WorldWideScience

Sample records for californium atomic number

  1. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  2. The New Element Curium (Atomic Number 96)

    Science.gov (United States)

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-01-01

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  3. Californium-252: a remarkable versatile radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Osborne-Lee, I.W.; Alexander, C.W.

    1995-10-10

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.

  4. Californium-252 progress, report No. 7, April 1971

    Energy Technology Data Exchange (ETDEWEB)

    1971-12-31

    This report contains discusses of the following topics on Californium-252: First sales of californium-252; encapsulation services discussed; three new participants in market evaluation program; summer training programs to use californium; Californium-252 shipping casks available; Californium-252 questions and answers, radiotherapy; neutron radiography; natural resources exploration; nuclear safeguards; process control; dosimetry; neutron radiography; neutron shielding; and nuclear safeguards.

  5. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    (3) where fi = (ni/ ∑j nj) and Zi are the fractional abundance and atomic number respectively of the constituent element. Here, ni is the total number of atoms of the constituent element and ∑j nj are the total number of atoms of all types present in the compound as per its chemical formula. The effective atomic number, Zeff,.

  6. The Atomic Number Revolution in Chemistry: A Kuhnian Analysis

    DEFF Research Database (Denmark)

    Wray, K. Brad

    2018-01-01

    This paper argues that the field of chemistry underwent a significant change of theory in the early twentieth century, when atomic number replaced atomic weight as the principle for ordering and identifying the chemical elements. It is a classic case of a Kuhnian revolution. In the process...... of what it is to be an element. In the process of making these changes, a new scientific lexicon emerged, one that took atomic number to be the defining feature of a chemical element....

  7. Measurement of atomic number and mass attenuation coefficient in ...

    Indian Academy of Sciences (India)

    The linear attenuation coefficient (), mass attenuation coefficient (/ρ), total atomic cross-section (tot), total electronic cross-section (ele) and the effective atomic number (eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of -ray mass attenuation coefficient were obtained using a NaI energy ...

  8. Effective atomic number, electron density and kerma of gamma ...

    Indian Academy of Sciences (India)

    Abstract. An attempt has been made to estimate the effective atomic number, electron density. (0.001 to 105 MeV) and kerma (0.001 to 20 MeV) of gamma radiation for a wide range of oxides of lanthanides using mass attenuation coefficient from WinXCom and mass energy absorption coef- ficient from Hubbell and Seltzer.

  9. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury ...

  10. Experimental measurement of effective atomic number of composite ...

    Indian Academy of Sciences (India)

    In this paper, we report a new method to determine the effective atomic number, eff, of composite materials for Compton effect in the γ -ray region 280–1115 keV based on the theoretically obtained Klein–Nishina scattering cross-sections in the angular range 50°–100° as well as a method to experimentally measure ...

  11. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    hp AC motor such that the plane of the absorber is always perpendicular to the ... The control circuit is fabricated such that the speed of the motor is constant and ... hydrogen to fermium. The effective atomic number of the absorber is calculated as per eq. (1). 3. Results and discussions. The experimental values for the total ...

  12. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other ...

  13. Effective atomic numbers and electron density of dosimetric material

    Directory of Open Access Journals (Sweden)

    Kaginelli S

    2009-01-01

    Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.

  14. Historical review of californium-252 discovery and development

    Science.gov (United States)

    Stoddard, D. H.

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving (252)Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed.

  15. Low atomic number coating for XEUS silicon pore optics

    DEFF Research Database (Denmark)

    Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.

    2008-01-01

    We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative...... of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare...... the low energy effective area increase that could be achieved with an optimized coating design....

  16. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    Science.gov (United States)

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  17. The Number of Atomic Models of Uncountable Theories

    OpenAIRE

    Ulrich, Douglas

    2016-01-01

    We show there exists a complete theory in a language of size continuum possessing a unique atomic model which is not constructible. We also show it is consistent with $ZFC + \\aleph_1 < 2^{\\aleph_0}$ that there is a complete theory in a language of size $\\aleph_1$ possessing a unique atomic model which is not constructible. Finally we show it is consistent with $ZFC + \\aleph_1 < 2^{\\aleph_0}$ that for every complete theory $T$ in a language of size $\\aleph_1$, if $T$ has uncountable atomic mod...

  18. Determination of molecular, atomic, electronic cross-sections and effective atomic number of some boron compounds and TSW

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan [Department of physics Education, Faculty of Education Erzincan University, 24030 Erzincan (Turkey)], E-mail: orhanicelli@gmail.com; Erzeneoglu, Salih [Department of physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey); Boncukcuoglu, Recep [Department of Environmental Engineering, Faculty of Engineering, Atatuerk University, Erzurum (Turkey)

    2008-07-15

    The transmission of gamma-rays of some boron compounds (H{sub 3}BO{sub 3}, Na{sub 2}B{sub 4}O{sub 7}) and the trommel sieve waste (TSW) have been measured by using an extremely narrow-collimated-beam transmission method in the energy range 15.74-40.93 keV. Molecular, atomic and electronic cross-sections and effective atomic numbers have been determinated on the basis of mixture rule and compared with the results obtained from theory.

  19. Measurement of effective atomic number of gunshot residues using scattering of gamma rays

    Science.gov (United States)

    Yılmaz, Demet; Turşucu, Ahmet; Uzunoğlu, Zeynep; Korucu, Demet

    2014-09-01

    Better understanding of gunshot residues and the major elemental composition would be valuable to forensic scientists for their analysis work and interpretation of results. In the present work, the effective atomic numbers of gunshot residues (cartridge case, bullet core, bullet jacket and gunpowder) were analyzed using energy dispersive X-ray analysis (EDX). The scattering of 59.54 keV gamma rays is studied using a high-resolution HPGe detector. The experiment is performed on various elements with atomic number in the 4≤Z≤82. The intensity ratio of coherent to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best-fit-curve. From this fit-curve, the respective effective atomic numbers of gunshot residues are determined.

  20. Determination of effective atomic numbers, effective electrons numbers, total atomic cross-sections and buildup factor of some compounds for different radiation sources

    Science.gov (United States)

    Levet, A.; Özdemir, Y.

    2017-01-01

    The photon interaction parameters such as mass attenuation coefficient, effective atomic number, effective electron density, buildup factor have been measured for Fe(NO3)3, V4O2, NaCO3·H2O, C6H5FeO7·H2O and CuCI compounds using 137Ba, 157Gd and 241Am γ-rays sources in stable geometry. The mass attenuation coefficients have been determined experimentally via Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) system and theoretically by using WinXCom computer program. Then, effective atomic numbers, Zeff, and electron densities, Neff, have been calculated by using the mass attenuation coefficients. The obtained values of effective atomic numbers have been compared with the ones calculated according to a different approach proposed by Hine and the calculated ones from theory. Also, photon buildup factors were obtained by changing collimator diameters in the different photon energies. We observed that the buildup factor increased as the collimator diameter increased for all sources used.

  1. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  2. Atomic number scaling of the nickel-like soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Daido, H.; Ninomiya, S.; Imani, T. [Osaka Univ., Suita, Osaka (Japan). Inst. of Laser Engineering] [and others

    1997-03-30

    The authors report the review of the experimental results obtained at the Institute of Laser Engineering, Osaka University, of the soft X-ray lasing in various Ni-like ions whose atomic numbers range from 47(Ag) to 66(Dy). The lasing wavelengths are between 14 nm and 5 nm. X-ray lasing in these materials were obtained when the plasma profiles were properly controlled in time and space by irradiation of curved slab targets with multiple laser pulses. They also describe the original work of the atomic physics calculations which provide the transition energies, transition probabilities and other atomic constants for Ni-like ion species whose atomic numbers range from 36 to 92 calculated with GRASP code (multi-configuration Dirac Fock code) and YODA code (relativistic distorted wave code). Based on these atomic constants, they have calculated the kinetics of the population inversion with a simplified rate equation model in conjunction with a one-dimensional hydrodynamic code to find out the desired pumping conditions. They show a possibility for significant improvement in the pumping efficiency with the use of a picosecond laser irradiating a properly configured preformed plasma. Finally, a simplified estimation of the pumping efficiency is described based on the atomic constants and plasma physics issues.

  3. A spectrometric approach in radiography for detection of materials by their effective atomic number

    CERN Document Server

    Ryzhikov, V D; Onyshchenko, G M; Lecoq, P; Smith, C F

    2009-01-01

    In this paper we report a spectrometric approach to dual-energy digital radiography that has been developed and applied to identify specific organic substances and discern small differences in their effective atomic number. An experimental setup has been designed, and a theoretical description proposed based on the experimental results obtained. The proposed method is based on the application of special reference samples made of materials with different effective atomic number and thickness parameters known to affect X-ray attenuation in the low-energy range. The results obtained can be used in the development of a new generation of multi-energy customs or medical X-ray scanners.

  4. Quantum non-demolition measurement of photon number with atom-light interferometers.

    Science.gov (United States)

    Chen, S Y; Chen, L Q; Ou, Z Y; Hang, Weipingz

    2017-12-11

    When atoms are illuminated by an off-resonant field, the AC Stark effect will lead to phase shifts in atomic states. The phase shifts are proportional to the photon number of the off-resonant illuminating field. By measuring the atomic phase with newly developed atom-light hybrid interferometers, we can achieve quantum non-demolition measurement of the photon number of the optical field. In this paper, we analyze theoretically the performance of this QND measurement scheme by using the QND measurement criteria established by Holland et al [Phys. Rev. A 42, 2995 (1990)]. We find the quality of the QND measurement depends on the phase resolution of the atom-light hybrid interferometers. We apply this QND measurement scheme to a twin-photon state from parametric amplifier to verify the photon correlation in the twin beams. Furthermore, a sequential QND measurement procedure is analyzed for verifying the projection property of quantum measurement and for the quantum information tapping. Finally, we discuss the possibility for single-photon-number-resolving detection via QND measurement.

  5. Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices

    Energy Technology Data Exchange (ETDEWEB)

    Şarlı, Numan, E-mail: numansarli82@gmail.com

    2015-01-15

    The effects of the magnetic atom number in the unit volume on the magnetic properties are investigated by using sc (n=8), bcc (n=9) and fcc (n=14) Ising NLs within the effective field theory with correlations. We find that the magnetic properties expand as the magnetic atom number increases in the unit volume and this expanding constitutes an elliptical path at T{sub C}. The effect of the magnetic atom number (n) in the unit volume on the magnetic properties (mp) appear as n{sub sc}atom in its unit volume or inverse. The slopes of the paramagnetic hysteresis curves are directly proportional with the atom number in the unit volume. This proportion is the confirmation that the Curie's constant is directly proportional with the atom number in the unit volume (C α n). Hence, by using the slopes of the paramagnetic hysteresis curves of any nanosystem, it can be predicted that the number of particles in its unit volume. Moreover, the magnetic atoms in the paramagnetic region can be considered as particles in the gas. Because of the absence of an external magnetic field, the spin orientations of these atoms are random and free to rotate. Hence, they act on individually with no mutual interaction between two nearest-neighbor magnetic atoms. Therefore, we use the statistical mechanics form of the ideal gas law in the paramagnetic region and we obtain the critical paramagnetic pressure (P{sub C}=n{sub p}k{sub B}T{sub C}) of the Ising NLs at T{sub C}. We define the paramagnetic magnetic atom number in the unit volume as n{sub p}=n(1−M(T)). - Graphical abstract: The figures show the paramagnetic atom number (np=n(1−M(T))) of the Ising NLs. By using, np and T{sub C}, we define the paramagnetic critical pressure as P{sub C}=npk{sub B}T{sub C}. - Highlights: • Magnetic properties of the sc, bcc and fcc Ising

  6. Production, Distribution, and Applications of Californium-252 Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  7. Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes

    NARCIS (Netherlands)

    Hadjar, O; Hoekstra, R; Morgenstern, R; Schlatholter, T

    The delocalized pi electrons of a C-60 cluster can be well described as an electron gas. Electronic friction experienced by a multicharged ion colliding with a fullerene might then be modeled in terms of the electronic stopping power. We investigated such collisions for projectile atomic numbers Z

  8. Effective atomic numbers of some H-, C-, N-and O-based composite ...

    Indian Academy of Sciences (India)

    The differential incoherent scattering cross-sections of the composite materials of interest measured at these three angles in the same set-up and substituted in this expression would yield their effective atomic number at the three energies. Results obtained in this manner for bakelite, nylon, epoxy, teflon, perspex and some ...

  9. Cheminoes: A Didactic Game to Learn Chemical Relationships between Valence, Atomic Number, and Symbol

    Science.gov (United States)

    Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria

    2014-01-01

    Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…

  10. Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    The effective atomic number, Z(eff), the effective electron density, N-el, and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCo...

  11. Crystallization of Supercooled Liquid Elements Induced by Superclusters Containing Magic Atom Numbers

    Directory of Open Access Journals (Sweden)

    Robert F. Tournier

    2014-08-01

    Full Text Available A few experiments have detected icosahedral superclusters in undercooled liquids. These superclusters survive above the crystal melting temperature Tm because all their surface atoms have the same fusion heat as their core atoms, and are melted by liquid homogeneous and heterogeneous nucleation in their core, depending on superheating time and temperature. They act as heterogeneous growth nuclei of crystallized phase at a temperature Tc of the undercooled melt. They contribute to the critical barrier reduction, which becomes smaller than that of crystals containing the same atom number n. After strong superheating, the undercooling rate is still limited because the nucleation of 13-atom superclusters always reduces this barrier, and increases Tc above a homogeneous nucleation temperature equal to Tm/3 in liquid elements. After weak superheating, the most stable superclusters containing n = 13, 55, 147, 309 and 561 atoms survive or melt and determine Tc during undercooling, depending on n and sample volume. The experimental nucleation temperatures Tc of 32 liquid elements and the supercluster melting temperatures are predicted with sample volumes varying by 18 orders of magnitude. The classical Gibbs free energy change is used, adding an enthalpy saving related to the Laplace pressure change associated with supercluster formation, which is quantified for n = 13 and 55.

  12. The effective atomic number for gamma ray interactions with heavy metal oxide glasses

    DEFF Research Database (Denmark)

    Manohara, S. R.; Hanagodimath, S.M.; Gerward, Leif

    2010-01-01

    The effective atomic number, Z(eff), and the effective electron density, N-el,N-eff, have been calculated at photon energies from 1 keV to 100 GeV for CaO-SrO-B2O3, ZnO-PbO-B2O3, and CdO-PbO-B2O3 glasses with potential applications as gamma ray shielding materials. Appreciable variations are noted...... for all parameters by changing the chemical composition and the photon energy. The calculated parameters are compared with experimental data wherever possible. Comparisons are also made with the single-valued effective atomic number given by the program XMuDat. Finally, it is concluded that lead oxide...... glasses have gamma ray shielding properties comparable with standard shielding materials, such as concrete....

  13. Effective atomic numbers for CoCuNi alloys using transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan [Department of Physics Education, Education Faculty of Erzincan, Atatuerk University, Erzincan (Turkey)]. E-mail: orhan_icelli@hotmail.com; Erzeneoglu, Salih [Department of Physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey); Karahan, I.H. [Department of Physics, Sciences Faculty of Kilis, Gaziantes University, Kilis (Turkey); Cankaya, Gueven [Department of Physics, Faculty of Sciences, Gaziosmanpasa University, Tokat (Turkey)

    2005-04-01

    Effective atomic numbers for CuCoNi alloys against changing Ni contents were measured in the X-ray energy range from 15.746 to 40.930 keV. The gamma rays emitted a {sup 241}Am point source have been send on absorbers to be used transmission arrangement. The X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. The compositions of the Ni films were determined to be 0.03, 0.47, 0.62, 1.23, 1.22 and 1.6 by a scanning electron microscopy in CuCoNi alloys prepared against changing Ni contents. CoCuNi alloy films were prepared with an electrodeposition technique. Also, the total effective atomic numbers of each alloy were estimated using mixture rule. The measured values were compared with estimated values for alloys.

  14. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  15. A simple image based method for obtaining electron density and atomic number in dual energy CT

    Science.gov (United States)

    Szczykutowicz, Timothy P.; Qi, Zhihua; Chen, Guang-Hong

    2011-03-01

    The extraction of electron density and atomic number information in computed tomography is possible when image values can be sampled using two different effective energies. The foundation for this extraction lies in the ability to express the linear attenuation coefficient using two basis functions that are dependent on electron density and atomic number over the diagnostic energy range used in CT. Material basis functions separate images into clinically familiar quantities such as 'bone' images and 'soft tissue' images. Physically, all basis function choices represent the expression of the linear attenuation coefficient in terms of a photoelectric and a Compton scattering term. The purpose of this work is to develop a simple dual energy decomposition method that requires no a priori knowledge about the energy characteristics of the imaging system. It is shown that the weighted sum of two basis images yields an electron density image where the weights for each basis image are the electron density of that basis image's basis material. Using the electron density image, effective atomic number information can also be obtained. These methods are performed solely in the image domain and require no spectrum or detector energy response information as required by some other dual energy decomposition methods.

  16. Effective atomic number of dental smalt; Numero atomico efetivo do esmalte dentario

    Energy Technology Data Exchange (ETDEWEB)

    Rodas D, J.E.; Nogueira, M.S. [Departamento de Fisica e Matematica da FFCLRP-USP. 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    1998-12-31

    The effective atomic numbers Z are enough utilized for to characterize the interactions of ionizing radiation with matter. Particularly for the Z calculation in biological tissues and/or composed materials we need to know the relationship between the cross sections of the diverse radiations interactions with mattera and the atomic numbers Z of the constituent elements in the tissue or composed material. Normally the cross section by atom {sigma} {sup 2} is proportional to Z{sup m}. The m value depends of the iterative process type and the energy of the incident photons. In the case of the photoelectric interaction, the m vary will vary between 4,698 and 4,799 for energies between 10 to 200 keV. It was verified that constituent elements with high Z (>20) they had a major contribution. The m values for the Compton interation and the coherent scattering were calculated of similar way. Knowing the m values, we calculate the partials Z of a composed material. For the calculation of total Z, we can use alternatives starting from the equivalent atomic number corresponding to the total cross section {sigma} {sup d} tot, mc of the composed material. In this work for the calculation of Z values corresponding to diverse interations, we applied a linear regression at the values of Ln {sigma} {sup a} x LnZ for different energies. In general, to characterize a simulator material of a tissue or composed material we need to know the total Z in function of the photon energy applied to dental smalt increases until some hundreds of keV the partial values of Z owing to photoelectric effect and the coherent scattering this is owing to the smalt has a great concentration of elements with high Z. (Author)

  17. Local enhancement of radiation dose by using high atomic number materials with high energy photon beam

    Science.gov (United States)

    Alkhatib, Ahmad Khaled

    The goal of treatment planning in radiation therapy is to maximize the absorbed dose in abnormal cells and minimize the dose in normal cells. It is long established that the probability of pair production interactions (converting photon to electron and positron see chapter II) increases with the increase of the photon energy above a 1.02 MV threshold and with the square of the atomic number of the medium. In this work I tried to locally enhance the absorbed dose by using both a high energy photon beam and high Z material (Gold foils), to observe the effect of the secondary electrons that are produced in the high z material (gold) with high energy photons (end point energy 25MV). To observe the range of these secondary electrons, I changed the gap between two gold foils. I studied also the effect of varying the thickness of both gold foils. To verify the dependence of the atomic number (Z) I repeated the measurements with two Aluminum foils, and to observe the effect of The Higher photon energy I used a range of photon beams with end point energies 6, 10, 15, 18 and 25 MV. I used Monte Carlo code to confirm the result. The calculated dose enhancements from the simulation were in general 5% higher the measured values.

  18. Unusual structure, bonding and properties in a californium borate

    Energy Technology Data Exchange (ETDEWEB)

    Polinski, Matthew J.; Garner, Edward B.; Maurice, Rémi; Planas, Nora; Stritzinger, Jared T.; Parker, T. Gannon; Cross, Justin N.; Green, Thomas D.; Alekseev, Evgeny V.; Van Cleve, Shelley M.; Depmeier, Wulf; Gagliardi, Laura; Shatruk, Michael; Knappenberger, Kenneth L.; Liu, Guokui; Skanthakumar, S.; Soderholm, Lynda; Dixon, David A.; Albrecht-Schmitt, Thomas E.

    2014-03-23

    The participation of the valence orbitals of actinides in bonding has been debated for decades. Recent experimental and computational investigations demonstrated the involvement of 6p, 6d and/or 5f orbitals in bonding. However, structural and spectroscopic data, as well as theory, indicate a decrease in covalency across the actinide series, and the evidence points to highly ionic, lanthanide-like bonding for late actinides. Here we show that chemical differentiation between californium and lanthanides can be achieved by using ligands that are both highly polarizable and substantially rearrange on complexation. A ligand that suits both of these desired properties is polyborate. We demonstrate that the 5f, 6d and 7p orbitals are all involved in bonding in a Cf(III) borate, and that large crystal-field effects are present. Synthetic, structural and spectroscopic data are complemented by quantum mechanical calculations to support these observations.

  19. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    Science.gov (United States)

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of NPs; both are key requirements for the implementation of the European Commission recommendation for definition of nanomaterials.

  20. Correction: Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy.

    Science.gov (United States)

    Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi

    2016-08-07

    Correction for 'Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy' by Ken-ichi Amano et al., Phys. Chem. Chem. Phys., 2016, 18, 15534-15544.

  1. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, Anne, E-mail: annebonnin@free.fr [ESRF, 6 Jules Horowitz, F-38073 Grenoble Cedex (France); LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Duvauchelle, Philippe, E-mail: philippe.duvauchelle@insa-lyon.fr [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Kaftandjian, Valérie [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Ponard, Pascal [Thales Electron Devices SAS, 2 Rue Marcel Dassault, BP23 78141 Vélizy, Villacoublay Cedex (France)

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage.

  2. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions

    Science.gov (United States)

    Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani

    2017-09-01

    The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.

  3. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    Science.gov (United States)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size.

    Science.gov (United States)

    Rahm, J Magnus; Erhart, Paul

    2017-09-13

    In the pursuit of complete control over morphology in nanoparticle synthesis, knowledge of the thermodynamic equilibrium shapes is a key ingredient. While approaches exist to determine the equilibrium shape in the large size limit (≳10-20 nm) as well as for very small particles (≲2 nm), the experimentally increasingly important intermediate size regime has largely remained elusive. Here, we present an algorithm, based on atomistic simulations in a constrained thermodynamic ensemble, that efficiently predicts equilibrium shapes for any number of atoms in the range from a few tens to many thousands of atoms. We apply the algorithm to Cu, Ag, Au, and Pd particles with diameters between approximately 1 and 7 nm and reveal an energy landscape that is more intricate than previously suggested. The thus obtained particle type distributions demonstrate that the transition from icosahedral particles to decahedral and further into truncated octahedral particles occurs only very gradually, which has implications for the interpretation of experimental data. The approach presented here is extensible to alloys and can in principle also be adapted to represent different chemical environments.

  5. Effective atomic numbers of polypyrrole via transmission method in the energy range 15.74-40.93 keV

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan [Department of Physics Education, Education Faculty of Erzincan, Erzincan University, Erzincan (Turkey)], E-mail: orhanicelli@gmail.com; Erzeneoglu, Salih; Saglam, Mustafa [Department of Physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey)

    2008-03-15

    Effective atomic numbers (Z{sub eff}) of polypyrrole have been determined for total photon interactions in the energy range 15.74-40.93 keV from the accurately measured total attenuation coefficients, for characteristic K and K X-rays of Zr, Mo, Ag, In, Sb, Ba and Pr. The results were compared with the theoretical atomic numbers obtained using the XCOM.

  6. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  7. Effective atomic numbers of some vanadium and nickel compounds for total photon interactions using transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan E-mail: oicelli@eef.edu.tr; Erzeneoglu, Salih

    2004-05-01

    Effective atomic numbers of V{sub 2}O{sub 3},VO{sub 2},VF{sub 3},NH{sub 4}VO{sub 3},VF{sub 4},NiF{sub 2},NiCl{sub 2},NiF{sub 2}4H{sub 2}O,NiCl{sub 2}6H{sub 2}O,Ni(ClO{sub 4}){sub 2}= 6H{sub 2}O were measured in the X-ray energy range 15.746-40.930 keV using an Si(Li) detector. The measured values are compared with the theoretical ones calculated using WinXcom.

  8. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  9. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)

    2014-10-01

    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  10. Semiempirical fine-tuning for Hartree–Fock ionization potentials of atomic ions with non-integral atomic number

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Nicolás A. [Departamento de Física, Universidad de Burgos, C Villadiego s/n, E-09001 Burgos (Spain); March, Norman H. [Department of Physics, University of Antwerp (RUCA), 171 Groenenborgerlaan, B-2020 Antwerp (Belgium); Oxford University, Oxford (United Kingdom); Alonso, Julio A. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2013-12-02

    Amovilli and March (2006) [8] used diffusion quantum Monte Carlo techniques to calculate the non-relativistic ionization potential I(Z) in He-like atomic ions for the range of (fractional) nuclear charges Z lying between the known critical value Z{sub c}=0.911 at which I(Z) tends to zero and Z=2. They showed that it is possible to fit I(Z) to a simple quadratic expression. Following that idea, we present here a semiempirical fine-tuning of Hartree–Fock ionization potentials for the isoelectronic series of He, Be, Ne, Mg and Ar-like atomic ions that leads to excellent estimations of Z{sub c} for these series. The empirical information involved is experimental ionization and electron affinity data. It is clearly demonstrated that Hartree–Fock theory provides an excellent starting point for determining I(Z) for these series.

  11. Photon-number statistics from resonance fluorescence of a two-level atom near a plasmonic nanoparticle

    Science.gov (United States)

    Pastukhov, Vladimir M.; Vladimirova, Yulia V.; Zadkov, Victor N.

    2014-12-01

    The photon-number statistics from resonance fluorescence of a two-level atom near a metal nanosphere driven by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics here takes place in a small area around the nanosphere where the near field and the atom-nanosphere coupling essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r ≤2 a (r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free space. It is shown that the distribution function p (n ,T ) of the emission probability of n photons in a given time interval T in steady-state resonance fluorescence drastically depends on the atom location around the nanosphere for r ≤2 a , featuring a characteristic twist in the ridgelike dependence and a convergence time of up to 9 μ s, two orders of magnitude slower than for the atom in free space. At large distances, the distribution converges to a Gaussian one, as for the atom in free space. The typical convergence time scale at large distances r >2 a tends to the convergence time of the atom in free space. There are also two areas symmetrical around the nanosphere in which Ω ˜γ and the convergence time goes to zero. This behavior is determined by the interplay of the radiative and nonradiative decay rates of the atom due to the coupling with the metal nanosphere and by the near-field intensity. Additional parameters are the normalized laser frequency detuning from the atomic resonance and the bandwidth of the incoming laser field.

  12. Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy.

    Science.gov (United States)

    Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi

    2016-06-21

    Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem. Here, we propose a robust and practical transform theory, which can generate the number density distribution of solvent molecules on a substrate from the force curve. As an example, we analyzed a force curve measured by using our high-resolution AFM with a newly fabricated ultrashort cantilever. It is demonstrated that the hydration structure on muscovite mica (001) surface can be reproduced from the force curve by using the transform theory. The transform theory will enhance AFM's ability and support structural analyses of solid/liquid interfaces. By using the transform theory, the effective diameter of a real probe apex is also obtained. This result will be important for designing a model probe of molecular scale simulations.

  13. Determination of effective atomic number and electron density of heavy metal oxide glasses

    Science.gov (United States)

    Ali, A. M.; El-Khayatt, A. M.; Akkurt, I.

    2016-03-01

    The effective atomic number (Zeff) and effective electron density (Neff) of eight heavy metal oxide (HMO) glasses have been determined using the Monte Carlo simulation code MCNP for the energy range of 10 keV-10 MeV. The interpolation method was employed to extract Zeff and Neff values from the simulation and that calculated with the help of XCOM program. Comparisons are also made with predictions from the Auto-Zeff software in the same energy region. Wherever possible, the simulated values of Zeff and Neff are compared with experimental data. In general, a very good agreement was noticed. It was found that the Zeff and Neff vary with photon energy and do not have extended intermediate regions where Compton scattering is truly dominating; only dips slightly above ∼1.5 MeV were recorded. Zeff and Neff are found to increase with PbO and Bi2O3 contents. It was found that the Zeff value rather than the Neff value is a better indicator for PbO and/or Bi2O3 contents.

  14. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  15. An Estimation of the Number and Size of Atoms in a Printed Period

    Science.gov (United States)

    Schaefer, Beth; Collett, Edward; Tabor-Morris, Anne; Croman, Joseph

    2011-01-01

    Elementary school students learn that atoms are very, very small. Students are also taught that atoms (and molecules) are the fundamental constituents of the material world. Numerical values of their size are often given, but, nevertheless, it is difficult to imagine their size relative to one's everyday surroundings. In order for students to…

  16. Atomic Theory and Multiple Combining Proportions: The Search for Whole Number Ratios.

    Science.gov (United States)

    Usselman, Melvyn C; Brown, Todd A

    2015-04-01

    John Dalton's atomic theory, with its postulate of compound formation through atom-to-atom combination, brought a new perspective to weight relationships in chemical reactions. A presumed one-to-one combination of atoms A and B to form a simple compound AB allowed Dalton to construct his first table of relative atomic weights from literature analyses of appropriate binary compounds. For such simple binary compounds, the atomic theory had little advantages over affinity theory as an explanation of fixed proportions by weight. For ternary compounds of the form AB2, however, atomic theory made quantitative predictions that were not deducible from affinity theory. Atomic theory required that the weight of B in the compound AB2 be exactly twice that in the compound AB. Dalton, Thomas Thomson and William Hyde Wollaston all published within a few years of each other experimental data that claimed to give the predicted results with the required accuracy. There are nonetheless several experimental barriers to obtaining the desired integral multiple proportions. In this paper I will discuss replication experiments which demonstrate that only Wollaston's results are experimentally reliable. It is likely that such replicability explains why Wollaston's experiments were so influential.

  17. The effective atomic number revisited in the light of modern photon-interaction cross-section databases

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Thind, K. S.

    2010-01-01

    The effective atomic number, Z(eff), has been calculated for fatty acids and cysteine. It is shown that Z(eff) is a useful parameter for low-Z materials at any energy above 1 key. Absorption edges of medium-Z elements may complicate the energy dependence of Z(eff) below 10 key. The notion of Z(ef......(eff) is perhaps most useful at energies where Compton scattering is dominating, and where Z(eff) is equal to the mean atomic number, , over a wide energy range around 1 MeV....

  18. Effective atomic number estimation using kV-MV dual-energy source in LINAC.

    Science.gov (United States)

    Sakata, Dousatsu; Haga, Akihiro; Kida, Satoshi; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2017-07-01

    Dual-energy computed tomography (DECT) imaging can measure the effective atomic number (EAN) as well as the electron density, and thus its adoption may improve dose calculations in brachytherapy and external photon/particle therapy. An expanded energy gap in dual-energy sources is expected to yield more accurate EAN estimations than conventional DECT systems, which typically span less than 100kV. The aim of this paper is to assess a larger energy gap DECT by using a linear accelerator (LINAC) radiotherapy system with a kV X-ray imaging device, which are combined to provide X-rays in both the kV- and MV-energy ranges. Traditionally, the EAN is determined by parameterising the Hounsfield Unit; however, this is difficult in a kV-MV DECT due to different uncertainties in the reconstructed attenuation coefficient at each end of the energy spectrum. To overcome this problem, we included a new calibration step to produce the most likely linear attenuation coefficients, based upon the X-ray spectrum. To determine the X-ray spectrum, Monte Carlo calculations using GEANT4 were performed. Then the images were calibrated using information from eight inserts of known materials in a CIRS phantom (CIRS Inc., Norfolk, VA). Agreement between the estimated and empirical EANs in these inserts was within 11%. Validation was subsequently performed with the CatPhan500 phantom (The Phantom Laboratory, Salem). The estimated EAN for seven inserts agreed with the empirical values to within 3%. Accordingly, it can be concluded that, given properly reconstructed images based upon a well-determined X-ray spectrum, kV-MV DECT provides an excellent prediction for the EAN. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging.

    Science.gov (United States)

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-12-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2 . The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc.

  20. Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016)

    NARCIS (Netherlands)

    Öhrström, L.; Reedijk, J.

    2016-01-01

    A joint IUPAC/IUPAP Working Party (JWP) has confirmed the discovery of the elements with atomic numbers (Z) 113, 115, 117 and 118. In accordance with the 2016 IUPAC guideline for naming new elements, the discoverers were invited to propose names and symbols for the elements. Claims have been

  1. EFFECT OF BROMINE ATOMS NUMBER ON THE CYTOTOXICITY OF TWO 2-FURYLETHYLENE DERIVATIVE SUBSTANCES IN NORMAL AND TUMORAL CELL LINES.

    Directory of Open Access Journals (Sweden)

    Oscar Hernández

    2012-01-01

    Full Text Available The study was performed to investigate the effect of bromine atoms number present in two tested substances derivatives of 2-furylethylene on cell proliferation. The substances carrying one or two Br atoms were coded as MA and G1 respectively. The neutral red uptake (NRU assay and mitotic index (MI were used for this purpose. The presence of two bromine atoms on the molecule of G1 inhibited markedly the cytotoxicity of this composite. For CHO cell line, the IC50 values were 256.6 µM for G1 and 134.5 µM for MA; whereas in SK MEL-3 (human melanoma cell line, the IC50 were 413.4 µM and 264.1 µM for G1 and MA respectively. The IC50 values obtained in both cell lines were higher than 100 µM and showed no specificity for tumoral cells. The MI obtained with the G1 composite showed no significant differences with phytohaemoglutinine used as positive control. The anti-proliferative effect and MI were related with the number of bromine atoms on the molecules assayed. Another experiment was conducted with the MA product to obtain information about the acute oral toxicity class methods. The tested compound was classified in the 3th toxicity class with a fixed LD (50 cut-off value of 200 mg/kg of body weight.

  2. Determination of atomic number and composition of human enamel; Determinacao da composicao e numero atomico efetivo do esmalte humano

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, M.S. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil); Rodas Duran, J.E. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2001-07-01

    The teeth are organs of complicated structure that consist, partly, of hard tissue containing in its interior the dental pulp, rich in vases and nerves. The main mass of the tooth is constituted by the dentine, which is covered with hard tissues and of epithelial origin called enamel. The dentine of the human teeth used in this work were completely removed and the teeth were cut with a device with a diamond disc. In this work the chemical composition of the human enamel was determined, which showed a high percentage of Ca and P, in agreement with the results found in the literature. The effective atomic number of the material and the half-value layer in the energy range of diagnostic X-ray beams were determined. Teeth could be used to evaluated the public's individual doses as well as for retrospective dosimetry what confirms the importance of their effective atomic number and composition determination. (author)

  3. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-18

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

  4. CrossRef Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

    CERN Document Server

    McConnell, R; Kolthammer, WS; Richerme, P; Müllers, A; Walz, J; Grzonka, D; Zielinski, M; Fitzakerley, D; George, MC; Hessels, EA; Storry, CH; Weel, M

    2016-01-01

    Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is expected to be increased by a similar factor.

  5. Atomic orbital data for elements with atomic numbers 1 less than or equal to Z less than or equal to 103

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I.

    1988-10-01

    Atomic orbital energies and radial expectation values are tabulated for the ground state electronic configuration of all elements with Z less than or equal to 103 and for all orbitals having principal quantum numbers n less than or equal to 8. These tables have been developed for use in a model of electronic excitation and ionization that requires orbital data for both the occupied and unoccupied orbitals. The wavefunctions were calculated by the Dirac-Hartree-Fock-Slater method, with a local exchange potential due to Liberman. This potential has the Coulombic form at large distances from the nucleus, with the result that both the occupied and unoccupied orbitals are bound states. The complete nonlocal exchange expression was used to compute the orbital energies. The results are in good agreement with full Dirac-Hartree-Fock calculations for the occupied orbitals. 22 refs., 2 tabs.

  6. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    Science.gov (United States)

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  7. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  8. Albedo factors of some elements in the atomic number range 26≤Z≤79 for 59.54keV.

    Science.gov (United States)

    Yılmaz, Demet; Uzunoğlu, Zeynep; Demir, Celalettin

    2017-04-01

    In this study, we aimed to determine the albedo factors for Fe, Co, Ni, Cu, Zr, Mo, Ag, Dy, Yb, and Au. Albedo factors were investigated experimentally for 59.54keV photon energy by using an HPGe detector with a resolution of 182eV at 5.9keV. Albedo number (AN), albedo energy (AE), and albedo dose (AD) were plotted as a function of atomic number of the target. It was observed that albedo factors decreased with increasing atomic number. In addition, there was a good third-order polynomial relationship between the albedo factors and atomic number. Copyright © 2017. Published by Elsevier Ltd.

  9. Near-coincident K-line and K-edge energies as ionization diagnostics for some high atomic number plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N. R. [Ecopulse, Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Weber, B. V.; Phipps, D. G.; Schumer, J. W. [Naval Research Laboratory, Washington, DC 20375 (United States); Seely, J. F. [Artep, Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Carroll, J. J. [Army Research Laboratory, Adelphi, Maryland 20873 (United States); Vanhoy, J. R. [United States Naval Academy, Annapolis, Maryland 21402 (United States); Slabkowska, K.; Polasik, M. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun (Poland)

    2012-10-15

    For some high atomic number atoms, the energy of the K-edge is tens of eVs higher than the K-line energy of another atom, so that a few eV increase in the line's energy results in a decreasing transmission of the x-ray through a filter of the matching material. The transmission of cold iridium's Asymptotically-Equal-To 63.287 keV K{alpha}{sub 2} line through a lutetium filter is 7% lower when emitted by ionized iridium, consistent with an energy increase of {Delta}{epsilon} Asymptotically-Equal-To 10{+-}1 eV associated with the ionization. Likewise, the transmission of the K{beta}{sub 1} line of ytterbium through a near-coincident K-edge filter changes depending on plasma parameters that should affect the ionization. Systematic exploration of filter-line pairs like these could become a unique tool for diagnostics of suitable high energy density plasmas.

  10. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    Science.gov (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  11. Mechanical properties of cancer cells depend on number of passages: Atomic force microscopy indentation study

    Science.gov (United States)

    Dokukin, Maxim E.; Guz, Natalia V.; Sokolov, Igor

    2017-08-01

    Here we investigate one of the key questions in cell biology, if the properties of cell lines depend on the number of passages in-vitro. It is generally assumed that the change of cell properties (phenotypic drift) is insignificant when the number of passages is low (microscopy (AFM). Using this method, we tested the change of the cell properties of human cancer breast epithelial cell line, MCF-7 (ATCC® HTB-22™), within the passages between 2 and 10. In contrast to the previous expectations, we observed a substantial transient change of the elastic modulus of the cell body during the first four passages (up to 4 times). The changes in the parameters of the pericellular coat were less dramatic (up to 2 times) but still statistically significant.

  12. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  13. Study of effective atomic numbers and electron densities, kerma of alcohols, phantom and human organs, and tissues substitutes

    OpenAIRE

    Singh Vishwanath P.; Badiger Nagappa M.

    2013-01-01

    Effective atomic numbers (ZPIeff) and electron densities of eighteen alcohols such as wood alcohol, CH3OH; grain alcohol, C2H5OH; rubbing alcohol, C3H7OH; butanol, C4H9OH; amyl alcohol, C5H11OH; cetyl alcohol, C16H33OH; ethylene glycol, C2H4(OH)2; glycerin, C3H5(OH)3; PVA, C2H4O; erythritol, C4H6(OH)4; xylitol, C5H7(OH)5; sorbitol, C6H8(OH)6; volemitol, C7H9(OH)7; allyl alcohol, C3H5OH; geraniol, C10H17OH; propargyl alcohol, C3H3OH; inositol, C6H6(OH)6, and menthol, C10H19OH have been c...

  14. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials.

    Science.gov (United States)

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-01

    For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU-ρe conversion), which provides a single linear relationship between ΔHU and ρe over a wide ρe range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU-ρe conversion process. The authors performed numerical analyses of the ΔHU-ρe conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1-40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80-140 kV/Sn under well-calibrated and poorly calibrated conditions. The accuracy of the resultant calibrated electron density,[Formula: see text], for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of [Formula: see text]ρe - 1 is assumed to be within ± 2%, the predicted upper limit of Z applicable for the ΔHU-ρe conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU-ρe linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU-ρe conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the sizes of the object and the

  15. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Thind, K.S.

    2008-01-01

    A comprehensive and consistent set of formulas is given for calculating the effective atomic number and electron density for all types of materials and for all photon energies greater than 1 keV. The are derived from first principles using photon interaction cross sections of the constituent atoms....... The theory is illustrated by calculations and experiments for molecules of medical and biological interest, glasses for radiation shielding, alloys, minerals and liquids....

  16. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  17. Effective atomic numbers, electron densities, and tissue equivalence of some gases and mixtures for dosimetry of radiation detectors

    Directory of Open Access Journals (Sweden)

    Singh Vishwanath P.

    2012-01-01

    Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.

  18. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    Science.gov (United States)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  19. Influence of the effective atomic number in the thermoluminescent response; Influencia del numero atomico efectivo en la respuesta termoluminiscente

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.R. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    Nowadays the thermoluminescent dosimetry is one of the methods more reliable for ionizing radiation dosimetry, for that in many parts of the world, different research groups continue in the development of new TL materials. Notwithstanding, the use of these materials for dosimetric radiation purposes, should to take into account the effective atomic number (Z{sub eff}) to avoid an underestimate or overestimation of the measured dose, for example, in radiodiagnostic or radiotherapy. It is well known that some materials considered as equivalent to the soft biological tissue, present smaller sensitivity when being irradiated with low energy photons, while the TL material considered as not equivalent to the tissue, presents the supra sensitivity effect. In this work the results of the TL signal shown by different TL materials, when being irradiated with photons of effective energy between 24 keV and 1.25 MeV, and its relationship with their Z{sub eff} calculated by three methods are presented. (Author)

  20. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials used in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Almeida J, A. T. [FUNDACENTRO, Centro Regional de Minas Gerais, Brazilian Institute for Safety and Health at Work, Belo Horizonte, 30180-100 Minas Gerais (Brazil); Nogueira, M. S. [Center of Development of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Santos, M. A. P., E-mail: mnogue@cdtn.br [Regional Center for Nuclear Science / CNEN, 50.740-540 Recife, Pernambuco (Brazil)

    2015-10-15

    Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μ{sub t}) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm{sup 3} collected in the State of Sao Paulo), purple barite (density 2.95 g/cm{sup 3} collected in the State of Bahia) and white barite (density 3.10 g/cm{sup 3} collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Z{sub eff}) and the effective electron density (N{sub eff}) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)

  1. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen.

    Science.gov (United States)

    Kurudirek, Murat

    2017-12-01

    Characterization of soft tissue, water and air in terms of effective atomic number (Zeff) with respect to the interactions of hadrons, leptons and isotopes of hydrogen. Mass collision stopping powers (MCSPs) were calculated first using Bethe formula. Then, these values were used to estimate Zeff using linear-logarithmic interpolation. A scale equation was also used to calculate MCSP. Variation in Zeff, over the 0.5-50 MeV energy range considered, is minimum for muon and pion (π meson) interactions (relative difference [RD] ≤ 7%), while maximum variation has been noticed in Zefffor heavy charged particles, i.e. alpha particle (RD ≤ 26%). The highest values of Zeff were obtained for muon particle, the lightest particle while the minimum values of Zeff were obtained for alpha particle interaction. Except for very low kinetic energies, water equivalence of soft tissue is very satisfactory (RD ≤ 3%). The Zeff of water relative to air was found to be almost constant at high energies. The present results should be valid for especially high energies where the Bethe formula can be applied. This applies to relatively higher energies (>2 MeV) for heavier particles such as alpha particles and applies to relatively lower energies (>0.5 MeV) for lighter particles such as protons. In view of the importance of water equivalence in particle therapy, new data on Zeff in soft tissue, water and air for fundamental particle interaction should be important. Results revealed that soft tissue could be considered as water equivalent for interaction of various fundamental particles.

  2. Study of effective atomic numbers and electron densities, kerma of alcohols, phantom and human organs, and tissues substitutes

    Directory of Open Access Journals (Sweden)

    Singh Vishwanath P.

    2013-01-01

    Full Text Available Effective atomic numbers (ZPIeff and electron densities of eighteen alcohols such as wood alcohol, CH3OH; grain alcohol, C2H5OH; rubbing alcohol, C3H7OH; butanol, C4H9OH; amyl alcohol, C5H11OH; cetyl alcohol, C16H33OH; ethylene glycol, C2H4(OH2; glycerin, C3H5(OH3; PVA, C2H4O; erythritol, C4H6(OH4; xylitol, C5H7(OH5; sorbitol, C6H8(OH6; volemitol, C7H9(OH7; allyl alcohol, C3H5OH; geraniol, C10H17OH; propargyl alcohol, C3H3OH; inositol, C6H6(OH6, and menthol, C10H19OH have been calculated in the photon energy region of 1 keV-100 GeV. The estimated values have been compared with experimental values wherever possible. The comparison of ZPIeff of the alcohols with water phantom and PMMA phantom indicate that the ethylene glycol, glycerin, and PVA are substitute for PMMA phantom and PVA is substitute of water phantom. ZPIeff of alcohols have also been compared with human organs and tissues. Ethylene glycol, glycerin and PVA, allyl alcohol, and wood alcohols are found tissue substitutes for most of human organs. Kerma which is the product of the energy fluence and mass energy-absorption coefficient, have been calculated in the energy region from 1 keV to 20 MeV for the alcohols. The results show the kerma is more or less independent of energy above 100 keV.

  3. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  4. High Atomic Number Contrast Media Offer Potential for Radiation Dose Reduction in Contrast-Enhanced Computed Tomography.

    Science.gov (United States)

    Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A

    2016-04-01

    Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.

  5. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation.

    Science.gov (United States)

    Asaithamby, Aroumougame; Chen, David J

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure. 2010 Elsevier B.V. All rights reserved.

  6. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S; Kushima, N; Katsura, K; Tanabe, S; Hayakawa, T; Sakai, H; Yamada, T; Takahashi, H; Abe, E; Wada, S; Aoyama, H [Niigata University, Niigata (Japan)

    2016-06-15

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cm × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.

  7. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  8. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients.

    Science.gov (United States)

    Landry, Guillaume; Seco, Joao; Gaudreault, Mathieu; Verhaegen, Frank

    2013-10-07

    Dual energy computed tomography (DECT) can provide simultaneous estimation of relative electron density ρe and effective atomic number Zeff. The ability to obtain these quantities (ρe, Zeff) has been shown to benefit selected radiotherapy applications where tissue characterization is required. The conventional analysis method (spectral method) relies on knowledge of the CT scanner photon spectra which may be difficult to obtain accurately. Furthermore an approximate empirical attenuation correction of the photon spectrum through the patient is necessary. We present an alternative approach based on a parameterization of the measured ratio of low and high kVp linear attenuation coefficients for deriving Zeff which does not require the estimation of the CT scanner spectra. In a first approach, the tissue substitute method (TSM), the Rutherford parameterization of the linear attenuation coefficients was employed to derive a relation between Zeff and the ratio of the linear attenuation coefficients measured at the low and high kVp of the CT scanner. A phantom containing 16 tissue mimicking inserts was scanned with a dual source DECT scanner at 80 and 140 kVp. The data from the 16 inserts phantom was used to obtain model parameters for the relation between Zeff and [Formula: see text]. The accuracy of the method was evaluated with a second phantom containing 4 tissue mimicking inserts. The TSM was compared to a more complex approach, the reference tissue method (RTM), which requires the derivation of stoichiometric fit parameters. These were derived from the 16 inserts phantom scans and used to calculate CT numbers at 80 and 140 kVp for a set of tabulated reference human tissues. Model parameters for the parameterization of [Formula: see text] were estimated for this reference tissue dataset and compared to the results of the TSM. Residuals on Zeff for the reference tissue dataset for both TSM and RTM were compared to those obtained from the spectral method. The

  9. Effective atomic number of some sugars and amino acids for scattering of (241)Am and (137)Cs gamma rays at low momentum transfer.

    Science.gov (United States)

    Vinaykumar, L; Umesh, T K

    2015-09-01

    In this paper, we report the effective atomic number of some H, C, N and O based sugars and amino acids. These have been determined by using a handy expression which is based on the theoretical angle integrated small angle (coherent+incoherent) scattering cross sections of seven elements of Z≤13 in four angular ranges of (0-4°), (0-6°), (0-8°) and (0-10°)for (241)Am (59.54 keV) and (137)Cs (661.6 keV) gamma rays. The theoretical scattering cross sections were computed by a suitable numerical integration of the atomic form factor and incoherent scattering function compilations of Hubbell et al. (1975) which make use of the non-relativistic Hartree-Fock (NRHF) model for the atomic charge distribution of the elements in the angular ranges of interest. The angle integrated small angle scattering cross sections of the H, C, N and O based sugars and amino acids measured by a new method reported recently by the authors were used in the handy expression to derive their effective atomic number. The results are compared with the other available data and discussed. Possible conclusions are drawn based on the present study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  11. The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV

    Directory of Open Access Journals (Sweden)

    Burcu Akça

    2014-01-01

    Full Text Available The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li detector and by using energy dispersive X-ray fluorescence spectrometer (EDXRF. Obtained results have been compared with theoretically calculated values of WinXCom and FFAST. The relative difference between the experimental and theoretical values are −9.4% to +11.9% with WinXCom and −11.8% to +11.7% FFAST. Results have been presented and discussed in this paper.

  12. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ün, Adem, E-mail: ademun25@yahoo.com; Han, İbrahim, E-mail: ibrahimhan25@hotmail.com [Ağrı İbrahim Çeçen University, Faculty of Arts and Sciences, Department of Physics, 04100 Ağrı (Turkey); Ün, Mümine, E-mail: mun@agri.edu.tr [Ağrı İbrahim Çeçen University, Vocational School, Department of Electricity and Energy, 04100 Ağrz (Turkey)

    2016-04-18

    Effective atomic (Z{sub eff}) and electron numbers (N{sub eff}) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Z{sub eff} and N{sub eff} for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  13. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV–10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.com

    2014-10-01

    The effective atomic numbers (Z{sub eff}) of different types of materials such as tissues, tissue equivalents, organic compounds, glasses and dosimetric materials have been calculated for total proton interactions in the energy region 1 keV–10 GeV. Also, effective atomic numbers relative to water (Z{sub eff}RW) have been presented in the entire energy region for the materials that show better water equivalent properties. Some human tissues such as adipose tissue, bone compact, muscle skeletal and muscle striated have been investigated in terms of tissue equivalency by comparing Z{sub eff} values and the better tissue equivalents have been determined for these tissues. With respect to the variation of Z{sub eff} with kinetic energy, it has been observed that Z{sub eff} seems to be more or less the same in the energy region 400 keV–10 GeV for the given materials except for the photographic emulsion, calcium fluoride, silicon dioxide, aluminum oxide and Teflon. The values of Z{sub eff} have found to be constant for photographic emulsion after 1 GeV, for calcium fluoride between 1 MeV and 1 GeV and for silicon dioxide, aluminum oxide and Teflon between 400 keV and 1 GeV. This constancy clearly shows the availability of using Z{sub eff} in estimating radiation response of the materials at first glance.

  14. Application of TSH bioindicator for studying the biological efficiency of neutrons from californium-252 source

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A.; Rekas, K. [Institute of Nuclear Physics, Cracow (Poland); Kim, J.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-12-31

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (TSH-assay) was studied. The special attention was paid to check whether any enhancement in effects caused by process of boron neutron capture is visible in the cells enriched with boron ions. Two chemicals (borax and BSH) were applied to introduce boron-10 ions into cells. Inflorescence, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a Cf-252 source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) in the induction of gene mutations of the neutron beam under the study, Tradescantia inflorescences, without any chemical pretreatment, were irradiated with various doses of X-rays. The ranges of radiation doses used were 0-0.1 Gy in neutrons and 0-0.5 Gy in X-rays. After the time needed to complete the postirradiation repair Tradescantia cuttings were transferred to Cracow, where screening of gene and lethal; mutations, cell cycle alterations in somatic cells have been done, and dose response relationships were figured. The maximal RBE values were estimated in the range of 4.6-6.8. Alterations of RBE value were observed; from 6.8 to 7.8 in the case of plants pretreated with 240 ppm of B-10 from borax, and 4.6 to 6.1 in the case of 400 ppm of B-10 from BSH. Results showed a slight, although statistically insignificant increase in biological efficacy of radiation from the Cf-252 source in samples pretreated with boron containing chemicals. (author)

  15. Study of the shielding for spontaneous fission sources of Californium-252; Estudio de blindaje para fuentes de fision espontanea de Californio-252

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, I

    1991-06-15

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  16. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Science.gov (United States)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  17. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  18. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  19. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  20. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  1. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  2. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    Energy Technology Data Exchange (ETDEWEB)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China); Wang Dong, E-mail: dongwang64@hotmail.com [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China)

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  3. Determination of effective atomic numbers from mass attenuation coefficients of tissue-equivalent materials in the energy range 60 keV-1.33 MeV

    Science.gov (United States)

    Amin, Noorfatin Aida B.; Zukhi, J.; Kabir, N. A.; Zainon, R.

    2017-05-01

    The main aim of this study was to establish a cost-effective tissue-equivalent material for phantom fabrication. Effective atomic numbers (Zeff) and effective electron densities (Neff) were calculated based on mass attenuation coefficient values. The linear and mass attenuation coefficients of two samples of paraffin wax and NaCl compositions were measured using Si detector for NaI (Tl) detector of 1.5” resources. Radioactive source was placed in front of detector and the sample was placed between the source and the photomultiplier tube (PMT) of the detector. The real time was set for 6000 seconds. The photopeak, full width at half maximum (FWHM) and net area of photopeak were measured using Meastro software. The attenuation coefficient values obtained from this study were used to calculate Zeff and Neff of paraffin wax and NaCl compositions. The measured results were compared with the theoretical values from XCOM and ICRU Report 44. The relative percentage difference of mass attenuation coefficients between experimental and human tissue for both paraffin wax and NaCl mixture are below 5%, whereas the relative percentage difference of Zeff and Neff are above 5%. The measured values of Zeff and Neff of paraffin wax and NaCl help us to establish the optimal mixtures to fabricate a cost-effective tissue-equivalent material.

  4. Evaluation of resolved resonance parameters of fission product nuclides with atomic numbers Z=46-51 for JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yutaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    Resolved resonance parameters of the following fission product nuclides with atomic numbers Z=46-51 have been evaluated for JENDL-3.2: {sup 102,104,105,106,107,108,110}Pd, {sup 107,109,110m}Ag, {sup 106,108,110,111,112,113,114,116}Cd, {sup 113,115I}n, {sup 121,123}Sb. Evaluation was made on the basis of JENDL-2 for most nuclides and of the data recommended by Mughabghab et al. for the nuclides whose data have not been contained in JENDL-2. Data measured after the JENDL-2 evaluation (1982) have been taken into account in the evaluation. Spin of the resonance state and angular momentum of the incident neutron have been given for all levels. When there exist no measured data, the spin has been given tentatively on the basis of a random sampling technique using their statistical properties, and the angular momentum was also tentatively given on the basis of the Bayes`s theorem on conditional probability using the s- and p-wave strength functions and average level spacings. The resonance parameters have been evaluated so as to reproduce measured capture area of individual resonance levels, thermal cross section and resonance integral. Evaluated results have been compiled into JENDL-3.2 in the formats of ENDF-5 and ENDF-6. (author)

  5. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  6. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat [Faculty of Science, Department of Physics, Ataturk University, 25240, Erzurum (Turkey)], E-mail: mkurudirek@gmail.com; Aygun, Murat; Erzeneoglu, Salih Zeki [Faculty of Science, Department of Physics, Ataturk University, 25240, Erzurum (Turkey)

    2010-06-15

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients ({mu}/{rho}), photon interaction cross sections ({sigma}{sub t}), effective atomic numbers (Z{sub eff}) and effective electron densities (N{sub e}) by using X-rays at 22.1, 25 keV and {gamma}-rays at 88 keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition.

  7. Long-term effects of an intracavitary treatment with californium-252 on normal tissue. [Swine, /sup 226/Ra

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.

    1976-01-01

    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with /sup 252/Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from /sup 252/Cf and 7000 rad from /sup 226/Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for /sup 252/Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from /sup 252/Cf and 5000 rad from /sup 226/Ra.

  8. Fast kVp-switching dual energy contrast-enhanced thorax and cardiac CT: A phantom study on the accuracy of iodine concentration and effective atomic number measurement.

    Science.gov (United States)

    Papadakis, Antonios E; Damilakis, John

    2017-09-01

    To assess the effect of vessel diameter and exposure parameters on the estimation accuracy of concentration and effective atomic number (Z eff ) of iodine (I) in contrast-enhanced thorax and cardiac dual-energy CT using a modern fast kVp-switching CT scanner. A standard semi-anthropomorphic cardiac CT phantom devised to simulate the human chest at three different body habitus i.e., medium-sized, large-sized, and obese, was scanned using a fast kVp-switching Revolution-GSI GE CT scanner. Five cylindrical, 10 mm diameter, vials were filled with solutions prepared by diluting I contrast at five concentrations (2.5, 5, 10, 15, and 20 mg I/ml). To simulate small vessels, pipette tips with a diameter ranging from 5 mm to 0.5 mm were employed. The vials and pipette tips were accommodated within the semi-anthropomorphic phantom. CT acquisitions were performed in the fast kVp-switching dual-energy mode at six different CTDI w values. Acquisitions were also performed at 80, 100, 120, and 140 kVp. Images were acquired at 64 × 0.625 mm beam collimation and reconstructed at 2.5 mm using all available reconstruction filter kernels. Virtual monochromatic spectral (VMS) images, iodine concentration (I Meas ), and Z eff maps were reconstructed. Hounsfield unit as a function of energy (HU keV ) in VMS and single-kVp (HU kVp ), I Meas and Z eff were measured at each CTDI w . The effect of vessel diameter on I Meas and Z eff was investigated. Measured HU keV and Z eff were compared to theoretically estimated values and I Meas were compared to nominal (I Nom ) values. In 10 mm diameter vessels, HU keV values were accurate to 18% for the medium-sized, 22% for the large-sized and 39% for the obese phantoms. I Meas was underestimated by up to 10% for the medium-sized, 26% for the large-sized and 33% for the obese phantom. I Meas error decreased with increasing CTDI w from ±0.799 mg/ml at 8.61 mGy to ±0.082 mg/ml at 32.01 mGy. The percentage difference between measured and theoretically

  9. Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac.

    Science.gov (United States)

    Ahmad, Syed Bilal; Sarfehnia, Arman; Kim, Anthony; Wronski, Matt; Sahgal, Arjun; Keller, Brian M

    2016-08-01

    To quantify and explain the backscatter dose effects for clinically relevant high atomic number materials being irradiated in the presence of a 1.5 T transverse magnetic field. Interface effects were investigated using Monte Carlo simulation techniques. We used gpumcd (v5.1) and geant4 (v10.1) for this purpose. gpumcd is a commercial software written for the Elekta AB, MRI linac. Dose was scored using gpumcd in cubic voxels of side 1 and 0.5 mm, in two different virtual phantoms of dimensions 20 × 20 × 20 cm and 5 × 5 × 13.3 cm, respectively. A photon beam was generated from a point 143.5 cm away from the isocenter with energy distribution sampled from a histogram representing the true Elekta, MRI linac photon spectrum. A slab of variable thickness and position containing either bone, aluminum, titanium, stainless steel, or one of the two different dental filling materials was inserted as an inhomogeneity in the 20 × 20 × 20 cm phantom. The 5 × 5 × 13.3 cm phantom was used as a clinical test case in order to explain the dose perturbation effects for a head and neck cancer patient. The back scatter dose factor (BSDF) was defined as the ratio of the doses at a given depth with and without the presence of the inhomogeneity. Backscattered electron fluence was calculated at the inhomogeneity interface using geant4. A 1.5 T magnetic field was applied perpendicular to the direction of the beam in both phantoms, identical to the geometry in the Elekta MRI linac. With the application of a 1.5 T magnetic field, all the BSDF's were reduced by 12%-47%, compared to the no magnetic field case. The corresponding backscattered electron fluence at the interface was also reduced by 45%-64%. The reduction in the BSDF at the interface, due to the application of the magnetic field, is manifested in a different manner for each material. In the case of bone, the dose drops at the interface contrary to the expected increase when no magnetic field is applied. In the case of

  10. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  11. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Directory of Open Access Journals (Sweden)

    Dirk König

    2016-08-01

    Full Text Available Semiconductor nanocrystals (NCs experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size dNC. I deduce geometrical number series as analytical tools to obtain the number of NC atoms NNC(dNC[i], bonds between NC atoms Nbnd(dNC[i] and interface bonds NIF(dNC[i] for seven high symmetry zinc-blende (zb NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  12. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    König, Dirk, E-mail: dirk.koenig@unsw.edu.au [Integrated Materials Design Centre (IMDC) and School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney (Australia)

    2016-08-15

    Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  13. Ab initio full-potential study of mechanical properties and magnetic phase stability of californium monopnictides (CfN and CfP)

    Energy Technology Data Exchange (ETDEWEB)

    Amari, S., E-mail: siham_amari@yahoo.fr [Faculté des Sciences de la Nature et de la Vie, Université Hassiba Benbouali, Chlef, 02000 (Algeria); Bouhafs, B. [Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Université Djillali Liabès de Sidi Bel-Abbés, Sidi Bel-Abbés, 22000 (Algeria)

    2016-09-15

    Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young’s modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.

  14. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Min [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Xu Hongde [Cancer Center, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Pan Songdan; Lin Shan; Yue Jianhua [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Liu Jianren, E-mail: liujianren0571@hotmail.com [Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province (China)

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  15. Kβ/Kα X-ray intensity ratios for some elements in the atomic number range 28≤Z≤39 at 16.896 keV

    Directory of Open Access Journals (Sweden)

    R. Yılmaz

    2017-07-01

    Full Text Available The K shell intensity ratios (Kβ/Kα have been experimentally determined for some elements in the atomic number range 28 ≤ Z ≤ 39 by using secondary excitation method. K X-rays emitted by samples have been counted by a Si (Li detector with 160 eV resolutions at 5.9 keV. The measured values were compared with the theoretical and experimental values. In general, the values obtained are in good agreement with the calculated values.

  16. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  17. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  18. The Unimolecular Reactions of CF3CHF2Studied by Chemical Activation: Assignment of Rate Constants and Threshold Energies to the 1,2-H Atom Transfer, 1,1-HF and 1,2-HF Elimination Reactions, and the Dependence of Threshold Energies on the Number of F-Atom Substituents in the Fluoroethane Molecules.

    Science.gov (United States)

    Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E

    2017-11-22

    The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.

  19. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  20. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  1. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    , linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy......Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic...... dependence of the mass attenuation coefficient, Z(PEA, eff), and the mass energy-absorption coefficient, Z(PI, eff), is shown graphically and in tabular form. Significant differences of 17%-38% between Z(PI, eff) and Z(PEA, eff) occur in the energy region 5-100 keV. The reasons for these differences...

  2. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study.

    Science.gov (United States)

    Kurudirek, Murat; Aksakal, Oğuz; Akkuş, Tuba

    2015-11-01

    A direct method has been used for the first time, to compute effective atomic numbers (Z eff) of water, air, human tissues, and some organic and inorganic compounds, for total electron proton and alpha particle interaction in the energy region 10 keV-1 GeV. The obtained values for Z eff were then compared to those obtained using an interpolation procedure. In general, good agreement has been observed for electrons, and the difference (%) in Z eff between the results of the direct and the interpolation method was found to be electron interaction. On the other hand, values for Z eff calculated using both methods for protons and alpha particles generally agree with each other in the high-energy region above 10 MeV.

  3. Element Abundances in the Galactic Cosmic Rays with Atomic Number (Z) in the Interval 30 is less than or equal to Z is less than or equal to 40

    Science.gov (United States)

    Barbier, Louis; Binns, W. R.; Christian, E.; deNolfo, G.; Geier, S.; Israel, M. H.; Link, J. T.; Mewaldt, R. A.; Mitchell, J.; Rauch, B. F.

    2004-01-01

    We present new results on the elemental abundances of galactic cosmic rays with atomic number, Z, greater than 30, and comparison of these observations with abundances expected from galactic propagation of various suggested models of the cosmic-ray source. We combine preliminary results from the 2003-04 flight of the Trans-Iron Galactic Element Recorder (TIGER) cosmic-ray detector with previously reported results from the 2001-02 flight. This instrument flew over Antarctica for nearly 32 days at a mean atmospheric depth of 5.2 mb in December 2001 - January 2002. At the time of submission of this abstract, January 8, 2004, TIGER was again in the air over Antarctica having completed 22 days of an expected 30day flight at a mean atmospheric depth of about 4 nb, Data from the first flight demonstrated excellent resolution of individual elements, and we expect similar resolution from the second flight.

  4. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  5. Variation of T c, lattice parameter and atomic ordering in Nb3Sn platelets irradiated with 12 MeV protons: correlation with the number of induced Frenkel defects

    Science.gov (United States)

    Flükiger, R.; Spina, T.; Cerutti, F.; Ballarino, A.; Scheuerlein, C.; Bottura, L.; Zubavichus, Y.; Ryazanov, A.; Svetogovov, R. D.; Shavkin, S.; Degtyarenko, P.; Semenov, Y.; Senatore, C.; Cerny, R.

    2017-05-01

    Nb3Sn platelets with thicknesses between 0.12 and 0.20 mm produced by a high isostatic pressure process at 1250 °C were irradiated at 300 K with 12 MeV protons. The effects of irradiation on the lattice parameter a, the atomic order parameter S and the transition temperature T c were measured as a function of proton fluence. In view of the presence of multiple energy radiation sources in future accelerators, the present proton data are compared with neutron irradiation data from the literature. The fluences for both types of radiation were replaced by the dpa number, the ‘displacements per atom’, calculated using the FLUKA code, which is proportional to the number of radiation induced Frenkel defects. It was found that the variation of both a and S for Nb3Sn after proton and neutron irradiation as a function of dpa fall almost on the same curve, in analogy to the recently reported correlation between T c and the dpa number. By a simultaneous irradiation of two adjacent thin Nb3Sn platelets, we have shown that this correlation is not only valid for the state of ‘steady energy loss’ (protons traveling through the first platelet) but also for the state of higher damage at the Bragg peak (second platelet). It follows that the number of radiation induced Frenkel defects in the A15 grains, calculated via the dpa number, can be considered as a ‘universal’ parameter, allowing the calculation of the variation of T c, a and S of Nb3Sn under the effect of multiple high energy radiation sources, as in future superconducting accelerators.

  6. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  7. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  8. Small angle scattering of 59.54 keV photons by elemental samples in the atomic number region 13 ≤ Z ≤ 82

    Directory of Open Access Journals (Sweden)

    L. Vinaykumar

    2016-01-01

    Full Text Available In the present paper, we report the angle integrated coherent scattering cross sections of some elements at low momentum transfer over four angular ranges for some elements in the atomic number range 13≤Z≤82 for 241Am (59.54 keV gamma rays. The coherent scattering cross sections were derived from the experimentally measured total (Coherent + incoherent scattering cross sections for the elements at the energy of interest by subtracting separately the small contribution of the corresponding angle integrated incoherent scattering cross sections. The theoretical angle integrated incoherent scattering cross sections were computed by numerically integrating the values provided in the compilations based on the non-relativistic Hartree-Fock (NRHF model and the modified form factor (MFF model for the charge distribution within the atom. The present values of the angle integrated coherent scattering cross sections of the elements Al, Fe, Cu, Zn, Cd, Sn and Pb at 59.54 keV in the angular ranges of (0∘−4∘, (0∘−6∘, (0∘−8∘ and (0°–10° so obtained are compared with the corresponding theoretical S-matrix data within the range of experimental errors. The root mean square error on the measured cross sections was found to be the lowest for Al at 4.1% and the highest for Pb at 4.9%. For the other elements the error was in between these two values. Possible conclusions are drawn based on the present study.

  9. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  10. Importance of the effective atomic number (Z{sub eff}) of TL materials for radiation dosimetry in clinical applications; Importancia del numero atomico efectivo (Z{sub eff}) de materiales TL para dosimetria de la radiacion en aplicaciones clinicas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, P.R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: pgm@nuclear.inin.mx

    2008-07-01

    The electric power generation, it has been one of the radiation applications of bigger weight, mainly in developed countries. Another sector of more impact is without a doubt that of the medicine. However, for a sure operation with radiations, those international organisms of radiological safety, exist every time more precise detection systems. The thermoluminescent dosimetry is one of the more reliable methods for this purpose, for that several groups of investigators from different parts of the world, they have guided its investigations in the development of new TL materials. However, to avoid underestimate or overestimation of the measured dose with the use of these materials, it should take into account it effective atomic number (Z{sub eff}) it is well known that some TL materials considered as equivalent to the tissue, presents smaller TL intensity when being irradiated with low energy photons, while the TL material known as not equivalent to the tissue, they present the supra sensitivity effect for this radiation type. Nowadays, the estimate of the Z{sub eff} has not been clear, in this work the Z{sub eff} is determined by means of the traditional methods and an own method is presented for its determination. The results of the TL signal of different materials, when being irradiated with photons of effective energy between 24 keV and 1.25 MeV and their relationship with their calculated Z{sub eff} are also presented. (Author)

  11. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  12. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  13. Traps for neutral radioactive atoms

    CERN Document Server

    Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R

    2002-01-01

    We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.

  14. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  15. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  16. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  17. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  18. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  19. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy

    Science.gov (United States)

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin

    2017-01-01

    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55–62 Gy-eq/4 f (13–16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients. PMID:28094790

  20. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  1. Periodic systems of N-atom molecules

    Science.gov (United States)

    Hefferlin, R. A.; Zhuvikin, G. V.; Caviness, K. E.; Duerksen, P. J.

    1984-10-01

    The atoms have long been classified into a periodic system, which is now based on quantum mechanics and group theory. A classification of molecules containing any number (N) of atoms is proposed. It is an extension of the periodic system of the atoms. The approach in this paper is that of group theory, although the proposed system has been subjected to exhaustive comparison with experimental and ab initio computational results for diatomic molecules, and conforms to the commonly known behaviors of molecules with larger N. Orthonormal transformations are performed so that the molecules can be arranged according to their numbers of electrons and to the differences of atomic numbers of the constituent atoms. These arrangements parallel the physical reality of atomic bonding and permit partial three-dimensional models of the systems to be constructed for molecules with as many as four atoms.

  2. Atomic form factor for twisted vortex photons interacting with atoms

    Science.gov (United States)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  3. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  4. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  5. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  6. Atomic Power

    African Journals Online (AJOL)

    controls the electrons around it, and like a strong spring pushes other nuclei away. Later experiments ... 6Cl 2, because its mass number (A) = 12 and its nucleus contains 6 protons and 6 neutrons. However, ... gamma-radiation. Enrico Fermi, the Italian physicist made impor- tant contributions here. It occurred to him to use.

  7. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  9. Sub-atom shot noise Faraday imaging of ultracold atom clouds

    Science.gov (United States)

    Kristensen, M. A.; Gajdacz, M.; Pedersen, P. L.; Klempt, C.; Sherson, J. F.; Arlt, J. J.; Hilliard, A. J.

    2017-02-01

    We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows us to take multiple images of the same cloud, which enables sub-atom shot noise measurement precision of the atom number and allows for an in situ determination of the measurement precision. We have developed a noise model that quantitatively describes the noise contributions due to photon shot noise in the detected light and the noise associated with single atom loss. This model contains no free parameters and is calculated through an analysis of the fluctuations in the acquired images. For clouds containing N∼ 5× {10}6 atoms, we achieve a precision more than a factor of two below the atom shot noise level.

  10. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  11. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  12. Electron bremsstrahlung angular-distribution fits for atomic numbers 1 less than or equal to Z less than or equal to 92, and incident-electron energies 1 keV less than or equal to T less than or equal to 500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L.

    1982-01-01

    The analytic fit of a simple expression to the electron bremsstrahlung angular distribution cross section d/sup 2/sigma/dkd..cap omega.. (differential in the emitted photon energy k and angle ..cap omega..) is investigated. Optimal choices for the fit parameters are determined and fit coefficients are tabulated for a large number of neutral-atom cases. Results are also presented for fits to the relativistic Coulomb-Born approximation. Comparisons between the screened neutral-atom results and the Coulomb-Born results are made. Discrepancies reported to exist between angular distribution cross sections and fit coefficients published by Tseng, Pratt and Lee are confirmed and understood in terms of their choice of fit weight function.

  13. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    through using mathematical names for the numbers such as one-ten-one for 11 and five-ten-six for 56. The project combines the renaming of numbers with supporting the teaching with the new number names. Our hypothesis is that Danish children have more difficulties learning and working with numbers, because...

  14. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  15. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  16. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  17. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  18. Fibonacci numbers

    CERN Document Server

    Vorob'ev, Nikolai Nikolaevich

    2011-01-01

    Fibonacci numbers date back to an 800-year-old problem concerning the number of offspring born in a single year to a pair of rabbits. This book offers the solution and explores the occurrence of Fibonacci numbers in number theory, continued fractions, and geometry. A discussion of the ""golden section"" rectangle, in which the lengths of the sides can be expressed as a ration of two successive Fibonacci numbers, draws upon attempts by ancient and medieval thinkers to base aesthetic and philosophical principles on the beauty of these figures. Recreational readers as well as students and teacher

  19. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  20. Algebraic Numbers

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2016-12-01

    Full Text Available This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.

  1. Efficient transfer of francium atoms

    Science.gov (United States)

    Aubin, Seth; Behr, John; Gorelov, Alexander; Pearson, Matt; Tandecki, Michael; Collister, Robert; Gwinner, Gerald; Shiells, Kyle; Gomez, Eduardo; Orozco, Luis; Zhang, Jiehang; Zhao, Yanting; FrPNC Collaboration

    2016-05-01

    We report on the progress of the FrPNC collaboration towards Parity Non Conservation Measurements (PNC) using francium atoms at the TRIUMF accelerator. We demonstrate efficient transfer (higher than 40%) to the science vacuum chamber where the PNC measurements will be performed. The transfer uses a downward resonant push beam from the high-efficiency capture magneto optical trap (MOT) towards the science chamber where the atoms are recaptured in a second MOT. The transfer is very robust with respect to variations in the parameters (laser power, detuning, alignment, etc.). We accumulate a growing number of atoms at each transfer pulse (limited by the lifetime of the MOT) since the push beam does not eliminate the atoms already trapped in the science MOT. The number of atoms in the science MOT is on track to meet the requirements for competitive PNC measurements when high francium rates (previously demonstrated) are delivered to our apparatus. The catcher/neutralizer for the ion beam has been tested reliably to 100,000 heating/motion cycles. We present initial tests on the direct microwave excitation of the ground hyperfine transition at 45 GHz. Support from NSERC and NRC from Canada, NSF and Fulbright from USA, and CONACYT from Mexico.

  2. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  3. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  4. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  6. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  7. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  8. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  9. Cooling Atomic Gases With Disorder

    Science.gov (United States)

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G.; Scalettar, Richard T.

    2015-12-01

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  10. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  11. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  12. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  13. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  14. New magic numbers

    CERN Document Server

    Kruecken, R

    2010-01-01

    The nuclear shell model is a benchmark for the description of the structure of atomic nuclei. The magic numbers associated with closed shells have long been assumed to be valid across the whole nuclear chart. Investigations in recent years of nuclei far away from nuclear stability at facilities for radioactive ion beams have revealed that the magic numbers may change locally in those exotic nuclei leading to the disappearance of classic shell gaps and the appearance of new magic numbers. These changes in shell structure also have important implications for the synthesis of heavy elements in stars and stellar explosions. In this review a brief overview of the basics of the nuclear shell model will be given together with a summary of recent theoretical and experimental activities investigating these changes in the nuclear shell structure.

  15. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  17. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  18. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  19. Transfinite Numbers

    Indian Academy of Sciences (India)

    How many points are there on a line? Which is more in number- points on a line or lines in a plane? These are some natural questions that have occurred to us sometime or the other. It is interesting to note the difference between the two questions. Do we have to know how many points and lines there are to answer.

  20. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory. Besides mathematics, she is interested in (singing) indian classical music and yoga. Right: Shailesh Shirali is. Director of Sahyadri School.

  1. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  2. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    Science.gov (United States)

    2016-01-12

    AFRL-AFOSR-VA-TR-2016-0045 Ultrafast Imaging of Electronic Motion in Atoms and Molecules Martin Centurion UNIVERSITY OF NEBRSKA Final Report 01/12...Ultrafast Imaging of Electronic Motion in Atoms and Molecules 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0149 5c. PROGRAM ELEMENT NUMBER 6...a gaseous target of atoms or molecules. An optical setup was designed and constructed to compensate for the blurring of the temporal resolution due

  3. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  4. Atom Optics for Bose-Einstein Condensates (BEC)

    Science.gov (United States)

    2012-04-25

    CONTRACT NUMBER Atom Optics for Bose-Einstein Condensates (BEC) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Matthew B...free space fountain and beam configurations, that utilize light pulses to manipulate the atoms, have demonstrated the greatest sensitivities [1, 2, 3

  5. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  6. BOOK REVIEW: Computational Atomic Structure

    Science.gov (United States)

    Post, Douglass E.

    1998-02-01

    The primary purpose of `Computational Atomic Structure' is to give a potential user of the Multi-Configuration Hartree-Fock (MCHF) Atomic Structure Package an outline of the physics and computational methods in the package, guidance on how to use the package, and information on how to interpret and use the computational results. The book is successful in all three aspects. In addition, the book provides a good overview and review of the physics of atomic structure that would be useful to the plasma physicist interested in refreshing his knowledge of atomic structure and quantum mechanics. While most of the subjects are covered in greater detail in other sources, the book is reasonably self-contained, and, in most cases, the reader can understand the basic material without recourse to other sources. The MCHF package is the standard package for computing atomic structure and wavefunctions for single or multielectron ions and atoms. It is available from a number of ftp sites. When the code was originally written in FORTRAN 77, it could only be run on large mainframes. With the advances in computer technology, the suite of codes can now be compiled and run on present day workstations and personal computers and is thus available for use by any physicist, even those with extremely modest computing resources. Sample calculations in interactive mode are included in the book to illustrate the input needed for the code, what types of results and information the code can produce, and whether the user has installed the code correctly. The user can also specify the calculational level, from simple Hartree-Fock to multiconfiguration Hartree-Fock. The MCHF method begins by finding approximate wavefunctions for the bound states of an atomic system. This involves minimizing the energy of the bound state using a variational technique. Once the wavefunctions have been determined, other atomic properties, such as the transition rates, can be determined. The book begins with an

  7. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio

    1976-07-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  8. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: ce_delgado89@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)

    2015-10-15

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  9. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...

  10. Atomic Mass and Nuclear Binding Energy for Pu-239 (Plutonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pu-239 (Plutonium, atomic number Z = 94, mass number A = 239).

  11. Atomic Mass and Nuclear Binding Energy for Hs-349 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-349 (Hassium, atomic number Z = 108, mass number A = 349).

  12. Atomic Mass and Nuclear Binding Energy for Hs-298 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-298 (Hassium, atomic number Z = 108, mass number A = 298).

  13. Atomic Mass and Nuclear Binding Energy for Hs-333 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-333 (Hassium, atomic number Z = 108, mass number A = 333).

  14. Atomic Mass and Nuclear Binding Energy for Hs-326 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-326 (Hassium, atomic number Z = 108, mass number A = 326).

  15. Atomic Mass and Nuclear Binding Energy for Hs-313 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-313 (Hassium, atomic number Z = 108, mass number A = 313).

  16. Atomic Mass and Nuclear Binding Energy for Hs-321 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-321 (Hassium, atomic number Z = 108, mass number A = 321).

  17. Atomic Mass and Nuclear Binding Energy for Hs-304 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-304 (Hassium, atomic number Z = 108, mass number A = 304).

  18. Atomic Mass and Nuclear Binding Energy for Hs-311 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-311 (Hassium, atomic number Z = 108, mass number A = 311).

  19. Atomic Mass and Nuclear Binding Energy for Hs-323 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-323 (Hassium, atomic number Z = 108, mass number A = 323).

  20. Atomic Mass and Nuclear Binding Energy for Hs-335 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-335 (Hassium, atomic number Z = 108, mass number A = 335).

  1. Atomic Mass and Nuclear Binding Energy for Hs-322 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-322 (Hassium, atomic number Z = 108, mass number A = 322).

  2. Atomic Mass and Nuclear Binding Energy for Hs-325 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-325 (Hassium, atomic number Z = 108, mass number A = 325).

  3. Atomic Mass and Nuclear Binding Energy for Hs-316 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-316 (Hassium, atomic number Z = 108, mass number A = 316).

  4. Atomic Mass and Nuclear Binding Energy for Hs-355 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-355 (Hassium, atomic number Z = 108, mass number A = 355).

  5. Atomic Mass and Nuclear Binding Energy for Hs-336 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-336 (Hassium, atomic number Z = 108, mass number A = 336).

  6. Atomic Mass and Nuclear Binding Energy for Hs-286 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-286 (Hassium, atomic number Z = 108, mass number A = 286).

  7. Atomic Mass and Nuclear Binding Energy for Hs-305 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-305 (Hassium, atomic number Z = 108, mass number A = 305).

  8. Atomic Mass and Nuclear Binding Energy for Hs-283 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-283 (Hassium, atomic number Z = 108, mass number A = 283).

  9. Atomic Mass and Nuclear Binding Energy for Hs-334 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-334 (Hassium, atomic number Z = 108, mass number A = 334).

  10. Atomic Mass and Nuclear Binding Energy for Hs-302 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-302 (Hassium, atomic number Z = 108, mass number A = 302).

  11. Atomic Mass and Nuclear Binding Energy for Hs-280 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-280 (Hassium, atomic number Z = 108, mass number A = 280).

  12. Atomic Mass and Nuclear Binding Energy for Hs-341 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-341 (Hassium, atomic number Z = 108, mass number A = 341).

  13. Atomic Mass and Nuclear Binding Energy for Hs-351 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-351 (Hassium, atomic number Z = 108, mass number A = 351).

  14. Atomic Mass and Nuclear Binding Energy for Hs-344 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-344 (Hassium, atomic number Z = 108, mass number A = 344).

  15. Atomic Mass and Nuclear Binding Energy for Hs-319 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-319 (Hassium, atomic number Z = 108, mass number A = 319).

  16. Atomic Mass and Nuclear Binding Energy for Hs-342 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-342 (Hassium, atomic number Z = 108, mass number A = 342).

  17. Atomic Mass and Nuclear Binding Energy for Hs-345 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-345 (Hassium, atomic number Z = 108, mass number A = 345).

  18. Atomic Mass and Nuclear Binding Energy for Hs-306 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-306 (Hassium, atomic number Z = 108, mass number A = 306).

  19. Atomic Mass and Nuclear Binding Energy for Hs-301 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-301 (Hassium, atomic number Z = 108, mass number A = 301).

  20. Atomic Mass and Nuclear Binding Energy for Hs-289 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-289 (Hassium, atomic number Z = 108, mass number A = 289).

  1. Atomic Mass and Nuclear Binding Energy for Hs-348 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-348 (Hassium, atomic number Z = 108, mass number A = 348).

  2. Atomic Mass and Nuclear Binding Energy for Hs-290 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-290 (Hassium, atomic number Z = 108, mass number A = 290).

  3. Atomic Mass and Nuclear Binding Energy for Hs-299 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-299 (Hassium, atomic number Z = 108, mass number A = 299).

  4. Atomic Mass and Nuclear Binding Energy for Hs-356 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-356 (Hassium, atomic number Z = 108, mass number A = 356).

  5. Atomic Mass and Nuclear Binding Energy for Hs-307 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-307 (Hassium, atomic number Z = 108, mass number A = 307).

  6. Atomic Mass and Nuclear Binding Energy for Hs-292 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-292 (Hassium, atomic number Z = 108, mass number A = 292).

  7. Atomic Mass and Nuclear Binding Energy for Hs-340 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-340 (Hassium, atomic number Z = 108, mass number A = 340).

  8. Atomic Mass and Nuclear Binding Energy for Hs-293 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-293 (Hassium, atomic number Z = 108, mass number A = 293).

  9. Atomic Mass and Nuclear Binding Energy for Hs-288 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-288 (Hassium, atomic number Z = 108, mass number A = 288).

  10. Atomic Mass and Nuclear Binding Energy for Hs-317 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-317 (Hassium, atomic number Z = 108, mass number A = 317).

  11. Atomic Mass and Nuclear Binding Energy for Hs-318 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-318 (Hassium, atomic number Z = 108, mass number A = 318).

  12. Atomic Mass and Nuclear Binding Energy for Hs-353 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-353 (Hassium, atomic number Z = 108, mass number A = 353).

  13. Atomic Mass and Nuclear Binding Energy for Hs-354 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-354 (Hassium, atomic number Z = 108, mass number A = 354).

  14. Atomic Mass and Nuclear Binding Energy for Hs-278 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-278 (Hassium, atomic number Z = 108, mass number A = 278).

  15. Atomic Mass and Nuclear Binding Energy for Hs-343 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-343 (Hassium, atomic number Z = 108, mass number A = 343).

  16. Atomic Mass and Nuclear Binding Energy for Hs-310 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-310 (Hassium, atomic number Z = 108, mass number A = 310).

  17. Atomic Mass and Nuclear Binding Energy for Hs-296 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-296 (Hassium, atomic number Z = 108, mass number A = 296).

  18. Atomic Mass and Nuclear Binding Energy for Hs-324 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-324 (Hassium, atomic number Z = 108, mass number A = 324).

  19. Atomic Mass and Nuclear Binding Energy for Hs-330 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-330 (Hassium, atomic number Z = 108, mass number A = 330).

  20. Atomic Mass and Nuclear Binding Energy for Hs-295 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-295 (Hassium, atomic number Z = 108, mass number A = 295).

  1. Atomic Mass and Nuclear Binding Energy for Hs-309 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-309 (Hassium, atomic number Z = 108, mass number A = 309).

  2. Atomic Mass and Nuclear Binding Energy for Hs-359 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-359 (Hassium, atomic number Z = 108, mass number A = 359).

  3. Atomic Mass and Nuclear Binding Energy for Hs-294 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-294 (Hassium, atomic number Z = 108, mass number A = 294).

  4. Atomic Mass and Nuclear Binding Energy for Hs-300 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-300 (Hassium, atomic number Z = 108, mass number A = 300).

  5. Atomic Mass and Nuclear Binding Energy for Hs-328 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-328 (Hassium, atomic number Z = 108, mass number A = 328).

  6. Atomic Mass and Nuclear Binding Energy for Hs-346 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-346 (Hassium, atomic number Z = 108, mass number A = 346).

  7. Atomic Mass and Nuclear Binding Energy for Hs-284 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-284 (Hassium, atomic number Z = 108, mass number A = 284).

  8. Atomic Mass and Nuclear Binding Energy for Hs-361 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-361 (Hassium, atomic number Z = 108, mass number A = 361).

  9. Atomic Mass and Nuclear Binding Energy for Hs-315 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-315 (Hassium, atomic number Z = 108, mass number A = 315).

  10. Atomic Mass and Nuclear Binding Energy for Hs-352 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-352 (Hassium, atomic number Z = 108, mass number A = 352).

  11. Atomic Mass and Nuclear Binding Energy for Hs-287 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-287 (Hassium, atomic number Z = 108, mass number A = 287).

  12. Atomic Mass and Nuclear Binding Energy for Hs-357 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-357 (Hassium, atomic number Z = 108, mass number A = 357).

  13. Atomic Mass and Nuclear Binding Energy for Hs-337 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-337 (Hassium, atomic number Z = 108, mass number A = 337).

  14. Atomic Mass and Nuclear Binding Energy for Hs-360 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-360 (Hassium, atomic number Z = 108, mass number A = 360).

  15. Atomic Mass and Nuclear Binding Energy for Hs-358 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-358 (Hassium, atomic number Z = 108, mass number A = 358).

  16. Atomic Mass and Nuclear Binding Energy for Hs-331 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-331 (Hassium, atomic number Z = 108, mass number A = 331).

  17. Atomic Mass and Nuclear Binding Energy for Hs-339 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-339 (Hassium, atomic number Z = 108, mass number A = 339).

  18. Atomic Mass and Nuclear Binding Energy for Hs-312 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-312 (Hassium, atomic number Z = 108, mass number A = 312).

  19. Atomic Mass and Nuclear Binding Energy for Hs-282 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-282 (Hassium, atomic number Z = 108, mass number A = 282).

  20. Atomic Mass and Nuclear Binding Energy for Hs-291 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-291 (Hassium, atomic number Z = 108, mass number A = 291).

  1. Atomic Mass and Nuclear Binding Energy for Hs-285 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-285 (Hassium, atomic number Z = 108, mass number A = 285).

  2. Atomic Mass and Nuclear Binding Energy for Hs-332 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-332 (Hassium, atomic number Z = 108, mass number A = 332).

  3. Atomic Mass and Nuclear Binding Energy for Hs-338 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-338 (Hassium, atomic number Z = 108, mass number A = 338).

  4. Atomic Mass and Nuclear Binding Energy for Hs-279 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-279 (Hassium, atomic number Z = 108, mass number A = 279).

  5. Atomic Mass and Nuclear Binding Energy for Hs-281 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-281 (Hassium, atomic number Z = 108, mass number A = 281).

  6. Atomic Mass and Nuclear Binding Energy for Hs-320 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-320 (Hassium, atomic number Z = 108, mass number A = 320).

  7. Atomic Mass and Nuclear Binding Energy for Hs-303 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-303 (Hassium, atomic number Z = 108, mass number A = 303).

  8. Atomic Mass and Nuclear Binding Energy for Hs-297 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-297 (Hassium, atomic number Z = 108, mass number A = 297).

  9. Atomic Mass and Nuclear Binding Energy for Hs-327 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-327 (Hassium, atomic number Z = 108, mass number A = 327).

  10. Atomic Mass and Nuclear Binding Energy for Hs-347 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-347 (Hassium, atomic number Z = 108, mass number A = 347).

  11. Atomic Mass and Nuclear Binding Energy for Hs-308 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-308 (Hassium, atomic number Z = 108, mass number A = 308).

  12. Atomic Mass and Nuclear Binding Energy for Hs-329 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-329 (Hassium, atomic number Z = 108, mass number A = 329).

  13. Atomic Mass and Nuclear Binding Energy for Hs-314 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-314 (Hassium, atomic number Z = 108, mass number A = 314).

  14. Atomic Mass and Nuclear Binding Energy for Hs-350 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-350 (Hassium, atomic number Z = 108, mass number A = 350).

  15. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  16. Positronium-alkali atom scattering at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700 064 (India); Basu, Arindam [Department of Physics, Maheshtala College, Chandannagar, South 24 Parganas, Kolkata 700 140 (India); Sarkar, Nirmal K [Sodepur Chandrachur Vidyapith, 1, Desh Bandhu Nagar, Sodepur, 743 174 (India); Sinha, Prabal K [Department of Physics, Bangabasi College, 19, Raj Kumar Chakravorty Sarani, Kolkata 700 009 (India)

    2004-04-28

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time.

  17. Atomic focusing by quantum fields: Entanglement properties

    Energy Technology Data Exchange (ETDEWEB)

    Paz, I.G. da [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI (Brazil); Frazão, H.M. [Universidade Federal do Piauí, Campus Profa. Cinobelina Elvas, CEP 64900-000, Bom Jesus, PI (Brazil); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Peixoto de Faria, J.G. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675, Belo Horizonte, MG 30510-000 (Brazil)

    2014-04-01

    The coherent manipulation of the atomic matter waves is of great interest both in science and technology. In order to study how an atom optic device alters the coherence of an atomic beam, we consider the quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially quantum property present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic coherence and purity are affected by the entanglement. The dynamics of this process is obtained in closed form. We calculate the beam quality factor and the trace of the square of the reduced density matrix as a function of the average photon number in order to analyze the coherence and purity of the atomic beam during the focusing process.

  18. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  19. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  20. Experimental measurement of effective atomic number of composite ...

    Indian Academy of Sciences (India)

    2011-08-02

    Aug 2, 2011 ... sample containers. They differed only in their heights. Therefore, the angle of acceptance was almost the same in each measurement. It may be argued that the multiple scattering of photons occurs whenever thick samples are used because such samples offer a larger mean free path for the incident ...

  1. Effective atomic number, electron density and kerma of gamma ...

    Indian Academy of Sciences (India)

    The values of these parameters have been found to change with energy for different oxides of lanthanides. The lanthanide oxides find remarkable applications in the field of medicine, biology, nuclear engineering and space technology. Nano-oxides of lanthanide find applications in display and lighting industry.

  2. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  3. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  4. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    Science.gov (United States)

    Zhao, Xiu-Qin; Liu, Ni; Liang, Jiu-Qing

    2017-05-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. Supported by the National Natural Science Foundation of China under Grant Nos. 11275118, 11404198, 91430109, 61505100, 51502189, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) under Grant No. 2014102, and the Launch of the Scientific Research of Shanxi University under Grant No. 011151801004, and the National Fundamental Fund of Personnel Training under Grant No. J1103210. The Natural Science Foundation of Shanxi Province under Grant No. 2015011008

  5. Suprathermal oxygen atoms in the Martian upper atmosphere: Contribution of the proton and hydrogen atom precipitation

    Science.gov (United States)

    Shematovich, V. I.

    2017-07-01

    This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA's MAVEN spacecraft (Jakosky et al., 2015).

  6. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  7. Benchmarking Attosecond Physics with Atomic Hydrogen

    Science.gov (United States)

    2015-05-25

    Final 3. DATES COVERED (From - To) 12 Mar 12 – 11 Mar 15 4. TITLE AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a...AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a. CONTRACT NUMBER FA2386-12-1-4025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Final Report for AOARD Grant FA2386-12-1-4025 “ Benchmarking

  8. Dynamics in atomic signaling games

    KAUST Repository

    Fox, Michael J.

    2015-04-08

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss.

  9. Dynamics in atomic signaling games.

    Science.gov (United States)

    Fox, Michael J; Touri, Behrouz; Shamma, Jeff S

    2015-07-07

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A Miniature Wide Band Atomic Magnetometer

    Science.gov (United States)

    2011-12-01

    current circuit is easiest to explain if we at first ignore the capacitors . The reference and the DAC output are combined by R401 and R402 to make...atomic magnetometer CSAC – Chip scale atomic clock DAC – Digital to Analog Converter DARPA – Defense Advanced Research Projects Agency DBR...Transform FPGA – Field Programmable Gate Array GHz – Gigahertz MEMS – Micro-Electro Mechanical System MF – z-component Magnetic Quantum Number, MF MFTFM

  11. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  12. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  13. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  14. Cooper pairs in atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2008-12-15

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  15. Helium atom scattering from surfaces

    CERN Document Server

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  16. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  17. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  18. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  19. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  20. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  1. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  2. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  3. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  4. Atoms, Light, and Lasers

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    Up to now, the spatial properties of quantum particles played no more than a secondary role: we only needed the de Broglie relation (1.4) which gives the quantum particles wavelength, and our discussion of the quantum properties of photons was based mainly on their polarization, which is an internal degree of freedom of the photon. The probability amplitudes which we used did not involve the positions or velocities of the particles, which are spatial, or external degrees of freedom. In the present chapter, we shall introduce spatial dependence by defining probability amplitudes a(ěc r) that are functions of the position ěc r. In full generality, a(ěc r) is a complex number, but we shall avoid this complication and discuss only cases where the probability amplitudes may be taken real. For simplicity, we also limit ourselves to particles propagating along a straight line, which we take as the Ox axis: x will define the position of the particle and the corresponding probability amplitude will be a function of x, a(x). In our discussion, we shall need to introduce the so-called potential well, where a particle travels back and forth between two points on the straight line. One important particular case is the infinite well, where the particle is confined between two infinitely high walls over which it cannot pass. This example is not at all academic, and we shall meet it again in Chapter 6 when explaining the design of a laser diode! Furthermore, it will allow us to introduce the notion of energy level, to write down the Heisenberg inequalities, to understand the interaction of a light wave with an atom and finally to explain schematically the principles of the laser.

  5. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...

  6. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied....... Kinetic friction is observed to be caused by atomic-scale Stick and slip which occurs by nucleation and subsequent motion of dislocations preferably between close-packed {111} planes. Stick and slip seems ro occur in different situations. For single crystalline contacts without grain boundaries...... pinning of atoms near the boundary of the interface and is therefore more easily observed for smaller contacts. Depending on crystal orientation and load, frictional wear can also be seen in the simulations. In particular, for the annealed interface-necks which model contacts created by scanning tunneling...

  7. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  9. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  11. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  12. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  13. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  14. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  15. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    CERN Document Server

    Swann, A R; Deller, A; Gribakin, G F

    2016-01-01

    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  16. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  17. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  18. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  19. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  20. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  1. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  2. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

    2011-02-01

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  3. Investigation of atomic species in Pt-induced nanowires on Ge(001) surface by combined atomic force and scanning tunneling microscopy

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki; Shinozaki, Takuya; Gurlu, Oguzhan; Yurtsever, Ayhan

    2017-10-01

    We have studied identification of atomic species in Pt-induced nanowires self-assembled on the Ge(001) surface by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). A small number of Sn atoms substituted in the top atomic chains were utilized as references to identify the target atomic species. Force spectroscopy data taken above single atoms on the Sn-substituted nanowires showed that the ratio between the maximum attractive forces above the Sn and the pristine chain atoms exhibited a constant value of 0.86. The obtained ratio was identical to that between Sn and Ge atoms, strongly suggestive that the top ridge of the Pt-induced nanowire was composed of Ge dimers. Our findings also demonstrate that AFM chemical identification method can be used to identify the unknown atomic species on surfaces, regardless of the homogeneity in the atomic composition, which has not been addressed so far.

  4. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  5. Etude de la fixation d'atomes de brome dans les traces latentes d'ions

    Science.gov (United States)

    Vareille, J. C.; Moliton, J. P.; Decossas, J. L.; Teyssier, J. L.; Delaunay, B.

    1981-09-01

    We show that the branching of bromide atoms is possible on chemically active sites produced by Kr 8+, Cl 6+ and He 2+ ion irradiation on cellulose triacetate. The number of fixed atoms increases with ion fluence and atomic number. These results are in good agreement with those concerning radical yield around the ions' path.

  6. Optical atomic phase reference and timing

    Science.gov (United States)

    Hollberg, L.; Cornell, E. H.; Abdelrahmann, A.

    2017-06-01

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10-20. As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, ΔΦ/Φtotal ≤ 10-20, that could make an important impact in gravity wave science. This article is part of the themed issue 'Quantum technology for the 21st century'.

  7. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  8. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  9. Numerical Models for Viscoelastic Liquid Atomization Spray

    Directory of Open Access Journals (Sweden)

    Lijuan Qian

    2016-12-01

    Full Text Available Atomization spray of non-Newtonian liquid plays a pivotal role in various engineering applications, especially for the energy utilization. To operate spray systems efficiently and well understand the effects of liquid rheological properties on the whole spray process, a comprehensive model using Euler-Lagrangian approaches was established to simulate the evolution of the atomization spray for viscoelastic liquid. Based on the Oldroyd model, the viscoelastic linear dispersion relation was introduced into the primary atomization; an extended viscoelastic version of Taylor analogy breakup (TAB model was proposed; and the coalescence criteria was modified by rheological parameters, such as the relaxation time, the retardation time and the zero shear viscosity. The predicted results are validated with experimental data varying air-liquid mass flow ratio (ALR. Then, numerical calculations are conducted to investigate the characteristics of viscoelastic liquid atomization process. Results showed that the evolutionary trend of droplet mean diameter, Weber number and Ohnesorge number of viscoelastic liquids along with axial direction were qualitatively similar to that of Newtonian liquid. However, the mean size of polymer solution increased more gently than that of water at the downstream of the spray, which was beneficial to stable control of the desirable size in the applications. As concerned the effects of liquid physical properties, the surface tension played an important role in the primary atomization, which indicated the benefit of selecting the solvents with lower surface tension for finer atomization effects, while, for the evolution of atomization spray, larger relaxation time and zero shear viscosity increased droplet Sauter mean diameter (SMD significantly. The zero shear viscosity was effective throughout the jet region, while the effect of relaxation time became weaken at the downstream of the spray field.

  10. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  11. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  12. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  13. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  14. From Atoms to Solids

    Science.gov (United States)

    1999-01-31

    Honea. M.L. Homer, J.L. Persson, R.L. Whetten , Chem. atoms Phys. Lett. 171 (1990) 147. [17] M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49. Two types of...Persson, M.E. LaVilla, R.L. tal conditions, the clusters become rigid. Thereafter, Whetten , J. Phys. Chem. 93 (1989) 2869. each newly added atom condenses...106 (1981) 265. M. Broyer, Phys. Rev. A 39 (1989) 6056. [9] W. Ekardt, Ber. Bunsenges. Phys. Chem. 88 (1984) 289. [38] R.L. Whetten , private

  15. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  16. Theory and applications of atomic and ionic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)

    2010-10-28

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  17. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  18. Project Physics Tests 5, Models of the Atom.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  19. Coherent control of mesoscopic atomic ensembles for quantum information

    OpenAIRE

    Beterov, I. I.; Saffman, M.; Zhukov, V. P.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Mansell, C. W.; MacCormick, C.; Bergamini, S.; Fedoruk, M. P.

    2013-01-01

    We discuss methods for coherently controlling mesoscopic atomic ensembles where the number of atoms varies randomly from one experimental run to the next. The proposed schemes are based on adiabatic passage and Rydberg blockade and can be used for implementation of a scalable quantum register formed by an array of randomly loaded optical dipole traps.

  20. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  1. FAC: Flexible Atomic Code

    Science.gov (United States)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  2. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  3. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  4. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  5. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    Science.gov (United States)

    2016-11-02

    STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...setup. At the end of this program, we had built the vacuum system, specialized cold atom chamber and were working on the fiber epoxy mount for the...Triangle Park, NC 27709-2211 Tapered Fibers, Cold atoms , Nonlinear Optics REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  6. Deflection of atoms by standing-wave radiation

    Science.gov (United States)

    Moskowitz, P. E.; Gould, P. L.; Pritchard, D. E.

    1985-11-01

    Momentum transfer from a standing-wave light field to an atomic beam has been observed. The atomic beam is split symmetrically into two peaks whose separation increases with field strength. The short interaction time ensures that this deflection is due to induced forces; these are described using a semiclassical dressed-atom treatment, which gives good agreement with the data. In addition to the splitting, diffraction of the atomic beam due to the exchange of even numbers of photons with the field has been observed.

  7. Atoms, molecules and optical physics

    CERN Document Server

    Hertel, Ingolf V

    2015-01-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginner...

  8. Asymmetric sequential Landau-Zener dynamics of Bose condensed atoms in a cavity

    CERN Document Server

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Lee, Chaohong

    2016-01-01

    We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ transitions of Bose condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry become more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ process, due to the atom-cavity coupling, th...

  9. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  10. Role of atoms in atomic gravitational-wave detectors

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-10-01

    Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves. These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the fundamental similarities and differences between the two types of proposals. We present a framework in which the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key difference being whether or not the atoms are tightly confined by an external potential. With this interpretation in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom's excited-state lifetime.

  11. Structure and properties of atomic nanoclusters

    CERN Document Server

    Alonso, Julio A

    2005-01-01

    Atomic clusters are the bridge between molecules and the bulk matter. Following two key experiments - the observation of electronic shells in metallic clusters and the discovery of the C60 fullerence - the field of atomic clusters has experienced a rapid growth, and is now considered a mature field. The electrons of the cluster are confined to a small volume, hence, quantum effects are manifested on many properties of the clusters. Another interesting feature is that the properties often change in a non-smooth way as the number of atoms in the cluster increases. This book provides an updated overview of the field, and presents a detailed description of the structure and electronic properties of different types of clusters: Van der Waals clusters, metallic clusters, clusters of ionic materials and network clusters. The assembling of clusters is also considered, since specially stable clusters are expected to play a role in the future design and synthesis of new materials.

  12. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  13. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  14. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  15. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  16. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  17. Radioactive Elements in the Standard Atomic Weights Table.

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2007-08-04

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial

  18. Implementing quantum electrodynamics with ultracold atomic systems

    Science.gov (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.

    2017-02-01

    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  19. Atomic Parity Violation Overview and Perspectives

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Optical experiments have demonstrated cases in which mirror symmetry in stable atoms is broken during absorption or emission of light. Such results are in conflict with standard electromagnetic (EM) theory, but can be explained within the unified electroweak theory. Their interpretation is based on exchanges of virtual weak neutral Z_0 bosons between the electrons and the atomic nucleus. These effects were predicted to increase in heavy atoms a little faster than the cube of the atomic number. Moreover, in a highly forbidden transition, like the 6S-7S transition in cesium, the EM interaction is suppressed, leaving the Z_0 exchange a chance to show up. For achieving the determination of the Cs nucleus weak charge, Q_W(Cs), the basic experimental parameter playing in Z_0, exchange the same role as the nuclear charge in the Coulomb interaction, both experimental and theoretical hurdles had to be overcome: first, the excitation and detection of an atomic line with a transition rate about 10^{14} times less than a...

  20. Permutation-invariant distance between atomic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ferré, Grégoire; Maillet, Jean-Bernard [CEA, DAM, DIF, F-91297 Arpajon (France); Stoltz, Gabriel [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France)

    2015-09-14

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  1. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  2. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then

  3. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  4. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  5. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  6. Lasers, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  7. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  8. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  9. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    lished the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly ellipti- cal. Keywords. Rydberg atom; quantum trajectory. PACS No. 03.65.Ge. 1. Introduction. Ever since the advent of quantum ...

  10. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  11. Equilibrium vortex lattices of a binary rotating atomic Bose–Einstein condensate with unequal atomic masses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Han, Wei; Zhang, Shou-Gang [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China)

    2016-10-15

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with our numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.

  12. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  13. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  14. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  15. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  16. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  17. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  18. Electroless atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  19. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  20. Metric propositional neighborhood logics on natural numbers

    DEFF Research Database (Denmark)

    Bresolin, Davide; Della Monica, Dario; Goranko, Valentin

    2013-01-01

    Metric Propositional Neighborhood Logic (MPNL) over natural numbers. MPNL features two modalities referring, respectively, to an interval that is “met by” the current one and to an interval that “meets” the current one, plus an infinite set of length constraints, regarded as atomic propositions...

  1. Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics

    Directory of Open Access Journals (Sweden)

    Edward Bormashenko

    2007-09-01

    Full Text Available It is demonstrated that the entropy of the ideal mono-atomic gas comprisingidentical spherical atoms is not conserved under the Planck-Einstein like relativistictemperature transformation, as a result of the change in the number of atomic degrees offreedom. This fact supports the idea that there is no universal relativistic temperaturetransformation.

  2. Two-dimensional array of microtraps with atomic shift register on a chip

    NARCIS (Netherlands)

    Whitlock, S.; Gerritsma, R.; Fernholz, T.; Spreeuw, R.J.C.

    2009-01-01

    Arrays of trapped atoms are the ideal starting points for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost

  3. Effects of spray adjuvants on spray droplet size from a rotary atomizer

    Science.gov (United States)

    Rotary atomizers are used in a number of aerial applications, such as forest pest spraying and mosquito control sprays. These types of atomizers have a rotating cage at speeds of 2,000 to 10,000 rpm through which a spray is emitted and atomized. Many applicators routinely add spray adjuvants to ch...

  4. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    Science.gov (United States)

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.

  5. Prospects of linear reconstruction in atomic resolution electron holographic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Krehl, Jonas, E-mail: Jonas.Krehl@triebenberg.de; Lubk, Axel

    2015-03-15

    Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction.

  6. Cluster growing process and a sequence of magic numbers

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms...

  7. Long term stability of atomic time scales

    Science.gov (United States)

    Petit, Gérard; Arias, Elisa Felicitas

    2012-08-01

    International Atomic Time TAI gets its stability from some 400 atomic clocks worldwide that generate the free atomic scale EA L and its accuracy from a small number of primary frequency standards (PFS) which frequency measurements are used to steer the EAL frequency. Because TAI is computed in "real - time" (every month) and has operational constraints, it is not optimal and the BIPM computes in deferred time another time scale TT(BIPM), which is based on a weighted average of the evaluations of TAI frequency by the PFS. We show that a point has been reached where the stability of atomic time scales, the accuracy of primary frequency standards, and the capabilities of frequency transfer are approximately at a similar level, in the low 10 - 16 in relative frequency. The goal is now to reach and surpass 1x10 - 16 and the three fields are in various stages of advancement towards this aim. We review the stability and accuracy recently achieved by frequency standards, focusing on primary frequency standards on one hand, and on new secondary realizations e.g. based on optical transitions on the other hand. We study how these performances can translate to the performance of atomic time scales, and the possible implications of the availability of new high - accuracy frequency standards operating on a regular basis. Finally we show how time transfer is trying to keep up with the progresses of frequency standards. Time transfer is presently the limiting factor at short averaging time (e.g. 1 - 2 weeks) but it should not be limiting the long term stability of atomic time scales, which is the main need of many applications in astronomy.

  8. Theory of Electronic, Atomic and Molecular Collisions.

    Science.gov (United States)

    1983-09-01

    rare gas atoms (Section TV, Publications, No. 29). A strong forward peak and rapid angular variation, essentially a Fraunhofer diffraction pattern... triangular finite elements. Correct threshold behavior is built in by using momentum or wave number k as independent variables, and by starting the first...element at the continuum threshold. Since each triangular element has a finite and continuous HUbert transform, a smooth fit is obtained to both real

  9. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  10. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  11. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  12. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  13. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  14. Plastic deformation: Shearing mountains atom by atom

    Energy Technology Data Exchange (ETDEWEB)

    Müllner, Peter, E-mail: petermullner@boisestate.edu [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States)

    2013-11-15

    Highlights: ► Rocks, wood, ceramics, semiconductors, and metals all deform in the same way, namely by heterogeneous shear banding via hierarchical orthogonal shear modes. ► While the governing principles of deformation are the same for rocks, wood, ceramics, semiconductors, and metals, these materialsdiffer in their microscopic deformation mechanisms and in the width of the shear band, which covers twelve orders of magnitude from angstroms to hundreds of meters. ► Microscopic deformation mechanisms couple to macroscopic deformation mechanisms, i.e. shear banding, through the collective properties of defect groups on the mesoscale. -- Abstract: Conventional wisdom established atomistic defects, dislocations, as agents of plastic deformation. On macroscopic scale, rock, wood, steel, tough ceramics, fiber reinforced composites, and silicon all deform in the same way and produce the same pattern; shear bands. The argumentation presented here, starts on the largest length scale of the problem at hand and leads through a number of hierarchical levels down to the atomistic mechanism. Shear bands develop discontinuously by the motion of a process zone. Locally, i.e. in the process zone, deformation proceeds perpendicularly to the macroscopic shear, in combination with a rotation. The microscopic shear itself may occur again in a discontinuous manner and again orthogonally to the intermediate level and so on at ever smaller scale. Material properties come into play at the highest hierarchical level, i.e. at the smallest length scale where they control the well-known micromechanisms.

  15. Tomography vs quantum control for a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, O. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)]. E-mail: caronte30@yahoo.com; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2006-12-04

    We investigate the possibilities of controlling and reconstructing the state of a single three-level atom. We propose a physical scheme where information about the atomic state is extracted by measuring the total number of excitations after successive application of electromagnetic field pulses. We show that, in the non-degenerate case (different transition frequencies for different atomic transitions), a three-level atom is completely controllable and its state can be completely reconstructed. In the degenerate case (when both atomic transitions are identical), we consider two dynamically inequivalent configurations, {lambda} and {xi}. In this case, we show that the density matrix can always be completely reconstructed whereas their respective system cannot be completely controlled. We explain why this last incompatibility between control and tomography arises.

  16. Children, everyday numbers and school numbers

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2008-08-01

    Full Text Available Relationship made by school children between “daily” numbers, or rather, numbers deployed outside the school, and numbers worked out in school under various circumstances, or rather, orally and in writing, is investigated. Analysis has been undertaken with ten six-year-old children by means of a clinical and critical method. Research results show that children interact with the environment and recognized the figures, name them, conjecture on their written mode and give coherent meaning to the figures. Analysis also demonstrates that children use numbers outside the school. They understand and exemplify the number’s different meanings in an out-class context. Since the children do not give a weighty meaning to “school” numbers, pedagogical activity with numbers fails to put into practice the recommendations of the official policy.

  17. Optimal control of complex atomic quantum systems

    Science.gov (United States)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  18. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  19. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  20. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail: yakashlev@yandex.ru

    2017-04-15

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  1. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  2. Numbers Defy the Law of Large Numbers

    Science.gov (United States)

    Falk, Ruma; Lann, Avital Lavie

    2015-01-01

    As the number of independent tosses of a fair coin grows, the rates of heads and tails tend to equality. This is misinterpreted by many students as being true also for the absolute numbers of the two outcomes, which, conversely, depart unboundedly from each other in the process. Eradicating that misconception, as by coin-tossing experiments,…

  3. Atomic properties in hot plasmas from levels to superconfigurations

    CERN Document Server

    Bauche, Jacques; Peyrusse, Olivier

    2015-01-01

    This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurat...

  4. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  5. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  6. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  7. Intermolecular atom-atom bonds in crystals - a chemical perspective.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-03-01

    Short atom-atom distances between molecules are almost always indicative of specific intermolecular bonding. These distances may be used to assess the significance of all hydrogen bonds, including the C-H⋯O and even weaker C-H⋯F varieties.

  8. Optical Thin Film Thickness Measurement for the Single Atom Microscope

    Science.gov (United States)

    Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team

    2017-09-01

    The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.

  9. Atom-field entanglement in cavity QED: Nonlinearity and saturation

    Science.gov (United States)

    Rogers, Robert; Cummings, Nick; Pedrotti, Leno M.; Rice, Perry

    2017-11-01

    We investigate the degree of entanglement between an atom and a driven cavity mode in the presence of dissipation. Previous work has shown that in the limit of weak driving fields, the steady-state entanglement is proportional to the square of the driving intensity. This quadratic dependence is due to the generation of entanglement by the creation of pairs of photons or excitations. In this work we investigate the entanglement between an atom and a cavity in the presence of multiple photons. Nonlinearity of the atomic response is needed to generate entanglement, but as that nonlinearity saturates the entanglement vanishes. We posit that this is due to spontaneous emission, which puts the atom in the ground state and the atom-field state into a direct product state. An intermediate value of the driving field, near the field that saturates the atomic response, optimizes the atom-field entanglement. In a parameter regime for which multiphoton resonances occur, we find that entanglement recurs at those resonances. In this regime, we find that the entanglement decreases with increasing photon number. We also investigate, in the bimodal regime, the entanglement as a function of atom and/or cavity detuning. Here we find that there is evidence of a phase transition in the entanglement, which occurs at 2 ɛ /g ≥1 .

  10. Generalized Collective States and Their Role in a Collective State Atomic Interferometer and Atomic Clock

    CERN Document Server

    Sarkar, Resham; Fang, Renpeng; Tu, Yanfei; Shahriar, Selim M

    2014-01-01

    We investigate the behavior of an ensemble of N non-interacting, identical atoms, excited by a laser with a wavelength of $\\lambda$. In general, the i-th atom sees a Rabi frequency $\\Omega_i$, an initial position dependent laser phase $\\phi_i$, and a motion induced Doppler shift of $\\delta_i$. When $\\Omega_i=\\Omega$ and $\\delta_i=\\delta$ for all atoms, the system evolves into a superposition of (N+1) symmetric collective states (SCS), independent of the values of $\\phi_i$. If $\\phi_i=\\phi$ for all atoms, these states simplify to the well-known Dicke collective states. When $\\Omega_i$ or $\\delta_i$ is distinct for each atom, the system evolves into a superposition of SCS as well as asymmetric collective states (ACS). For large N, the number of ACS's $(2^N-N-1)$ is far greater than that of the SCS. We show how to formulate the properties of all the collective states under various non-idealities, and use this formulation to understand the dynamics thereof. For the case where $\\Omega_i=\\Omega$ and $\\delta_i=\\delt...

  11. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  12. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  13. Measurement of frequency sweep nonlinearity using atomic absorption spectroscopy

    Science.gov (United States)

    Song, Ningfang; Lu, Xiangxiang; Xu, Xiaobin; Pan, Xiong; Li, Wei; Hu, Di; Liu, Jixun

    2018-01-01

    A novel scheme to determine frequency sweep nonlinearity using atomic saturated absorption spectroscopy is proposed and demonstrated. The frequency modulation rate is determined by directly measuring the interference fringe number and the frequency gap between two atomic transition peaks of rubidium atom. An experimental setup is established, and test results show that the frequency sweep nonlinearity is ∼10%, with an average frequency modulation rate of ∼1.12 THz/s. Moreover, the absolute optical frequency and optical path difference between two laser beams are simultaneously determined with this method. This low-cost technique can be used for optical frequency sweep nonlinearity correction and real-time frequency monitor.

  14. New Class of Excimer-Pumped Atomic Lasers (XPALS)

    Science.gov (United States)

    2017-01-27

    AFRL-AFOSR-VA-TR-2017-0019 New Class of Excimer-Pumped Atomic Lasers (XPALS) James Eden UNIVERSITY OF ILLINOIS CHAMPAIGN 506 S WRIGHT ST 364 HENRY...TITLE AND SUBTITLE New Class of Excimer-Pumped Atomic Lasers (XPALS) 5a. CONIKA\\.INUMBER FA9550-13- 1-0006 5b.GRANT NUMBER Sc. f’ftOGRAM ELEMENT...cxcitcd state-excited state reaction rates. We ore pleased to report that the main goal orthis program, the viability of nn atomic laser having a

  15. Atom-surface studies with Rb Rydberg atoms

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon; Shaffer, James

    2015-05-01

    We report on experimental and theoretical progress studying atom-surface interactions using rubidium Rydberg atoms. Rydberg atoms can be strongly coupled to surface phonon polariton (SPhP) modes of a dielectric material. The coherent interaction between Rydberg atoms and SPhPs has potential applications for quantum hybrid devices. Calculations of TM-mode SPhPs on engineered surfaces of periodically poled lithium niobate (PPLN) and lithium tantalate (PPLT) for different periodic domains and surface orientations, as well as natural materials such as quartz, are presented. Our SPhP calculations account for the semi-infinite anisotropic nature of the materials. In addition to theoretical calculations, we show experimental results of measurements of adsorbate fields and coupling of Rydberg atoms to SPhPs on quartz.

  16. Coherent Atom Optics with fast metastable rare gas atoms

    Science.gov (United States)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Bocvarski, V.; Vassilev, G.; Ducloy, M.

    2006-12-01

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 μm for He*, 1.2 μm for Ne*, 0.87 μm for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2μm-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to "vdW-Zeeman" transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  17. Number words and number symbols a cultural history of numbers

    CERN Document Server

    Menninger, Karl

    1992-01-01

    Classic study discusses number sequence and language and explores written numerals and computations in many cultures. "The historian of mathematics will find much to interest him here both in the contents and viewpoint, while the casual reader is likely to be intrigued by the author's superior narrative ability.

  18. Number 1, July

    Indian Academy of Sciences (India)

    The dependence of scattering length on van der Waals interaction and reduced mass of the system in two-atomic collision at cold ... Quantum mechanics of PT and non-PT -symmetric potentials in three dimensions . ... The modified simple equation method for solving some fractional-order nonlinear equations . . . . . . . . .

  19. Orbital Angular Momentum of Gauge Fields: Excitation of AN Atom by Twisted Photons

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Mukherjee, Asmita

    2014-01-01

    Twisted photon states, or photon states with large (> ℏ) angular momentum projection in the direction of motion, can photoexcite atomic final states of differing quantum numbers. If the photon symmetry axis coincides with the center of an atom, there are known selection rules that require exact matching between the quantum numbers of the photon and the photoexcited states. The more general case of arbitrarily positioned beams relaxes the selection rules but produces a distribution of quantum numbers of the final atomic states that is novel and distinct from final states produced by plane-wave photons. Numerical calculations are presented using a hydrogen atom as an example.

  20. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    cavity and their coupling to the cavity mode. The strong coupling manifests itself in a strong reduction of the cavity transmission probed by a weak external laser. The atoms remain trapped and coupled to the cavity mode for several seconds until we move them out of the cavity for final analysis of their number and position. (orig.)

  1. A single-atom heat engine.

    Science.gov (United States)

    Roßnagel, Johannes; Dawkins, Samuel T; Tolazzi, Karl N; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-15

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms. Copyright © 2016, American Association for the Advancement of Science.

  2. The Stair-Step Atom.

    Science.gov (United States)

    Jordan, Thomas M.; And Others

    1992-01-01

    Presents a model of a generic atom that is used to represent the movement of electrons from lower to higher levels and vice-versa due to excitation and de-excitation of the atom. As the process of de-excitation takes place, photons represented by colored ping-pong balls are emitted, indicating the emission of light. (MDH)

  3. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  4. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    Abstract. Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.

  5. Deep atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  6. Atom mapping with constraint programming.

    Science.gov (United States)

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  7. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  8. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  9. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  10. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  11. The quantum measurement effect of interaction without interaction for an atomic beam

    Science.gov (United States)

    Huang, Yong-Yi

    When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt / T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration's period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam.

  12. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-02-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.

  13. Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires

    Science.gov (United States)

    Kizuka, Tokushi; Murata, Satoshi

    2017-09-01

    The tensile deformation and successive fracture process of tantalum (Ta) nanocontacts (NCs) while applying various bias voltages was observed in situ by high-resolution transmission electron microscopy using a picometer-precision dual-goniometer nanotip manipulation technique. Simultaneously, the variation in the conductance of the contacts was measured. The NCs were thinned atom by atom during mechanical elongation, resulting in the formation of two types of single-atom cross-sectional contacts: single-atom contacts (SACs) and single-atom wires (SAWs), in which two electrodes, typically nanotips, are connected by a single shared atom or a one-line array of single atoms, respectively. When the bias voltage was 11 mV, Ta SACs were formed during tensile deformation; however, elongation of the single-atom cross-sectional part did not occur. In contrast, when the bias voltage was increased to 200 mV, Ta SACs were first formed during the tensile deformation, followed by elongation of the single-atom cross section up to a length of three atoms, i.e., the formation of SAWs. Thus, the present observation shows that Ta SAWs are stable even at such a high bias voltage. The conductance of the SACs was approximately 0.10G0 (G0 = 2e2/h, where e is the electron charge and h is Planck’s constant), whereas the conductance of the three-atom-long SAWs ranged from 0.01G0 to 0.22G0. Lower conductances were observed for linear SAWs, whereas higher conductances resulted from kinked SAWs.

  14. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  15. Introduction to number theory

    CERN Document Server

    Vazzana, Anthony; Garth, David

    2007-01-01

    One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.

  16. Tropical Real Hurwitz numbers

    OpenAIRE

    Markwig, Hannah; Rau, Johannes

    2014-01-01

    In this paper, we define tropical analogues of real Hurwitz numbers, i.e. numbers of covers of surfaces with compatible involutions satisfying prescribed ramification properties. We prove a correspondence theorem stating the equality of the tropical numbers with their real counterparts. We apply this theorem to the case of double Hurwitz numbers (which generalizes our result from arXiv:1409.8095).

  17. Output rate of atom lasers in a Raman-type output-coupling scheme

    Science.gov (United States)

    Wu, Ying; Yang, Xiaoxue

    2000-07-01

    We present a theory to derive the output rate of an atom laser consisting of an interacting Bose-Einstein condensate in a magnetic trap and two additional rf fields transferring trapped atoms to a repelled Zeeman sublevel via an intermediate untrapped Zeeman sublevel. We explicitly obtain the dependence of the output rate Γout on various characteristic parameters such as a coupling parameter (the Rabi frequency), the atom number density in the center of the condensate, and the strength of the atom-atom interaction.

  18. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  19. Atoms for pest control

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, D.A. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria)) (and others)

    1984-06-01

    Insects cause losses estimated at between 8% and 20% of total production of crops and livestock throughout the world. With the aim of developing technologies which can reduce such losses, the Insect and Pest Control Section of the Joint FAO/IAEA Division actively sponsors projects and conducts research through the Entomology Section of the Agricultural Biotechnology Laboratory at Seibersdorf. In its work, the Section has placed considerable emphasis on the Sterile Insect Technique (SIT). This technique involves the sterilization and release of large numbers of insects of the target species into the area where control is to be achieved. There, the sterile insects mate with the fertile wild insects, which produce no progeny: the technique is thus a highly specific form of ''birth control''. It is being used against a number of pest species in several countries.

  20. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  1. Use of atomic hydrogen source in collision: technological challenges

    Science.gov (United States)

    Hovey, R. T.; Vargas, E. L.; Panchenko, D. I.; Rivas, D. A.; Andrianarijaona, V. M.

    2015-03-01

    Atomic hydrogen was extensively studied in the past due to its obvious fundamental aspect. Also, quite few investigations were dedicated to atomic hydrogen sources because the results of experimental investigations on systems involving H would provide very rigorous tests for theoretical models. But even if atomic hydrogen sources are currently widespread in experimental physics, their uses in experiments on collisions are still very challenging mainly due to threefold problem. First, there is the difficulty to create H in the laboratory in sufficiently large number densities. Second, there is the strain to adjust the velocities of the produced atomic hydrogens. And third, there is the toil to control the internal energies of these atomic hydrogens. We will present an outline of different techniques using atomic hydrogen sources in collisions, which could be found in the literatures, such as merged-beam technique, gas cell technique, and trap, and propose an experiment scheme using a turn-key atomic hydrogen source that experiments such as charge transfer could benefit from. This work is supported by the National Science Foundation under Grant No. PHY-1068877.

  2. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics

    Science.gov (United States)

    Sciaini, Germán; Miller, R. J. Dwayne

    2011-09-01

    One of the great dream experiments in Science is to directly observe atomic motions as they occur. Femtosecond electron diffraction provided the first 'light' of sufficient intensity to achieve this goal by attaining atomic resolution to structural changes on the relevant timescales. This review covers the technical progress that made this new level of acuity possible and gives a survey of the new insights gained from an atomic level perspective of structural dynamics. Atomic level views of the simplest possible structural transition, melting, are discussed for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated with the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron-lattice systems are also discussed in which optically induced changes in the potential energy landscape lead to ballistic structural changes. Concepts such as the structural order parameters are now directly observable at the atomic level of inspection to give a remarkable view of the extraordinary degree of cooperativity involved in strongly correlated electron-lattice systems. These recent examples, in combination with time-resolved real space imaging now possible with electron probes, are truly defining an emerging field that holds great promise to make a significant impact in how we understand structural dynamics. This article is dedicated to the memory of Professor David John Hugh Cockayne, a world leader in electron microscopy, who sadly passed away in December.

  3. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  4. Atomic Inference from Weak Gravitational Lensing Data

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Phil; /KIPAC, Menlo Park

    2005-12-14

    We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.

  5. p-adic numbers

    OpenAIRE

    Grešak, Rozalija

    2015-01-01

    The field of real numbers is usually constructed using Dedekind cuts. In these thesis we focus on the construction of the field of real numbers using metric completion of rational numbers using Cauchy sequences. In a similar manner we construct the field of p-adic numbers, describe some of their basic and topological properties. We follow by a construction of complex p-adic numbers and we compare them with the ordinary complex numbers. We conclude the thesis by giving a motivation for the int...

  6. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known.......Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  7. Silica fractal atomic clusters saturated with OH

    CERN Document Server

    Olivi-Tran, N

    2003-01-01

    We constructed regular fractal SiOH atomic clusters which pending bonds are saturated with OH molecules. We calculated the binding energies of these clusters as well as for sp sup 2 hybridization as for sp sup 3 hybridizations. The result are the following: for the two hybridizations, the total binding energies have a linear dependence on the size of the fractal cluster, which comes directly from the scaling law of the fractal characteristic of the building of the cluster. We related by a scaling law, the number of electronic bonds and the total bonding energy.

  8. A Quantum Network with Atoms and Photons

    Science.gov (United States)

    2016-09-01

    extraneous noise photon measurements from the quantum memory SEDD developed and experimentally tested the use of a 85Rb vapor cell to attenuate pump...Meyers, Keith S Deacon, Arnold D Tunick, Qudsia Quraishi, and Patricia Lee 5d. PROJECT NUMBER  5e. TASK NUMBER 5f.  WORK  UNIT NUMBER  7. PERFORMING...information. We constructed the rubidium (⁸⁷Rb) atomic memory magneto optical trap (MOT) cell and laser controls, and developed protocols, hardware, and

  9. Life with Four Billion Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Thomas [Ginkgo Bioworks, Inc.

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposon gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts

  10. Dimer-atom-atom recombination in the universal four-boson system

    OpenAIRE

    Deltuva, A.

    2012-01-01

    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.

  11. Hot-spring cure of atomic-bomb survivors, 16

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Tamon (Beppu Genbaku Senta (Japan))

    1984-03-01

    Though a cold winter with snowfalls, in the fiscal year 1983, the number of the atomic-bomb sufferers using the Beppu Atomic-bomb Center (a medical hot spring) was large in January and February, 1984; throughout the fiscal year, the total number was about 3,800 persons. The diseases of the sufferers, mostly in locomotion organs, are such as osteoarthritis of spine, lame hip and knee arthropathy. Being the typical diseases for which hot spring treatment is good, the effect is clear, and those desiring to enter the Center twice in a year are increasing. The situation of usage of the Center from April, 1983, to March, 1984, is described.

  12. Dynamics Resonances in Atomic States of Astrophysical Relevance

    CERN Document Server

    Arefieff, K N; Bezuglov, N N; Dimitrijevic, M S; Klyucharev, A N; Mihajlov, A A; Sreckovic, V A

    2016-01-01

    Ionized geocosmic media parameters in a thermal and a subthermal range of energy have a number of unique features. The photoresonance plasma that is formed by optical excitation of the lowest excited (resonance) atomic states is one example of conversion of radiation energy into electrical one. Since spontaneous fluorescence of excited atoms is probabilistic, the description of the radiating quantized system evolution along with photons energy transfer in a cold atoms medium, should include elements of stochastic dynamics. Finally, the chaotic dynamics of a weakly bound Rydberg electron over a grid of the energy levels diagram of a quasi-molecular Rydberg complex provides an excitation migration of the electron forward to the ionization continuum. This work aims at discussing the specific features of the dynamic resonances formalism in the description of processes involving Rydberg states of an excited atom, including features in the fluorescence spectrum partially caused by the quantum defect control due to ...

  13. Cooperative eigenmodes and scattering in 1D atomic arrays

    CERN Document Server

    Bettles, R J; Adams, C S

    2016-01-01

    Using a classical coupled dipole model, we numerically investigate the cooperative behavior of a one dimensional array of atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, red shifted, and blue shifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors.

  14. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  15. Semiclassical approach to atomic decoherence by gravitational waves

    Science.gov (United States)

    Quiñones, D. A.; Varcoe, B. T. H.

    2018-01-01

    A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.

  16. First observation of long-lived $\\pi^+ \\pi^-$ atoms

    CERN Document Server

    Adeva, B; Anania, A; Aogaki, S; Benelli, A; Brekhovskikh, V; Cechak, T; Chiba, M; Chliapnikov, P; Doskarova, P; Drijard, D; Dudarev, A; Duma, M; Dumitriu, D; Fluerasu, D; Gorin, A; Gorchakov, O; Gritsay, K; Guaraldo, C; Gugiu, M; Hansroul, M; Hons, Z; Horikawa, S; Iwashita, Y; Karpukhin, V; Kluson, J; Kobayashi, M; Kruglov, V; Kruglova, L; Kulikov, A; Kulish, E; Kuptsov, A; Lamberto, A; Lanaro, A; Lednicky, R; Marinas, C; Martincik, J; Nemenov, L; Nikitin, M; Okada, K; Olchevskii, V; Ovsiannikov, V; Pentia, M; Penzo, A; Plo, M; Prusa, P; Rappazzo, G; Romero Vidal, A; Ryazantsev, A; Rykalin, V; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tauscher, L; Trojek, T; Trusov, S; Urban, T; Vrba, T; Yazkov, V; Yoshimura, Y; Zhabitsky, M; Zrelov, P

    2015-01-01

    After observing and investigating the double-exotic $\\pi^+\\pi^-$ atom with the ground state lifetime $\\tau$ of about $3 \\times 10^{-15}$~s, the upgraded DIRAC experiment at the CERN PS accelerator observes for the first time long-lived states of the same atom with lifetimes of about $10^{-11}$~s and more. The number of characteristic pion pairs resulting from the breakup (ionisation) of long-lived $\\pi^+\\pi^-$ atoms amounts to $436\\pm61$, corresponding to a signal-to-error ratio of better than 7 standard deviations. This observation opens a new possibility to measure energy differences between $p$ and $s$ atomic states and so to determine $\\pi \\pi$ scattering lengths.

  17. Atomization in the Acoustic Field of a Hartmann Whistle

    Directory of Open Access Journals (Sweden)

    S. Narayanan

    2013-03-01

    Full Text Available The current work experimentally investigates the effect of Hartmann cavity acoustics on the atomization of droplet sprays. Initially, the experiments are conducted on a single droplet to understand its behavior in the sound field of a Hartmann whistle. The atomization studies on single droplet reveal that the existence of sound field causes the droplet to undergo large deformation and become irregular in shape. The degree of droplet deformation is quantified based on smaller circularity and larger Feret's diameter. The increase in cone angle of spray to a higher value in the presence of acoustics in comparison to its absence shows that the acoustics enhances the atomization. The stroboscopic visualization of sprays in the presence of acoustics further reveals the breakup of ligaments, large scatter as well as the formation of more number of droplets, indicating atomization enhancement.

  18. On the number of special numbers

    Indian Academy of Sciences (India)

    We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.

  19. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  20. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  1. Rydberg atoms: Two to tango

    Science.gov (United States)

    Löw, Robert

    2014-12-01

    The old adage that you can't tango alone is certainly true for humans. But recent experiments show that it may also be applicable to Rydberg atoms, which keep a beat through the coherent exchange of energy.

  2. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  3. Teori Atom menurut Asy’ariyyah

    Directory of Open Access Journals (Sweden)

    Hasan Syadzili

    2015-09-01

    Full Text Available Al-Asy’ariyyah is one of school of thought in Islam came from the hand of Abu Hasan al-Asy’ari. Asy’ari’s pattern of thought tried to harmonize of both ratio and text implicating the concept of universe as thing constituted from number of atom and accident. This concept had been criticized by several figures. However, al-Asy’ariyyah assert that Allah created something in the way of atom to show His power. In addition, they consistently contend by their ontological view that God’s will is the foundation of the regularity and harmony of this universe. This opinion is important to be known came in the middle of three large school of thought: school of Salafiyah initiated by Imam Ahmad bin Hanbal known by their highly textual method in the making of text as source and instrument to understand Islam; second, school of Islamic philosophy that comprehend aqidah based on ratio as the only source of knowledge; and third, school of Mu’tazilite combine between ratio and text while making ratio as a determinant if the text founded contradict with the rational truth. So al-Asy’ariyyah give a form to their thought dynamically with several features mentioned. According to al-As’ariyyah, the reality of body or thing consists of atom known as al-juz’u alladzi la yatajazza’. This theory is improved later by al-Asy’ariyyah in order to reduce the universe to regular subjectivities which led to God’s will that qadim thus encouraging human to put a faith God as only cause of everything exists. This paper will examine carefully the theory of atom in the view of al-Asy’ariyyah, also present a discussion about the divinity that happen between the mutakallims.

  4. Chain formation of metal atoms

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2001-01-01

    The possibility of formation of single-atomic chains by manipulation of nanocontacts is studied for a selection of metals (Ni, Pd, Pt, Cu, Ag, Au). Molecular dynamics simulations show that the tendency for chain formation is strongest for Au and Pt. Density functional theory calculations indicate...... that the metals which form chains exhibit pronounced many-atom interactions with strong bonding in low coordinated systems....

  5. Copper atomic-scale transistors

    Directory of Open Access Journals (Sweden)

    Fangqing Xie

    2017-03-01

    Full Text Available We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4 in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate. The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (Ubias influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G0 (G0 = 2e2/h; with e being the electron charge, and h being Planck’s constant or 2G0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  6. Making decisions from numbers

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E.

    1987-03-01

    Regulatory agencies require numbers to provide health protection. The manner in which these numbers are derived from animal experiments and human epidemiology is considered together with the limitations and inadequacies of these numbers. Some recent examples of risk assessment in Canada are given including asbestos, drinking water, and indoor air quality. The value of these numbers in providing a measure of the hazard in a wider perspective is stressed, although they can never be the sole determinant of public policy.

  7. Rydberg Atom Quantum Hybrid Systems

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Kumar, Santosh; Bigelow, Nicholas P.; Shaffer, James P.

    2017-04-01

    We report on our recent experimental and theoretical work with Rydberg atom-cavity and Rydberg atom-surface hybrid quantum systems. In the atom-cavity system, Rb contained in a dipole trap is transported into a high-finesse optical cavity using a focus-tunable lens. Cavity assisted Rydberg EIT is observed in the cavity transmission and used to characterize the electric fields in the cavity. The electric fields are attributed to surface adsorbates adhering to the cavity mirrors. We also investigate the coupling of a Rydberg atom ensemble to surface phonon polaritons (SPhPs) propagating on piezoelectric superlattices made from thin film ferroelectric materials. Strong coupling between the atomic and surface excitations can be achieved, due to the large Rydberg transition dipole moments and the local field enhancement of the SPhP modes. The system has many advantages for information transport since the atoms need only be placed at distances on the order of mms from the surface and the SPhPs do not couple to free space electro-magnetic fields. Experimental progress will be discussed, including the fabrication of submicron-period periodically poled Lithium Niobate using the direct e-beam writing technique. This work is supported by AFOSR.

  8. Survey on fusible numbers

    OpenAIRE

    Xu, Junyan

    2012-01-01

    We point out that the recursive formula that appears in Erickson's presentation "Fusible Numbers" is incorrect, and pose an alternate conjecture about the structure of fusible numbers. Although we are unable to solve the conjecture, we succeed in establishing some basic properties of fusible numbers. We suggest some possible approaches to the conjecture, and list further problems in the final chapter.

  9. Discovery: Prime Numbers

    Science.gov (United States)

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  10. Analytic number theory

    CERN Document Server

    Matsumoto, Kohji

    2002-01-01

    The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory

  11. Quantum walks assisted by particle number fluctuations

    Science.gov (United States)

    Vargas-Hernandez, Rodrigo A.; v Krems, Roman

    2017-04-01

    We consider quantum walks of particles governed by lattice Hamiltonians with particle-number changing interactions. We show that such interactions, even if weak, accelerate quantum walks at short times due to Rabi oscillations between different particle number subspaces. We examine the dynamics of quantum walks governed by Hamiltonians arising in the context of D-wave quantum annealing experiments and experiments with excitations of ultracold molecules in optical lattices. The same Hamiltonians describe excitations in ensembles of highly magnetic atoms, such as Dy.

  12. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  13. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  14. Atom-by-Atom Construction of a Quantum Device.

    Science.gov (United States)

    Petta, Jason R

    2017-03-28

    Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.

  15. Blocking of diffusion transitions of metal atoms at excitation of weakly attenuating plasmons

    CERN Document Server

    Gorelov, B M; Ogenko, V M; Shalyapina, G M

    2001-01-01

    One studies blocking transitions of metal atoms in YBa sub 2 Cu sub 3 O sub 7 high-temperature superconductor at excitation of weakly attenuating acoustic plasmons and at thermodesorption of 01 atoms. Ni and Au atoms were as diffusates. YBa sub 2 Cu sub 3 O sub 7 sub - subdelta specimens were irradiated by 9.4 GHz frequency and 10 sup 4 W power pulsed UHF-field. Temperature dependences of diffusion coefficient of Ni and Au atoms prior and subsequent to UHF irradiation and thermodesorption of 0 atoms are analyzed. It is pointed out that subsequent to UHF irradiation resistance of a specimen increases near transition into superconducting state. One makes a conclusion that blocking of space and surface transitions of Ni and Au atoms results from accumulation a large number of interstitial atoms in the surface layer of crystallites

  16. Entanglement with Negative Wigner Function of Three Thousand Atoms Heralded by One Photon

    CERN Document Server

    McConnell, Robert; Hu, Jiazhong; Cuk, Senka; Vuletic, Vladan

    2015-01-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910(190) out of 3100 atoms. This is the first time a negative Wigner function or the mutual entanglement of virtually all atoms have been attained in an ensemble containin...

  17. Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids

    CERN Document Server

    Bulgac, Aurel; Wlazłowski, Gabriel

    2016-01-01

    Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...

  18. Dark Atoms: Asymmetry and Direct Detection

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David E. [Johns Hopkins Univ., Baltimore, MD (United States); Krnjaic, Gordan Z. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Rehermann, Keith R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Wells, Christopher M. [Houghton College, NY (United States)

    2011-10-01

    We present a simple UV completion of Atomic Dark Matter (aDM) in which heavy right-handed neutrinos decay to induce both dark and lepton number densities. This model addresses several outstanding cosmological problems: the matter/anti-matter asymmetry, the dark matter abundance, the number of light degrees of freedom in the early universe, and the smoothing of small-scale structure. Additionally, this realization of aDM may reconcile the CoGeNT excess with recently published null results and predicts a signal in the CRESST Oxygen band. We also find that, due to unscreened long-range interactions, the residual un recombined dark ions settle into a diffuse isothermal halo.

  19. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial

  20. REVIEW OF IRRATIONAL NUMBERS

    Directory of Open Access Journals (Sweden)

    Hafnani Hafnani

    2015-04-01

    Full Text Available Study of the set properties is simple and rarely investigated at the Department of Mathematics. This paper examines some set properties on the irrational numbers. The study is about the properties applying to the real numbers which are a complete ordered field. However, the results of this study show that those properties do not imply to the irrational numbers, but the ordered property. The prove of the irrational numberby some examples is demonstrated in this study.

  1. The simple complex numbers

    OpenAIRE

    Zalesny, Jaroslaw

    2008-01-01

    A new simple geometrical interpretation of complex numbers is presented. It differs from their usual interpretation as points in the complex plane. From the new point of view the complex numbers are rather operations on vectors than points. Moreover, in this approach the real, imaginary and complex numbers have similar interpretation. They are simply some operations on vectors. The presented interpretation is simpler, more natural, and better adjusted to possible applications in geometry and ...

  2. Atomic-cascade experiment with detection of the recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Huelga, S.F. (Dept. de Fisica, Univ. de Oviedo (Spain)); Ferrero, M. (Dept. de Fisica, Univ. de Oviedo (Spain)); Santos, E. (Dept. de Fisica Moderna, Univ. de Cantabria (Spain))

    1994-07-20

    Bell's inequalities cannot be violated in atomic-cascade experiments, even with ideal apparatus, due to the three-body character of the atomic decay. Here we propose a new experiment that would block this loophole by means of a suitable selection of an ensemble of photon pairs. A threshold value for the quantum efficiency is found which may allow the discrimination between quantum mechanics and local-hidden-variables theories. Experimental requirements for performing such a test are discussed. (orig.).

  3. Numbers, sequences and series

    CERN Document Server

    Hirst, Keith

    1994-01-01

    Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc

  4. Predicting Lotto Numbers

    OpenAIRE

    Jorgensen, C.B.; Suetens, S.; Tyran, J.R.

    2011-01-01

    We investigate the "law of small numbers" using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in th...

  5. The adventure of numbers

    CERN Document Server

    Godefroy, Gilles

    2004-01-01

    Numbers are fascinating. The fascination begins in childhood, when we first learn to count. It continues as we learn arithmetic, algebra, geometry, and so on. Eventually, we learn that numbers not only help us to measure the world, but also to understand it and, to some extent, to control it. In The Adventure of Numbers, Gilles Godefroy follows the thread of our expanding understanding of numbers to lead us through the history of mathematics. His goal is to share the joy of discovering and understanding this great adventure of the mind. The development of mathematics has been punctuated by a n

  6. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Jørgensen, Claus Bjørn; Suetens, Sigrid; Tyran, Jean-Robert

    We investigate the “law of small numbers” using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto...... numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in the way predicted by the law of small numbers as formalized in recent behavioral theory. In particular...

  7. Beurling generalized numbers

    CERN Document Server

    Diamond, Harold G; Cheung, Man Ping

    2016-01-01

    "Generalized numbers" is a multiplicative structure introduced by A. Beurling to study how independent prime number theory is from the additivity of the natural numbers. The results and techniques of this theory apply to other systems having the character of prime numbers and integers; for example, it is used in the study of the prime number theorem (PNT) for ideals of algebraic number fields. Using both analytic and elementary methods, this book presents many old and new theorems, including several of the authors' results, and many examples of extremal behavior of g-number systems. Also, the authors give detailed accounts of the L^2 PNT theorem of J. P. Kahane and of the example created with H. L. Montgomery, showing that additive structure is needed for proving the Riemann hypothesis. Other interesting topics discussed are propositions "equivalent" to the PNT, the role of multiplicative convolution and Chebyshev's prime number formula for g-numbers, and how Beurling theory provides an interpretation of the ...

  8. Intuitive numbers guide decisions

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-12-01

    Full Text Available Measuring reaction times to number comparisons is thought to reveal a processing stage in elementary numerical cognition linked to internal, imprecise representations of number magnitudes. These intuitive representations of the mental number line have been demonstrated across species and human development but have been little explored in decision making. This paper develops and tests hypotheses about the influence of such evolutionarily ancient, intuitive numbers on human decisions. We demonstrate that individuals with more precise mental-number-line representations are higher in numeracy (number skills consistent with previous research with children. Individuals with more precise representations (compared to those with less precise representations also were more likely to choose larger, later amounts over smaller, immediate amounts, particularly with a larger proportional difference between the two monetary outcomes. In addition, they were more likely to choose an option with a larger proportional but smaller absolute difference compared to those with less precise representations. These results are consistent with intuitive number representations underlying: a perceived differences between numbers, b the extent to which proportional differences are weighed in decisions, and, ultimately, c the valuation of decision options. Human decision processes involving numbers important to health and financial matters may be rooted in elementary, biological processes shared with other species.

  9. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  10. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  11. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal

    Science.gov (United States)

    2016-08-26

    OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra...intensity on layer number as a result of atomically phase-matched nonlinear dipoles in layers of the 3R crystal that constructively interfere. By

  12. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  13. Deterministic single-atom excitation via adiabatic passage and Rydberg blockade

    OpenAIRE

    Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; MacCormick, C.; Bergamini, S.

    2011-01-01

    We propose to use adiabatic rapid passage with a chirped laser pulse in the strong dipole blockade regime to deterministically excite only one Rydberg atom from randomly loaded optical dipole traps or optical lattices. The chirped laser excitation is shown to be insensitive to the random number \\textit{N} of the atoms in the traps. Our method overcomes the problem of the $\\sqrt {N} $ dependence of the collective Rabi frequency, which was the main obstacle for deterministic single-atom excitat...

  14. Laser manipulation of atoms and nanofabrication

    NARCIS (Netherlands)

    Jurdík, Erich

    2001-01-01

    Fundamental interaction processes between atoms and photons are exploited to control external degrees of freedom of the atoms. Laser light, when properly tuned near an atomic resonance, exerts such forces that the atoms are repelled from or attracted to the regions with low light intensities. We use

  15. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  16. High Rydberg atoms: a nanoscale electron collisions laboratory

    Science.gov (United States)

    Dunning, F. Barry

    2000-10-01

    Atoms in which one electron is excited to a state of large principal quantum number n, termed Rydberg atoms, are physically very large. The average separation between the excited electron and core ion is such that, in collisions with neutral targets, they behave not as an atom but rather as a pair of independent particles. Studies of collision processes that are dominated by the electron/target interaction can provide information on electron/molecule scattering at energies that extend down to a few microelectronvolts. Collisions with attaching targets can lead to ion formation through electron capture in a binary interaction between the excited electron and target molecule. Capture leads to creation of transient, excited parent negative ions that may subsequently dissociate, undergo autodetachment, or be "stabilized" by intramolecular vibrational relaxation. New insights into each of these processes, and into the lifetime of the intermediate (on a ps timescale), can be obtained by measuring the angular and velocity distributions of the positive and/or negative ions produced in Rydberg atom collisions. Collisions with Rydberg atoms also provide a novel source of dipole-bound negative ions, and have demonstrated the importance of dipole-supported real and virtual states in superelastic electron scattering from polar targets. These applications of Rydberg atoms will be discussed together with some recent results. Research supported by the National Science Foundation and the Robert A. Welch Foundation.

  17. Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis.

    Science.gov (United States)

    Zhou, Min; Dick, Jeffrey E; Bard, Allen J

    2017-12-06

    We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.

  18. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  19. Dynamics of atomic clusters in intense optical fields of ultrashort ...

    Indian Academy of Sciences (India)

    Atomic clusters; Coulomb explosion; few-cycle laser pulses; strong fields; cluster dynamics. 1. Introduction. A number of scientific and technological developments are responsible for the resurgence of interest in studi- es of light-matter interactions, particularly of how very intense light interacts with matter. The interest stems.

  20. An atom counting and electrophilicity based QSTR approach

    Indian Academy of Sciences (India)

    Quantitative-structure-toxicity-relationship (QSTR) models are developed for predicting the toxicity (pIGC50) of 252 aliphatic compounds on Tetrahymena pyriformis. The single parameter models with a simple molecular descriptor, the number of atoms in the molecule, provide reasonable results. Better QSTR models with ...