes is discussed. This analysis, evaluating both the response to fast laser pulses and the 3 dB rolloff of the diode shot-noise spectrum, showed the necessity of adopting a distributed equivalent circuit model taking into account the implanted layer sheet resistance. Frequency behaviour, in fact, proved not to match a simple p-n junction model based on a lumped standard equivalent circuit. On this basis apparent anomalies previously reported can be explained, and useful suggestions can be obtained for design and fabrication of fast detectors. (author)

  10. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  11. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    Anodized alu- minum oxide foil (AAO) acts as template and electrodeposi- tion is conducted in a ... the nanopores were perpendicular to the AAO membrane sur- face and were uniform in ... Aluminium oxide 0·02–0·2. 13, 21, 47. 60. 105. –.

  12. XAFS studies of ytterbium doped lead-telluride

    International Nuclear Information System (INIS)

    Radisavljevic, I.; Novakovic, N.; Romcevic, N.; Manasijevic, M.; Mahnke, H.-E.; Ivanovic, N.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) measurements were performed on uniformly doped PbTe:Yb (1.3 at.%) at all elemental absorption edges and the analysis of the results has provided precise information on the local structure around each atom. From the near edge part of the absorption spectra it was determined that Yb is in the mixed valent state, which is predominantly divalent with a small trivalent contribution. The analysis of the high energy region of the absorption spectra revealed that Yb incorporation causes deformation of the host PbTe lattice, manifested through extension of all the nearest-, and next-nearest neighbour distances.

  13. Sulfide, selenide and telluride glassy systems for optoelectronic applications

    Czech Academy of Sciences Publication Activity Database

    Ležal, Dimitrij; Zavadil, Jiří; Procházka, M.

    2005-01-01

    Roč. 7, č. 5 (2005), 2281-2291 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA104/05/0878 Institutional research plan: CEZ:AV0Z20670512 Keywords : transmission * fluorescence spectroscopy * chalcogenide glasses * optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 1.138, year: 2005

  14. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    V. Bhalerao

    2017-06-19

    Jun 19, 2017 ... which act as the interface to the satellite. The overall dimensions of ... plate affixed on a side to dissipate heat and provide a cold bias for maintaining ... patterns, with some repeats, were placed in the form of a 4 × 4 matrix to ...

  15. Cadmium Telluride and Grain Boundaries: A Preliminary Study

    Science.gov (United States)

    Liao, Michael Evan

    The efficacy of the CdCl2 treatment on polycrystalline CdTe-based solar cells was discovered over a quarter of a century ago; and yet, the exact mechanism of this treatment is still not fully understood to this day. In fact, the lack of understanding stems from a debate on the exact role of grain boundaries in CdCl2-treated CdTe solar cells. Some hypothesize that the CdCl2-treatment causes grain boundaries to become beneficial to solar cell performance while others disagree and claim that the treatment simply mitigates the harmful effects of grain boundaries via passivation. A future goal of this project is to determine which, if either, hypothesis is correct by direct wafer bonding single crystalline CdTe. Direct wafer bonding of single crystalline materials would create only one grain boundary at the bonded interface. This approach allows the orientation and surface chemistry of interfaces to be controlled in order to study the chemistry of grain boundaries methodically. However, before any direct wafer bonding can be done, a preliminary study of single crystalline CdTe is necessary. High-quality direct wafer bonding can only be achieved if the surfaces of each wafer satisfy certain requirements. Additionally, analyzing single crystalline CdTe materials prior to bonding is crucial in order to make any insightful connections between results found from direct bonding of single crystalline CdTe and what is observed in polycrystalline CdTe. First, the surface of an (001) CdTe layer epitaxially grown on an (001) InSb substrate is studied using atomic force microscopy. Stacking faults on the CdTe surface are observed and the thickness of the grown CdTe epilayer is calculated by considering the interplanar angles between the (001) and (111) crystallographic planes as well as the dimensions of the stacking faults. While the stacking faults will inhibit successful wafer bonding, the roughness of the regions outside the stacking faults is 0.9 nm, which is an acceptable roughness for direct wafer bonding. High resolution x-ray diffraction is used to study the strain of the CdTe epilayer at the epilayer-substrate interface by generating reciprocal space maps of the (004), (115), and (335) crystallographic planes. It is found that CdTe grown on an (001) InSb substrate at a low growth temperature exhibits nearly 0% relaxation. As a result, the in-plane lattice parameter of the CdTe layer is maximally strained to match the smaller lattice parameter of the InSb substrate. Consequently, the CdTe lattice is tetragonally strained normal to the substrate surface, which causes the out-of-plane lattice parameter of CdTe to be larger than its intrinsic value. Lastly, a CdCl2-treated CdTe-CdS (p-type CdTe on n-type CdS) solar cell structure is simulated using a semiconductor-heterojunction simulation program. In literature, it has been reported that chlorine atoms from the treatment segregate along grain boundaries in polycrystalline CdTe and cause the formation of local p-n junctions by inverting the grain boundaries to n-type. The simulated structure includes one grain and 2 grain boundaries. The grain/bulk CdTe material is p-type while the grain boundaries are made to be n-type with varying doping concentrations. Both the conduction band and valence band energy exhibit downward sloping from the CdTe surface to the CdTe-CdS interface. This structure assumes that the grain boundaries are parallel to the CdTe-CdS interface. While these simulations do not prove the existence of the local type-inversion hypothesis, they do entertain a novel possibility for future devices fabrication methods.

  16. The melt-growth and characterization of cadmium telluride

    International Nuclear Information System (INIS)

    Mullin, J.B.; Straughan, B.W.

    1977-01-01

    Developments in the melt-growth of CdTe are reviewed particularly with respect to techniques for controlling the dissociation pressure. The potential merits of Pressure Balancing are considered together with the results of a preliminary LEC growth investigation. The characterization, dislocations, precipitates, impurities and impurity defects-together with a discussion on their origin, and experience and suggestions for their elimination or control

  17. Oxidation-reduction properties of americium, curium, berkelium, californium, einsteinium and fermium, and thermodynamic consequences for the 5f series

    International Nuclear Information System (INIS)

    Samhoun, K.

    1976-01-01

    The amalgamation of 5f elements from Am to Fm has been studied by using 241 Am, 244 Cm, 249 Bk, 249 Cf, 252 Cf, 253 Es, 254 Es, 252 Fm and 255 Fm with two electrochemical methods, radiocoulometry and radiopolarography, perfectly adapted to investigate extremely diluted solutions when the concentration of electroactive species is as low as 10 -16 M. The theory of radiocoulometry has been developed in the general cases of reversible and irreversible electrode process. It has been used to interpret the experimental data on the kinetic curves of amalgamation, and to estimate the standard rate constant of the electrode process in complexing medium (citric). On the other hand the radiopolarographic method has been applied to study the mechanism of reduction at the dropping mercury electrode of cations M 3+ in aqueous medium to the metal M with formation of amalgam. The results are exploited into two directions: 1- Acquisition of some data concerning the oxidation-reduction properties of elements from Am to Fm. Therefore the standard electrode E 0 [M(III-0)] potentials for Bk, Cf and Es, and the standard electrode E 0 [M(II-0)] potential for Fm are estimated and the relative stability of each oxidation state (from II to VII) of 5f elements is discussed; 2- Acquisition of unknown thermodynamic data on transcalifornium elements. Correlations between 4f and 5f elements are precised and some divergences appear for the second half of 4f and 5f series (i.e. for 65 [fr

  18. Inverse gamma ray dose rate effect in californium-252 RBE experiment with human T-1 cells irradiated in vitro

    International Nuclear Information System (INIS)

    Todd, P.; Feola, J.M.

    1986-01-01

    Metabolically deoxygenated suspensions of human T-1 cells were used to determine the RBE in hypoxia of low dose rate (LDR) Cf-252 radiation compared to LDR gamma radiation. Based upon the initial portion of the survival curves the RBE was 5.0 ± 1.0 for all components of the Cf-252 radiation and 7.1 ± 1.7 for the neutrons alone. An inverse dose rate effect was observed for LDR gamma radiation in which greater cell sensitivity was observed at lower dose rates and longer irradiation periods. It was demonstrated that there was little or no sublethal damage repair or cell progression during LDR at 21 deg C, and the observed decrease in cell survival probability with increasing irradiation time at a given dose was attributable to reoxygenation of the cell suspensions during the course of LDR exposures. (Auth.)

  19. In situ x-ray fluorescence and californium-252 neutron activation analysis for marine and terrestrial mineral exploration

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1976-12-01

    Instrumentation has been designed for in situ analysis of marine and terrestrial minerals using the techniques of x-ray fluorescence and neutron activation analysis. The energy-dispersive x-ray fluorescence analyzer allows more than 20 elements to be quantitatively measured at the 10 ppM level in water depths to 300 m. The analyzer consists of a solid cryogen-cooled Si(Li) detector, a 50 mCi 109 Cd or 57 Co excitation source, and an analyzer-computer system for data storage and manipulation. The neutron activation analysis, which is designed to measure up to 30 elements at parts per hundred to ppM levels, utilizes the man-made element 252 Cf as its neutron activation source. The resulting radioelements which emit characteristic gamma radiation are then analyzed in situ during 2- to 200-s counting intervals with Ge(Li) or NaI(T1) detector systems. An extension of this latter technique, which uses a 252 Cf- 235 U fueled subcritical multiplier, is also being studied. The subcritical facility allows the neutrons from the 252 Cf source to be multiplied, thus providing greater neutron flux. Details of these in situ analysis systems, actual in situ spectra, and recorded data are discussed with respect to the detection of minerals at their varying concentration levels. The system response of each illustrates its usefulness for various rapid environmental mineral exploration studies. These techniques can be utilized on terrestrial surfaces and marine or fresh water sediments. 5 figures, 2 tables

  20. Layered germanium tin antimony tellurides: element distribution, nanostructures and thermoelectric properties.

    Science.gov (United States)

    Welzmiller, Simon; Rosenthal, Tobias; Ganter, Pirmin; Neudert, Lukas; Fahrnbauer, Felix; Urban, Philipp; Stiewe, Christian; de Boor, Johannes; Oeckler, Oliver

    2014-07-21

    In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge(0.6)Sn(0.4)Sb2Te4 and 9P-Ge(1.3)Sn(0.7)Sb2Te5. In both cases, Sb predominantly concentrates on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge prefers the position in the middle of the slabs. No significant antisite disorder is present. Comparable trends can be found in related compounds; they are due to the single-side coordination of the Te atoms at the van der Waals gap, which can be compensated more effectively by Sb(3+) due to its higher charge in comparison to Ge(2+). The structure model of 21R-Ge(0.6)Sn(0.4)Sb2Te4 was confirmed by high-resolution electron microscopy and electron diffraction. In contrast, electron diffraction patterns of 9P-Ge(1.3)Sn(0.7)Sb2Te5 reveal a significant extent of stacking disorder as evidenced by diffuse streaks along the stacking direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal conductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = ~0.25 at 450 °C for both Ge(0.6)Sn(0.4)Sb2Te4 and Ge(1.3)Sn(0.7)Sb2Te5, which is higher than ~0.20 for unsubstituted stable layered Ge-Sb-Te compounds.

  1. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  2. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors

    International Nuclear Information System (INIS)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Oelfke, Uwe; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael

    2012-01-01

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution. (paper)

  3. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.; Iyore, O. D.; Xiong, K.; White, J. B.; Cho, Kyeongjae; Alshareef, Husam N.; Gnade, B. E.

    2009-01-01

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  4. Structure and adhesive properties of solid solution specimen surfaces based on bismuth tellurides after cutting

    International Nuclear Information System (INIS)

    Dik, M.G.; Rybina, L.N.; Dubrovina, A.N.; Abdinov, D.Sh.

    1988-01-01

    Structure and depth of broken layer, occuring at electroerosion cutting along ingot samples axis of Bi 2 Te 3 -Bi 2 Se 3 , Bi 2 Te 3 -Sb 2 Te 3 systems solid solutions (obtained by methods of directed crystallization and extrusion), and equilibrium contact angle θ, adhesion effort A and contact resistance r c of these crystals contacts with eutectic alloy of Bi-Sn system are investigated. Depth and structure of the broken layer were determined by means of stage-by-stage scouring-etching and X-ray investigation of cutting surface. It is shown, that etching during ∼50 c in large-block material eliminates polycrystalline layer, lattice bendings, resulting in Laue spots asterism, but does not remove their fragmentation and wash-out. Slots wash-out reduces, while fragmentation remains even after continuous etching. Etching with duration from ∼50 c up to 30-40 min practically does not change the character of polycrystalline samples diffraction pattern

  5. Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Tobias [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Welzmiller, Simon [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Neudert, Lukas [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Urban, Philipp [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany)

    2014-11-15

    A superstructure of the rocksalt-type observed in quenched CVT-grown single crystals of Ge{sub 3.25(7)}Sn{sub 1.10(3)}Sb{sub 1.10(3)}Te{sub 6} was elucidated by X-ray diffraction using fourfold twinned crystals (space group P3{sup ¯}m1, a=4.280(1) Å, c=20.966(3) Å). The structure is built up of distorted rocksalt-type building blocks typical for long-range ordered GST materials and substitution variants thereof. In contrast to those phases, an exclusive ABC-type cubic stacking sequence of the Te-atom layers is present. High-resolution electron microscopy reveals spheroidal domains with this structure (average diameter 25 nm) whose stacking direction is perpendicular to the 〈1 1 1〉 directions of the basic rocksalt-type structure. Additional slab-like domains with a lateral extension up to 1 µm occasionally result in a hierarchical structure motif. Due to the similar electron counts of the elements involved, resonant diffraction was used in order to elucidate the element distribution in rocksalt-type building blocks of the stable layered compound 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7} (R3{sup ¯}m, a=4.24990(4) Å, c=73.4677(9) Å). Sb tends to occupy the atom site close to the van der Waals gaps while Ge concentrates in the center of the building blocks. - Graphical abstract: High-resolution transmission electron micrograph, SAED pattern and reciprocal lattice section of X-ray single crystal data of Ge{sub 3.25}Sn{sub 1.1}Sb{sub 1.1}Te{sub 6} with an 11P-type superstructure of the rocksalt type. - Highlights: • A novel superstructure of the rocksalt-type in the system Ge–Sn–Sb–Te is elucidated. • It combines the cubic stacking of the HT phase with building blocks of the RT phase. • It indicates the ordering mechanism during the phase transition of GST materials. • A hierarchical structure motif is promising with respect to the reduction of κ{sub L}. • Resonant diffraction reveals the element distribution in 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7}.

  6. Temperature-dependent ordering phenomena in single crystals of germanium antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Schneider, Matthias N. [Department of Chemistry, LMU Munich, Butenandtstr. 5-13 (D), 81377 Munich (Germany); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany)

    2015-07-15

    The temperature-dependent behavior of quenched single-crystalline (GeTe){sub n}Sb{sub 2}Te{sub 3} (n~2.8, n~5 and n~11) was investigated by semiquantitative modeling of diffuse X-ray scattering. The structure at room temperature exhibits trigonal twin domains, each comprising a stacking-disordered sequence of distorted rocksalt-type slabs with variable thicknesses. Ge and Sb share the cation position and vacancies are partially ordered in defect layers (van der Waals gaps) between the slabs. The average structure determined with resonant diffraction data corresponds to a rocksalt-type structure whose cation position is split along the stacking direction. Upon heating, cation ordering leads to a metastable superstructure of the rocksalt type at ~400 °C, which transforms to a rocksalt-type high-temperature phase with randomly distributed cations and vacancies at ~500 °C; this structure was also refined using resonant diffraction. Cooling at high or intermediate rates does not yield the long-range ordered phase, but directly leads to the twinned disordered phase. - Graphical abstract: Development of the diffraction patterns of (GeTe){sub ~11}Sb{sub 2}Te{sub 3} upon heating; the insets symbolically sketch the real structure at the corresponding temperatures. - Highlights: • The structure of disordered (GeTe){sub n}Sb{sub 2}Te{sub 3} is described as a function of temperature. • Structural changes are tracked by modeling diffuse X-ray scattering. • Quenched crystals exhibit distorted NaCl-type slabs with different thicknesses. • Vacancy ordering upon heating leads to a metastable superstructure of the NaCl type. • Further heating leads to an undistorted disordered NaCl-type high-temperature phase.

  7. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  8. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide

    CERN Document Server

    Mishra, S K; Jepsen, O

    1997-01-01

    The electronic structures of the two thermoelectric materials Bi sub 2 Te sub 3 and Bi sub 2 Se sub 3 are studied using density-functional theory with the spin - orbit interaction included. The electron states in the gap region and the chemical bonding can be described in terms of pp sigma interaction between the atomic p orbitals within the 'quintuple' layer. For Bi sub 2 Se sub 3 , we find both the valence-band maximum as well as the conduction-band minimum, each with a nearly isotropic effective mass, to occur at the zone centre in agreement with experimental results. For Bi sub 2 Te sub 3 , we find that the six valleys for the valence-band maximum are located in the mirror planes of the Brillouin zone and they have a highly anisotropic effective mass, leading to an agreement between the de Haas-van Alphen data for the p-doped samples and the calculated Fermi surface. The calculated conduction band, however, has only two minima, instead of the six minima indicated from earlier experiments. The calculated S...

  9. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  10. Electronic structure of chromium-doped lead telluride-based diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Skipetrov, E.P.; Pichugin, N.A.; Slyn'ko, E.I.; Slyn'ko, V.E.

    2011-01-01

    The crystal structure, composition, galvanomagnetic and oscillatory properties of the Pb 1-x-y Sn x Cr y Te (x = 0, 0.05-0.30, y ≤ 0.01) alloys have been investigated with varying matrix composition and chromium impurity concentration. It is shown that the chromium impurity atoms dissolve in the crystal lattice at least up to 1 mol.%. The following increase of the chromium concentration leads to the appearance of microscopic regions enriched with chromium and inclusions of Cr-Te compounds. A decrease of the hole concentration, a p-n-conversion of the conductivity type and a pinning of the Fermi level by the chromium resonant level are observed with increasing chromium content. Initial rates of changes in the free carrier concentration on doping are determined. The dependences of electron concentration and Fermi level on tin content are calculated by the two-band Kane dispersion relation. A diagram of electronic structure rearrangement for the chromium-doped alloys with varying the matrix composition is proposed.

  11. Preparation of lead-tin telluride Pbsub(1-x)Snsub(x)Te at low temperature

    International Nuclear Information System (INIS)

    Gafni, G.

    1977-01-01

    A new method for the preparation of Pbsub(1-x)Snsub(x)Te at low temperature is described. The experiments were carried out in the concentration range 0.1 2 as solvent. The alloy obtained was a polycrystallized powder of 20-100 *mm. The material prepared in this way can be used as a source for the growth of single crystals for the manufacture of electro-optical devices. (B.G.)

  12. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots

    International Nuclear Information System (INIS)

    Zekavati, Roya; Bayat, Mansour; Safi, Shahabeddin; Hashemi, Seyed Jamal; Rahmani-Cherati, Tavoos; Tabatabaei, Meisam; Mohsenifar, Afshin

    2013-01-01

    We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immuno reaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL −1 . The limit of detection is 2 × 10 −11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps. (author)

  13. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded by up to 25% at the Nyquist frequency relative to EI systems. Additionally, unlike EI systems, the MTF of spectroscopic systems is strongly dependent on photon energy, which results in energy-bin-dependent spatial resolution in spectroscopic systems. The PDF-transfer approach to modeling signal transfer through SPC and spectroscopic x-ray imaging systems provides a framework for understanding system performance. Application of this approach demonstrated that charge sharing artificially inflates the SPC image signal and degrades the MTF of SPC and spectroscopic systems relative to energy-integrating systems. These results further motivate the need for anticharge-sharing circuits to mitigate the effects of charge sharing on SPC and spectroscopic x-ray image quality. © 2018 American Association of Physicists in Medicine.

  14. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    International Nuclear Information System (INIS)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji

    2014-01-01

    We report the electric-field modulation of magnetism of a hexagonal Cr 1-δ Te thin film. A gate voltage V G is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr 1-δ Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr 1-δ Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji [Institute of Materials Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-15

    We report the electric-field modulation of magnetism of a hexagonal Cr{sub 1-δ}Te thin film. A gate voltage V{sub G} is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr{sub 1-δ}Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr{sub 1-δ}Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. In situ deformation and mechanical properties of bismuth telluride prepared via zone melting

    Science.gov (United States)

    Lai, Tang-Yu; Hsiao, Yu-Jen; Fang, Te-Hua

    2018-03-01

    In this study, we prepared Bi2Te3 nanostructures via zone melting and characterized their mechanical properties by nanoindentation and in situ transmission electron microscopy (TEM). The nanoindentation results revealed that a significant ‘pop-in’ phenomenon occurs under high-loading conditions with multiple dislocations and phase transitions in the material structure. Young’s modulus of the nanostructures was found to be 42.7 ± 2.56 GPa from nanoindentation measurements and 12.3 ± 0.1 GPa from in situ TEM measurements. The results of this study may be useful for the future development of Bi2Te3 thermoelectric devices via printing processes.

  17. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)

    2017-04-15

    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Determination of deep levels in semi-insulating cadmium telluride by thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Scharager, C.; Muller, J.C.; Stuck, R.; Siffert, P.

    1975-01-01

    Thermally stimulated current (TSC) measurements have been performed in high resistivity (rho approximately 10 7 ohms.cm) CdTe γ-ray detectors between 35 and 300K. The TSC curves have been analyzed by different methods, including those taking into account the retrapping of the carriers. The trap characteristics have been determined; especially three levels located at E(v)+0.13eV, E(v)+0.30eV and E(c)-0.55eV have been investigated [fr

  19. Hall effect and photoconductivity lifetime studies of gallium nitride, indium nitride, and mercury cadmium telluride

    Science.gov (United States)

    Swartz, Craig H.

    A deep understanding of both carrier recombination and transport is necessary for semiconductor engineering, particularly in defining the ultimate limits of performance for a given device before spending the resources to perfect its fabrication. Hall effect measurements utilizing a variable magnetic field are necessary to discriminate between conduction in epitaxial layers and conduction originating at the surface or at an interfacial layer. For thick hydride vapor phase epitaxy (HVPE) grown GaN, variable field Hall measurements revealed the presence of small but significant lower mobility surface and interface electrons which would otherwise lead to errors in interpreting the electrical properties. In addition, QMSA analysis of the measurements indicates that thick GaN samples contain a large spread in electron mobility values, most likely with depth. For molecular beam epitaxial InN, it was found that electrical measurements are affected by surface charge conduction, as well as the non-uniformity of mobility and carrier concentration with depth. Both of these effects mask the surprisingly high quality of the material close to the surface. Photoconductance lifetime and variable-magnetic-field Hall and transient measurements were performed on a series of undoped, In-doped and As-doped HgCdTe grown by MBE and MOCVD. N-type layers often significantly influence the interpretation of the electrical measurements. Even the best Low Wavelength Infrared (LWIR) n-type material still appears to be dominated by defect-related recombination, as intrinsic lifetimes calculated with full band structure can be well above those measured. Mid-Wavelength Infrared (MWIR) lifetimes increase somewhat with carrier concentration, as if the n-type doping process were passivating Schockley-Read-Hall (SRH) defects. P-type MWIR films lie mainly below the predicted values, and their relationship between concentration and lifetime is essentially unchanged by growth technique, indicating that a fundamental native defect is responsible for the recombination. Those with lifetimes above the predicted values have anomalous temperature dependences when measured, and often a non-exponential photoconductive decay characteristic of minority carrier traps. Deep level trap concentrations in GaN can harm performance in many desired applications. Deep Level Transient Spectroscopy (DLTS) measurement on MBE GaN suggest that the trapping center concentration drops with temperature below 770°C.

  20. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  1. Magnetic susceptibility of free charge carriers in bismuth tellurides (Bi2Te3)

    International Nuclear Information System (INIS)

    Guha Thakurta, S.R.; Dutta, A.K.

    1977-01-01

    Principal magnetic susceptibilities of both p- and n-type Bi 2 Te 3 crystals have been measured over the range of temperature 90 deg K to 650 deg K. The observed susceptibilities are diamagnetic and temperature dependent. This temperature dependence has been attributed to the contribution of the free charge carriers to the susceptibilities. From the observed susceptibilities the carrier-susceptibilities have been separately obtained which are found to be paramagnetic. From the total carrier-susceptibilities, the susceptibilities of the carriers which are thermally liberated in the intrinsic region have been separated. From an analysis of the carrier-susceptibilities the band gap and its temperature coefficient have been found out and these compare favourably with those obtained from electrical measurements. (author)

  2. Thermoelectric enhancement at low temperature in nonstoichiometric lead-telluride compounds

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Kita, Takuji

    2007-01-01

    Pb 1.17 Te thermoelectric polycrystalline materials were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The property measurement and microstructural characterization showed that the present material has special features different from traditional Pb 1+x Te ingots with secondary Pb phase. An attractive enhancement of the thermoelectric figure of merit ZT = 0.64 was obtained at 450 K, with a low thermal conductivity of 1.11 W m -1 K -1 at this temperature. Transmission electron microscopy observation showed the existence of randomly dispersed nano features that are responsible for such enhancement, some of which are similar to the nanostructures reported in the AgPb m SbTe m+2 system. The origin of these regions is discussed and their influence on thermal conductivity is revealed. The results confirm the effectiveness of such a kind of nano feature in improving thermoelectric properties, especially in reducing thermal conductivity. They also indicate a new way of obtaining thermoelectric materials with such a kind of nano feature via MA and SPS

  3. Faraday Rotation Studies of Indium Antimonide and CADMIUM(1-X) Manganese(x) Telluride

    Science.gov (United States)

    Jimenez Gonzalez, Hector J.

    Faraday rotation has been studied in two material systems: narrow-gap InSb and wide-gap Cd_ {1-x}Mn_{x}Te. The measurements were done in the infrared region using high magnetic fields up to 150 kG. The Faraday rotation of n-type InSb has been measured for wavelengths between 8.0 and 13.0 μm at 9 K, using magnetic fields up to 150 kG. Measurements were made on samples with nominal carrier concentrations of 1 times 10^{14 }, 6 times 10 ^{14}, 1 times 10^{15}, and 5 times 10^{15} cm^{-3}. The experimental results have been successfully analyzed in terms of intraband and interband transitions at the Gamma point in the Brillouin zone, using a quantum-mechanical treatment. In this approach, there are three contributions to the Faraday rotation: (a) interband, (b) plasma, and (c) spin contributions. The interband contribution is dominant in the low concentration samples where the plasma and spin contributions, which are due to the free carriers, are small. At high carrier concentrations the spin and plasma contributions are dominant. In the low-magnetic -field regime the interband and plasma contributions are linearly proportional to the magnetic field and become small. This makes the spin contribution the leading contribution to the Faraday rotation at low magnetic fields. The 4 -band k cdot p Pidgeon and Brown model was used to calculate the energy levels and the matrix elements for these transitions. Quantum oscillatory effects were observed at low magnetic field. Cyclotron resonance absorption was observed in all samples for wavelengths _sp{~}{>}16.0 mum. The Faraday rotation of Cd_{1 -x}Mn_{x}Te has been measured for x = 0 to 0.27 at 300 and 77 K for photon energies between 0.1 and 1.5 eV, corresponding to wavelengths of 12.0 and 0.8 mum, respectively. We have developed a multioscillator model for the Faraday rotation using an analytical expression for the refractive index that includes contributions from interband transitions at the Gamma, L, and X points of the Brillouin zone as well as the lattice contribution from optical phonons. The multioscillator model explains the measured behavior of the Verdet constant as a function of photon energy for all the above values of x at both temperatures. This model has also been applied successfully to Faraday rotation data for Cd_ {1-x}Mn_{x}Te and Zn_{1-x}Mn _{x}Te from previous studies. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  4. Effects of substrate temperature and post-deposition anneal on properties of evaporated cadmium telluride films

    International Nuclear Information System (INIS)

    Bacaksiz, E.; Basol, B.M.; Altunbas, M.; Novruzov, V.; Yanmaz, E.; Nezir, S.

    2007-01-01

    The effects of substrate temperature and post-deposition heat treatment steps on the morphology, structural, optical and electrical properties of thin film CdTe layers grown by vacuum evaporation were investigated. Scanning electron microscopy and X-ray diffraction (XRD) techniques were employed to study the structural changes. It was observed that the grain sizes and morphologies of as-deposited layers were similar for substrate temperatures of - 173 deg. C and - 73 deg. C. However, CdTe films produced at a substrate temperature of 27 deg. C had substantially larger grain size and clearly facetted morphology. Annealing at 200-400 deg. C in air did not cause any appreciable grain growth in any of the films irrespective of their growth temperature. However, annealing at 400 deg. C reduced faceting in all cases and initiated fusing between grains. XRD studies showed that this behavior after annealing at 400 deg. C coincided with an onset of a degree of randomization in the originally strong (111) texture of the as-grown layers. Optical band gap measurements showed sharpening of the band-edge upon annealing at 400 deg. C and a band gap value in the range of 1.46-1.49 eV. Resistivity measurements indicated that annealing at 400 deg. C in air forms a highly resistive compensated CdTe film. All results point to 400 deg. C to be a critical annealing temperature at which optical, structural and electrical properties of CdTe layers start to change

  5. Low ohmic multilayer contacts in lead-tin-telluride diode lasers

    International Nuclear Information System (INIS)

    Herrmann, K.; Sumpf, B.; Boehme, D.; Hannemann, M.

    1983-01-01

    The preparation and the influence of low ohmic multilayer thin film contacts of lead-salt homo- and heterolasers on the degradation of lasing parameters during recycling processes between low working temperatures and room temperatures storage are described and discussed in detail. (author)

  6. Femtosecond optical characterization and applications in cadmium(manganese) telluride diluted magnetic semiconductors

    Science.gov (United States)

    Wang, Daozhi

    This thesis is devoted to the optical characterization of Cd(Mn)Te single crystals. I present the studies of free-carrier dynamics and generation and detection of coherent acoustic phonons (CAPS) using time-resolved femtosecond pump-probe spectroscopy. The giant Faraday effect and ultrafast responsivity of Cd(Mn)Te to sub-picosecond electromagnetic transients are also demonstrated and discussed in detail. The first, few-picosecond-long electronic process after the initial optical excitation exhibits very distinct characteristic dependence on the excitation condition, and in case of Cd(Mn)Te, it has been attributed to the collective effects of band filling, band renormalization, and two-photon absorption. A closed-form, analytic expression for the differential reflectivity induced by the CAPs is derived based on the propagating-strain-pulse model and it accounts very well for our experimental observations. The accurate values of the Mn concentration and longitudinal sound velocity nu s in Cd(Mn)Te were obtained by fitting the data of the refractive index dependence on the probe wavelength to the Schubert model. In Cd 0.91Mn0.09Te, nus was found to be 3.6x103 m/s. Our comparison studies from the one-color and two-color experiments reveal that the intrinsic phonon lifetime in Cd(Mn)Te was at least on the order of nanoseconds, and the observed exponential damping of the CAP oscillations was due to the finite absorption depth of the probe light. Optically-induced electronic stress has been demonstrated to be the main generation mechanism of CAPs. We also present the giant Faraday effect in the Cd(Mn)Te and the spectra of the Verdet constant, which is mainly due to the exchange interaction between the Mn ions and band electrons. The spectral characteristics of the Verdet constant in Cd(Mn)Te exhibit very unique features compared to that in pure semiconductors. In our time-resolved sampling experiments at the room temperature, the response of the Cd(Mn)Te, particularly with low Mn concentrations, to the sub-picosecond electromagnetic pulses has been demonstrated for the first time and studied in detail. The physical origin of the ultrafast responsivity is shown to be the electro-optic (Pockels) effect, simultaneously excluding the magneto-optical (Faraday) effect due to the Mn-ion spin dynamics. The discrepancy between the absence of the low-frequency Pockels effect and the ultrafast sampling results, suggests that in Cd(Mn)Te crystals at low frequencies, the electric field component of the external electromagnetic transients is screened by the free carriers (holes). At very high (THz) frequencies, tested by our sampling experiment, Mn spins are too slow to respond and we observe the very large Pockels effect in Cd(Mn)Te crystals.

  7. Photoconductivity of vanadium-doped lead telluride in the terahertz spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Artamkin, A. I.; Dobrovolsky, A. A.; Vinokurov, A. A.; Zlomanov, V. P. [Moscow State University (Russian Federation); Danilov, S. N. [University of Regensburg (Germany); Bel' kov, V. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Ryabova, L. I.; Khokhlov, D. R., E-mail: khokhlov@mig.phys.msu.ru [Moscow State University (Russian Federation)

    2013-03-15

    It is shown that PbTe:V single crystals are photosensitive in the terahertz spectral region up to the wavelength 280 {mu}m. The measurements are conducted in the temperature range from 8 to 300 K. In this temperature range, the dark conductivity of the crystals exhibits the activation character of the temperature dependence and varies by four orders of magnitude, which is due to Fermi-level pinning 20 meV below the bottom of the conduction band. As the temperature is elevated and, correspondingly, the conductivity increases, the amplitude of the photoresponse substantially increases. This result is interpreted in the context of the model that takes into account significant broadening of the vanadium impurity level and its shift to the bottom of the conduction band with increasing temperature.

  8. Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Filip; Kadlec, Christelle; Kužel, Petr; Petzelt, Jan

    2011-01-01

    Roč. 84, č. 20 (2011), 205209/1-205209/8 ISSN 1098-0121 R&D Projects: GA ČR GC202/09/J045 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz spectroscopy * phase transition * semiconductor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  9. Effect of Gallium Doping on the Characteristic Properties of Polycrystalline Cadmium Telluride Thin Film

    Science.gov (United States)

    Ojo, A. A.; Dharmadasa, I. M.

    2017-08-01

    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.

  10. Determination of the mean inner potential of cadmium telluride via electron holography

    Science.gov (United States)

    Cassidy, C.; Dhar, A.; Shintake, T.

    2017-04-01

    Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates.

  11. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.

    Science.gov (United States)

    Naderi, Saeed; Zare, Hakimeh; Taghavinia, Nima; Irajizad, Azam; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2018-05-01

    Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.

  12. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  13. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.

    2009-08-13

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  14. Film thickness and chemical processing effects on the stability of cadmium telluride solar cells

    International Nuclear Information System (INIS)

    Albin, D.S.; Demtsu, S.H.; McMahon, T.J.

    2006-01-01

    The performance and stability of CdS/CdTe solar cells as a function of layer thickness, back contact etch, and oxygen during the CdCl 2 anneal was determined. Multiple linear regression models were used to analyze the statistical significance of various first order effects and interactions. With stress, all devices showed a reduction in open-circuit voltage (V oc ) and fill factor (FF) characteristic of increased recombination. Devices using thinner CdS were vulnerable to shunt formation. Oxygen during the CdCl 2 anneal minimizes this effect. A thermodynamic model involving the formation of Cu-oxide is presented to explain the latter

  15. Investigation to optimize the energy resolution and efficiency of cadmium(zinc)telluride for photon measurements

    Science.gov (United States)

    Kim, Hadong

    While the investigations of the Cd(Zn)Te characteristics were completed, a new method to make arbitrary anode shapes, without the troublesome shadow mask technique, was found. With this technique, the two-anode geometry Cd(Zn)Te detector was introduced and tested. The semiconductor performance of the two-anode geometry detectors for the incoming gamma rays of 241Am, 57Co, and 137Cs were compared to the responses of the planar device. The very promising photon energy resolutions of 9.3 and 5.4% FWHM were obtained with the two-anode geometry detector for the gamma rays energies of 122 keV and 662 keV, respectively, while no discernible full energy peaks were apparent with the planar detector. Several simulation programs that are very easy to handle were developed as useful tools for investigating the complicated gamma ray pulse height distributions, which were due to the energy deposition events inside the semiconductors. Comparisons to the known values and with the results from other application programs, validated the information obtained from the simulation programs, which were developed during this research effort. A graphical user interface (GUI) was designed for the user's convenience in order to enter the required input parameters for the specific requirements of each simulation programs. The idealized noise free spectra for the planar detector and for the small pixel geometry detector were successfully obtained by applying Monte Carlo techniques.

  16. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  17. Crystal quality of two-dimensional gallium telluride and gallium selenide using Raman fingerprint

    Directory of Open Access Journals (Sweden)

    Jannatul Susoma

    2017-01-01

    Full Text Available We have established Raman fingerprint of GaTe and GaSe to investigate their crystal quality. As unencapsulated, they both oxidise in ambient conditions which can be detected in their Raman analysis. X-ray photoelectron spectroscopy (XPS analysis shows a good agreement with Raman analysis. 50-nm-thick Al2O3 encapsulation layer deposited by atomic layer deposition (ALD inhibits degradation in ambient conditions.

  18. Scanning tunneling spectroscopy of the surface states of Dirac fermions in thermoelectrics based on bismuth telluride

    Science.gov (United States)

    Lukyanova, L. N.; Makarenko, I. V.; Usov, O. A.; Dementev, P. A.

    2018-05-01

    The morphology of the interlayer van der Waals surface and differential tunneling conductance in p-Bi2‑xSbxTe3‑ySey solid solutions were studied by scanning tunneling microscopy and spectroscopy in dependence on compositions. The topological characteristics of the Dirac fermion surface states were determined. It was shown that the thermoelectric power factor and the material parameter enhance with the shift of the Dirac point to the top of the valence band with the increasing of atomic substitution in these thermoelectrics. A correlation between topological characteristics, power factor and material parameters was found. A growth contribution of the surface states is determined by an increase of the Fermi velocity for large atomic substitutions of Bi at x > 1.5 and small substitutions in the Te sublattice (y = 0.06). In compositions with smaller substitutions at x = (1–1.3) and y = (0.06–0.09), similar effect of the surface states is determined by raising the surface concentration of charge carriers.

  19. Temperature dependences of the electrical conductivity and Hall coefficient of indium telluride single crystals

    International Nuclear Information System (INIS)

    Hussein, S.A.

    1989-01-01

    Conductivity type, carrier concentration and carrier mobility of InTe samples grown by Bridgman technique were determined by the Hall effect and electrical conductivity measurements. The study was performed in the temperature range 150-480 K. Two samples with different growth rate were used in the investigation. The samples under test were P-type conducting, in accordance with previous measurements of undoped material. The Hall coefficient was found to be isotropic yielding room temperature hole concentration in the range 10 15 -10 16 cm -3 . The hole mobilities of InTe samples were in the range 1.17 x 10 3 -2.06 x 10 3 cm 2 /V · sec at room temperature. The band-gap of InTe determined from Hall coefficient studies has been obtained equal to 0.34 eV. The scattering mechanism was checked, and the electrical properties were found to be sensitive to the crystal growth rate. (author)

  20. Use of a cadmium telluride detector in a new tiny personal radiation chirper

    International Nuclear Information System (INIS)

    Wolf, M.A.; Umbarger, C.J.; Entine, G.

    1978-01-01

    By use of a CdTe crystal coupled to newly designed, low power electronics, we have developed a new personal radiation chirper that is superior to existing instruments. The device emits audible chirps or beeps at a rate proportional to the photon radiation exposure to the wearer. The device is small (6.2 cm high by 3.2 cm wide by 1.7 cm thick) and of low mass (50 grams) and is made to be clipped to the shirt collar of the wearer. The instrument has long continuous-use battery life and is sensitive over a large photon energy and exposure rate span

  1. [An improved method of preparing protein and peptide probes in mass spectrometry with ionization of division fragments by californium-252 (TOF-PDMS)].

    Science.gov (United States)

    Chivanov, V D; Zubarev, R A; Aksenov, S A; Bordunova, O G; Eremenko, V I; Kabanets, V M; Tatarinova, V I; Mishnev, A K; Kuraev, V V; Knysh, A N; Eremenko, I A

    1996-08-01

    The addition of organic acids (picric, oxalic, citric, or tartaric) to peptide and protein samples was found to significantly increase the yield of their quasi-molecular ions (QMI) in time-of-flight 252Cf plasma desorption mass spectrometry. The yield of the ions depended on the pKa of the acid added.

  2. The development and medical applications of a simple facility for partial body in vivo neutron activation analysis using californium-252 sources

    International Nuclear Information System (INIS)

    Boddy, K.

    1978-11-01

    A simple and cheap facility for partial body neutron activation analysis has been designed, based on the use of two 100 μg 252 Cf neutron sources. The results reported show that calcium can be measured in parts of the body such as the tibia with a precision as good as +- 1.6 % for a radiation dose of 2 rem. The uniformity of the thermal neutron flux density is better than +- 3 % over 10 cm. Some applications of this irradiation facility for studies of trace elements, in particular cadmium in liver and aluminium in liver or brain, have also been explored. However, the sensitivity attainable is not yet sufficient for the study of normal levels, but could be of interest in toxicological investigations

  3. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  4. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  5. Measurement and model description of differential neutron spectra of the californium 252 spontaneous fission depending on THETA, Msub(T), Esub(kin sum)

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Sidorov, L.V.; Vasil'eva, N.K.; Barashkov, Yu.A.; Golovanov, O.A.; Kopalkin, N.V.; Nemudrov, N.I.; Surin, V.M.; Khachaturov, Yu.F.

    1984-01-01

    The results of the 4π-spectrometer mesurement of the neutron spectra in the 26-154 deg angle range for seven groups of fragments with different masses and total kinetic energies are given. Experimental spectra have been analyzed for consistency with the evaporation model of neutrons from moving fragments. The results of an analysis of differential neutron spectra shows that the main reason of the ''yearly'' neutron emission is a neutron evaporation from fragments with large excitation energy and from fragments with neutron number N>82 during the time as compared with the time of fragment acceleration

  6. Efficacy of brachytherapy with californium-252 neutrons versus cesium-137 photons for eradication of bulky localized cervical cancer: single-institution study

    International Nuclear Information System (INIS)

    Maruyama, Y.; van Nagell, J.R.; Yoneda, J.; Donaldson, E.; Gallion, H.; Higgins, R.; Powell, D.; Turner, C.; Kryscio, R.

    1988-01-01

    A fast-neutron-emitting radioisotope, 252 Cf, is being tested in clinical trials of neutron brachytherapy for cervical cancer. The efficacy for histological eradication of bulky stage IB cervical tumors (mean diameter, approximately 6 cm) using combined radiation and surgery was studied in 65 patients treated with 137 Cs or 252 Cf before surgery during 1983-1986. Forty-four patients were treated with 137 Cs and 21 were treated with 252 Cf at equivalent doses of radiation. Fifteen of the 44 specimens (34%) were positive after 137Cs therapy. Only one of the 21 specimens was positive after 252 Cf therapy (P = .025), and that patient was treated in a delayed schedule 21 days after the start of external-beam irradiation rather than early in the course. 252 Cf therapy required a much lower radiation dose and shorter treatment time. The study compared tumor destruction of an identically staged human cervical tumor in situ by direct histological means, using 252 Cf neutron therapy or conventional photon therapy at an identical and equivalent dose adjusted by a relative biological effectiveness of 6.0 for 252 Cf

  7. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

    2011-02-01

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  8. Test and evaluation of infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Hoke, Forney M.

    Papers on the testing and evaluation of IR detectors and arrays are presented, covering topics such as a short wavelength IR test system, pulse height analysis, the use of an expert system for IR detector testing, low-background IR focal plane testing, electron beam testing, high performance silicide Schottky photodiodes, the SDI organization focal plane test program, the absorption cross section of arsenic in silicon, and long wavelength IR hybrids. Other topics include low background radiometric detector measurements, an ultralow background dewar for IR detector characterization studies, a computer assisted mosaic array test station, a configurable detector array test station, automated detector material characterization capabilities, and a test system for mercury cadmium telluride photoconductor arrays. Additional topics include ionization dosimetry measurements inside a dewar for linac electron and californium-252 neutron environments, a radiation test facility using a variable-flux electron beam source, automated visual inspection of IR focal plane arrays, a titanium cryostat for low temperature radiation effects studies, a low dose rate gamma test facility, and the test and evaluation of stability in IR staring focal plane arrays after nonuniformity correction.

  9. Magnetic properties of single crystals of bismuth telluride doped with 0.2 at% lead and its thermoelectric power

    International Nuclear Information System (INIS)

    Biswas, S.; Bhattacharya, R.

    1990-01-01

    At temperatures above 200 K the diamagnetic susceptibility of Bi 2 Te 3 doped with 0.2 at% Pb decreases with rising temperature which cannot be accounted for by the change in the diamagnetic contribution of the free carriers present in the substance. It is shown that this decrease can be accounted for if χ L (diamagnetic contribution of core and valence electrons) decreases with temperature. The thermoelectric power is measured to determine the effective mass of carriers. (author)

  10. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    Directory of Open Access Journals (Sweden)

    Michele D. Nielsen

    2015-05-01

    Full Text Available AgSbTe2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ∼ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe2 is a two carrier system having both holes (concentration p and electrons (n. Good thermoelectric performance requires heavy p-type doping (p > > n. This can be achieved with native defects or with extrinsic doping, e.g. with transition metal element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb2Te3-Ag2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. Additionally, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.

  11. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Michele D.; Jaworski, Christopher M. [Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Heremans, Joseph P., E-mail: heremans.1@osu.edu [Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-15

    AgSbTe{sub 2} is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ∼ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe{sub 2} is a two carrier system having both holes (concentration p) and electrons (n). Good thermoelectric performance requires heavy p-type doping (p > > n). This can be achieved with native defects or with extrinsic doping, e.g. with transition metal element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb{sub 2}Te{sub 3}-Ag{sub 2}Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. Additionally, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI{sub 2} materials is due to an intrinsic mechanism, insensitive to changes in defect structure.

  12. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes

    2017-01-01

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709

  13. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  14. Low dose in nuclear cardiology: state of the art in the era of new cadmium-zinc-telluride cameras.

    Science.gov (United States)

    Acampa, Wanda; Buechel, Ronny R; Gimelli, Alessia

    2016-06-01

    The use of myocardial perfusion imaging has seen a tremendous growth during the last decade and has become the most commonly used non-invasive imaging tool for risk stratification in patients with suspected and known coronary artery disease. Adherence to radiation safety best practices varied significantly between laboratories but the possibility to use the new cameras in nuclear cardiology can reduce dramatically the radiation dose without losing accuracy. Moreover, the physical characteristics of ultrafast technology could be able to open new doors for the evaluation of old parameters, changing the impact of nuclear cardiology in the diagnostic strategies. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Babar, S.; Sellin, P.J.; Watts, J.F.; Baker, M.A.

    2013-01-01

    Highlights: ► CdZnTe single crystal etched in bromine-in-methanol and passivated in H 2 O 2 . ► XPS depth used to accurately determine enriched Te layer and TeO 2 thickness. ► For 0.2 and 2.0 (v/v) % bromine-in-methanol treatments, enriched Te layer thickness determined to be 1.3 and 1.8 nm, respectively. ► After passivation in 30 wt.% H 2 O 2 , the oxide thickness varies between 1.0 and 1.25 nm depending on the calculation method. - Abstract: The performance of single crystal CdZnTe radiation detectors is dependent on both the bulk and the surface properties of the material. After single crystal fabrication and mechanical polishing, modification of the surface to remove damage and reduce the surface leakage current is generally achieved through chemical etching followed by a passivation treatment. In this work, CdZnTe single crystals have been chemically etched using a bromine in methanol (BM) treatment. The BM concentrations employed were 0.2 and 2.0 (v/v) % and exposure times varied between 5 and 120 s. Angle resolved XPS and sputter depth profiling has been employed to characterize the surfaces for the different exposure conditions. A Te rich surface layer was formed for all exposures and the layer thickness was found to be independent of exposure time. The enriched Te layer thickness was accurately determined by calibrating the sputter rate against a CdTe layer of known thickness. For BM concentrations of 0.2 (v/v) % and 2 (v/v) %, the Te layer thickness was determined to be 1.3 ± 0.2 and 1.8 ± 0.2 nm, respectively. The BM etched surfaces have subsequently been passivated in a 30 wt.% H 2 O 2 solution employing exposure time of 15 s. The oxide layer thickness has been calculated using two standard XPS methodologies, based on the Beer–Lambert expression. The TeO 2 thickness calculated from ARXPS data are slightly higher than the thickness obtained by the simplified Beer–Lambert expression. For BM exposures of 30–120 s followed by a passivation treatment of 30 wt. % H 2 O 2 solution employing an exposure time 15 s, the ARXPS method gave an average TeO 2 thickness value of 1.20 nm and the simplified Beer–Lambert expression gave an average thickness value of 0.99 nm.

  16. Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing

    International Nuclear Information System (INIS)

    Li, C.C.; Drymiotis, F.; Liao, L.L.; Dai, M.J.; Liu, C.K.; Chen, C.L.; Chen, Y.Y.; Kao, C.R.; Snyder, G.J.

    2015-01-01

    Highlights: • Ag serves as a promising bonding material for PbTe operating at T Hot ⩽ 400 °C. • The Ag foils reacted vigorously with PbTe to form Ag 2 Te at 550 °C. • The Seebeck coefficient of Ag/PbTe/Ag is slightly higher than that of pure PbTe. • A cost-effective way for long-term operations at high temperature. - Abstract: We use the rapid hot-pressing method to bond Ag foil onto pure PbTe in order to assess its effectiveness as a bonding layer material for thermoelectric module applications. Scanning electron microscopy and X-ray diffraction are employed to examine intermetallic compound formation and microstructure evolution during isothermal aging at 400 °C and 550 °C. We find that Ag is a promising bonding material for PbTe modules operating at T Hot ⩽ 400 °C. Additionally, our approach highlights a highly effective and inexpensive method to metallize PbTe prior to module assembly

  17. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions.

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V; Field, James A; Sierra-Alvarez, Reyes

    2017-08-15

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL -1 ), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL -1 ). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Freeze drying method for preparing radiation source material

    International Nuclear Information System (INIS)

    Mosley, W.C.; Smith, P.K.

    1976-01-01

    Fabrication of a neutron source is specifically claimed. A palladium/californium solution is freeze dried to form a powder which, through conventional powder metallurgy, is shaped into a source containing the californium evenly distributed through a palladium metal matrix. (E.C.B.)

  19. Preliminary Final Environmental Assessment: Proposed Upgrades at the 6th Avenue, Mississippi, and Telluride Entry Control Facilities Buckley Air Force Base, Colorado

    Science.gov (United States)

    2008-05-01

    EPA. The plan will require further reductions in ozone levels beyond what was required through an earlier Ozone Early Action Compact. The Ozone...results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what ...includes the clubhouse / pool and playgrounds. (Under Construction) 66175 712298 Yes Moved from 󈧆-ok? 05 1500 Army Aviation Support

  20. Novel condensation of Au-centered trigonal prisms in rare-earth-metal-rich tellurides: Er7Au2Te2 and Lu7Au2Te2.

    Science.gov (United States)

    Gupta, Shalabh; Corbett, John D

    2010-07-14

    A new monoclinic structure occurs for Er(7)Au(2)Te(2) according to X-ray diffraction analysis of single crystals grown at 1200 degrees C: C2/m, Z = 4, a = 17.8310(9) A, b = 3.9819(5) A, c = 16.9089(9) A, beta = 104.361(4) degrees. The isostructural Lu(7)Au(2)Te(2) also exists according to X-ray powder pattern means, a = 17.536(4) A, b = 3.9719(4) A, c = 16.695(2) A, beta = 104.33(1) degrees. The structure contains zigzag chains of condensed, Au-centered tricapped trigonal prisms (TCTP) of Er along c that also share basal faces along b to generate puckered sheets. Further bi-face-capping Er atoms between these generate the three dimensional network along a, with tellurium in cavities outlined by augmented trigonal prismatic Er polyhedra. Bonding analysis via LMTO-DFT methods reveal very significant Er-Au bonding interactions, as quantified by their energy-weighted Hamilton overlap populations (-ICOHP), approximately 49% of the total for all interactions. These and similar Er-Te contributions sharply contrast with the small Er-Er population, only approximately 14% of the total in spite of the high proportion of Er-Er contacts. The strong polar bonding of Er to the electronegative Au and Te leaves Er relatively oxidized, with many of its 5d states falling above the Fermi level and empty. The contradiction with customary representations of structures that highlight rare-earth metal clusters is manifest. The large Er-Au Hamilton overlap population is in accord with the strong bonding between early and late transition metals first noted by Brewer in 1973. The relationship of this structure to the more distorted orthorhombic (Imm2) structure type of neighboring Dy(7)Ir(2)Te(2) is considered.

  1. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  2. Phonon spectra in the parent superconducting iron-tuned telluride F e1 +xTe from inelastic neutron scattering and ab initio calculations

    Science.gov (United States)

    Zbiri, Mohamed; Viennois, Romain

    2017-10-01

    We report inelastic neutron scattering measurements of phonon spectra in the parent superconductor iron-tuned chalcogenide F e1 +xTe for two different x contents (x ≤0.11 ) using neutron time-of-flight technique. Thermal neutron spectroscopy allowed the collection of the low-temperature Stokes spectra over an extended Q range at 2, 40, and 120 K, hence covering both the magnetic monoclinic and the paramagnetic tetragonal phases, whereas cold neutrons allowed the measurement of high-resolution anti-Stokes spectra at 140, 220, and 300 K, thus covering the tetragonal phase. Our results evidence a spin-phonon coupling behavior towards the observed noticeable temperature-dependent change of the Stokes spectra across the transition temperatures. On the other hand, the anti-Stokes spectra reveal a pronounced hardening of the low-energy, acoustic region of the phonon spectrum upon heating, indicating a strong anharmonicity and a subtle dependence of phonons on structural evolution within the tetragonal phase. Experimental results are accompanied by ab initio calculations of phonon spectra of the tetragonal stoichiometric phase for a comparison with the high-resolution anti-Stokes spectra. Calculations included different density functional methods. Spin polarization and van der Waals interaction were either considered or neglected, individually or concomitantly, in order to study their respective effect on lattice dynamics description. Our results suggest that including van der Waals interaction has only a slight effect on phonon dynamics; however, phonon spectra are better described when spin polarization is included in a cooperative way with van der Waals interactions.

  3. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    Science.gov (United States)

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    International Nuclear Information System (INIS)

    Tang Jianhua; Xie Lian; Zhang Bin; Qiu Ting; Qi Bin; Xie Hongping

    2012-01-01

    Graphical abstract: The staining effect of the control group (a), QDs-SiO 2 (b) and QDs-PDADMAC-SiO 2 (c). Highlights: ► The fluorescence intensity of QDs-PDADMAC-SiO 2 is stronger than that of QDs-SiO 2 . ► The fluorescence stability of QDs-PDADMAC-SiO 2 is better than that of QDs-SiO 2 . ► The cytotoxicity of QDs-PDADMAC-SiO 2 was lower than that of QDs-SiO 2 ► The staining effect of QDs-PDADMAC-SiO 2 was much better than that of QDs-SiO 2 . - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO 2 ) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO 2 (QDs-SiO 2 ), the QDs-PDADMAC-SiO 2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO 2 exhibits good biological compatibility which promotes their application in cellular imaging.

  5. Polycrystalline Thin-Film Cadmium Telluride Solar Cells Fabricated by Electrodeposition; Final Technical Report, 20 March 1995-15 June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J. U.; Mao, D.; Kaydanov, V.; Ohno, T. R.; Williamson, D. L.; Collins, R.; Furtak, T. E.

    1999-01-27

    This report summarizes work performed by the Colorado School of Mines Department of Physics under this subcontract. Based on the studies conducted, researchers increased the efficiency of the cells with electrodeposited CdTe and CBD CdS by 3% on average ({approx}30 relative %). The improvement came from 1. Optimization of CdS initial thickness taking into account CdS consumption of CdTe during the CdTe/CdS post-deposition treatment; optimization of CdS post-deposition treatment with CdCl2 aimed at prevention of Te diffusion into CdS and improvement of the CdS film morphology and electronic properties. That led to a considerable increase in short circuit current, by 13% on average. 2. Optimization of CdTe thickness and post-deposition treatment which led to a significant increase in Voc, by {approx}70 mV. The highest Voc obtained exceeded 800 mV. 3. Development of a ZnTe:Cu/Metal back contact processing procedure that included selection of optimal Cu content, deposition regime and post-deposition treatment conditions. As a result, back contact resistance as low as 0.1W-cm2 was obtained. The cell stability was measured on exposure to accelerated stress conditions. Preliminary studies of some new approaches to improvement of CdS/CdTe structure were conducted.

  6. Experimental charge density determination in iso-structural Tellurides: Hf0.85GeTe4 and ZrGeTe4

    International Nuclear Information System (INIS)

    Israel, S.; Saravana Kumar, S.; Sheeba, R.A.J.R.; Saravanan, R.

    2012-01-01

    Hf 0.85 GeTe 4 is isostructural with stoichiometric ZrGeTe 4 and their crystal structure adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face sharing Hf/Zr-centered bicapped trigonal prisms and corner sharing Ge- centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. Single crystal XRD is used for the refinement of the structural parameters. The space group Cmc2 1 was considered and the structure was the refined using the harmonic model by the software called JANA2006. The refined structure factors were then subsequently used in MEM (Maximum Entropy Method) technique for the construction of the charge density in the unit cell using software called PRIMA and then visualized with the help of visualization software called VESTA

  7. Theoretical analysis of the electronic, optical and thermal properties of lead strontium telluride alloys Pb1-xSrxTe (x = 0.0-1.0)

    Science.gov (United States)

    Chouit, F.; Sifi, C.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.; Rai, D. P.; Bin Omran, S.

    2018-02-01

    We have simulated different physical properties of Pb1-xSrxTe semiconductors, using the Ab-initio full potential augmented plane wave (FP-LAPW) method. The two commonly used exchange potentials viz., PBE-GGA and WC-GGA are used along with the most recently developed modified Becke and Johnson (mBJ) potential to study the electronic and optical properties. In this study, we have observed an increase in band gap values as well as the lattice parameter with increasing the concentration of Sr atoms in Pb1-xSrxTe alloys while the bulk modulus and the refractive index have reverse effect. The microscopic origin of the band gap bowing is explained using the approach of Zunger and co-workers. At ambient conditions (p = 0, T = 0), the calculations indicate that Pb1-xSrxTe is a direct band gap semiconductor R-R with x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875. The refractive indices are also calculated using the FP-LAPW method and the models of Moss, Ravindra and the Herve-Vandame. The obtained results are in consistent with the previous available data. To study the thermal effects, the temperature effect on the lattice parameters, thermal expansions, heat capacities the quasi-harmonic Debye model is applied. The Debye temperature is determined from the non-equilibrium Gibbs function.

  8. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs. Keywords: quantum dot, cadmium ion, metallothionein, hydroxyl radical, toxicity

  9. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals.

    Science.gov (United States)

    Wang, Mengmeng; Wang, Jilong; Sun, Hubo; Han, Sihai; Feng, Shuai; Shi, Lu; Meng, Peijun; Li, Jiayi; Huang, Peili; Sun, Zhiwei

    2016-01-01

    A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd(2+)) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd(2+) from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd(2+) and ·OH, and could recover after a period of time. The Cd(2+) and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs.

  10. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  11. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering

    Science.gov (United States)

    Singkaselit, Kamolmad; Sakulkalavek, Aparporn; Sakdanuphab, Rachsak

    2017-09-01

    In this work Bi x Te y thin films were deposited on polyimide substrate by a high-pressure RF magnetron sputtering technique. The deposited condition was maintained using a high pressure of 1.3  ×  10-2 mbar. The as-deposited films show Bi2Te3 structure with Te excess phase (Te-rich Bi2Te3). After that, as-deposited films were annealed in the vacuum chamber under the N2 flow at temperatures from 250 to 400 °C for one hour. The microstructure, cross-section, [Bi]:[Te] content, and the mechanical, electrical and thermoelectric properties of as-deposited and different annealed films were investigated. It was found that the annealing temperature enhanced the crystallinity and film density for the temperature range 250-300 °C. However, the crystal structure of Bi2Te3 almost changed to the BiTe structure after annealing the films above 350 °C, due to the re-evaporation of Te. Nano-indentation results and cross-section images indicated that the hardness of the films related to the film density. The maximum hardness of 2.30 GPa was observed by annealing the films at 300 °C. As a result of an improvement in crystallinity and phase changes, the highest power factor of 11.45  ×  10-4 W m-1K-2 at 300 °C with the carrier concentration and mobility of 6.15  ×  1020 cm-3 and 34.03 cm2 V-1 s-1, respectively, was achieved for the films annealed at 400 °C. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  12. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of /sup 13/C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Bzhezovskii, V.M.; Kushnarev, D.F.; Proidakov, A.G. (Irkutskii Gosudarstvennyj Univ. (USSR))

    1981-06-01

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on /sup 13/C chemical shifts in eleven isological series of R/sup 1/-Eh-R/sup 2/ unsaturated compounds are compared. A linear relation between /sup 13/C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on /sup 13/C chemical shifts of R/sup 1/ and R/sup 2/ substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms.

  13. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  14. Radionuclides in rodents

    International Nuclear Information System (INIS)

    Taylor, G.N.

    1985-01-01

    Studies are being conducted in mice comparing the toxicity of radium-226, plutonium-239, americium-241, californium-249 and californium-252 in C57B1/Do (albino) mice and the toxicity of americium-241, plutonium-239 and radium-226 in deer mice (Peromyscus maniculatus) and grasshopper mice (Onychomys leucogaster). These experiments will ultimately enable comparison of the toxicity of the above actinide toxicity in man to be made using radium toxicity as the baseline

  15. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    International Nuclear Information System (INIS)

    Devulder, Wouter; De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-01-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu 0.6 Te 0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu 0.6 Te 0.4 -C/Al 2 O 3 /Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al 2 O 3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al 2 O 3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents

  16. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    Science.gov (United States)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  17. Trends in radioisotope development and utilization in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Mott, W E [Energy Research and Development Administration, Washington, D.C. (USA)

    1976-06-01

    The current trends in radioisotope and radiation technology in the United States are overviewed with emphasis on the developments since the 1973 Conference. The comments focus primarily on the research and development activities receiving the most attention today from the various agencies of the Government. Among the many available radionuclides, technetium-99m has played the single most important role for making possible the developments in the field of nuclear medicine. Many other short lived medium-lived nuclides are applied in the fields of nuclear medicine, cardiac pacemaker, artificial heart, and blood irradiator. Radiation processing is now firmly established in the United States. The trends in sewage treatment, polymer-impregnated materials, bioengineering, and food irradiation are reviewed. The programs for californium-252, strontium-90, cesium-137, plutonium-238, and krypton-85 are also reviewed. The author concludes this paper with the acknowledgement that Japanese researchers have contributed to and have been closely involved in many of the programs discussed. Of particular note is the participation in the clinical phase of the californium-252 radiotherapy program. Several Japanese hospitals have been cooperating with the United States since the very beginning of the californium-252 program in determining the value of the californium-252 neutron therapy. The research being performed is unique, and will contribute greatly to the decisions on the ultimate future of californium-252 for therapeutic purposes.

  18. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  19. Rajnikant

    Indian Academy of Sciences (India)

    Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant Verma Parveen Lehana · More Details Abstract Fulltext PDF. Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic ...

  20. with palladium (ii)

    African Journals Online (AJOL)

    Mgina

    Mercury telluride is an important semi conductor with application in infra-red detection (Charlon 1982, Mullin & Irrine. 1985). Photolysis of mixture of the organometallic compounds RHgTeR and. RCdTeR can produce mercury cadmium telluride. Haris and Nissan (1987) prepared. (t-butyl)HgTe(t-butyl) and demonstrated that.

  1. NREL Achieves Solar-Electric Record

    Science.gov (United States)

    Solar-Electric Record New Technology Could Spur Growth in Photovoltaic Panels For more information thin-film panels made from cadmium telluride. Benner said these and other plants may adopt all or part panels. Of the several materials that can be used for thin-film panels, cadmium telluride yields higher

  2. Source storage and transfer cask: Users Guide

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of 252 Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs

  3. Neutron spectra from radionuclide sources for cardiac pacemakers

    International Nuclear Information System (INIS)

    Kluge, H.

    1975-01-01

    Neutron spectra from Plutonium 238 radioisotope batteries powering cardiac pacemakers are measured in the energy range above 0.7 MeV. The results are used to calculate radiation doses within a cylindrical phantom. There are only minor differences between the different types of plutonium 238-batteries and californium 252-batteries

  4. Validation of the MCNP-DSP Monte Carlo code for calculating source-driven noise parameters of subcritical systems

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1995-01-01

    This paper describes calculations performed to validate the modified version of the MCNP code, the MCNP-DSP, used for: the neutron and photon spectra of the spontaneous fission of californium 252; the representation of the detection processes for scattering detectors; the timing of the detection process; and the calculation of the frequency analysis parameters for the MCNP-DSP code

  5. Magnetic measurements of the transuranium elements. Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Huray, P.G.; Nave, S.E.

    1984-01-01

    Measurements of the magnetic properties of dhcp californium-249 metal indicated the presence of three regions of differing magnetic character. Additional measurements are also reported. Magnetic moments and valence states of terbium in TbF 3 , BaTbO 3 , and TbO 1 8 are discussed. Progress on high-field operation of the micro-magnetic susceptometer is reported

  6. Single-event burnout of power MOSFET devices for satellite application

    International Nuclear Information System (INIS)

    Xue Yuxiong; Tian Kai; Cao Zhou; Yang Shiyu; Liu Gang; Cai Xiaowu; Lu Jiang

    2008-01-01

    Single-event burnout (SEB) sensitivity was tested for power MOSFET devices, JTMCS081 and JTMCS062, which were made in Institute of Microelectronics, Chinese Academy of Sciences, using californium-252 simulation source. SEB voltage threshold was found for devices under test (DUT). It is helpful for engineers to choose devices used in satellites. (authors)

  7. Information on real-structure phenomena in metastable GeTe-rich germanium antimony tellurides (GeTe){sub n}Sb{sub 2}Te{sub 3} (n ≥ 3) by semi-quantitative analysis of diffuse X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp; Oeckler, Oliver [Leipzig Univ. (Germany). Faculty of Chemistry and Mineralogy; Schneider, Matthias N.; Seemann, Marten [Munich Univ. (Germany). Dept. of Chemistry; Wright, Jonathan P. [ESRF - The European Synchrotron, Grenoble (France)

    2015-07-01

    Quenching cubic high-temperature polymorphs of (GeTe){sub n}Sb{sub 2}Te{sub 3} (n ≥ 3) yields metastable phases whose average structures can be approximated by the rocksalt type with 1/(n + 3) cation vacancies per anion. Corresponding diffraction patterns are a superposition of intensities from individual twin domains with trigonal average structure but pseudo-cubic metrics. Their four orientations are mirrored in structured diffuse streaks that interconnect Bragg reflections along the [001] directions of individual disordered trigonal domains. These streaks exhibit a ''comet-like'' shape with a maximum located at the low-angle side of Bragg positions (''comet head'') accompanied by a diffuse ''comet tail''. 2D extended cation defect ordering leads to parallel but not equidistantly spaced planar faults. Based on a stacking fault approach, the diffuse scattering was simulated with parameters that describe the overall metrics, the concentration and distribution of cation defect layers, atom displacements in their vicinity and the stacking sequence of Te atom layers around the planar defects. These parameters were varied in order to derive simple rules for the interpretation of the diffuse scattering. The distance between Bragg positions and ''comet heads'' increases with the frequency of planar faults. A sharp distance distribution of the planar faults leads to an intensity modulation along the ''comet tail'' which for low values of n approximates superstructure reflections. The displacement of atom layers towards the planar defects yields ''comets'' on the low-angle side of Bragg positions. A rocksalt-type average structure is only present if the planar defects correspond to missing cation layers in the ''cubic'' ABC stacking sequence of the Te atom layers. An increasing amount of hexagonal ABA transitions around the defect layers leads to increasing broadening and splitting of the Bragg reflections which then overlap with the diffuse scattering. Based on these rules, the diffuse scattering of (GeTe){sub n}Sb{sub 2}Te{sub 3} (n = 2, 4, 5, 12) crystals was analyzed by comparing simulated and experimental reciprocal space sections as well as selected streaks extracted from synchrotron data. With decreasing n, both the average distance between faults and thus the slab thickness decrease, whereas the probability of hexagonal ABA transitions increases. The quenched metastable phases can be understood as intermediates between the stable high-temperature phases, which exhibit a rocksalt-type structure with randomly disordered cations and vacancies on the cation position, and the trigonal layered structures, which are stable at room temperature and consist of distorted rocksalt-type slabs separated by equidistant defect layers.

  8. Structural complexity and thermoelectric properties of quaternary and quinary tellurides (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te with 0 ≤ x,y ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    Neudert, Lukas; Scheel, Manuel [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Schwarzmueller, Stefan; Welzmiller, Simon; Oeckler, Oliver [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Fakultaet fuer Chemie und Mineralogie, Universitaet Leipzig (Germany)

    2017-12-13

    Starting from stoichiometric mixtures of the elements, quaternary and quinary solid solutions (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te were obtained. Concerning the ratio Ge/Sn and Sb/In, respectively, lattice parameters of the metastable phases with rocksalt-type average structures approximately obey Vegard's law. Stable phases correspond to a disordered rocksalt type at high temperature and to trigonal layered structures with van der Waal gaps at lower temperature as shown by temperature-dependent powder X-ray diffraction combined with TEM, which reveals layer-like vacancy ordering, whose extent depends on composition and thermal treatment. In the long-periodically ordered model compounds 21R-Ge{sub 0.5}Sn{sub 0.5}InSbTe{sub 4} and 9P-GeSnInSbTe{sub 5} studied by resonant scattering data at K-absorption edges, Sb and Sn concentrate near the van der Waals gaps. Compared to Ge{sub 0.8}Sb{sub 0.13}Te and Sn{sub 0.8}Sb{sub 0.13}Te, the simultaneous presence of In and Sn combines increased electrical conductivity with low thermal conductivity and enhanced thermoelectric properties in certain temperature ranges. Phase transitions correlate with changes of the thermoelectric properties. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  10. A Neutron Study for Phonon Dispersion Relations in HgTe

    DEFF Research Database (Denmark)

    Kepa, H.; Gebicki, W.; Giebultowicz, T.

    1980-01-01

    Dispersion relations for acoustic phonons in mercury telluride in three high symmetry directions [111], [110] and [001] are presented. The eleven-parameter rigid-ion model is fitted to the experimental data....

  11. Alberi Validates New Theory, Sheds Light on Semiconductors | News | NREL

    Science.gov (United States)

    (cadmium telluride), and GaN (gallium nitride), which are used for cell phones, solar panels, and LED suppressing defects with light, which may allow higher efficiencies in solar panels, greater lifespan for LED

  12. Impacting Innovation and Commercialization: NREL's Partnering Facilities

    Science.gov (United States)

    pioneer cadmium telluride (CdTe) solar panels with industry. DOE recognized the lab's role, and NREL's deposits uniform layers of semiconductor material for solar panels, won a 2003 R&D100 Award and was

  13. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  14. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    International Nuclear Information System (INIS)

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-01-01

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH 3 + moiety of doxorubicin and the −COO − moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  15. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, S.M.; Stone, E.

    1976-01-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step

  16. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, C.M.; Stone, E.

    1976-06-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step. 11 fig

  17. Heavy ion tests on programmable VLSI

    International Nuclear Information System (INIS)

    Provost-Grellier, A.

    1989-11-01

    The radiation from space environment induces operation damages in onboard computers systems. The definition of a strategy, for the Very Large Scale Integrated Circuitry (VLSI) qualification and choice, is needed. The 'upset' phenomena is known to be the most critical integrated circuit radiation effect. The strategies for testing integrated circuits are reviewed. A method and a test device were developed and applied to space applications candidate circuits. Cyclotron, synchrotron and Californium source experiments were carried out [fr

  18. Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source

    Science.gov (United States)

    Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.

    2018-05-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q 18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.

  19. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  20. Safety analysis report for packaging: neutron shipping cask, model 0.5T

    International Nuclear Information System (INIS)

    Peterson, R.T.

    1976-01-01

    The Safety Analysis Report for Packaging demonstrates that the neutron shipping cask can safely transport, in solid or powder form, all isotopes of uranium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium. The shipping cask and its contents are described. It also evaluates transport conditions, structural parameters (e.g., load resistance, pressure and impact effects, lifting and tiedown devices), and shielding. Finally, it discusses compliance with Chapter 0529 of the Energy Research and Development Administration Manual

  1. Directed evolution of the periodic table: probing the electronic structure of late actinides.

    Science.gov (United States)

    Marsh, M L; Albrecht-Schmitt, T E

    2017-07-25

    Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.

  2. NWIS casting measurements taken during demonstrations to Russian visitors

    International Nuclear Information System (INIS)

    Mullens, J.A.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes a set of NWIS measurements made during demonstrations to Russian visitors on August 28, 1997. These measurements will be given to the Russian visitors from Arzamus-16 as part of their NWIS training (part of a DOE laboratory-to-laboratory exchange program). These measurements are made on standard highly enriched Uranium annular castings (as used for storage). Associated NWIS calibration runs were made in air (no casting, just the NWIS Californium source and detectors)

  3. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  4. Health physics aspects of 252Cf

    International Nuclear Information System (INIS)

    Bhagwat, A.M.

    1974-01-01

    After briefly describing the methods of production, radioactive, chemical and biological properties of californium-252, its health physics aspects are reviewed in detail. Its external and internal radiation hazards can be minimised through control of radiation and contamination and proper shield design. Use of various shielding materials is evaluated. The following aspects are also discussed : (1) radiation detectors for neutrons and gamma radiation (2) personnel monitoring techniques (3) bioassay and (4) storage and transportation. (M.G.B.)

  5. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  6. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  7. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

    Science.gov (United States)

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-01

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

  8. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  9. Investigation of Thermoelectric Parameters of Bi2Te3: TEGs Assembled using Pressure-Assisted Silver Powder Sintering-Based Joining Technology

    Science.gov (United States)

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2015-06-01

    Operation of thermoelectric generator (TEG) modules based on bismuth telluride alloys at temperatures higher than 250°C is mostly limited by the melting point of the assembly solder. Although the thermoelectric parameters of bismuth telluride materials degrade for temperatures >130°C, the power output of the module can be enhanced with an increase in the temperature difference. For this, a temperature-stable joining technique, especially for the hot side of the modules, is required. Fabrication and process parameters of TEG modules consisting of bismuth telluride legs, alumina ceramics and copper interconnects using a joining technique based on pressure-assisted silver powder sintering are described. Measurements of the thermal force, electrical resistance, and output power are presented that were performed for hot side module temperatures up to 350°C and temperature differences higher than 300°C. Temperature cycling and results measured during extended high-temperature operation are addressed.

  10. Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band

    Directory of Open Access Journals (Sweden)

    Sun Wang

    2018-02-01

    Full Text Available The phonon dispersion spectrum, eigenvector, and lattice vibration frequency of cadmium telluride with a zinc blende structure have been investigated using the density functional theory, and the permittivity of cadmium telluride crystal is numerically calculated. The permittivity of the crystal is measured using the terahertz time-domain spectroscopy system. The experimental results are consistent with the theoretical calculations on the modified local density approximation, the general gradient approximation, and the modified general gradient approximation. Finally, the differences among the three approximate exchange correlation potentials indicate that in the terahertz region, the permittivity of cadmium telluride is dominantly contributed by the coupling between electron and phonon; however, the phonon frequencies of transverse wave and longitudinal wave were sensitive to electron density distribution.

  11. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  12. Characterization of CdZnTe ambient temperature detectors

    International Nuclear Information System (INIS)

    Lavietes, A.

    1994-09-01

    A great deal of interest has been generated in the use of cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) detectors for ambient temperature detection of radionuclides. The addition of zinc to CdTe provides several benefits that enhance the materials operational characteristics at ambient temperature. Recent movement in the industry is to produce larger volume detectors using CdZnTe without much known about the effects of larger geometry on performance. The purpose of this study is to get an idea of the relationship of detector performance to both area and thickness variations

  13. Preparation and characterization of ZnTe thin films by SILAR method

    International Nuclear Information System (INIS)

    Kale, S.S.; Mane, R.S.; Pathan, H.M.; Shaikh, A.V.; Joo, Oh-Shim; Han, Sung-Hwan

    2007-01-01

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47

  14. CdTe/CZT under high flux irradiation

    International Nuclear Information System (INIS)

    Strassburg, Matthias; Schroeter, Christian; Hackenschmied, Peter

    2011-01-01

    Direct converting quantum counting detectors based on cadmium telluride and cadmium zinc telluride have been investigated with respect to their properties under intense X-ray irradiation. To derive a detailed picture of the performance of such detectors, the influence of the electric field, the detector thickness, the temperature and the intensity of the X-ray irradiation was studied. The results are discussed in terms of the ''polarization'' phenomenon, a reduction of the electric field strength inside the detector due to immobile charge carriers accumulating during irradiation. Furthermore, the impact of Te-inclusions and -precipitates is presented.

  15. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  16. Determination of the relative power density distribution in a heterogeneous reactor from the results of measurements of the reactivity effects and the neutron importance function

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Glushkov, E. S.; Zimin, A. A.; Kapitonova, A. V.; Kompaniets, G. V.; Nosov, V. I.; Petrushenko, R. P.; Smirnov, O. N.

    2012-01-01

    A method for experimental determination of the relative power density distribution in a heterogeneous reactor based on measurements of fuel reactivity effects and importance of neutrons from a californium source is proposed. The method was perfected on two critical assembly configurations at the NARCISS facility of the Kurchatov Institute, which simulated a small-size heterogeneous nuclear reactor. The neutron importance measurements were performed on subcritical and critical assemblies. It is shown that, along with traditionally used activation methods, the developed method can be applied to experimental studies of special features of the power density distribution in critical assemblies and reactors.

  17. Nuclear assay of coal. Volume 1. Coal composition by prompt neutron activation analysis: basic experiments. Final report

    International Nuclear Information System (INIS)

    Reynolds, G.; Bozorganesh, H.; Elias, E.; Gozani, T.; Maung, T.; Orphan, V.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium--iodide and germanium--lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully be traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses

  18. PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert

    1976-07-01

    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  19. Radiological safety considerations in the design and operation of the ORNL Transuranium Research Laboratory (TRL)

    International Nuclear Information System (INIS)

    Haynes, C.E.

    1976-01-01

    The Transuranium Research Laboratory (TRL) is the central facility at Oak Ridge National Laboratory (ORNL) for chemical and physical research involving transuranium elements. Transuranium Research Laboratory investigations are about equally divided between studies of inorganic and structural chemistry of the heavy elements and nuclear structure and properties of their isotopes. Elements studied include neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium, each in microgram-to-gram quantities depending upon availability and experimental requirements. This paper describes an eight-step safety procedure followed in planning and approving individual research projects. This procedure should provide an optimum margin of safety and should permit the accomplishment of successful research

  20. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  1. Method for measuring multiple scattering corrections between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Glenn, A.M., E-mail: glenn22@llnl.gov; Keefer, G.J., E-mail: keefer1@llnl.gov; Wurtz, R.E., E-mail: wurtz1@llnl.gov

    2016-07-21

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  2. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  3. Beam test of a grid-less multi-harmonic buncher

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Barcikowski, A.; Clifft, B.; Pardo, R.; Sharamentov, S.I.; Sengupta, M.

    2008-01-01

    The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of shortlived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher (MHB), we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we report the results of the MHB commissioning and ATLAS beam performance with the new buncher.

  4. Radiation protection data sheet. Radiation protection data sheets for the use of radionuclides in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    These radiation protection data sheet are devoted to responsible persons and employees of various laboratories or medical, pharmaceutical, university and industrial departments where radionuclides are handled as well as all the persons who attend to satisfy in this field. They contain the essential radiation protection data for the use of unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography. This new series includes the following radionuclides: californium 252, curium 244, gallium 67, indium 113m, plutonium 238, plutonium 239, polonium 210, potassium 42, radium 226, thorium 232, uranium 238 and zinc 65. (O.M.)

  5. Development of a transportable neutron radiography system for non-destructive tests application

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    1999-01-01

    This paper presents a study of a transportable neutron radiography system utilizing californium-252. Studies about moderation, collimation and shielding are showed. A Monte Carlo Code, MCNP3b, has been used to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet next to the image plain, and an adequate radiation shielding to attend radiological protection rules. With the presented collimator, it was possible to obtain for the thermal neutron flux, at the collimator outlet and next to the image plain, a L/D ratio 7,5, for neutron flux up to 6 X 10 -6 cm -2 .s -1 per neutron source. (author)

  6. Composition containing transuranic elements for use in the homeopathic treatment of aids

    International Nuclear Information System (INIS)

    Lustig, D.

    1996-01-01

    A homeopathic remedy consisting of a composition containing one or more transuranic elements, particularly plutonium, for preventing and treating acquired immunodeficiency syndrome (AIDS) in humans, as well as seropositivity for human immunodeficiency virus (HIV). Said composition is characterized in that it uses any chemical or isotopic form of one or more transuranic elements (neptunium, plutonium, americium, curium, berkelium, californium or einsteinium), particularly plutonium, said form being diluted and dynamized according to conventional homeopathic methods, particularly the so-called Hahnemann and Korsakov methods, and provided preferably but not exclusively in the form of lactose and/or saccharose globules or granules impregnated with the active principle of said composition. (author)

  7. Determination of alpha activity and fissile mass content in solid waste by systems using neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Lacruche, G.; Berne, R.; Auge, J.; Martin Deidier, L.; Butez, M.

    1990-01-01

    The Quantitative control (determination of heavy nuclides and alpha activity) of alpha radioactive wastes is necessary, particularly to determine if the waste is in accordance with the surface storage limits. In order to reduce the uncertainty on the alpha activity resulting from unknown isotopic composition, inhomogeneity of heavy nuclides in the matrix, combination of several methods is necessary. In the paper we present the Cadarache development work in the NDA of solid waste using the Californium shuffler, 14 Mev neutron generator, and also passive techniques such as neutron emission measurement and gamma spectrometry. Experimental systems combining active and passive methods are presented (COSAC, BANCO, DANAIDE, PROMETHEE)

  8. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  9. Safety analysis report for packaging: neutron shipping cask, model 4T

    International Nuclear Information System (INIS)

    Peterson, R.T.

    1977-01-01

    This Safety Analysis Report for Packaging demonstrates that the neutron shipping cask can safely transport, in solid or powder form, all isotopes of uranium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium. The cask and its contents are described. It also evaluates transport conditions, structural parameters (e.g., load resistance, pressure and impact effects, lifting and tiedown devices), and shielding. Finally, it discusses compliance with Chapter 0529 of the Energy Research and Development Administration Manual, Safety Standards for the Packaging of Fissile and Other Radioactive Materials

  10. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  11. A confocal laser scanning microscopic study on thermoresponsive

    Indian Academy of Sciences (India)

    Monodisperse poly(N -isopropylacrylamide) (PNIPAM) particles loaded with cadmium telluride (CdTe) quantum dots (QDs) of two different sizes (4.7 nm and 5.6 nm) were synthesized in aqueous medium by bonding the capping agent on the quantum dots to the amide groups of PNIPAM and incubating the samples at 45° ...

  12. First ever full size CdTE luminescent down-shifting module

    NARCIS (Netherlands)

    Ross, D.; Alonso-Alvarez, D.; Fritsche, J.; Bauer, M.; Debije, M.G.; Fifield, R.M.; Richards, B.S.

    2012-01-01

    For the first time a luminescent down-shifting (LDS) layer has been applied to a full size PV module to improve its short-wavelength response. An average 4.3% relative increase in the short-circuit current density (JSC) was recorded for the Calyxo cadmium telluride (CdTe) modules after the best LDS

  13. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  14. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz; Rothenberger, Alexander

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest

  15. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  16. The system Ni–Sb–Te at 400°C

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Drábek, M.; Skála, Roman

    2010-01-01

    Roč. 48, č. 5 (2010), s. 1069-1079 ISSN 0008-4476 Institutional research plan: CEZ:AV0Z30130516 Keywords : phase relations * vavřínite * system Ni–Sb–Te * tellurides Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.289, year: 2010

  17. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1947-01-01

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  18. Applications of CdTe to nuclear medicine. Final report

    International Nuclear Information System (INIS)

    Entine, G.

    1985-01-01

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. N. Vagshette. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. P. Priya. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna A. P. K. ...

  1. Synthesis and X-ray structures of dilithium complexes of the phosphonate anions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se, Te) and dimethylaluminum derivatives of [PhP(E)(N(t)Bu)(NH(t)Bu)](-) (E = S, Se).

    Science.gov (United States)

    Briand, Glen G; Chivers, Tristram; Krahn, Mark; Parvez, Masood

    2002-12-16

    The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)

  2. International conference on spin observables of nuclear probes: Summary talk

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1988-01-01

    A selected summary of the presentation and discussions at the 4th Telluride Conference is presented. The summary deals mainly with the effects of nuclear spin and isospin on the interaction between nucleons and their consequences in nuclear structure. 11 figs

  3. Structural, optical, photoluminescence, dielectric and electrical ...

    Indian Academy of Sciences (India)

    The optical band gap of thin films was found to allow direct tran- sition with energy ... Cadmium telluride (CdTe) is an important group II–VI semi- ... Extensive research was done in the last two decades on CdTe ... 3.1 X-ray diffraction analysis.

  4. Results of metallographical diagnostic examination of Navy half-watt thermoelectric converters degraded by accelerated tests

    International Nuclear Information System (INIS)

    Rosell, F.E. Jr.; Rouklove, P.G.

    1977-01-01

    To verify the 15-year reliability of the Navy half-watt radioisotope thermoelectric generator (RTG), bismuth--telluride thermoelectric converters were submitted to testing at high temperatures which accelerated the degradation and caused failure of the converters. Metallographic diagnostic examination of failed units verified failure mechanisms. Results of diagnostic examinations are presented

  5. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  6. Minimizing Patient-Specific Tracer Dose in Myocardial Perfusion Imaging Using CZT SPECT

    NARCIS (Netherlands)

    van Dijk, Joris David; Jager, Pieter L.; Ottervanger, Jan Paul; Slump, Cornelis H.; de Boer, Jaep; Oostdijk, Adrianus H.J.; van Dalen, Jorn A.

    Myocardial perfusion imaging (MPI) with SPECT is widely adopted in clinical practice but is associated with a relatively high radiation dose. The aim of this study was to determine the minimum product of tracer dose and scan time that will maintain diagnostic value for cadmium zinc telluride (CZT)

  7. Optimization of the Mechanical and Electrical Performance of a Thermoelectric Module

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Pryds, Nini

    2015-01-01

    Finite element (FE) simulation of a thermoelectric (TE) module was conducted to optimize its geometrical dimensions in terms of mechanical reliability and performance. The TE module consisted of bismuth telluride, nand p-type legs. The geometrical dimensions of the module, i.e. leg length and leg...

  8. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  9. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Essy Samuel. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  13. Advanced Processing of CdTe- and CuInxGa1-xSe2-Based Solar Cells: Final Report: 18 April 1995 - 31 May 1998

    International Nuclear Information System (INIS)

    Jayapalan, A.; Tetali, B.; Ferekides, C.S.; Marinskiy, D.; Morel, D.L.; Lin, H.; Sankaranarayanan, H.; Bhatt, R.; Narayanaswamy, R.; Prabhakaran, R.; Marinskaya, S.; Zafar, S.

    1999-01-01

    This report summarizes work performed by the University of South Florida Department of Electrical Engineering under this subcontract. The Cadmium telluride(CdTe) portion of this project deals with the development of high-efficiency thin-filmed CdTe solar cells using fabrication techniques that are suitable for manufacturing environments

  14. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  15. FOR CU-DOPED ZnS 'ALLOY

    African Journals Online (AJOL)

    2005-01-20

    Jan 20, 2005 ... electron transport property of thin films. may be characterized by the conductivity of the ... 3H20 were prepared and added drop by drop' to. 100ml of ZnS .... higher temperatures there is sufficient thermal activation fo~. I some electrons to .... telluride film on crystalline silicon, J. Appl. Phys. 54 (3): 1383-1389.

  16. The crystal structure of Pd.sub.3./sub.HgTe.sub.3./sub., the synthetic analogue of temagamite

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, M.; Dušek, Michal; Navrátil, Jiří; Černošková, E.

    2016-01-01

    Roč. 28, č. 4 (2016), s. 825-834 ISSN 0935-1221 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : temagamite * crystal structure * crystal-structure solution * Pd-Hg telluride Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 1.362, year: 2016

  17. Microbolometer spectrometer: applications and technology

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Hoegee, J.

    2004-01-01

    Current Thermal Infra Red (7.14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. Now due to the increased performance of uncooled microbolometer arrays, the next generation of instruments can be designed without cryogenic cooling. TNO

  18. Microbolometer spectrometer opens hoist of new applications

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Smorenburg, C.; Escudero, I.; Boslooper, E.C.; Visser, H.; Helden, W.A. van; Breussin, F.N.

    2004-01-01

    Current Thermal infra red ( 7..14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. This causes the instruments to be bulky, power hungry and expensive. For systems that have medium NETD (Noise Equivalent Temperature Difference)

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Effect of heat treatment on tensile behaviour of Ti–6Al–5Zr–0.5Mo–0.25Si alloy ... Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18–Ni8 joint with ... Characterization of nanocrystalline cadmium telluride thin films grown by ...

  20. Teresa Barnes, Ph.D. | NREL

    Science.gov (United States)

    graduate student. She came to NREL as a postdoctoral researcher to continue working on transparent conducting oxides and began working on carbon nanotube and metal nanowire transparent contacts. She is currently a senior scientist at NREL working on cadmium telluride (CdTe) solar cells. Her research interests

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. S. V. Vadawale. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  2. Saleem Khan

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Saleem Khan. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  3. Thermoelectric properties and nonstoichiometry of GaGeTe

    Czech Academy of Sciences Publication Activity Database

    Drašar, Č.; Kucek, V.; Beneš, L.; Lošťák, P.; Vlček, Milan

    2012-01-01

    Roč. 193, SI (2012), s. 42-46 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40500505 Keywords : gallium germanium telluride * thermoelectric properties * stoichiometry Subject RIV: CA - Inorganic Chemistry Impact factor: 2.040, year: 2012

  4. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  5. The crystal structure of sopcheite, Ag.sub.4./sub.Pd.sub.3./sub.Te.sub.4./sub., from the Lukkulaisvaara intrusion, Karelia, Russia

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Grokhovskaya, T.L.; Plášil, Jakub; Dušek, Michal; Orsoev, D.A.; Kozlov, V.V.

    2017-01-01

    Roč. 29, Jun (2017), s. 603-612 ISSN 0935-1221 Institutional support: RVO:68378271 Keywords : sopcheite * crystal structure * Ag4Pd3Te4 * platinum-group mineral * silver palladium telluride * X-ray diffraction data * Lukkulaisvaara intrusion Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.362, year: 2016

  6. Citric complexes of trivalent cerium and berkelium

    International Nuclear Information System (INIS)

    Boulhassa, S.

    1977-01-01

    The extraction by thenoyltrifluoroacetone (TTA) in benzene of trivalent cerium, berkelium and californium, at the indicator scale, hydrolysis and complexation by citric acid of these cations are studied. The radionuclides used were 144 Ce, 249 Bk and 249 Cf respectively γ, β and α emitters. The solvent extraction technique of the elements by TTA in benzene from a perchloric medium at the ionic stength 0.1 was employed. The distribution coefficients D were measured by the γ, β or α radiometry. Cerium and berkelium, which have a comparable redox behavior, show in solution a relatively stable valency IV. Therefore the study by solvent extraction of their trivalent form required the standing up of complete reducing conditions of these elements and their stabilization in solution at the valency III. The thermodynamic data obtained for berkelium and californium contribute to understand the chemistry of these elements and permit to complete the third 'tetrad branch' of 5f elements from Cm 3+ to Es 3+ . This tetrad effect is a manifestation of thermodynamic consequence of the 'nephelauxetic effect'. As for Ce(III), the data confirm the pronounced acid property and may be show no neglected ligand effect for f 1 configuration [fr

  7. Radioactive materials production

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Radiochemical Processing Plant (RPP) at ORNL has served as the national repository and distribution center for 233 U for > 20 years. Several hundred kilograms of uranium, containing approximately 90 to 98% 233 U, are stored there in the form of metal, oxides, and nitrate solutions. All of these uranium materials contain small, but significant, concentrations of 232 U, ranging from 2 to 225 ppm. Most of the radioactivity associated with the 233 U comes from the decay daughters of 232 U (74-year half-life). The 252 Cf Industrial Sales/Loan Program involves loans of 252 Cf neutron sources to agencies of the US Government and sales of 252 Cf as the bulk oxide and as palladium-californium alloy pellets and wires. The program has been operated since 1968 in temporary facilities at the Savannah River Laboratory (SRL). The obsolete hot-cell facilities at SRL are now being decommissioned, and the program activities are being transferred to ORNL's Californium Facility in Bldg. 7930, which is managed by the staff of the Transuranium Processing Plant

  8. The topological Anderson insulator phase in the Kane-Mele model

    Science.gov (United States)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  9. Thermoelectric micro converters for cooling and energy-scavenging systems

    International Nuclear Information System (INIS)

    Goncalves, L M; Couto, C; Correia, J H; Alpuim, P

    2008-01-01

    This paper describes the fabrication process of thermoelectric microconverters, based on n-type bismuth telluride (Bi 2 Te 3 ) and p-type antimony telluride (Sb 2 Te 3 ) thin films. The films are fabricated by thermal co-evaporation with thermoelectric properties comparable to those reported for the same materials in bulk form (used in conventional macro-scale Peltier modules). The absolute value of the Seebeck coefficient in the range of 150–250 µV K −1 and an in-plane electrical resistivity of 7–15 µΩ m were obtained. The influence of fabrication parameters on thermoelectric properties is reported. The films were patterned by photolithography and wet-etching techniques, using HNO 3 /HCl-based etchants. The influence of composition and concentration of etchants in the lithographic process is reported. A microcooler was fabricated

  10. Synthesis of Novel E-2-Chlorovinyltellurium Compounds Based on the Stereospecific Anti-addition of Tellurium Tetrachloride to Acetylene

    Directory of Open Access Journals (Sweden)

    Svetlana V. Amosova

    2012-05-01

    Full Text Available The reaction of tellurium tetrachloride with acetylene proceeds in a stereospecific anti-addition manner to afford the novel products E-2-chlorovinyltellurium trichloride and E,E-bis(2-chlorovinyltellurium dichloride. Reaction conditions for the selective preparation of each of these products were found. The latter was obtained in 90% yield in CHCl3 under a pressure of acetylene of 10–15 atm, whereas the former product was formed in up to 72% yield in CCl4 under a pressure of acetylene of 1–3 atm. Synthesis of the previously unknown E,E-bis(2-chlorovinyl telluride, E,E-bis(2-chlorovinyl ditelluride, E-2-chlorovinyl 1,2,2-trichloroethyl telluride and E,E-bis(2-chlorovinyl-tellurium dibromide is described.

  11. Effect of composition on the degree of anisotropy of thermal expansion and electric resistance of cermet specimens of GeTe

    International Nuclear Information System (INIS)

    Barbakadze, K.G.; Vekua, T.S.; Ioseliani, M.I.; Kvitsiniya, K.M.

    1988-01-01

    A study was made on α temperature coefficient of thermal expansion and ρ specific electric resistance of cermet germanium telluride for alloys close to stoichiometric composition. It is shown that anisotropy of thermal expansion of cermet germanium telluride depends sufficiently on its composition. This dependence is clearly pronounced if tellurium content in alloys equals 50.4-51.2 at.%. The maximal anisotropy is observed in the alloy containing 50.8 at.% of tellurium. The temperature of extreme value of temperature coefficient of linear expansion decreases from 440 down to 373 deg.C for alloys with 49-50.8 at.% of tellurium, and grows from 373 up to 405 deg.C if tellurium content equals 50.8-52 at.%

  12. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Status of tellurium--hastelloy N studies in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-10-01

    Tellurium, which is a fission product in nuclear reactor fuels, can embrittle the surface grain boundaries of nickel-base structural materials. This report summarizes results of an experimental investigation conducted to understand the mechanism and to develop a means of controlling this embrittlement in the alloy Hastelloy N. The addition of a chromium telluride to salt can be used to provide small partial pressures of tellurium simulating a reactor environment where tellurium appears as a fission product. The intergranular embrittlement produced in Hastelloy N when exposed to this chromium telluride-salt mixture can be reduced by adding niobium to the Hastelloy N or by controlling the oxidation potential of the salt in the reducing range

  14. Ab initio investigation of the structural and electronic properties of amorphous HgTe

    International Nuclear Information System (INIS)

    Zhao, Huxian; Chen, Xiaoshuang; Shu, Haibo; Lu, Wei; Lu, Jianping

    2014-01-01

    We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed. (paper)

  15. Ab initio investigation of the structural and electronic properties of amorphous HgTe.

    Science.gov (United States)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-29

    We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed.

  16. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  17. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  18. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  19. Assessment of a Thermoelectric Vest through Physical and Mental Performance

    Science.gov (United States)

    2012-04-01

    system is a sandwich- type structure of doped bismuth telluride (Bi2Te3) soldered between two ceramic plates. Bi2Te3 acts as a semiconductor and after... doping , the material becomes an efficient TE. Variations in doping create P-N junctions throughout the TE. Figure 3 shows a schematic of a TE...Excalibur Sport Ergonometer was used to increase subject’s core body temperature. The Excalibur Sport is a multi-adjustable ergonometer and is

  20. Vavřínite Ni2SbTe2, a new mineral species from the Kunratice Cu–Ni sulfide deposit, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Drábek, M.; Skála, Roman; Haloda, J.; Táborský, Z.; Císařová, I.

    2007-01-01

    Roč. 45, č. 5 (2007), s. 1213-1219 ISSN 0008-4476 Institutional research plan: CEZ:AV0Z30130516 Keywords : vavřínite * new mineral species * Ni–Sb telluride, * electron-microprobe data * reflectance data * synthetic Ni2SbTe2, X-ray-diffraction data * crystal structure * Kunratice (Czech Republic) Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.057, year: 2007

  1. Gamma motes for detection of radioactive materials in shipping containers

    International Nuclear Information System (INIS)

    Harold McHugh; William Quam; Stephan Weeks; Brendan Sever

    2007-01-01

    Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks

  2. Tellurium: providing a bright future for solar energy

    Science.gov (United States)

    Goldfarb, Richard J.

    2015-01-01

    Tellurium is one of the least common elements on Earth. Most rocks contain an average of about 3 parts per billion tellurium, making it rarer than the rare earth elements and eight times less abundant than gold. Grains of native tellurium appear in rocks as a brittle, silvery-white material, but tellurium more commonly occurs in telluride minerals that include varied quantities of gold, silver, or platinum. Tellurium is a metalloid, meaning it possesses the properties of both metals and nonmetals.

  3. Characteristics of a Steadily Operating Metal Combustor

    Science.gov (United States)

    1976-08-01

    Physique, Serie 7, Vol. 17, p. 510-576, 1899. 18. Zintl, E., Harder, A., and Dauth, B., "Gitterstruktur Der Oxyde , Sulfide, Selenide Und Telluride Des...ethyl alcohol were added to the cylinder along with three drops of alizarin Red S indicator (1%). The solution was titrated with thorium nitrate until...the appearance of a faint pink color. The thorium nitrate precipitated thorium fluoride which is insoluble in ethyl alcohol , and the indicator detected

  4. Detection of Bioaerosols Using Single Particle Thermal Emission Spectroscopy (First-year Report)

    Science.gov (United States)

    2012-02-01

    radiance is focused into 190-mm Horiba spectrometer where the radiance is dispersed onto an ultrafast, time-gated, liquid nitrogen (LN2) cooled 32...techniques were examined, i.e., methods that rely on acoustic levitation , radiative pressure, and suspension of small particles using the photophoretic...field of view HeNe helium-neon LN2 liquid nitrogen MCT mercury cadmium telluride NA numeric aperture Nd:YAG neodymium-doped yttrium aluminum

  5. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  6. Influence of different protecting groups on the regioselectivity of the hydrotelluration reaction of hydroxy alkynes

    International Nuclear Information System (INIS)

    Oliveira, Juliana M.; Palmeira, Dayvson J.; Menezes, Paulo H.; Comasseto, Joao V.

    2010-01-01

    The influence of protecting groups on the synthesis of regio- and stereodefined vinyl tellurides derived from the reaction of BuTeNa and propargylic- or homo-propargylic alcohols showed that TIPS silyl ether is useful as a regiodirecting group. The application of the methodology to the synthesis of a fragment of (±)-Seselidiol, a natural product, demonstrated the applicability of the new methodology. (author)

  7. Highlights of nuclear chemistry 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Highlights were: 1. Fission product release: benchmark calculations for severe nuclear accidents; 2. Thermochemical data for reactor materials and fission products; 3. thermochemical calculations on fuel of the high-temperature gas-cooled reactor; 4. Formation of organic tellurides during nuclear accidents?; 5. Reaction of tellurium with Zircaloy-4; 6. Transmutation of fission products; 7. The thermal conductivity of high-burnup UO 2 fuel; 8. Tritium retention in graphite. (orig./HP)

  8. Far infrared properties of PbTe doped with cerium

    International Nuclear Information System (INIS)

    Nikolic, P.M.; Koenig, W.; Vujatovic, S.S.; Blagojevic, V.; Lukovic, D.; Savic, S.; Radulovic, K.; Urosevic, D.; Nikolic, M.V.

    2007-01-01

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm -1 . The origin of these local vibrational impurity modes was discussed

  9. Emerging technologies for high performance infrared detectors

    OpenAIRE

    Tan Chee Leong; Mohseni Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as...

  10. Event Pre Processor for the CZT Detector on MIRAX

    International Nuclear Information System (INIS)

    Kendziorra, Eckhard; Schanz, Thomas; Distratis, Giuseppe; Suchy, Slawomir

    2006-01-01

    We describe the Event Pre Processor (EPP) for the Hard X-ray Imager (HXI) on MIRAX. The EPP provides on board data reduction and event filtering for the HXI Cadmium Zinc Telluride strip detector. Emphasis is placed upon the EPP requirements, its implementation as VHDL design in a Field Programmable Gate Array (FPGA), and the description of a test environment for both the VHDL code and the FPGA hardware

  11. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 34

    Science.gov (United States)

    1977-04-27

    USSR UDC 621.315.592 ANOMALOUS PHOTOCONDUCTIVITY AND DARK CONDUCTIVITY OF SEMI-INSULATING CADMIUM TELLURIDE Leningrad FIZIKA I TEKHNIKA...conductivity activation energy of CdTe. The temperature characteristic of the dark conductivity, measured within the ohmic range of the current...A. V., Joint Institute for Nuclear Research [Abstract] The purpose of this theoretical paper is to show that the quark -parton modification offers

  12. A new type of one-dimensional compound: Structure of Nb4(Te2)4Te4I

    International Nuclear Information System (INIS)

    Deng Shuiquan; Zhuang Honghui; Lu Canzhong; Huang Jinshun; Huang Jingling

    1993-01-01

    The new infinite-chain niobium telluride iodide has been prepared by reaction of the elements at 893 K. Nb 4 (Te 2 ) 4 Te 4 I represents a new one-dimensional structure type. The structure consists of [Nb 4 (Te 2 ) 4 Te 4 I] ∞ chains which are formed by the four-nuclear butterfly cluster units 'Nb 4 (Te 2 ) 4 Te 4 ' with the I atoms bridging between different cluster units. (orig.)

  13. Power System Assessment for the Burnt Mountain Seismic Observatory

    Science.gov (United States)

    1994-03-01

    monocrystalline cells and 15- 20% for polycrystalline cells. Less expensive cells, such as copper indium diselenide and cadmium telluride, have...solar cells are recommended. The silicon solar cells themselves are very reliable, however the reliability of panels and systems for field use can...is composed of four solar-cell panels each measuring 48 inches X 21 inches. The four panels in the array module are arranged, electrically, as two

  14. Solar Energy and Telemedicine in West Africa : A strategic solution

    OpenAIRE

    Ihuoma, Phineese

    2011-01-01

    It is important to bring medical help to those living in West Africa. A good way to do this is by telemedicine. Telemedicine, although it uses power, can be achieved easily with solar panels, and the best solar panels are monocrystalline and cadmium telluride. Using graphical scenarios, statistical derivations, theoretical ideologies acquired from literature reviews, usability ideas and two personal case scenarios, the objective of this project was achieved. Criteria like cost, temperatur...

  15. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  16. Far infrared properties of PbTe doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, P.M. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu; Koenig, W. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80 (Germany); Vujatovic, S.S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Blagojevic, V. [Faculty of Electronic Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Lukovic, D. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Savic, S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Radulovic, K. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Urosevic, D. [Mathematical Institute SASA, Knez Mihailova 35/I, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, Belgrade (Serbia)

    2007-05-16

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm{sup -1}. The origin of these local vibrational impurity modes was discussed.

  17. NCPV preprints for the 2. world conference on photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The proceedings contain 26 papers arranged under the following topical sections: Silicon (3 papers); Thin-film PV technologies (11 papers): amorphous silicon, cadmium telluride, copper indium diselenide, and high efficiency devices; Module and BOS manufacturing (2 papers); Cell, module, and system testing (7 papers); and Market development (3 papers). Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Diffusion in semiconductors, other than silicon compilation

    CERN Document Server

    Fisher, David J

    2011-01-01

    Review from Book News Inc.: Summary reports of 337 experiments provide information on the diffusion of matter and heat in 31 materials used in semiconductors. Most of the compounds are based on cadmium, gallium, indium, lead, and zinc. Mercury telluride is included however, as is silicon carbide for some reason. Each article is thoroughly referenced to the authors and publication number, date, and page. The arrangement is alphabetical by semiconductor material. Indexes cover authors, hosts, and diffusants.

  19. Spectrometry of X-ray beams using Cadmium and Zinc Teluride detector

    International Nuclear Information System (INIS)

    Becker, Paulo Henriques Bastos

    1997-06-01

    Determination of X-ray spectra to be utilized for medical diagnostics is a complementary process to the development of procedures to be applied to the quality control of radiodiagnostics X-ray equipment. Until some years ago, that was only possible using Germanium or Silicon detectors. Both have an excellent resolution in this energy range, but present also some restrictions as there are high costs and the necessity of operating them at temperature of liquid Nitrogen, which is not always available at the measurement's place. Room temperature detectors like Cadmium Telluride and Mercury Iodine don't have these restrictions. They, however, have a lower resolution and incomplete collection of the charges produced by their interaction with radiation. With technological advance of crystal growth in general and new techniques like cooling the crystal with a Peltier cell and rise time discrimination circuits, today Cadmium Telluride detectors show a resolution very close to that from Germanium detectors. This work relates to the routine use of Cadmium and Zinc Telluride detectors for measuring X-ray spectra in loco of diagnostic X-ray units. It characterizes the properties of a commercially available detector and offers a model for stripping the measured pulse height distribution. It was also developed a collimator to allow the direct measurement of the beam. The model developed and the constructed set-up were applied to two X-ray tubes and the achieved spectra compared with some spectra available from the literature. (author)

  20. Recursos y alternativas de tratamiento para los minerales de teluro de Sonora (México

    Directory of Open Access Journals (Sweden)

    Aguayo, S.

    1996-02-01

    Full Text Available Tellurium production is limited mainly to that obtained from the treatment of electrolyte muds from copper refineries. However, there are several other sources from which the precious metal tellurides are potentially attractive. This work presents a review of the main localities in Sonora (México, where tellurides have been found. In addition, based upon the physical chemistry fundamentals for tellurium and precious metal tellurides, the aqueous extraction and recovery routes are discussed.

    El teluro es un elemento escaso, pero con un espectro amplio de aplicaciones. Su producción está limitada a la obtenida por el tratamiento de los lodos electrolíticos de las refinerías de cobre. De las fuentes alternativas de teluro, los telururos de metales preciosos son atractivos por la asociación natural de estos dos elementos, con la posibilidad de obtener el teluro como subproducto. Sonora (México, se caracteriza por ser una zona rica en teluros con más de treinta especies registradas. Este artículo describe las principales localizaciones en que se encuentran minerales de teluro en Sonora (México, señalando sus principales características, así como las especies hasta ahora registradas. Se analizan, además, las posibles rutas de extracción y recuperación acuosa de teluro, de acuerdo con la fisicoquímica de los sistemas teluro-metales preciosos.