Sample records for californium arsenides

  1. Californium-252 progress, report No. 7, April 1971

    Energy Technology Data Exchange (ETDEWEB)


    This report contains discusses of the following topics on Californium-252: First sales of californium-252; encapsulation services discussed; three new participants in market evaluation program; summer training programs to use californium; Californium-252 shipping casks available; Californium-252 questions and answers, radiotherapy; neutron radiography; natural resources exploration; nuclear safeguards; process control; dosimetry; neutron radiography; neutron shielding; and nuclear safeguards.

  2. Historical review of californium-252 discovery and development (United States)

    Stoddard, D. H.

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving (252)Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed.

  3. Californium-252: a remarkable versatile radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Osborne-Lee, I.W.; Alexander, C.W.


    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready for further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.

  4. A FETISH for gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Barron, A.R. [Rice Univ., Houston, TX (United States)


    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulating properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).

  5. Production, Distribution, and Applications of Californium-252 Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.


    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  6. Window structure for passivating solar cells based on gallium arsenide (United States)

    Barnett, Allen M. (Inventor)


    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  7. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells (United States)


    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  8. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson


    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  9. Unusual structure, bonding and properties in a californium borate

    Energy Technology Data Exchange (ETDEWEB)

    Polinski, Matthew J.; Garner, Edward B.; Maurice, Rémi; Planas, Nora; Stritzinger, Jared T.; Parker, T. Gannon; Cross, Justin N.; Green, Thomas D.; Alekseev, Evgeny V.; Van Cleve, Shelley M.; Depmeier, Wulf; Gagliardi, Laura; Shatruk, Michael; Knappenberger, Kenneth L.; Liu, Guokui; Skanthakumar, S.; Soderholm, Lynda; Dixon, David A.; Albrecht-Schmitt, Thomas E.


    The participation of the valence orbitals of actinides in bonding has been debated for decades. Recent experimental and computational investigations demonstrated the involvement of 6p, 6d and/or 5f orbitals in bonding. However, structural and spectroscopic data, as well as theory, indicate a decrease in covalency across the actinide series, and the evidence points to highly ionic, lanthanide-like bonding for late actinides. Here we show that chemical differentiation between californium and lanthanides can be achieved by using ligands that are both highly polarizable and substantially rearrange on complexation. A ligand that suits both of these desired properties is polyborate. We demonstrate that the 5f, 6d and 7p orbitals are all involved in bonding in a Cf(III) borate, and that large crystal-field effects are present. Synthetic, structural and spectroscopic data are complemented by quantum mechanical calculations to support these observations.

  10. Surface magnetism of gallium arsenide nanofilms


    Lu, Huan; Yu, Jin; Guo, Wanlin


    Gallium arsenide (GaAs) is the widest used second generation semiconductor with a direct band gap and increasingly used as nanofilms. However, the magnetic properties of GaAs nanofilms have never been studied. Here we find by comprehensive density functional theory calculations that GaAs nanofilms cleaved along the and directions become intrinsically metallic films with strong surface magnetism and magnetoelectric (ME) effect. The surface magnetism and electrical conductivity are realized v...

  11. Superlattice Intermediate Band Solar Cell on Gallium Arsenide (United States)


    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)


    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  13. Heat blocking gallium arsenide solar cells (United States)

    Rahman, F.; Farmer, C. D.; Schmidt, C.; Pfaff, G.; Stanley, C. R.


    The solar cell industry is witnessing an era of unprecedented growth and this trend is set to continue for the foreseeable future. Here we describe a heat reflection pigment-coated single-junction gallium arsenide solar cell that is capable of reflecting heat-inducing near-infrared radiation. The cell maintains its performance better than non-coated cells when exposed to infrared-rich radiant flux. In situations where solar cells get heated mainly from incident infrared radiation, these cells exhibit superior performance. The heat reflecting pigment, cell structure, coating process and cell performance have been described.

  14. Modelling of the modulation properties of arsenide and nitride VCSELs (United States)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.


    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  15. Ellipsometric study of silicon nitride on gallium arsenide (United States)

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.


    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  16. Gallium Arsenide solar cell radiation damage experiment (United States)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.


    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  17. Surface magnetism of gallium arsenide nanofilms (United States)

    Lu, Huan; Yu, Jin; Guo, Wanlin


    Gallium arsenide (GaAs) is the most widely used second-generation semiconductor with a direct band gap, and it is being increasingly used as nanofilms. However, the magnetic properties of GaAs nanofilms have never been studied. Here we find by comprehensive density-functional-theory calculations that GaAs nanofilms cleaved along the 〈111 〉 and 〈100 〉 directions become intrinsically metallic films with strong surface magnetism and the magnetoelectric effect. Surface magnetism and electrical conductivity are realized via a combined effect of charge transfer induced by spontaneous electric polarization through the film thickness and spin-polarized surface states. The surface magnetism of 〈111 〉 nanofilms can be significantly and linearly tuned by a vertically applied electric field, endowing the nanofilms with unexpectedly high magnetoelectric coefficients, which are tens of times higher than those of ferromagnetic metals and transition-metal oxides.

  18. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.


    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  19. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252. (United States)

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P


    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  20. Maskless proton beam writing in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom) and Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail:; Gomez-Morilla, I. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, R.C. [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomson, D. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gwilliam, R. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Cansell, A. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Merchant, M. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)


    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed.

  1. Evaluation of the carcinogenicity of gallium arsenide. (United States)

    Bomhard, Ernst M; Gelbke, Heinz-Peter; Schenk, Hermann; Williams, Gary M; Cohen, Samuel M


    Gallium arsenide (GaAs) is an important semiconductor material. In 2-year inhalation studies, GaAs increased the incidence of lung tumors in female rats, but not in male rats or male and female mice. Alveolar proteinosis followed by chronic active inflammation was the predominant non-neoplastic pulmonary findings. IARC classified GaAs as carcinogenic to humans (group 1) based on the assumption that As and Ga ions are bioavailable. The European Chemical Agency Risk Assessment Committee concluded that GaAs should be classified into Carcinogenicity Category 1B (presumed to have carcinogenic potential for humans; ECHA). We evaluate whether these classifications are justified. Physico-chemical properties of GaAs particles and the degree of mechanical treatment are critical in this evaluation. The available data on mode of action (MOA), genotoxicity and bioavailability do not support the contribution of As or Ga ions to the lung tumors in female rats. Most toxicological studies utilized small particles produced by strong mechanical treatment, destroying the crystalline structure. The resulting amorphous GaAs is not relevant to crystalline GaAs at production and processing sites. The likely tumorigenic MOA is lung toxicity related to particulate-induced inflammation and increased proliferation. It is concluded that there is no evidence for a primary carcinogenic effect of GaAs.

  2. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.


    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  3. Gallium arsenide processing for gate array logic (United States)

    Cole, Eric D.


    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  4. Electrooptic Waveguide Directional Coupler Modulator in Aluminum Gallium Arsenide-Gallium Arsenide. (United States)

    Khan, Mujibun Nisa

    A novel optical waveguide intensity modulator in aluminum gallium arsenide and gallium arsenide material system is modeled, designed, and experimentally demonstrated at 0.83 μm wavelength. The modulator utilizes the linear electrooptic effect in a coupled waveguide structure to achieve high extinction ratio at low drive voltage. The device structure consists of a differentially -etched ridge directional coupler, where the ridge height in the gap is smaller that that of the outer sides. The effective index and semivectorial finite difference modeling techniques are developed to analyze the single ridge guides and directional coupler structures. The mode structure results from the two models are compared and the limitations of the effective index method are determined. The differential -etch design is employed to reduce the length as well as the drive voltage of the modulator. A modulation voltage of 2 volts for a 3.5-mm-long device is achieved, which is the lowest reported in literature. These results are compared with those obtained from the simplified analytical expressions for conventional couplers, and higher performance expected from the differential-etch design is verified. The modulator extinction ratio is measured to be 13 dB at 2 volts. The measured optical propagation loss of approximately 3.4 dB/cm for the modulator is speculated to be primarily due to the surface morphology of the epitaxially-grown material, and the light scattering from rough ridge walls produced during the anisotropic dry etching process. The high microwave loss of 15 dB/cm calculated for the modulator electrode design suggests a trade-off between the modulation voltage and the bandwidth, which is expected to be limited to 500 MHz. The measurement of the modulator frequency response up to 100 KHz is presented, because of the test limitations at higher frequencies due to the weak modulated intensity signals.

  5. Trap influence on the performance of gallium arsenide radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [Univ. of Bologna (Italy); Canali, C.; Nava, F. [Univ. of Modena (Italy); Papa, C. del [Univ. of Udine (Italy). Dept. of Physics


    Ohmic contacts play an important role in the performance of LEC gallium arsenide particle detectors since they possibly control the injection of charge carriers. Contact characteristics have been compared and related to electrically active defects induced during contact preparation and to the detector efficiency. The electric field distribution has also been analyzed. Spectroscopic investigations have put into evidence that the contact fabrication process significantly influences the trap density whilst it does not change their signatures.

  6. Laser and electron beam processing of silicon and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, J.


    Laser (photon) and electron beams provide a controlled source of heat by which surface layers of silicon and gallium arsenide can be rapidly melted and cooled with rates exceeding 10/sup 80/C/sec. The melting process has been used to remove displacement damage in ion implanted Si and GaAs, to remove dislocations, loops and precipitates in silicon and to study impurity segregation and solubility limits. The mechanisms associated with various phenomena will be examined. The possible impact of laser and electron beam processing on device technology, particularly with respect to solar cells is discussed.

  7. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.


    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  8. Anomalous tensoelectric effects in gallium arsenide tunnel diodes (United States)

    Alekseeva, Z. M.; Vyatkin, A. P.; Krivorotov, N. P.; Shchegol', A. A.


    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions ∿100 200 å long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  9. Testing of gallium arsenide solar cells on the CRRES vehicle (United States)

    Trumble, T. M.

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  10. Lattice parameters guide superconductivity in iron-arsenides (United States)

    Konzen, Lance M. N.; Sefat, Athena S.


    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  11. Evaluation of the male reproductive toxicity of gallium arsenide. (United States)

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M


    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang


    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  13. First principles predictions of intrinsic defects in aluminum arsenide, AlAs : numerical supplement.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in aluminum arsenide, AlAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz, 'First principles predictions of intrinsic defects in Aluminum Arsenide, AlAs', Materials Research Society Symposia Proceedings 1370 (2011; SAND2011-2436C), and intended for use as reference tables for a defect physics package in device models.

  14. Application of TSH bioindicator for studying the biological efficiency of neutrons from californium-252 source

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A.; Rekas, K. [Institute of Nuclear Physics, Cracow (Poland); Kim, J.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)


    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (TSH-assay) was studied. The special attention was paid to check whether any enhancement in effects caused by process of boron neutron capture is visible in the cells enriched with boron ions. Two chemicals (borax and BSH) were applied to introduce boron-10 ions into cells. Inflorescence, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a Cf-252 source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) in the induction of gene mutations of the neutron beam under the study, Tradescantia inflorescences, without any chemical pretreatment, were irradiated with various doses of X-rays. The ranges of radiation doses used were 0-0.1 Gy in neutrons and 0-0.5 Gy in X-rays. After the time needed to complete the postirradiation repair Tradescantia cuttings were transferred to Cracow, where screening of gene and lethal; mutations, cell cycle alterations in somatic cells have been done, and dose response relationships were figured. The maximal RBE values were estimated in the range of 4.6-6.8. Alterations of RBE value were observed; from 6.8 to 7.8 in the case of plants pretreated with 240 ppm of B-10 from borax, and 4.6 to 6.1 in the case of 400 ppm of B-10 from BSH. Results showed a slight, although statistically insignificant increase in biological efficacy of radiation from the Cf-252 source in samples pretreated with boron containing chemicals. (author)

  15. Study of the shielding for spontaneous fission sources of Californium-252; Estudio de blindaje para fuentes de fision espontanea de Californio-252

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, I


    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  16. Speed gallium arsenide photoconductors; Photoconducteurs rapides en arseniure de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Pochet, T. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire; Brullot, B. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)


    Gallium arsenide detectors are one of the most efficient gamma and X ray detectors at room temperature. Due to the high carrier mobility and short carrier lifetime, GaAs can be used for the detection of ultrafast gamma, X or laser pulses. GaAs photoconductors allow both pulse shape and intensity measurements. In this paper, we review the results of studies carried out jointly by the CEA/LETI/DEIN and CEA/DAM/CEM in France to improve the response of such detectors. The geometry of the photodetectors and their electrical contacts have been optimized for specific radiation measurements: low energy X rays (< 1 KeV), gamma rays or protons. It has been shown that a pre-irradiation treatment with fission neutrons at doses above 10{sup 14} n/cm{sup 2} induces a significant improvement of the response speed. This result from defect generation in the material and the subsequent carrier life time decrease. Detectors with sensitivities of about 10{sup -8} A/R.s for gamma rays and 10{sup -16} coulomb/proton, response times below 100 ps and good linearity over more than five decades are currently fabricated in our laboratory. (authors). 18 refs., 5 figs., 3 tabs.

  17. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M.I., E-mail:; Petrov, V.M.; Leontiev, V.S.; Ivanov, S.N.; Sokolov, O.V.


    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200–240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials. - Highlights: • Theoretical modeling of ME interaction was conducted. • Experimental dependencies in the resonance range were done. • Maximal ME effect of gallium arsenide was observed.

  18. Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million

    CERN Document Server

    Guha, Biswarup; Cadiz, Fabian; Morgenroth, Laurence; Ulin, Vladimir; Berkovitz, Vladimir; Lemaître, Aristide; Gomez, Carmen; Amo, Alberto; Combrié, Sylvian; Gérard, Bruno; Leo, Giuseppe; Favero, Ivan


    Gallium Arsenide and related compound semiconductors lie at the heart of optoelectronics and integrated laser technologies. Shaped at the micro and nano-scale, they allow strong interaction with quantum dots and quantum wells, and promise to result in stunning devices. However gallium arsenide optical structures presently exhibit lower performances than their silicon-based counterparts, notably in nanophotonics where the surface plays a chief role. Here we report on advanced surface control of miniature gallium arsenide optical resonators, using two distinct techniques that produce permanent results. One leads to extend the lifetime of free-carriers and enhance luminescence, while the other strongly reduces surface absorption originating from mid-gap states and enables ultra-low optical dissipation devices. With such surface control, the quality factor of wavelength-sized optical disk resonators is observed to rise up to six million at telecom wavelength, greatly surpassing previous realizations and opening n...

  19. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)


    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  20. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna


    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  1. Progress to a Gallium-Arsenide Deep-Center Laser

    Directory of Open Access Journals (Sweden)

    Janet L. Pan


    Full Text Available Although photoluminescence from gallium-arsenide (GaAs deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, hotoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers, which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  2. High-field phase-diagram of Fe arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Y.J.; Jaroszynski, J.; Yamamoto, A.; Gurevich, A.; Riggs, S.C.; Boebinger, G.S.; Larbalestier, D. [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States); Wen, H.H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Karpinski, J. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland); Liu, R.H.; Chen, H.; Chen, X.H. [Hefei National Laboratory for Physical Science a Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Balicas, L., E-mail: balicas@magnet.fsu.ed [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States)


    Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO{sub 1-x}F{sub x} at different doping levels confirm the upward curvature of the upper critical magnetic field H{sub c2}(T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field H{sub c2}(0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses gamma = (m{sub c}/m{sub ab}){sup 1/2} for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high-T{sub c} cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field H{sub m}(T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.

  3. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186 (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.


    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  4. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells (United States)

    Jain, Raj K.


    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  5. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson


    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  6. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  7. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S. (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K


    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  8. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    Energy Technology Data Exchange (ETDEWEB)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China); Wang Dong, E-mail: [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China)


    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  9. Gallium arsenide integrated optical devices for high-speed diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.; Lowry, M.; Takeuchi, E.; Murphy, G.; Tindall, W.; Koo, J.; Roeske, F.


    The design, fabrication, and evaluation of waveguide electro-optic modulators in gallium arsenide for application to high-speed diagnostic systems are discussed specifically. This paper is focused on high bandwidth, single event analog modulation, and radiation susceptibility of these devices.

  10. A Study of Hydrogen Anion Substitution in 1111-type Iron Arsenides (United States)

    Hosono, Hideo


    Hydrogen is the simplest bipolar element and its valence state can be controlled from +1 to -1. We have synthesized the 1111-type iron arsenides CaFeAsH and LnFeAsO1 -xHx (Ln = lanthanide; 0 3d bands (dxy, dyz and dzx), which is caused not only by regularization of the tetrahedral shape of FeAs4 due to chemical pressure effects but also by selective band occupation with doped electrons. Very recently, a new AFM phase was found around x =0.5, suggesting that the double dome Tc structure reflects the presence of two AFM phases at x =0 and 0,5. In this talk, I review the recent progress in superconductivity in 1111-type iron (oxy)arsenides and related compounds induced by hydrogen anion substitution.

  11. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers (United States)

    O'Neill, Mark J.; Piszczor, Michael F.


    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  12. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor. (United States)

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael


    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  13. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment (United States)

    Francis, R. W.; Betz, F. E.


    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  14. Long-term effects of an intracavitary treatment with californium-252 on normal tissue. [Swine, /sup 226/Ra

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.F.; Beamer, J.L.; Mahony, T.D.; Cross, F.T.; Lund, J.E.; Endres, G.W.R.


    About one hundred fifty swine were exposed to either radium-226 or californium-252 sources in the uterine cervix to determine an RBE for both acute and long-term effects. That value for early changes in the tissues at risk in the treatment of cervical cancer was between 6.2 and 6.8. The incidence of complications increased with time after exposure, especially among animals treated with /sup 252/Cf. Analysis of rectal injury showed that ulceration occurred frequently within a year postexposure at doses between 1600 and 2400 rad calculated at 2 cm lateral to the source midline. Fat necrosis and smooth muscle atrophy, resulting in a local rectal stricture, were delayed changes observed in some animals. The lower ureter was the site for a greater frequency of complications than the GI tract. Ureteral stricture often occurred at doses of 1200 rad from /sup 252/Cf and 7000 rad from /sup 226/Ra. Observation of delayed effects in the uterine-cervix in animals held up to 4 years postexposure indicate that the RBE for /sup 252/Cf may be increased to a value as high as 18, while repair may have even decreased it to about 5.6 in the rectum. Fifty swine are still being observed for long-term effects after doses above 800 rad from /sup 252/Cf and 5000 rad from /sup 226/Ra.

  15. Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats

    Directory of Open Access Journals (Sweden)

    R.V. Gonçalves


    Full Text Available This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs, gallium-arsenide laser (GaAs and Dersani® healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals’ backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4: GaAs laser (4 J/cm²; group 2 (L30: GaAlAs laser (30 J/cm²; group 3 (L60: GaAlAs laser (60 J/cm²; group 4 (D: Dersani® ointment; group 5 (control: 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue. Significant results for wound closing rate were obtained for group 1 (L4, 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 ± 7.10%, which differed from control (29.86 ± 5.15% on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 ± 2.23% and group 2 (L30; 2.87 ± 2.40% differed significantly from control (1.77 ± 2.97% on the 20th day of the experiment.

  16. The role of the ohmic contact on the efficiency of gallium arsenide radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A. [Bologna Univ. (Italy). Dept. of Phys.; Cavallini, A. [Bologna Univ. (Italy). Dept. of Phys.; Polenta, L. [Bologna Univ. (Italy). Dept. of Phys.; Canali, C. [Department of Engineering Sciences, University of Modena, Via Campi 213/B, Modena (Italy); Del Papa, C. [Department of Physics, University of Udine, Via delle Scienze, Udine (Italy); Nava, F. [Department of Physics, University of Modena, Via Campi 213/A, Modena (Italy)


    It has recently been found that in gallium arsenide radiation detectors injecting ohmic contacts impede charge collection efficiency to get 100%, since breakdown occurs as soon as the electric field reaches the contact itself. In the present contribution, this phenomenon is investigated by comparing two sets of ohmic contacts realized by different technological procedures. While the overall defective state results to be nearly the same for both contacts, their performance significantly differs. Deep level junction spectroscopy shows that the defects are the same in both sets whilst there is much difference in density between a few of them. (orig.).

  17. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang


    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  18. Development of a Free Carrier Absorption Measurement Instrument for Indium Phosphide and Gallium Arsenide. (United States)


    AD-A174 ř DEVELOPMENT OF R FREE CARRIER ABSORPTION MEASUREMENT 1/2 INSTRUMENT FOR INDTU (U) EAGLE-PICHER RESEARCH LAB MIAMI OK SPECIALTY MATERIALS...SOBI S D Final Report Development of a Free Carrier Absorption Measurement Instrument For Indium Phosphide and Gallium Arsenide EAGLE PICHER R ES EA R CH...i P r OTic S D L C T DEC 0 3 ang Final Report Development of a Free Carrier Absorption Measurement Instrument For Indium Phosphide and Gallium

  19. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    Energy Technology Data Exchange (ETDEWEB)

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma


    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  20. Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes. (United States)

    Torosian, K M; Karakashian, A S; Teng, Y Y


    An aluminum on n-type gallium arsenide Schottky diode with a prism coupler on the front face was illuminated by a p-polarized Nd:YAG laser to excite the surface plasma resonance in the aluminum barrier contact. The internal photoemission current and reflectance were measured simultaneously as a function of the angle of incidence. The excitation of the surface plasma resonance was observed by a dip in the reflectance which occurred at the same angle as a peak in the photoemission current. These effects disappeared in the case of s-polarization. Enhancement in the photoemission current by as much as a factor of 3 was obtained.

  1. Ab initio full-potential study of mechanical properties and magnetic phase stability of californium monopnictides (CfN and CfP)

    Energy Technology Data Exchange (ETDEWEB)

    Amari, S., E-mail: [Faculté des Sciences de la Nature et de la Vie, Université Hassiba Benbouali, Chlef, 02000 (Algeria); Bouhafs, B. [Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Université Djillali Liabès de Sidi Bel-Abbés, Sidi Bel-Abbés, 22000 (Algeria)


    Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young’s modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.


    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ


    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  3. Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain) (United States)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R.


    The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.

  4. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide : Design and simulation

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.


    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and

  5. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Min [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Xu Hongde [Cancer Center, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Pan Songdan; Lin Shan; Yue Jianhua [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Liu Jianren, E-mail: [Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province (China)


    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  6. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Helge; Schnelle, Walter; Nicklas, Michael; Leithe-Jasper, Andreas [MPI CPfS Dresden (Germany); Weikert, Franziska [Los Alamos National Laboratory, New Mexico (United States); HLD Dresden Rossendorf (Germany); Wosnitza, Joachim [HLD Dresden Rossendorf (Germany)


    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A{sub 1-x}K{sub x}Fe{sub 2-y}T{sub y}As{sub 2} (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  7. NMR studies on the new iron arsenide superconductors including the superconducting state

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Lang, Guillaume; Hammerath, Franziska; Manthey, Katarina; Behr, Guenther; Werner, Jochen; Buechner, Bernd [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Paar, Dalibor [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Dept. of Physics, Faculty of Science, Univ. of Zagreb (Croatia); Curro, Nicholas [Dept. of Physics, Univ. of California, Davis, CA 95616 (United States)


    We summarize our Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) results on the new iron arsenide superconductor LaO{sub 1-x}F{sub x}FeAs in the normal state, and show new NMR data in the superconducting state. Beyond early evidence of nodes and spin-singlet pairing[2], we find evidence of a deviation of the T{sup 3} behaviour of the spin lattice relaxation rate, 1/T{sub 1}, at temperatures significantly below T{sub c}, which would agree with the suggested extended s-wave symmetry. The deviation of the T{sup 3} behaviour is induced by the pair breaking effect of impurities. Different amounts of impurities would lead to different temperature dependences of 1/T{sub 1}, which would allow to differentiate between d-wave and extended s-wave symmetries.

  8. Systems engineering and technical assistance in support of digital gallium arsenide insertion projects (United States)

    Butler, Daniel H.


    Booz-Allen provided a high level of support, including systems engineering analyses and technical assistance for systems insertion efforts using digital Gallium Arsenide (GaAs). Once insertion candidates were chosen, Booz-Allen supported the insertion efforts by acting as a liaison between the government and GaAs contractors, attending and arranging contractor reviews, providing meeting facilities, and producing presentation materials. A major accomplishment under this contract was the development of a methodology for appraising the likelihood of a successful technology insertion. This methodology is described in detail. Systems analyses and other work performed according to the terms of the statement of work is described as well. The conclusion discusses accomplishments under this project and of the DARPA digital GaAs insertion program generally.

  9. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard


    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  10. Gallium arsenide quantum well-based far infrared array radiometric imager (United States)

    Forrest, Kathrine A.; Jhabvala, Murzy D.


    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  11. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal


    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  12. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J


    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  13. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R.; Myers, Samuel Maxwell,


    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  14. Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation

    Energy Technology Data Exchange (ETDEWEB)

    Grisard, A.; Gutty, F.; Lallier, E. [Thales Research and Technology France, 1 av. Augustin Fresnel, 91767 Palaiseau Cedex (France); Gerard, B. [III-V Lab, 1 av. Augustin Fresnel, 91767 Palaiseau Cedex (France); Jimenez, J. [GdS Optronlab, Fisica Materia Condensada, Universidad de Valladolid, 47011 Valladolid (Spain)


    Nonlinear optical materials play a key role in the development of coherent sources of radiation, by frequency conversion of light from other light sources, e.g. diode, solid-state, and fiber lasers, into spectral ranges where few lasers exist or perform poorly. Based on the principle of the quasi-phase matching, the design and fabrication of orientation-patterned Gallium Arsenide crystals (OP-GaAs) has recently led to demonstrations of second harmonic generation, optical parametric generation, amplification and oscillation from 1 to 12 {mu}m. The most efficient fabrication route for these crystals relies on the use of the near-equilibrium growth process HVPE (Hydride Vapour Phase Epitaxy), by orientation-selective regrowth on OP-GaAs template wafers with a thickness suited to bulk nonlinear optics. This work deals with recent characterizations based on optical experiments and cathodoluminescence measurements, targeting the identification of the main defects, their spatial distribution, and their relation to the optical propagation losses. Latest improvements of the HVPE growth step have enabled to reach an unprecedented level of losses, below 0.016 cm{sup -1}, and a large range of available QPM periods and thickness of structures (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Light transport through disordered layers of dense gallium arsenide submicron particles (United States)

    van der Beek, T.; Barthelemy, P.; Johnson, P. M.; Wiersma, D. S.; Lagendijk, A.


    We present a study of optical transport properties of powder layers with submicrometer, strongly scattering gallium arsenide (GaAs) particles. Uniform, thin samples with well controlled thicknesses were created through the use of varying grinding times, sedimentation fractionation, annealing, and a new sedimentation technique. These fabrication parameters were optimized to produce maximum scattering and minimum absorption. The physical properties were characterized using scanning electron microscopy (SEM) and x-ray diffraction. The optical transport mean-free path, absorption length, and the diffusion constant were determined for each sample using both continuous wave and time-resolved methods. The samples scatter strongly in the near infrared region. Total reflection and transmission measurements show that all of these samples have high absorption. X-ray diffraction results suggest that the source of this absorption is grinding induced strain and/or defects in the crystal structure. For all the different grinded GaAs powder samples that we investigated, the absorption length was less than ten micrometers.

  16. X-Ray diffraction observation of surface damage in chemical-mechanical polished gallium arsenide (United States)

    Wang, V. S.; Matyi, R. J.


    Two novel x-ray diffraction techniques with enhanced surface sensitivity, grazing incidence x-ray diffraction (GIXD) and inclined Bragg plane x-ray diffraction (IBXD), have been used to study surface damage in gallium arsenide (GaAs) due to bromine/methanol (Br2/MeOH) chemical mechanical (CM) polishing. A factorial design was implemented to determine the effects of four polishing variables on the surface structure of GaAs. Precise lattice parameter measurements were made in both the surface regions using GIXD and deeper into subsurface regions using IBXD after the various CM polishing treatments. Bromine concentration was found to primarily affect the surface lattice parameter, while the total polish time influenced both the surface and subsurface lattice parameters in GaAs samples that were heavily damaged prior to CM polishing. The combined effect of polishing pad rotation speed and the force exerted on the sample was found to have a much greater effect on the surface lattice parameter than either variable had alone.

  17. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy. (United States)

    Chen, Bin; Fu, Xuewen; Tang, Jau; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati; Zewail, Ahmed H


    Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems. Copyright © 2017 the Author(s). Published by PNAS.

  18. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging (United States)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.


    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  19. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound (United States)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.


    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  20. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy (United States)

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin


    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55–62 Gy-eq/4 f (13–16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients. PMID:28094790

  1. Recovery of gallium and arsenic from gallium arsenide waste in the electronics industry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ting [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), Douliou, Yunlin (China); Tsai, Lung-Chang; Shu, Chi-Min [Department of Safety, Health, and Environmental Engineering, NYUST, Douliou, Yunlin (China); Tsai, Fang-Chang [Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Faculty of Materials Science and Engineering, Hubei University, Wuhan (China)


    Gallium arsenide (GaAs) has both high saturated electron velocity and high electron mobility, making it useful as a semiconductor material in a variety of applications, including light-emitting diodes (LEDs), integrated circuits (ICs), and microwave appliances. A side effect of the use of gallium (Ga) is the production of a relatively large amount of hazardous waste. This study aimed at the recovery of Ga and arsenic (As) from GaAs waste using hydrometallurgical methods involving leaching and coagulation and a dry annealing process that involves annealing, vacuum separation, and sublimation by heating. Our research has shown that GaAs can be leached using nitric acid (HNO{sub 3}) to obtain 100% Ga and As with a leaching solution at pH 0.1, with subsequent adjustment of the leaching solution to pH 3 with sodium hydroxide (NaOH). Another method used a leaching solution at pH 2, then adjusting to pH 11 using NaOH. Ferric hydroxide (FeO(OH)) was added at 90 C after NaOH was added to the leaching solution. At pH 2 and 11, 55.5 and 21.9% of the As could be removed from the hazardous waste, respectively. The Ga could also be precipitated. When GaAs powder was heated to 1000 C over 3 h, 100% As removal was achieved, and 92.6% of the Ga was removed by formation of 99.9% gallium trioxide (Ga{sub 2}O{sub 3}). Arsenic was vaporized when the temperature was elevated to 1000 C, allowing arsenic trioxide (As{sub 2}O{sub 3}) to condense with 99.2% purity. The Ga{sub 2}O{sub 3} powder produced was then dissolved and electrolyzed, allowing for 95.9% recovery of Ga with a purity of 99.9%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, A.; Oesterle, U.; Stanley, R.P.


    of approximate to1.8 ns is measured at room temperature, which confirms the excellent structural quality. A fast PL rise (tau (rise) = 10 +/-2 ps) is observed at all temperatures, indicating the potential for high-speed modulation. High-efficiency light-emitting diodes (LEDs) based on these dots are demonstrated......We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 mum. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 mum is obtained by embedding the dots in an InGaAs layer...

  3. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi


    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  4. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    Energy Technology Data Exchange (ETDEWEB)



    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently

  5. Cascaded Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator for Improved Longwave Infrared Conversion Efficiency (United States)

    Feaver, Ryan K.

    Optical parametric oscillators (OPOs) utilizing quasi-phase matched materials offer an appealing alternative to direct laser sources. Quasi-phase matched materials provide a useful alternative to traditional birefringent nonlinear optical materials and through material engineering, higher nonlinear coefficients can now be accessed. Orientation patterned gallium arsenide (OPGaAs) is an ideal material because of its broad IR transmission and large nonlinear coefficient. In contrast to ferroelectric materials, such as lithium niobate, where the pattern is fabricated through electric poling, zincblende materials, like OPGaAs, are grown epitaxially with the designed pattern. Generating longwave output from a much shorter pump wavelength, however, is relatively inefficiency due to the large quantum defect when compared to similar devices operating in the 3 - 5 mum regime. One method to increase pump to idler conversion efficiency is to recycle the undesired and higher energy signal photons into additional idler photons via a second nonlinear stage. An external amplifier stage can be utilized, where the signal and idler from the OPO are sent to a second nonlinear crystal in which the idler is amplified at the expense of the signal. Alternatively, the second crystal can be placed within the original OPO cavity where the signal from the first-stage acts as the pump for the second crystal and the resonant intensity of the signal is higher. Pumping the second crystal within the OPO should lead to higher conversion efficiency into the longwave idler. The grating period needed for the second crystal to use the signal from the first crystal to produce additional idler has the fortuitous advantage that it will not phase match to the original pump wavelength, avoiding unwanted nonlinear interactions. Therefore, a simple linear cavity can be utilized where the pump from the first-stage will simply propagate through the second crystal without undesired results. Without this feature

  6. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide (United States)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to

  7. Point defects and electric compensation in gallium arsenide single crystals; Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Ulrich


    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated. [German] In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stoechiometrieabweichung und der Lage des Ferminiveaus abhaengen. Dazu dienen die Ergebnisse der messtechnischen Charakterisierung einer grossen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung

  8. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  9. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.


    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  10. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M


    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  11. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa


    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  12. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio


    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  13. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)


    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  14. One watt gallium arsenide class-E power amplifier with a thin-film bulk acoustic resonator filter embedded in the output network

    Directory of Open Access Journals (Sweden)

    Kyle Holzer


    Full Text Available Integration of a class-E power amplifier (PA and a thin-film bulk acoustic wave resonator (FBAR filter is shown to provide high power added efficiency in addition to superior out-of-band spectrum suppression. A discrete gallium arsenide pseudomorphic high-electron-mobility transistor is implemented to operate as a class-E amplifier from 2496 to 2690 MHz. The ACPF7041 compact bandpass FBAR filter is incorporated to replace the resonant LC tank in a traditional class-E PA. To reduce drain voltage stress, the supply choke is replaced by a finite inductance. The fabricated PA provides up to 1 W of output power with a peak power added efficiency (PAE of 58%. The improved out-of-band spectrum filtering is compared to a traditional class-E with discrete LC resonant filtering. Such PAs can be combined with linearisation techniques to reduce out-of-band emissions.

  15. Two new arsenides, Eu7Cu44As23 and Sr7Cu44As23, with a new filled variety of the BaHg11 structure. (United States)

    Charkin, Dmitri O; Demchyna, Roman; Prots, Yurii; Borrmann, Horst; Burkhardt, Ulrich; Schwarz, Ulrich; Schnelle, Walter; Plokhikh, Igor V; Kazakov, Sergey M; Abakumov, Artem M; Batuk, Dmitry; Verchenko, Valery Yu; Tsirlin, Alexander A; Curfs, Caroline; Grin, Yuri; Shevelkov, Andrei V


    Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 °C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 × 2 × 2 superstructure of the aristotype: space group Fm3̅m, a = 16.6707(2) Å and 16.7467(2) Å, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.

  16. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction. InAs NWs can be used in a broad range of applications, including detectors, high speed electronics and low temperature transport measurements, but in this thesis focus will be put on biological experiments on living cells. Good control of Au-assisted InAs NW growth has been achieved...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...... and its dependence on growth parameters. By fabricating the NWs on silicon-on-insulator substrates we demonstrate electrically addressable NWs that are still standing vertically on the substrate and can potentially be used for intra-cellular recordings. Devices for biological experiments using vertically...

  17. The effect of gallium arsenide aluminum laser therapy in the management of cervical myofascial pain syndrome: a double blind, placebo-controlled study. (United States)

    Dundar, U; Evcik, D; Samli, F; Pusak, H; Kavuncu, V


    The efficacy of low-level laser therapy (LLLT) in myofascial pain syndrome (MPS) seems controversial. A prospective, double-blind, randomized controlled trial was conducted in patients with chronic MPS in the neck to evaluate the effects of low-level 830-nm gallium arsenide aluminum (Ga-As-Al) laser therapy. The study group consisted of 64 MPS patients. The patients were randomly assigned into two groups. In group 1 (n = 32), Ga-As-Al laser treatment was applied over three trigger points bilaterally for 2 min over each point once a day for 15 days during a period of 3 weeks. In group 2 (n = 32), the same treatment protocol was given, but the laser instrument was switched off during applications. All patients in both groups performed daily isometric exercise and stretching exercises for cervical region. Parameters were measured at baseline and after 4 weeks. All patients were evaluated with respect to pain (at rest, movement, and night) and assessed by visual analog scale, measurement of active range of motion using an inclinometer and a goniometer, and the neck disability index. In both groups, statistically significant improvements were detected in all outcome measures compared with baseline (p 0.05). In conclusion, although the laser therapy has no superiority over placebo groups in this study, we cannot exclude the possibility of effectivity with another treatment regimen including different laser wavelengths and dosages (different intensity and density and/or treatment interval).

  18. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes (United States)

    Mukherjee, B.; Hentschel, R.; Lambert, J.; Deya, W.; Farr, J.


    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0×10 8-1.0×10 11 neutron cm -2. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  19. Correlation between non-Fermi-liquid behavior and superconductivity in (Ca, La)(Fe,Co)As2 iron arsenides: A high-pressure study (United States)

    Zhou, W.; Ke, F.; Xu, Xiaofeng; Sankar, R.; Xing, X.; Xu, C. Q.; Jiang, X. F.; Qian, B.; Zhou, N.; Zhang, Y.; Xu, M.; Li, B.; Chen, B.; Shi, Z. X.


    Non-Fermi-liquid (NFL) phenomena associated with correlation effects have been widely observed in the phase diagrams of unconventional superconducting families. Exploration of the correlation between the normal state NFL, regardless of its microscopic origins, and the superconductivity has been argued as a key to unveiling the mystery of the high-Tc pairing mechanism. Here we systematically investigate the pressure-dependent in-plane resistivity (ρ ) and Hall coefficient (RH) of a high-quality 112-type Fe-based superconductor Ca1 -xLaxFe1 -yCoyAs2 (x =0.2 ,y =0.02 ). With increasing pressure, the normal-state resistivity of the studied sample exhibits a pronounced crossover from non-Fermi-liquid to Fermi-liquid behaviors. Accompanied with this crossover, Tc is gradually suppressed. In parallel, the extremum in the Hall coefficient RH(T ) curve, possibly due to anisotropic scattering induced by spin fluctuations, is also gradually suppressed. The symbiosis of NFL and superconductivity implies that these two phenomena are intimately related. Further study on the pressure-dependent upper critical field reveals that the two-band effects are also gradually weakened with increasing pressure and reduced to the one-band Werthamer-Helfand-Hohenberg limit in the low-Tc regime. Overall, our paper supports the picture that NFL, multigap, and extreme RH(T ) are all of the same magnetic origin, i.e., the spin fluctuations in the 112 iron arsenide superconductors.

  20. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C (United States)

    Helmy, Hassan M.; Bragagni, Alessandro


    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  1. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems (United States)

    Canali, A. C.; Brenan, J. M.; Sullivan, N. A.


    To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES

  2. High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. (United States)

    de Freitas, Carlos Eduardo Assumpção; Bertaglia, Raquel Santilone; Vechetti Júnior, Ivan José; Mareco, Edson Assunção; Salomão, Rondinelle Artur Simões; de Paula, Tassiana Gutierrez; Nai, Gisele Alborghetti; Carvalho, Robson Francisco; Pacagnelli, Francis Lopes; Dal-Pai-Silva, Maeli


    The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix. © 2015 The American Society of Photobiology.

  3. Quantificaion of ion diffusion in gallium arsenide-based spintronic Light-Emitting Diode devices using time-of-flight secondary ion mass spectrometry (United States)

    Cogswell, Jeffrey Ryan

    Depth profiling using Secondary Ion Mass Spectrometry (SIMS) is a direct method to measure diffusion of atomic or molecular species that have migrated distances of nanometers/micrometers in a specific material. For this research, the diffusion of Mn, sequentially Ga ions, in Gallium Arsenide (GaAs)-based spin Light Emitting Diode (LED) devices is studied by quantitative Time-of-Flight (ToF) SIMS. The goal is to prove conclusively the driving force and mechanism behind Mn diffusion in GaAs by quantifying the diffusion of these ions in each device. Previous work has identified two competing processes for the movement of Mn in GaAs: diffusion and phase separation. The process is dependent on the temperature the sample is exposed to, either by post-annealing, or during the molecular beam epitaxy (MBE) growth process. The hypothesis is that Manganese Arsenide (MnAs) is thermodynamically more stable than randomly distributed Mn ions in GaAs, and that by annealing at a certain temperature, a pure MnAs layer can be produced from a GaMnAs layer in a working spin LED device. Secondly, the spin efficiencies will be measured and the difference will be related to the formation of a pure MnAs layer. The first chapter of this dissertation discusses the history of spintronic devices, including details on the established methods for characterization, the importance for potential application to the semiconductor industry, and the requirements for the full implementation of spintronic devices in modern-day computers. MnAs and GaMnAs devices are studied, their preparation and properties are described, and the study's experimental design is covered in the latter part of Chapter 1. Chapter 2 includes a review of diffusion in semiconductors, including the types of diffusion, mechanisms they follow, and the different established experimental methods for studying diffusion. The later sections include summaries of Mn diffusion and previous studies investigating Mn diffusion in different

  4. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence. (United States)

    Peczonczyk, Sabrina L; Mukherjee, Jhindan; Carim, Azhar I; Maldonado, Stephen


    Crystalline gallium arsenide (GaAs) (111)A and gallium nitride (GaN) (0001) surfaces have been functionalized with alkyl groups via a sequential wet chemical chlorine activation, Grignard reaction process. For GaAs(111)A, etching in HCl in diethyl ether effected both oxide removal and surface-bound Cl. X-ray photoelectron (XP) spectra demonstrated selective surface chlorination after exposure to 2 M HCl in diethyl ether for freshly etched GaAs(111)A but not GaAs(111)B surfaces. GaN(0001) surfaces exposed to PCl(5) in chlorobenzene showed reproducible XP spectroscopic evidence for Cl-termination. The Cl-activated GaAs(111)A and GaN(0001) surfaces were both reactive toward alkyl Grignard reagents, with pronounced decreases in detectable Cl signal as measured by XP spectroscopy. Sessile contact angle measurements between water and GaAs(111)A interfaces after various levels of treatment showed that GaAs(111)A surfaces became significantly more hydrophobic following reaction with C(n)H(2n-1)MgCl (n = 1, 2, 4, 8, 14, 18). High-resolution As 3d XP spectra taken at various times during prolonged direct exposure to ambient lab air indicated that the resistance of GaAs(111)A to surface oxidation was greatly enhanced after reaction with Grignard reagents. GaAs(111)A surfaces terminated with C(18)H(37) groups were also used in Schottky heterojunctions with Hg. These heterojunctions exhibited better stability over repeated cycling than heterojunctions based on GaAs(111)A modified with C(18)H(37)S groups. Raman spectra were separately collected that suggested electronic passivation by surficial Ga-C bonds at GaAs(111)A. Specifically, GaAs(111)A surfaces reacted with alkyl Grignard reagents exhibited Raman signatures comparable to those of samples treated with 10% Na(2)S in tert-butanol. For GaN(0001), high-resolution C 1s spectra exhibited the characteristic low binding energy shoulder demonstrative of surface Ga-C bonds following reaction with CH(3)MgCl. In addition, 4

  5. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail:


    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2}, and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.

  6. Automated absolute activation analysis with californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    MacMurdo, K.W.; Bowman, W.W.


    A 100-mg /sup 252/Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from /sup 17/O. Detection sensitivities of < or = 400 ppB for natural uranium and 8 ppB (< or = 0.5 (nCi/g)) for /sup 239/Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level.

  7. Metastable charge-transfer state of californium(iii) compounds. (United States)

    Liu, Guokui; Cary, Samantha K; Albrecht-Schmitt, Thomas E


    Among a series of anomalous physical and chemical properties of Cf(iii) compounds revealed by recent investigations, the present work addresses the characteristics of the optical spectra of An(HDPA)3·H2O (An = Am, Cm, and Cf), especially the broadband photoluminescence from Cf(HDPA)3·H2O induced by ligand-to-metal charge transfer (CT). As a result of strong ion-ligand interactions and the relative ease of reducing Cf(iii) to Cf(ii), a CT transition occurs at low energy (transfer state undergoes radiative and non-radiative relaxations. Broadening of the CT transition arises from strong vibronic coupling and hole-charge interactions in the valence band. The non-radiative relaxation of the metastable CT state results from a competition between phonon-relaxation and thermal tunneling that populates the excited states of Cf(iii).

  8. Efficient injection of spin-polarized electrons from manganese arsenide contacts into aluminum gallium arsenide/gallium arsenide spin LEDs (United States)

    Schweidenback, Lars

    In this thesis we describe two spectroscopic projects project on semiconductor heterostructures, as well as putting together and testing a micro-photoluminescence/7 tesla magnet system for the study of micron size two-dimensional crystals. Below we discuss the three parts in more detail. i) MnAs-based spin light emitting diodes. We have studied the injection of spin-polarized electrons from a ferromagnetic MnAs contact into an AlGaAs(n)/GaAs(i)/AlGaAs(p) n-i-p light emitting diode. We have recorder the emitted electroluminescence as function of magnetic field applied at right angles to the device plane in the 7-300 K temperature range. It was found that at 7 Kelvin the emitted light is circularly polarized with a polarization that is proportional to the MnAs contact magnetization with a saturation value of 26% for B > 1.25 tesla. The polarization persists up to room temperature with a saturation value of 6%. ii) Optical Aharonov-Bohm effect in InGaAs quantum wells. The excitonic photoluminescence intensity from InGaAs quantum wells as function of magnetic field exhibits two local maxima superimposed on a decreasing background. The maxima are attributed to the optical Aharonov-Bohm effect of electrons orbiting around a hole localized at the center of an Indium rich InGaAs islands detected by cross sectional scanning tunneling microscopy. Analysis of the position of the maxima yields a value of the electron orbit radius. iii) Micro-Photoluminescence. We have put together a micro-photoluminescence /7 tesla system for the study of two dimensional crystals. The samples are placed inside a continuous flow cryostat whose tail is positioned in the bore of the 7 tesla magnet. A microscope objective is used to focus the exciting laser light and collect the emitted photoluminescence. The system was tested by recording the photoluminescence spectra of WS2 and WSe 2 monolayers at T = 77 K.

  9. Phonon heat transport in gallium arsenide

    Indian Academy of Sciences (India)

    [7] P Erdos and S B Haley, Phys. Rev. 184, 951 (1969). [8] M G Holland, Phys. Rev. 132, 2461 (1963). [9] M G Holland, Phys. Rev. 134, A471 (1963). [10] P G Klemens, Proc. R. Soc. London A68, 1113 (1965). [11] P C Sharma, K S Dubey and G S Verma, Phys. Rev. B3, 1985 (1971). [12] M D Tiwari and Bal K Agrawal, Phys.

  10. Gallium Arsenide and Related Compounds, 1986. (United States)


    Neida, S JPearton, MStavola and R Caruso 63-68 The use of selective pair luminescence to characterize semi-insulating GaAs E S Koteles, J Kafalas, S...changing the charge state iy t he neutron irradiation. 4. Summary The main acceptor in urdoped LEC SI-GaAs has been considered to be carbon. However, the...1986 Correlation between melt stoichiometry and activation efficiency in Si-implanted GaAs A. R. Von Neida, S. J. Pearton, M. Stavola, and R. Caruso AT&T

  11. Thin Crystalline Gallium Arsenide Optoelectronic Devices (United States)

    Patkar, Mahesh Pandharinath


    The numerous existing and developing applications for two closely related devices, III-V light emitting diode (LEDs) and solar cells, demand improved device efficiencies. Removing the substrate should increase the efficiency of both LEDs and solar cells by eliminating the absorption losses in the substrate. We have used the phenomenon of photon recycling in thin-crystalline device geometries to enhance efficiencies of LEDs and solar cells. GaAs LEDs were fabricated and removed from the substrate by the epitaxial lift-off process. Devices with and without an underlying GaAs substrate were then characterized by optical and electrical measurements. Efficiency enhancements of up to a factor of six were achieved. By carefully analyzing the electrical and optical measurements, we demonstrate that the device operation can be explained in terms of accepted theories for radiative recombination and photon recycling which supports our hypothesis that the efficiency enhancement is due to photon recycling in the thin-crystalline device structure. Electrical and optical characterization of ELO LEDs is also shown to be a convenient diagnostic tool for examining recombination losses in thin-crystalline solar cells. Thin crystalline solar cells were fabricated and characterized by I-V and QE measurements. Alloyed ohmic contacts are used extensively for GaAs devices. However, alloyed contacts produce rough interfaces that do not make good reflectors needed for many optoelectronic devices. Non-alloyed ohmic contacts to optoelectronic devices could make good reflectors, if one uses highly reflective metal like Au to make an ohmic contact. Ex-situ non-alloyed contacts to n-GaAs were made by using low temperature molecular beam epitaxy. Ag and Ti/Au contacts to this structure exhibited specific contact resistivities of mid 10^{-7} Omega-cm^2. Low temperature molecular beam epitaxy of GaAs with high concentrations of Be followed by an anneal under As over pressure was used to minimize the fast diffusing interstitial Be concentration in p^{++}-GaAs. Non-alloyed Ti/Au ohmic contacts to such p-type GaAs exhibited specific contact resistivities of about 10^{ -7} Omega-cm^2. A new amalgamation technique was developed for mounting thin crystalline devices on a substrate different from a host substrate.

  12. Deep Impurity States in Gallium Arsenide. (United States)


    the conduccion band of the host i o o t) do ,;e 𔃼 i ,’ to , V. "owtilj M-terid 1) , as a :uwhti(’ of disepQa"I C in ’~~’ ,t,’ied i nont’. ’n.1 ea:" d

  13. Effect of dislocations on gallium arsenide FETs (United States)

    Barrett, D. L.; McGuigan, S.; Eldridge, G. W.; Swanson, B. W.; Thomas, R. N.


    Indium doping at 5 x 10 to the 19th power/cc was found to be optimum for the growth of low-dislocation GaAs crystals, and to avoid constitutional supercooling effects. Dislocation etch pit densities of near 200/cc were measured in the central region of In-doped crystals, increasing to above 1000/sq cm in the peripheral regions. Based on the concept that dislocations are generated to relieve excess thermoelastic stress, a preliminary thermal model was used to design a hot zone shield to reduce thermal gradients during growth. An optimum combination of indium-doping, reduced thermal gradient growth, and appropriate growth parameters are expected to yield completely dislocation-free GaAs crystals. A FET metrology mask has been fabricated and preliminary FET device Fabrication begun, for evaluation of the effects of dislocations on FET device parameters. Twenty state-of-the-art, low dislocation, indium-doped GaAs wafers were delivered to the contractor for DARPA-related program evaluation.

  14. Uso do laser arseneto de gálio (904nm após excisão artroplástica da cabeça do fêmur em cães Use of low-power gallium arsenide laser (904nm after arthroplasty excision of the femoral head in dogs

    Directory of Open Access Journals (Sweden)

    Julia Maria Matera


    Full Text Available OBJETIVO: Avaliar a ação do laser diodo Arseneto de Gálio na evolução pós-operatória de cães submetidos à excisão artroplástica da cabeça e colo do fêmur. MÉTODOS: Treze cães portadores de Legg-Calvé-Perthes Disease ou Necrose Asséptica da Cabeça do Fêmur (NACF foram divididos em dois grupos: (I sete cães que não foram irradiados - grupo controle; (II seis cães irradiados uma vez ao dia durante cinco dias consecutivos com o laser Arseneto de Gálio (904nm, densidade de energia 4J/cm2 e tempo de exposição automaticamente ajustado pelo aparelho. Para a avaliação da evolução pós-operatória preencheu-se protocolo com graduação da dor de apoio do membro operado. Utilizou-se teste estatístico não paramétrico U de Mann-Whitney para análise dos resultados. RESULTADOS: O grupo I iniciou o apoio do membro com uma média de 12 dias de pós-operatório e o grupo II com uma média de quatro dias de pós-operatório, sendo estatisticamente significante (p=0.0012. CONCLUSÃO: A irradiação com o laser de baixa potência Arseneto de Gálio (904nm na dose 4J/cm2, periarticular, promoveu rápido retorno da função do membro em cães após a excisão artroplástica da cabeça do fêmur, otimizando a recuperação pós-operatória.PURPOSE: Evaluate the action of the Gallium Arsenide semiconductor laser in the post-operative evolution in dogs after the femoral head and neck artroplastic excision. METHODS: Thirteen dogs bearing Legg-Calvé-Perthes Disease were divided into two groups: (I 7 non-radiated dogs - control group; (II 6 dogs irradiated once a day for 5 consecutive days with the Galium Arsenide laser (904nm, energy density 4J/cm² and exposition time automatically adjusted by the device. In order to evaluate the post-operative evolution it was needed to fill a report stating the degree of the pain as well as the weight bearing of the affected limb. A U non-parametric statistics test of Mann-Whitney was used to perform

  15. Studies of electron traps in gallium arsenide and gallium arsenide phosphide by deep level transient spectroscopy (United States)

    Day, D. Y. S.


    System effects and data analysis for deep level transient spectroscopy (DLTS) have been examined and applied to study the deel levels in the GaAs-GaP system. Studies of typical DLTS systems using either the lock-in amplifier or the dual-channel boxcar averager are presented. The effects of non-zero gate width for the boxcar averager, phase angle adjustment for the lock-in amplifier, and response time of a typical commercial capacitance meter are investigated. Errors introduced in the measurements by these effects are calculated for typical cases. Measurements of gold level in silicon are presented, along with calculated corrections. We find the correction to be minimal in the boxcar-averager method, but significant in the lock-in amplifier approach. A DLTS system is described for measuring deep levels in diodes exhibiting large leakage currents. A capacitance bridge is used employing the diode to be tested along with a dummy diode of similar characteristics. The DLTS spectrum of a leaky GaAs planar diode is measured and compared to experimental results obtained with two standard DLTS systems . It is shown that measurements with the standard systems are impossible in certain temperature ranges because of overloading problems. The approach described here, however, gives the DLTS spectrum between 77 K and 300 K.

  16. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  17. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures. (United States)


    34A new field-effect transistor with selectively doped GaAs/n-Al xGa As teoucin. u. L. A2I. EhM ., vol. 19, pp. L225-L227, 190 h 12. D. Delagebeaudeuf, P...photoconductivity in thin epitaxial GaAs," 1. Anl. EhMs ., vol. 52, pp. 5718-5721, 1981. 129. K. Hess and N. Holonyak, Jr., "Hot electrons in layered

  18. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide (United States)


    committee members, Dr. Bill Siskaninetz, Dr. Ronald Coutu, and Dr. Michael Marciniak for their assistance and the extraordinary amount of patience...6 2.2. (a) Structure of a through DBR contacted VCSEL and ( b ) an...DBR mirror and a ( b ) bottom DBR mirror ......8 2.4. Calculated power reflectance, transmittance, and absorptance of a DBR

  19. Clinical evaluation of dentin hypersensitivity treatment with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl Avaliação clínica do tratamento da hiperestesia dentinária com laser de baixa potência de Arseniato de Gálio-Alumínio - AsGaAl

    Directory of Open Access Journals (Sweden)

    Luciana Chucre Gentile


    Full Text Available The dentin hypersensitivity is a painful condition rather prevalent in the general population. There are several ways of treatment for such condition, including the low intensity lasers. The proposal of this study was to verify the effectiveness of the Gallium-Aluminum-Arsenide diode laser in the treatment of this painful condition, using a placebo as control. MATERIALS AND METHODS: Thirty-two patients were selected, 22 females and 10 males, with ages ranging from 20 to 52 years old. The 32 patients were randomly distributed into two groups, treated and control; the sample consisted of 68 teeth, 35 in the treated group and 33 in the control group. The treated group was exposed to six laser applications with intervals from 48 to 72 hours, and the control group received, as placebo, applications of a curing light. RESULTS: A significant reduction was observed in the pain condition between the initial phase and after six laser applications; however, such reduction could also be observed for the control group exposed to the placebo. CONCLUSION: Therapy with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl induces a statistically significant reduction in the painful condition after each application and between the beginning and end of treatment, although there was no statistically significant difference between the treated group (laser and the control group (placebo at the end of treatment and after the mediate evaluation results (after 6 weeks, this way impairing the real measurement of laser effectiveness and placebo effect.A hiperestesia dentinária trata-se de uma condição dolorosa bastante prevalente nas populações mundiais. Várias são as modalidades de tratamento para tal condição, entre elas, os lasers de baixa potência. A proposta deste estudo foi a de verificar a efetividade do laser de diodo de Arseniato de Gálio-Alumínio no tratamento desta condição dolorosa, utilizando-se um placebo como controle. MATERIAIS E M

  20. Photoluminescence Study of Ion Implantation Damage in Gallium Arsenide. (United States)


    The completion of this thesis was a very gratifying and educational experience. It provided valuable exposure to topics which were heretofore...Engjineering, Air Force, Institute of Technology, December 1978. 21. Yu , P. W . and Y’. S. Park. "PhoLel uminlescence in M11- implmnted GaiAs --anm...1946 in Caracas, Venezuela, the son of Edward and Margaret Key. Ile received his high school education at Riverside Military Academy in Gainesville

  1. Noise-margin limitations on gallium-arsenide VLSI (United States)

    Long, Stephen I.; Sundaram, Mani


    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  2. Measurement of the thermopower anisotropy in iron arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T., E-mail: [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Shirachi, T. [Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Asamitsu, A. [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan)


    Highlights: • In this study, in order to investigate the origin of the in-plane anisotropy, the in-plane anisotropy of the thermopower was measured for the detwined single crystals of BFe{sub 2}As{sub 2}. And, we found no anisotropy in the thermopower above T{sub AFO}, although there is a large anisotropy in the resistivity. This result gives evidence that the anisotropy in the resistivity arise from the anisotropy of the scattering time, and the energy dependence of the scattering time can be considered negligible. In the case of iron pnictides, the proposed orbital ordering more likely results in an anisotropy of electronic structure below T{sub AFO}, whereas the spin-nematic ordering leads to an anisotropy of electron scattering above T{sub AFO}. Therefore, our results suggest that nematicity above T{sub AFO} results from anisotropic magnetic scattering. - Abstract: We investigated the in-plane anisotropy of the thermopower and electrical resistivity on detwinned single crystals of BaFe{sub 2}As{sub 2}. The in-plane anisotropy of the resistivity was clearly observed far above the magnetostructural transition temperature T{sub AFO}. While, the thermopower showed the in-plane anisotropy only below T{sub AFO}. These results are associated with the different origin of the anisotropy above and below T{sub AFO}. Since the thermopower does not depend on the scattering time, the anisotropy of the resistivity above T{sub AFO} is considered to be due to the anisotropic scattering. On the other hand, the anisotropy in the thermopower below T{sub AFO} is ascribed to the reconstructed Fermi surface.

  3. Radiation annealing of gallium arsenide implanted with sulphur

    CERN Document Server

    Ardyshev, V M


    Sulfur ions were implanted in a semi-insulating GaAs. Photon annealing (805 deg C/(10-12) s) and the thermal one (800 deg C/30 min) were conducted under SiO sub 2 -films coating obtained by different ways. Contents of GaAs components in films were determined from Rutherford backscattering spectra; concentration profiles of electrons were measured by the voltage-capacitance method. Diffusion of sulfur was shown to go in two directions - to the surface and into bulk of GaAs. The first process was induced by vacancies that had been formed near the surface of semiconductors during the dielectric coating. The coefficient of the bulk-diffusion and diffusion-to-surface of sulfur ions under photon annealing was twice as much as that under thermal one. The doping efficiency was also larger

  4. Epitaxial metal-gallium arsenide contacts via electrodeposition (United States)

    Bao, Zhi Liang

    The fabrication of epitaxial metal-GaAs contacts via electrodeposition and the electrical properties of the Schottky diodes are reported in this dissertation. Epitaxial electrodeposition of copper, iron, cobalt, iron-nickel, and bismuth on GaAs was discovered to rely on three major factors: the preparation of the GaAs surface by (NH4)OH etching, the addition of (NH 4)2SO4 to the electrolytes, and the control of deposition current density. The surface preparation by (NH4)OH provides a hydrophilic surface likely due to passivation via a layer of hydroxide bonds. Ammonium sulphate inhibits oxidation of the metal cations and likely acts as a surfactant both on the metal and GaAs surfaces. Control of adatom flux, similar to vacuum deposition techniques such as molecular beam epitaxy, determined the crystallinity, varying from polycrystalline to epitaxial to dendritic for current densities from 0.01 to 1 mA/mm2. The effects of other electrodeposition conditions including pH and electrolyte temperature were also investigated. Neutral electrolytes are needed for copper, iron, nickel-iron alloy, and cobalt epitaxial deposition, while acidic solution works for bismuth deposition indicating that the control of hydrogen evolution may be important. Cobalt nanodisc formation was obtained for lower temperatures (2 - 22°C) while optimal copper, iron, and bismuth epitaxy required higher deposition temperatures, 53, 56, and 70°C, respectively. The growth is via island nucleation and coalescence. The iron films develop a small decrease in lattice constant with residual compressive stress, which is a function of temperature. This is likely due to an impurity such as oxygen. Copper and cobalt formed nanometer scale reacted interfaces with GaAs, while iron and bismuth/GaAs formed abrupt interfaces. The electrical properties of these Schottky diodes were, nevertheless, found to be close to ideal and comparable to vacuum deposited diodes. Fe and Co/GaAs diodes showed identical electrical properties for GaAs (100), (110) and (111)B substrate orientations, consistent with uniform and defect-free interfaces. Cu and Bi/GaAs showed a much greater orientational dependence perhaps due to the larger lattice mismatch. Iron and nickel-iron alloy films showed anisotropic magnetic properties consistent with single crystalline material. These metal/GaAs contacts are potentially interesting for spintronics applications. Keywords. electrodeposition; epitaxy; metal-GaAs; Spintronics; (NH4)2SO4

  5. The effects of radiation on gallium arsenide radiation detectors

    CERN Document Server

    Bates, R L; D'Auria, S D; O'Shea, V; Raine, C; Smith, K M


    Semi-insulating, undoped, Liquid Encapsulated Czochralski (SI-U LEC) GaAs detectors have been irradiated with 1MeV neutrons, 24GeV/c protons, and 300MeV/c pions. The maximum fluences used were 6, 3, and 1.8~10$^{14}$ particles/cm$^{2}$ respectively. For all three types of irradiation the charge collection efficiencies (cce) of the detector are reduced due to the reduction in the electron and hole mean free paths. Pion and proton irradiations produce a greater reduction in cce than neutron irradiation with the pions having the greatest effect. The effect of annealing the detectors at room temperature, at 200$^{o}$C and at 450$^{o}$C with a flash lamp have been shown to reduce the leakage current and increase the cce of the irradiated detectors. The flash-lamp anneal produced the greatest increase in the cce from 26% to 70% by increasing the mean free path of the electrons. Two indium-doped samples were irradiated with 24GeV/c protons and demonstrated no improvement over SI U GaAs with respect to post-irradiati...

  6. Gallium Arsenide Pilot Line for High Performance Components (United States)


    generally accepted values and/or the values in the center of the reported ranges.) Table 6 gives expected lifetimes for aluminum at 2.0 x 05 Acn - 2 (the...iew This sijxe g"v& an~~I ehbrodance W-lo (e* aw powd Oft" ad 41111ago She dwo bwmodswo u64nd Gmma s Linds U SP~aRAPTow 1~bm30 𔃻 BYA PI ol

  7. Gallium arsenide based surface plasmon resonance for glucose monitoring (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta


    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  8. Subthreshold Laser Radiation of Rhesus Monkey Retina. Gallium Arsenide Bioeffects. (United States)


    hrs but they could find no histologic or fluorescein leakage correlate. If comparable at all to this study, then t" the appearance of the pale PE cells... ANATOMY 9 BORWdEIN AUG 82 UNCLASSIFIEDi DAMDi7-81-6-9489 F/6 6/18 N U EUEEECEE .. . .... -.!-4 . -- - - 111 L4.0 L2 .m1208 JfJ .11111 .45 111.6...Development Command Fort Detrick, Frederick, Maryland 21701-5012 .Grant No. DAD17-81-G-9489D, o.°,,o.DTIC .’ Department of Anatomy IELECTEr’ The University

  9. Structural and optical properties of porous gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Belogorokhov, A.I. [Institute of Rare Metals, 119017 Moscow (Russian Federation); Gavrilov, S.A. [Moscow Institute of Electronic Technology (Technical University), 103498 Moscow (Russian Federation); Belogorokhov, I.A. [Physics Department, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation)


    The optical and structural properties of a porous GaAs have been studied. The samples a of porous GaAs were fabricated by an electrochemical method on n- and p-type GaAs(100). The GaAs wafer doping type considerably affects nanocrystal shape, nanocrystal average diameter and chemical surface states. Low-frequency Raman shift of the peaks, conditioned by the main optical phonons, in the Raman spectra of the porous GaAs was observed. The values of the frequencies of surface phonons obtained from the Raman spectra and Infrared reflectivity spectra well coincide. Comparing the reflectivity spectra of porous GaAs with the ones of the single crystal GaAs, the changes in the spectral dependencies of the reflectance within the phonon resonance region may be seen which coincide with appearance of additional oscillators caused by sized confinement of the lattice vibrations of GaAs nanocrystals. The surface morphology of porous GaAs prepared on the substrate of n-type GaAs has been studied using atomic-force microscopy. Nanosized contour of the porous GaAs surface was watched. Estimations of the size of nanocrystals in a porous GaAs by the Raman and Infrared spectroscopy, photoluminescence (PL) and atomic-force microscopy well agree with each other. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. High Efficiency Solar Panel. Phase II. Gallium Arsenide. (United States)


    distance apartare lowered onto an interconnect/cell assembly with a calibrated force. Activation of an electrical switch introduces a voltage and current...the working area of the parallel gap Aelder is shown in Figure 8. Here two electrodes, a set distance apartare lowered onto an interconnect/cell

  11. Gallium Arsenide Pilot Line for High Performance Components (United States)


    a self - consistent solution of the coupled, nonlinear Poisson - Schrodinger equations for the SARGIC HFET heterostructures.) These models were used in...will be functional at 200 MHz. This expectation is based on the consistency of the measured and simulated results obtained at AT&T-Reading, AT&T...CAD tools. The layout floorplan consists of 33 blocks. These blocks were carefully arranged to butt next to each other without using routing channels

  12. a 9-BIT, Pipelined Gallium Arsenide Analog-Digital Converter (United States)

    Breevoort, Cornelius Marius


    Excellent Short Take-Off and Landing (STOL) performance is achieved by Upper Surface Blowing (USB) aircraft as a result of mounting high by-pass turbofan engines over the forward part of the wing. High lift levels are generated by directing the engine exhaust over the wing upper surface to entrain additional airflow and by using the Coanda effect to turn the exhaust flow downward over a large radius "Coanda" flap. Commercial application of USB technology could reduce airport congestion and community noise if future configurations can be designed with economically acceptable cruise drag levels. An experimental investigation of the high speed aerodynamics of USB aircraft configurations has been conducted to accurately define the magnitude and causes of the powered configuration cruise drag. A highly instrumented wind tunnel model of a realistic USB configuration has been used which permitted parametric variations in the number and spanwise location of the nacelles and accurately modeled the engine power effects with turbofan propulsion simulators. The measured force data provides an accurate definition of the cruise drag penalty associated with each configuration and the constructed pressure contour plots provide detailed insight into their causes. It was found that the high speed aerodynamics of USB configurations is a complex interaction of jet induced and wing transonic flowfields. The presence of the nacelles on the wing upper surface created a severe drag penalty which increased with freestream Mach number, power setting and angle of attack. The more widely spaced two nacelle configurations exhibited improved flowfields at moderate Mach numbers but suffered from drag levels comparable to the baseline configuration for high speed cruise conditions. At high Mach numbers and power settings, all of the tested configurations displayed strong shocks and separated zones in the wing/nacelle junction regions. Detailed discussions of the causes of the cruise drag penalty and recommended future design improvements are presented.

  13. Gallium Arsenide Field Effect Transistors with Semi-Insulated Gates. (United States)


    insulating substrate. Ohmic source and drain contacts of width Z are placed as shown. Between them is a Schottky barrier “gate” of l ength ~,. In norma this manner is given in Figure 22. FETs were fabricated from this material using two different procedures. Both are essential l y the norma l...Forward, and H. L. Hartnagel , App l . Phys. Lett. 26, 569 (1975). 3. a. R. Pr un iaux , J. C. North , and A. V. Payer, IEEE Trans. Electron Devices ED

  14. Spin dynamics of equilibrium electrons in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Georg Martin


    In this dissertation, spin noise spectroscopy is applied to study spin dynamics in GaAs based semiconductor structures close to thermal equilibrium. Semiconductor spin noise spectroscopy measures the stochastic spin polarization of the electron ensemble via off-resonant Faraday rotation. Correspondingly, no energy has to be deposited in the sample system contrary to other experimental techniques, in which the dephasing or the depolarization of an artificially injected spin polarization is measured. Since the spin fluctuations are measured in real-time, spin noise spectroscopy had been hitherto limited to frequencies below 1 GHz. This thesis introduces the experimental advancement of ultrafast spin noise spectroscopy, in which the fluctuations are probed by pulsed light, and detection of spin noise at frequencies up to 16 GHz is demonstrated. These frequencies exceed the bandwidth of the photoreceiver by a factor of around 200. To further explore the limitations of the finite bandwidth of the detection system, electrical frequency mixing is applied for down-conversion of the electrical spin noise signal. Furthermore, spin noise measurements are simulated revealing that also ultrafast digitizers with low resolution can be utilized for spectral analysis in spin noise spectroscopy without any significant loss of sensitivity. The spin dynamics in a symmetrically grown, modulation-doped, (110)-oriented GaAs/AlGaAs multiple quantum well structure are investigated in this work. This experiment represents the first spin noise measurements on a semiconductor system of reduced effective dimensionality. The Dyakonov-Perel mechanism that usually dominates spin dephasing of free electrons in GaAs is ineffective in (110)-oriented structures for spins along the growth direction. Nevertheless, the correspondingly anticipated long spin dephasing times in (110) GaAs/AlGaAs quantum wells at low temperatures are not accessible with conventional experiments that rely on optical spin orientation since the photocreation of holes obviates the observed spin dephasing times due to the Bir-Aronov-Pikus mechanism. Spin noise spectroscopy however enables measurements in the absence of optically created holes and the measured spin dephasing times in this work represent the longest reported spin dephasing times for delocalized electrons in GaAs quantum wells. Additionally, the anisotropic spin dynamics, which result from the Dyakonov-Perel mechanism that is still effective for the spins in the quantum well plane, as well as the time-of-flight broadening of the spin noise spectra, which originates from the finite transit time of the electrons through the probe volume, are experimentally investigated. The experimental technique of ultrafast spin noise spectroscopy enables investigation of spin dynamics in n-type bulk GaAs at high magnetic fields. The examined samples have a doping concentration slightly below and above the metal-to-insulator transition. The temperature, doping and magnetic field dependence of the effective electron Lande factor is studied as well as the spin dephasing in a transverse magnetic field. Finally, semiconductor spin noise spectroscopy is carried out with a magnetic field oriented with an arbitrary angle to the direction of light propagation while usually the magnetic field is applied transverse to the light wavevector. This novel geometry for spin noise spectroscopy allows the investigation of spin dephasing and spin relaxation in a single measurement. (orig.)

  15. Neutron Protection Factor Determination and Validation for a Vehicle Surrogate Using a Californium Fission Source (United States)


    a 4 mm x 4 mm (0.157" x 0.157") LiI(Eu) crystal with 96% enrichment of lithium -6. The crystal is connected to a photomultiplier tube (PMT) which...32 Figure 17. Lithium -6 Iodide, Europium Doped Scintillation Detector. Source: [27...Alamos National Laboratory LiI(Eu) Lithium Iodide Europium Doped LLD Low Level Discriminator LLNL Lawrence Livermore National Laboratory MASH Monte

  16. Threshold extension of gallium arsenide/aluminum(x) gallium(1-x) arsenide terahertz detectors and switching in heterostructures (United States)

    Rinzan, Mohamed B.

    In this work, homojunction interfacial workfunction internal photoemission (HIWIP) detectors based on GaAs, and heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors based mainly on the GaAs/Al xGa1-xAs material system are presented. Design principles of HIWIP and HEIWIP detectors, such as free carrier absorption, photocarrier generation, photoemission, and responsivity, are discussed in detail. Results of p-type HIWIPs based on GaAs material are presented. Homojunction detectors based on p-type GaAs were found to limit their operating wavelength range. This is mainly due to band depletion arising through carrier transitions from the heavy/light hole bands to the split off band. Designing n-type GaAs HIWIP detectors is difficult as it is strenuous to control their workfunction. Heterojunction detectors based on GaAs/AlxGa 1-xAs material system will allow tuning their threshold wavelength by adjusting the alloy composition of the Al xGa1-xAs barrier, while keeping a fixed doping density in the emitter. The detectors covered in this work operate from 1 to 128 microm (300 to 2.3 THz). Enhancement of detector response using resonance cavity architecture is demonstrated. Threshold wavelength extension of HEIWIPs by varying the Al composition of the barrier was investigated. The threshold limit of ˜ 3.3 THz (92 microm), due to a practical Al fraction limit of ˜ 0.005, can be overcome by replacing GaAs emitters in GaAs/AlxGa1-xAs HEIWIPs with AlxGa1-xAs emitters. As the initial step, terahertz absorption for 1 microm-thick Be-doped AlxGa1-xAs epilayers (with different Al fraction and doping density) grown on GaAs substrates was measured. The absorption probability of the epilayers was derived from these absorption measurements. Based on the terahertz absorption results, an AlxGa1-xAs/GaAs HEIWIP detector was designed and the extension of threshold frequency ( f0) to 2.3 THz was successfully demonstrated. In a different study, switching in GaAs/AlxGa1- xAs heterostructures from a tunneling dominated low conductance branch to a thermal emission dominated high conductance branch was investigated. This bistability leads to neuron-like voltage pulses observed in some heterostructure devices. The bias field that initiates the switching was determined from an iterative method that uses feedback information, such as carrier drift velocity and electron temperature, from hot carrier transport. The bias voltage needed to switch the device was found to decrease with the increasing device temperature.

  17. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication (United States)


    test devices without anti- reflection (AR) protection caps but now serve as duplicate devices to combat fabrication yield issues. The columns of...step. 2. Methods, Assumptions, and Procedures 2.1 Alignment Marks Due to the negligible effect the n-type dopant annealing has on the surface of the...A-1 of the Appendix, photoresist makes an adequate mask for this short plasma etch. The etch is a simple boron trichloride (BCl3) and argon (Ar

  18. Efeito da terapia com laser de arsenieto de gálio e alumínio (660Nm sobre a recuperação do nervo ciático de ratos após lesão por neurotmese seguida de anastomose epineural: análise funcional Effect of gallium-aluminum-arsenide laser therapy (660Nm on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis

    Directory of Open Access Journals (Sweden)

    FA Reis


    Full Text Available CONTEXTUALIZAÇÃO: As lesões nervosas periféricas podem comprometer atividades diárias de um indivíduo e resultam em perda da sensibilidade e motricidade do território inervado. OBJETIVO: Com o intuito de acelerar os processos regenerativos, objetivou-se analisar a influência da aplicação do laser de arsenieto de gálio e alumínio (AsGaAl, 660Nm sobre a recuperação funcional do nervo ciático de ratos. MATERIAIS E MÉTODOS: O nervo ciático de 12 ratos Wistar foi submetido à lesão por neurotmese e anastomose epineural e divididos em dois grupos: controle e laserterapia. Após a lesão, utilizou-se o laser de GaAlAs, 660Nm, 4J/cm², 26,3mW, feixe de 0,63cm², em três pontos eqüidistantes sobre a lesão, por 20 dias. As impressões das pegadas dos animais foram obtidas antes e após (sete, 14 e 21 dias pós-operatórios o procedimento cirúrgico e calculou-se o índice funcional do ciático (IFC. RESULTADOS: A comparação do IFC não resultou em diferença significante (p>0,05 entre os grupos. CONCLUSÕES: Conclui-se que os parâmetros e métodos empregados na laserterapia demonstram resultados nulos sobre o IFC no período avaliado.CONTEXT: Peripheral nerve injuries result in sensory and motor losses in the innervated area and can hinder individuals’ daily activities. Objective: The objective was to analyze the influence of applying gallium-aluminum-arsenide (GaAlAs laser (660Nm on the functional recovery of the sciatic nerve in rats. METHODS: The sciatic nerve of 12 Wistar rats was subjected to injury consisting of neurotmesis and epineural anastomosis. The rats were divided into two groups: control and laser therapy. After the injury, a GaAlAs laser was used (660Nm, 4J/cm², 26.3mW and 0.63cm² beam at three equidistant points on the injury, for 20 days. Footprint impressions were obtained from the animals before and seven, 14 and 21 days after the surgical procedure and the sciatic functional index (SFI was calculated

  19. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias


    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  20. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures (United States)


    ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-SED-E 2800 Powder Mill Road Adelphi, MD 20783-1138 8. cell uses a GaAs/AlGaAs DH with a roughly 1–2 µm GaAs active region on top of an internal distributed Bragg reflector (BR) to take advantage minimize the laser scattering signal, with a fast 300-µm diameter silicon (Si) photodiode. Data were acquired on a PCI averager card. The system

  1. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    the fabrication of nanowire transistors using UV and electron beam lithography as well as the steps to encapsulate the nanowire transistors into a sensor. Several iterations of experiments demonstrating pH sensitivity of the NW sensor are presented. Having established and tested a stable sensing platform via p......H sensing, we apply the same to a more complex system - proteins. The sensing protocol involves the functionalization of the sensor surface with a receptor protein followed by the addition of the protein of interest. Sensor response to oppositely charged proteins is used to confirm the sensitivity...... of the sensor to the protein charge....

  2. The Photoresponse of the Gallium Arsenide Metal Semiconductor Field Effect Transistor (United States)

    Paolella, Arthur

    The combining of optical and microwave technology is imminent, especially the integration of optical and microwave circuit functions on the same circuit or chip. Exploring the properties of the metal semiconductor field effect transistor (MESFET) as an optical detector for the detection of microwave and control signals in fiber optic links make sense because the MESFET is the main active component of GaAs MMICs. In this thesis, photocurrents and photovoltages of three MESFETs were measured as a function of the optical input (wavelength, intensity and modulation frequency), electrical input (gate voltage and gate resistance), and device characteristics. A model of the photoresponse, based on the drift and diffusion equations for the current density was developed, which established the internal photovoltaic effect at the channel-substrate interface as the dominant mechanism for the generation of photocurrent in the MESFET. The gain, bandwidth and gain-bandwidth products for each of the major photoeffects were determined mathematically. A maximum photocurrent of 16 mA, and an internal photovoltage of -0.5 volts was measured at 3.5 mW of optical power. The addition of a resistance in the gate circuit enhanced the photoresponse. With a resistor of 1 MOmega, the maximum photocurrent produced was 84.0 mA, resulting from an external photovoltage of 3.07 volts. The dynamic photoresponse of the MESFET as measured, showed a strong dependence with the intensity of the optical signal as well as with bias. The low frequency response varied from -15 dB to -41 dB, and the bandwidth changed from 50 MHz to 5 MHz as the optical signal decreased 18 dB. The low frequency response and bandwidth also showed strong dependence of bias. The low frequency response varied over a 7 dB range and the bandwidth changed from 45 MHz to 100 MHz as the gate was reversed biased (0 to -3.0 volts). Used as an optical detector, the MESFET function successfully in controlling the gain (15 dB) and phase (360^circ) of a T/R module as well as in switching functions of microwave MMICs. The techniques used were compatible with present MMIC processing technology.

  3. Gallium arsenide single crystal solar cell structure and method of making (United States)

    Stirn, Richard J. (Inventor)


    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  4. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Simon Friedrich


    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO{sub 1-x}F{sub x} family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La{sub 2}O{sub 2}MnSe{sub 2} is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La{sub 2}O{sub 2}MnSe{sub 2} which forms, together with La{sub 4}MnSe{sub 3}O{sub 4} and La{sub 6}MnSe{sub 4}O{sub 6}, the series La{sub 2n+2}MnSe{sub n+2}O{sub 2n+2}. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE{sub 2}CrSe{sub 2}O{sub 2} (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing oxyselenides were identifi ed and revealed unique structural building blocks that have not been observed in these systems before. The results of this thesis demonstrate not only the power of alternative preparation methods, but also the still increasing structural variety in the discussed quaternary systems. Strategic research in the field of transition-metal oxypnictides and oxychalcogenides, which still include a multiplicity of unknown materials, revealed numerous compounds with interesting physical properties and further investigations will probably uncover also new superconducting materials.

  5. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. (United States)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung


    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  6. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires. (United States)

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling


    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  7. System architecture of a gallium arsenide one-gigahertz digital IC tester (United States)

    Fouts, Douglas J.; Johnson, John M.; Butner, Steven E.; Long, Stephen I.


    The design for a 1-GHz digital integrated circuit tester for the evaluation of custom GaAs chips and subsystems is discussed. Technology-related problems affecting the design of a GaAs computer are discussed, with emphasis on the problems introduced by long printed-circuit-board interconnect. High-speed interface modules provide a link between the low-speed microprocessor and the chip under test. Memory-multiplexer and memory-shift register architectures for the storage of test vectors are described in addition to an architecture for local data storage consisting of a long chain of GaAs shift registers. The tester is constructed around a VME system card cage and backplane, and very little high-speed interconnect exists between boards. The tester has a three part self-test consisting of a CPU board confidence test, a main memory confidence test, and a high-speed interface module functional test.

  8. Improved defect analysis of Gallium Arsenide solar cells using image enhancement (United States)

    Kilmer, Louis C.; Honsberg, Christiana; Barnett, Allen M.; Phillips, James E.


    A new technique has been developed to capture, digitize, and enhance the image of light emission from a forward biased direct bandgap solar cell. Since the forward biased light emission from a direct bandgap solar cell has been shown to display both qualitative and quantitative information about the solar cell's performance and its defects, signal processing techniques can be applied to the light emission images to identify and analyze shunt diodes. Shunt diodes are of particular importance because they have been found to be the type of defect which is likely to cause failure in a GaAs solar cell. The presence of a shunt diode can be detected from the light emission by using a photodetector to measure the quantity of light emitted at various current densities. However, to analyze how the shunt diodes affect the quality of the solar cell the pattern of the light emission must be studied. With the use of image enhancement routines, the light emission can be studied at low light emission levels where shunt diode effects are dominant.

  9. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    of the qubit splitting with respect to gate voltages. We show that for singlet-triplet and resonant exchange qubit this can be achieved by operating a quantum dot array in a highly symmetric configuration. The symmetrization approach results in a factor-of-six improvement of the double dot singlet......-triplet exchange oscillations quality factor while the dephasing times for the threeelectron resonant exchange qubit are marginally longer. Second, we present the study of the Overhauser field noise arising due to interaction with the nuclear spin bath. We show that the Overhauser field noise conforms to classical...... dot in nine different charge occupancies and identify ground state spin in all cases. For even-occupied spin-1/2 multielectron quantum dot a variation of the gate voltage by a few milivolts in the vicinity of the charge transition leads to sign change of the exchange interaction with a single...

  10. Development of Ultra-Low Resistance Ohmic Contacts for indium gallium arsenide/indium phosphide HBTs (United States)

    Baraskar, Ashish

    With the continued scaling of transistors to obtain increased transistor bandwidth and packing density, achieving very low resistance metal-semiconductor contacts becomes crucial. The base and emitter contact resistivities in heterojunction bipolar transistors (HBTs) must decrease in proportion to the inverse square of the transistor cutoff frequency. Similarly for field-effect transistors (FETs), progressive reduction in contact resistivity is required for both increased speed of operation and increased device packing density. Contact resistivities less than 10-8 O-cm2 are required for III-V HBTs and FETs for having simultaneous 1.5 THz current-gain (ft) and power-gain (fmax) cut-off frequencies. Owing to higher electron velocity, higher transistor bandwidths are more readily obtained in InGaAs than in Si, hence there is strong motivation to develop low resistance ohmic contacts to InGaAs. This dissertation focuses on development of ultra-low resistance ohmic contacts to n-In0.53Ga0.47As, n-InAs and p-In0.53 Ga0.47As for their application in InP based HBTs. There were four main challenges in obtaining ultra-low contact resistivities: 1. High doping: Attainment of high active carrier concentration which is required for reducing the depletion region in the semiconductor. Reduced depletion region results in enhanced tunneling of carriers across the metal semiconductor junction. 2. Surface preparation: Contact resistivity strongly depends on surface preparation and obtaining resistivities less than 10-8 O-cm 2 requires a significant attention to removal of semiconductor surface oxides before the contacts are made. 3. Refractory metal contact: Owing to high current densities (≈ 50 mA/mum2) and high temperatures involved during fabrication of scaled HBTs and FETs, it becomes important to keep the metal semiconductor junctions thermally stable for their continued operation as desired. To achieve thermal stability, it is required to use refractory metals for making the contact. 4. Accurate extraction of contact resistivities. In this work, molecular beam epitaxy thin-film growth technique was used to grow the semiconductor thin films. After careful growth optimization and calibrations, the highest active carrier concentration obtained was 6 x 1019 cm-3, 1 x 1020 cm -3 (record highest) and 2.2 x 1020 cm -3 for n-In0.53Ga0.47As, n-InAs and p-In 0.53Ga0.47As, respectively. W, Mo and Ir refractory metals were chosen to form contacts to these semiconductors to achieve thermal stability. Transmission line model structures were designed to accurately determine the contact resistivities. The lowest contact resistivities obtained were (0.9 +/- 0.5) x 10-8 O-cm2, (0.6 +/- 0.4) x 10-8 O-cm2 and (0.6 +/- 0.5) x 10-8 O-cm2 for contacts to n- In0.53Ga0.47As, n-InAs and p-In0.53Ga 0.47As, respectively, which are the lowest contact resistivities reported to date for these semiconductors. Contacts to n-In0.53Ga0.47 As and n-InAs were found to remain thermally stable. However, slight degradation on annealing was observed for contacts made to p-In0.53Ga 0.47As. We have also developed theoretical models to validate our experimental data. The models are extended to calculate the lowest possible contact resistivities for GaAs, InP, InSb and GaSb. In summary, the ultra-low resistance, refractory metal contacts developed in this work make them a potential candidate to be applied in highly scaled HBTs and other devices of near-terahertz bandwidths.

  11. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.


    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  12. Dose rate effects on damage formation in ion-implanted gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.E.; Holland, O.W.


    The residual damage in GaAs was measured by ion channeling following implantation of either 100 keV {sup 30}Si{sup +} at temperatures of 300K or 77K, or 360 keV {sup 120}Sn{sup +} at 300K. For room-temperature Si implants and fluences between 1 and 10 {times} 10{sup 14} Si/cm{sup 2}, the amount of damage created was strongly dependent upon the ion current density, which was varied between 0.05 and 12 {mu}A/cm{sup 2}. Two different stages of damage growth were identified by an abrupt increase in the damage growth rate as a function of fluence, and the threshold fluence for the onset of the second stage was found to be dependent on the dose rate. The dose rate effect on damage was substantially weaker for {sup 120}Sn{sup +} implants and was negligible for Si implants at 77K. The damage was found to be most sensitive to the average current density, demonstrating that the defects which are the precursors to the residual dose-rate dependent damage have active lifetimes of at least 3 {times} 10{sup {minus}4} s. The dose rate effect and its variation with ion mass and temperature are discussed in the context of homogeneous nucleation and growth of damage during ion irradiation.

  13. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors. (United States)


    Semiconductors", L.F. Eastman, Third Inter. Conf. on Hot Carriers in Semiconductors, Montpellier , France (July 1981); J. de Physique, Col. C7, Sup. 010, Tome...ballistic electrons, the verage electron velocity is as high as 8 x 107cm/s across a short drift pace (< .5-.75 micron for ion density at or below

  14. Femtosecond Laser Machining of Gallium Arsenide Wafers for the Creation of Quasi-Phasematched Devices (United States)


    visible structural damage, creating a tightly fitting sample as shown in the optical micrographs in Figure 5.5 below. Figure 5.5 Interlaced ...power photonics group at Heriot Watt University. The CO2 laser, operating at a wavelength of 10.6µm was a pulsed laser with variable repetition rate...above that of GaAs. Their Tg would be ~160°C”. In this case we could heat up a “blob” of glass on top of the interlaced comb structure, and let it flow

  15. Advanced Composite High-k Gate Stack for Mixed Anion Arsenide-Antimonide Quantum Well Transistors (United States)


    and interface defect scattering5 dominate. Shubnikov-de Haas ( SdH ) oscillations (Fig. 8a) are observed at low temperature (2- 15K) and high magnetic...the amplitude of SdH oscillations, which is lower than 0.05m0 reported for InAs QW due to quantization and band non-parabolicity6. FFT of SdH ...ρ 0 1/B [T-1] 2K 4K 6K 10K 15K Δ(1/B) = 0.024 T -1 m*=.043m0 (b) Fig. 8 (a) Shubnikov-de Haas ( SdH ) oscillations in the sheet resistance

  16. Structural features of indium antimonide quantum dots on the indium arsenide substrate

    Directory of Open Access Journals (Sweden)

    Liliya A. Sokura


    Full Text Available The properties of InSb/InAs quantum dots (QDs have been investigated by transmission electron microscopy (TEM. Specific features of diffraction contrast were discovered in plan-view TEM images of big (9–10 nm in height and 38–50 nm in diameter InSb QDs. To understand the origin of such distortions, a model of an InSb QD on InAs substrate containing a partial Frank dislocation (FD was developed and used for calculations of the displacement field and the subsequent diffraction image simulation of an InSb QD for the first time. The shape of the QD was established to have an insignificant influence on the magnitude of radial displacements. The insertion of a misfit defect (a partial Frank dislocation into the QD reduces the strain at the edges of the QD almost by 30%. The comparison of experimental and simulated data allowed us to explain the observed features of the moiré pattern in the image of a big InSb QD by the presence of a misfit defect at the QD-substrate interface.

  17. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. (United States)

    Garner, Logan E; Steirer, K Xerxes; Young, James L; Anderson, Nicholas C; Miller, Elisa M; Tinkham, Jonathan S; Deutsch, Todd G; Sellinger, Alan; Turner, John A; Neale, Nathan R


    Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m-2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm-2 within -0.5 V of the reversible hydrogen electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan


    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  19. Investigations into molecular beam epitaxial growth of Indium Arsenide/Gallium antimonide superlattices (United States)

    Murray, Lee Michael

    InAs/GaSb superlattices are a material system well suited to growth via molecular beam epitaxy. The ability to tune the band gap over the entire mid and long wave infrared spectrum gives a large number of applications for devices made from InAs/GaSb superlattice material. The growth of high quality InAs/GaSb superlattice material requires a careful study of the parameters used during epitaxial growth. This work investigates the growth of tunnel junctions for InAs/GaSb based superlattice light emitting diodes, the presence of defects in GaSb homoepitaxial layers, and variations in the growth rate of InAs/GaSb superlattice samples. Tunnel junctions in cascaded structures must provide adequate barriers to prevent carriers from leaking from one emission region to the next without first recombining radiatively, while at the same time remain low in tunneling resistance for current recycling. A variety of tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice light emitting diodes, which past studies have found hole confinement to be problematic. GaSb was used on the p-side of the junction, while various materials were used on the n-side. Al0.20In0.80As0.73Sb0.27 tunnel junctions function best due to the combination of favorable band alignment and ease of growth. Pyramidal defects have been observed in layers of GaSb grown by molecular beam epitaxy on GaSb substrates. These defects are typically 3-8 nanometers high, 1-3 microns in diameter, and shaped like pyramids. Their occurrence in the growth of GaSb buffer layers can propagate into subsequent layers. Defects are nucleated during the early stages of growth after the thermal desorption of native oxide from the GaSb substrate. These defects grow into pyramids due to a repulsive Ehrlich-Schwoebel potential on atomic step edges leading to an upward adatom current. The defects reduce in density with growth of GaSb. The insertion of a thin AlAsSb layer into the early stages of the GaSb buffer increases the rate of elimination of the defects, resulting in a smooth surface within 500nm. The acceleration of defect reduction is due to the temporary interruption of step-flow growth induced by the AlAsSb layer. This leads to a reduced isolation of the pyramids from the GaSb epitaxial layer, and allows the pyramidal defects to smooth out. Investigations into varying the superlattice growth rate have not been reported widely in the literature. Due to the frequent use of soaks, growth interrupts, and other interface structuring steps the superlattice growth rate and the interface layer sequence are linked. In order to properly study the effects of growth rate variations and interface design changes it is necessary to account for the effect on growth rate due to the interfaces. To this end it is useful to think of the effective growth rate of the superlattice, which is the total layer thickness divided by the total time, per superlattice period. Varying the effective growth rate of superlattice photoluminescence samples shows a peak in output at ~0.5 monolayers per second. Investigations into the structural properties of the superlattices show no decrease in structural uniformity for effective growth rates up to ~1.4 monolayers per second.

  20. Gallium arsenide p+–n–p+-structures with impoverished base area

    Directory of Open Access Journals (Sweden)

    Karimov A. V.


    Full Text Available It is displayed experimentally, that the current transport’s mechanism through p+GaAs–nGaAs–p+GaAs-structure is formed by injection-tunnel and generation-recombination mechanisms. Injection-tunnel current prevails at modulation of base’s part which contains defects, and generation-recombination currents are determinative at modulation of base’s part with lesser defectiveness. p+GaAs–nGaAs–p+GaAs-structures are of interest for creating voltage suppressors and electronic switches on their base.

  1. Pilot Line 3: Gallium Arsenide Pilot Line for High Performance Components (United States)


    C&onVoJud Im"pedanco DESCRIPTON 4 t taw OpO ~’* On-Package The MLC44 package is 8 highspeed muiUa’,w ceamc package developed at c~m TrQuint...will be a cluster of early failures ( infant mortality), usually followed by failure mechanisms that take longer to occur. For integrated circuit...production, the infant mortality failures are removed before shipment by a bum-in procedure. For this program, a bum-in operation will not be performed on

  2. Indium arsenide as a material for biological applications: Assessment of surface modifications, toxicity, and biocompatibility (United States)

    Jewett, Scott A.

    III-V semiconductors such as InAs have recently been employed in a variety of applications where the electronic and optical characteristics of traditional, silicon-based materials are inadequate. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it very attractive for high performance transistors, optical applications, and chemical sensing. However, InAs forms an unstable surface oxide layer in ambient conditions, which can corrode over time and leach toxic indium and arsenic components. Current research has gone into making InAs more attractive for biological applications through passivation of the surface by adlayer adsorption. In particular, wet-chemical methods are current routes of exploration due to their simplicity, low cost, and flexibility in the type of passivating molecule. This dissertation focuses on surface modifications of InAs using wet-chemical methods in order to further its use in biological applications. First, the adsorption of collagen binding peptides and mixed peptide/thiol adlayers onto InAs was assessed. X-ray photoelectron spectroscopy (XPS) along with atomic force microscopy (AFM) data suggested that the peptides successfully adsorbed onto InAs, but were only able to block oxide regrowth to a relatively low extent. This low passivation ability is due to the lack of covalent bonds of the peptide to InAs, which are necessary to effectively block oxide regrowth. The addition of a thiol, in the form of mixed peptide/thiol adlayers greatly enhanced passivation of InAs while maintaining peptide presence on the surface. Thiols form tight, covalent bonds with InAs, which prevents oxide regrowth. The presence of the collagen-binding peptide on the surface opens the door to subsequent modification with collagen or polyelectrolyte-based adlayers. Next, the stability and toxicity of modified InAs substrates were determined using inductively coupled plasma mass spectrometry (ICP-MS) and zebrafish studies. InAs substrates modified with a poly(ethylene glycol) (PEG) based adlayer showed the highest stability in physiological conditions by leaching the lowest amounts of indium and arsenic. Modified substrates also showed no toxicity to zebrafish after incubation for 120 hours. Overall, these findings suggest that a variety of adlayers can be functionalized onto InAs surfaces and successfully passivate the surface, along with decreasing InAs toxicity. Finally, we demonstrate how surface modifications can be applied to a different III-V semiconductor, GaN, in order to modulate cellular adhesion. Modification of GaN with a laminin-derived peptide increases the adhesion of PC12 neuronal cells and alters the physical morphology of the adhered cells. Additionally, no toxicity to cells is observed, further demonstrating the potential for employing III-V semiconductors in biological applications.

  3. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.


    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  4. Cathodoluminescence on the Effects of Te Implantation and Laser Annealing in Gallium Arsenide. (United States)


    to me by Jim Miskimen , George Gergal , and Ron Gabriel of the AFIT Physics Laboratory staff . Finally , I would like to thank my wife for her...wavelength counter) . The spectrometer could also be driven externally by signals from a step motor driver designed and constructed by G . Gergal (Ref 13

  5. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Mechanism of Current Oscillations in Gallium Arsenide Photoconductive Semiconductor Switches (United States)

    Tian, Li-Qiang; Shi, Wei


    Semi-insulating photoconductive semiconductor switch with an electrode gap of 4 mm, triggered by a laser pulse with energy of 0.5mJ, and applied bias of 2.5kV, the periodicity current oscillation with a cycle of 12ns is obtained. It is indicated that the current oscillation is one mode of transferred electron effect, namely quenched domain mode. This mode of trans-electron oscillator is obtained when the instantaneous bias electric field drops below the sustaining field (the minimum electric field required to support the domain) before the domain reaches the anode, which leads to the domain disappears somewhere in the bulk of the switch and away from the ohmic contacts. We mainly analyse the time-dependent characteristic of the mode, the theoretical analysis results are in excellent agreement with the experiment.

  6. Density functional study of optical properties of beryllium chalcogenides compounds in nickel arsenide B8 structure

    Energy Technology Data Exchange (ETDEWEB)

    Al-Douri, Y., E-mail: [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Baaziz, H., E-mail: [Physics Department, Faculty of Science University of M' sila, 28000 M' sila (Algeria); Charifi, Z. [Physics Department, Faculty of Science University of M' sila, 28000 M' sila (Algeria); Reshak, Ali H. [School of complex systems, FFWP-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia)


    The structural, electronic and optical properties of beryllium chalcogenides BeS, BeSe and BeTe using the full-potential linear augmented plane wave (FP-LAPW) method are investigated. The exchange-correlation energy within the local density approximation (LDA) and the generalized gradient approximation (GGA) are described. The Engel-Vosko (EVGGA) formalism is applied for electronic and optical properties. The structural parameters of our model and the transition pressure from zinc-blende (B3) to the NiAs (B8) phase are confirmed. It is found that these compounds have indirect band gaps except for BeTe in NiAs (B8) phase. The results of reflectivity, refractive index and optical dielectric functions of Be compounds are investigated. An agreement is found between our results and those of other theoretical calculations and the experimental data.

  7. Triple crystal x-ray diffraction analysis of chemical-mechanical polished gallium arsenide (United States)

    Wang, V. S.; Matyi, R. J.


    High-resolution triple crystal x-ray diffraction has been used to monitor the magnitude of diffuse scattering from chemical-mechanical (CM) polished GaAs. The diffuse scattering, which is attributed to kinematic scattering arising from polish-induced crystallographic defects, was found to be only slightly affected when each of four CM polish parameters (bromine concentration in Br2/methanol, total polish time, polish pad rotation speed, and force on sample) was varied individually. The combined effect of increases in both the pad rotation speed and the force on the sample increased the magnitude of the diffuse scattering, suggesting the generation of mechanical damage. When all four variables were increased to their maximum values, the diffuse scattering increased dramatically and became anisotropic. We have expressed the magnitude of the diffuse scattering in terms of an ``excess intensity'' in reciprocal space to provide a semi-quantitative relation between CM polish parameters and the generation of polish-induced damage.

  8. The attachment and characterization of DNA probes on gallium arsenide-based semiconductor surfaces (United States)

    Yang, Joonhyuk


    Immobilization of nucleic acid molecules on solid surfaces is the core of numerous important technologies in the genomics, disease diagnostics and biosensors applications. The architecture and density of immobilized probe molecules depend on the type of the solid surface on which they are anchored. Even though many different types of surfaces have been studied as substrates for deoxyribonucleic acid (DNA) attachment, the development of a new type of substrate, which is reproducible, stable, highly controlled and easily transferred to practical applications, is still needed. Recent studies have shown that As terminated GaAs-based semiconductors can be used as substrates for immobilized DNA layers. In this study, I aim to understand the attachment of nucleic acid onto the surfaces of As-terminated GaAs-based semiconductors and focus on improving the "brush-structure", which is essential for high quality of biochip based on a DNA layer. Attachment of 8-base and 100-base thiolated ssDNA layers on arsenic terminated GaAs(001) was achieved and characterized. The covalent bonds between the thiolated oligonucleotides with As atoms on the GaAs surface were investigated using x-ray photoelectron spectroscopy (XPS), and the surface morphology was obtained using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). In addition, I studied the effect of DNA length and the presence of a good solvent, such as water, on the oligonucleotides on a GaAs surface. I also investigated the effects of the thiol-based spacer and electrolyte concentration to improve the brush-like structure of the DNA layer. Finally, irradiation effects and AlGaAs resonators have been studied for the applications of DNA brush layer on GaAs as biosensor during the change of attachment probe DNA and hybridization to target DNA. For the 8-base thiolated ssDNA case, AFM results showed that the layer thickness was about ˜2.2 nm in dry mode and increased in wet mode. Replacement reaction from N-, O-As bonds to S-As bonds was observed with addition of MCH as indicated by analysis of XPS spectra. The concentration of electrolyte affected the brush like layer structure. In the case of the longer, more flexible DNA with 100 bases, the DNA molecules strongly interacted with each other and formed big cluster, of 330˜440nm in diameter on the surface. Finally, for the applications, a high level of radiation destroyed the brush layer. An AlGaAs resonator used as proof of concept a change in mass by a change in resonance frequency under hybridization reaction with complementary target DNA. This result shows that the design is viable and has a defection of ˜25pg.

  9. Lower critical field and SNS-Andreev spectroscopy of 122-arsenides: Evidence of nodeless superconducting gap (United States)

    Abdel-Hafiez, M.; Pereira, P. J.; Kuzmichev, S. A.; Kuzmicheva, T. E.; Pudalov, V. M.; Harnagea, L.; Kordyuk, A. A.; Silhanek, A. V.; Moshchalkov, V. V.; Shen, B.; Wen, Hai-Hu; Vasiliev, A. N.; Chen, Xiao-Jia


    Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field Hc1(T ) of a Ca0.32Na0.68Fe2As2 (Tc≈34K) single crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic s-wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound Ba0.65K0.35Fe2As2, with the same Tc. We estimated the range of the large gap value ΔL=6-8 meV (depending on small variation of Tc) and its a k space anisotropy of about 30%, and the small gap ΔS≈1.7±0.3 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.

  10. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.


    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  11. The scaling of the effective band gaps in indium-arsenide quantum dots and wires. (United States)

    Wang, Fudong; Yu, Heng; Jeong, Sohee; Pietryga, Jeffrey M; Hollingsworth, Jennifer A; Gibbons, Patrick C; Buhro, William E


    Colloidal InAs quantum wires having diameters in the range of 5-57 nm and narrow diameter distributions are grown from Bi nanoparticles by the solution-liquid-solid (SLS) mechanism. The diameter dependence of the effective band gaps (DeltaE(g)s) in the wires is determined from photoluminescence spectra and compared to the experimental results for InAs quantum dots and rods and to the predictions of various theoretical models. The DeltaE(g) values for InAs quantum dots and wires are found to scale linearly with inverse diameter (d(-1)), whereas the simplest confinement models predict that DeltaE(g) should scale with inverse-square diameter (d(-2)). The difference in the observed and predicted scaling dimension is attributed to conduction-band nonparabolicity induced by strong valence-band-conduction-band coupling in the narrow-gap InAs semiconductor.

  12. Computer modeling characterization, and applications of Gallium Arsenide Gunn diodes in radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    El- Basit, Wafaa Abd; El-Ghanam, Safaa Mohamed; Kamh, Sanaa Abd El-Tawab [Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Cairo (Egypt); Abdel-Maksood, Ashraf Mosleh; Soliman, Fouad Abd El-Moniem Saad [Nuclear Materials Authority, Cairo (Egypt)


    The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or γ fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different γ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

  13. Origin of optical losses in gallium arsenide disk whispering gallery resonators

    CERN Document Server

    Parrain, David; Wang, Guillaume; Guha, Biswarup; Santos, Eduardo Gil; Lemaitre, Aristide; Senellart, Pascale; Leo, Giuseppe; Ducci, Sara; Favero, Ivan


    Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

  14. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail:; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)


    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  15. Gate Last Indium-Gallium-Arsenide MOSFETs with Regrown Source-Drain Regions and ALD Dielectrics (United States)

    Carter, Andrew Daniel

    III-V-based MOSFETs have the potential to exceed the performance of silicon-based MOSFETs due to the semiconductor's small electron effective mass. Modern silicon-based MOSFETs with 22 nm gate lengths utilize high-k gate insulators and non-planar device geometries to optimize device performance. III-V HEMT technology has achieved similar gate lengths, but large source-drain access resistances and the lack of high-quality gate insulators prevent further device performance scaling. Sub-22 nm gate length III-V MOSFETs require metal-semiconductor contact resistivity to be less than 1 ohm-micron squared, gate insulators with less than 1 nm effective oxide thickness, and semiconductor-insulator interface trap densities less than 2E12 per square centimeter per electron volt. This dissertation presents InGaAs-based III-V MOSFET process flows and device results to assess their use in VLSI circuits. Previous III-V MOSFET results focused on long (>100 nm) gate lengths and ion implantation for source-drain region formation. Scaling III-V MOSFETs to shorter gate lengths requires source-drain regions that have low sheet resistance, high mobile charge densities, and low metal-semiconductor contact resistance. MBE- and MOCVD-based raised epitaxial source-drain regrowth meet these requirements. MBE InAs source-drain regrowth samples have shown 0.5 to 2 ohm-micron squared metal semiconductor contact resistivities. MOCVD InGaAs source-drain regrowth samples have shown resistance to InGaAs MOSFETs. Gate insulators on III-V materials require large conduction band offsets to the channel, high dielectric permittivities, and low semiconductor-insulator interface trap densities. An in-situ hydrogen plasma / trimethylaluminum treatment has been developed to lower the gate semiconductor-insulator interface trap density. This treatment, done immediately before gate insulator deposition, has been shown to lower MOS capacitor interface trap densities by more than a factor of two. Devices using gate-first MBE regrowth, gate-last MBE regrowth, and gate-last MOCVD regrowth were fabricated and resulting devices characterized. 65 nm gate length gate-first MBE regrowth devices employing a 2.2 nm EOT Al 2O3 gate insulator show peak transconductances of 0.3 mS/micron at 1 V Vds. Gate-first FET performance scaling is limited by processed-induced damage and ungated access regions. 64 nm gate length gate-last MBE regrowth devices employing a 1.21 nm EOT Al2O 3 / HfO2 bi-layer gate insulator show peak transconductances of 1.4 mS/micron at 0.5 V Vds. Other gate-last MBE samples had long channel subthreshold swings as low as 117 mV/dec. 48 nm gate length gate-last MOCVD MOSFETs employing a 0.8 nm EOT HfO2 gate insulator and digital channel etching show peak transconductances of 2 mS/micron at 0.5 V Vds, with long channel devices having 97 mV/dec subthreshold swing.

  16. Atomistic simulation studies of iron sulphide, platinum antimonide and platinum arsenide

    CSIR Research Space (South Africa)

    Ngoepe, PE


    Full Text Available The authors present the results of atomistic simulations using derived interatomic potentials for the pyrite-structured metal chalcogenides FeS2, PtSb2 and PtAs2. Structural and elastic constants were calculated and compared with experimental...

  17. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide. (United States)

    Niu, Q; Yu, W C; Yip, K Y; Lim, Z L; Kotegawa, H; Matsuoka, E; Sugawara, H; Tou, H; Yanase, Y; Goh, Swee K


    In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.

  18. Digital Logic and Reconfigurable Interconnects Using Aluminum Gallium Arsenide Electro-Optic Fredkin Gates (United States)


    growth and characte . Anthony Ticknor, of Lockheed, was responsbe for the beam propagation method computer program. I have also enjoyed valuable...134. R. J. Pressley , ed., Handbook of Lasers With Selected Data on Optical Technolgav, CRC Press, Cleveland, OH, 1971. 135. A. Kurnar and T. P

  19. A retrospective study of californium-252 neutron brachytherapy combined with EBRT versus 3D-CRT in the treatment of esophageal squamous cell cancer. (United States)

    Wang, Qifeng; Li, Tao; Lang, Jinyi; Wang, Jie; Wang, Jian; Liu, Huiming; Jia, Xitang; Liu, Bo; Wang, C-K Chris


    We conducted a retrospective analysis on 884 patients who were diagnosed with esophageal squamous cell carcinoma (ESCC) and treated with either the neutron brachytherapy in combination with external beam radiotherapy (NBT + EBRT) or 3-dimensional conformal radiation therapy (3D-CRT) to determine the differences in efficacy and morbidity between the two treatment groups. The 884 ESCC patients treated with either NBT + EBRT or 3D-CRT between 2002 and 2012 were retrospectively reviewed and analyzed. Multivariable Cox regression was used to compare oncologic outcomes of the two groups of patients in the context of other clinically relevant variables. The acute and chronic toxicities associated with the two groups were compared using Fisher exact and log-rank tests, respectively. Among the 884 patients, 545 received NBT + EBRT and 339 received 3D-CRT (i.e. EBRT-only). The age range is 39-95 years (median 66). The follow-up time range is 3-145 months (median 32). The analysis shows that the NBT + EBRT group has higher overall survival rate and local control rate than that of the 3D-CRT group. The acute toxicity effects were acceptable for both groups of patients with the NBT + EBRT group showing higher rates of leukopenia and thrombocytopenia and the 3D-CRT group showing higher rates on fistula and massive bleeding. The patients treated with NBT + EBRT showed better oncologic outcomes than those treated with 3D-CRT. The toxicity effects were acceptable for both groups with the NBT + EBRT group showing higher rates on the acute effects and the 3D-CRT group showing higher rates on the late effects.

  20. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.


    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  1. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  2. Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells (United States)

    Podell, Adam P.

    In this work, InAs quantum dots grown by organometallic vapor-phase epitaxy (OMVPE) are investigated for application in III - V material solar cells. The first focus is on the opti- mization of growth parameters to produce high densities of uniform defect-free quantum dots via growth on 2" vicinal GaAs substrates. Parameters studied are InAs coverage, V/III ratio and growth rate. QDs are grown by the Stranski-Krastanov (SK) growth mode on (100) GaAs substrates misoriented toward (110) or (111) planes with various degrees of misorientation from 0° to 6°. Atomic force microscopy results indicated that as misorientation angle increased toward(110),critical thickness for quantum dot formation increased with theta c =1.8ML,1.9ML and 2.0 ML corresponding to 0°, 2° and 6°, respectively. Results for quantum dots grown on (111) misoriented substrates indicated, on average, that higher densities of quantum dots were achieved, compared with similar growths on substrates misoriented toward (110). Most notably, a stable average number density of 8 x 1010cm -2 was observed over a range of growth rates of 0.1ML/s - 0.4ML/s on (111) misoriented substrates compared with a decreasing number density as low as 2.85 x 1010cm -2 corresponding to a growth rate of 0.4ML/s grown on (110) misoriented substrates. p-i-n solar cell devices with a 10-layer quantum dot super- lattice imbedded in the i-region were also grown on (100) GaAs substrates misoriented 0°, 2° and 6° toward (110) as well as a set of devices grown on substrates misoriented toward (111). Device results showed a 1.0mA/cm2 enhancement to the short-circuit current for a v 2° misoriented device with 2.2 ML InAs coverage per quantum dot layer. Spectral response measurements were performed and integrated spectral response showed sub-GaAs bandgap short-circuit contribution which increased with increasing InAs coverage in the quantum dot layers from 0.04mA/cm2/ML, 0.28mA/cm2/ ML and 0.19mA/cm2/ML corresponding to 0°, 2° and 6° misorientation, respectively. The second focus of this study was on the OMVPE growth of InAs quantum dots in a large-area commercial reactor. Quantum dot growth parameters require careful balancing in the large-scale reactor due to different thermodynamic and flow profiles compared with smaller- area reactors. The goal of the work was to control the growth process in order to produce high densities of uniform quantum dots for inclusion in double and triple junction III - V material solar cells. Initial growth proved unsuccessful due to lack of familiarity with the process but through balancing of injector flows of alkyl gasses, coherent and optically active quantum dots were able to first be formed at low densities (0.5 - 0.7 x 1010 cm-2). Further optimization included increased quantum dot growth times leading to number densities in the (2.1-2.7x10 10cm-2 with improved optical performance as measured by photoluminescence (PL) spectroscopy. Finally, an investigation of GaAs spacer layer thickness for improved optical coupling was performed, indicating that a combined low temperature and high temperature GaAs thickness of 9.3nm led to strong PL intensity indicating good optical coupling of QD layers. Ge/(In)GaAs double junction solar cells were grown and fabricated with and without quantum dots in the (In)GaAs cell to investigate the effect of quantum dot inclusion on device performance. AM 0 measurements showed an average increase of 1.0mA/cm 2 in short-circuit current for these devices. Integrated spectral response measurements revealed a contribution to short-circuit current of 0.02mA/cm2/QDlayer which is consistent with reports seen in literature. The current improvement for the double junction solar cells motivated the investigation of quantum dot inclusion in the (In)GaAs junction of a Ge/(In)GaAs/InGaP triple junction solar cell. AM0 measurements on these cells did not reveal any increase in current for quantum dot enhanced devices over a baseline device. Integrated spectral response for each junction revealed an increase of 0.3mA/cm 2 in current for the middle junction and the top junction, respectively, compared with baseline results for these junctions, but also that the InGaP top junction was current limiting. This potentially is due to poor material quality in the InGaP junction as a result of quantum dot inclusion in the junction beneath it or to strain effects re- sulting from quantum dot inclusion. This current limiting nature of the top junction may have led to a reduced efficiency for quantum dot devices compared with a baseline and further opti- mization is required in order increase the efficiency of the quantum dot device compared with a baseline device.

  3. Thin films of gallium arsenide on low-cost substrates. Final report, July 5, 1976--July 2, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Campbell, A.G.; Johnson, R.E.; Manasevit, H.M.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.


    The metalorganic chemical vapor deposition (MO-CVD) technique has been applied to the growth of thin films of GaAs and GaAlAs on inexpensive polycrystalline or amorphous substrate materials (glasses, glass-ceramics, alumina ceramics, and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium (TMG), arsine (AsH/sub 3/), and trimethylaluminum (TMAl) are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperature in the range 600 to 800/sup 0/C, to produce the desired film composition and properties. Of ten candidate low-cost substrates initially identified for investigation, Corning Code 0317 glass and composites of CVD Ge/glass and sputtered Mo/glass were found to be the most satisfactory, the latter eventually serving as a reference substrate against which to compare the performance of other substrates. Single-crystal window-type solar cells, polycrystalline Schottky-barrier cells, and deposited-junction polycrystalline cells have been grown, fabricated, and characterized. Epitaxial GaAlAs/GaAs p-n junction cells with thin (approx. 500A) Ga/sub 0/ /sub 2/Al/sub 0/ /sub 8/As windows and GaAs:Zn - GaAs:Se junctions were made with AMO efficiencies as high as 12.8 percent with no AR coating. Schottky barrier cells with efficiencies of 2.25 percent AMO (no AR coating) have been made on n/n polycrystalline GaAs structures on Mo/glass composite substrates, with short-circuit current densities up to 12.5 mA/cm/sup 2/. Also, results of analyses of material and processing costs associated with fabrication of thin-film GaAlAs/GaAs solar cells by the MO-CVD process are discussed.

  4. Gallium arsenide-based apertured vertical-cavity surface-emitting lasers and microcavity light emitting diodes (United States)

    Chen, Hao

    A new design approach for all all-epitaxial index-guiding VCSEL fabrication with self-aligned current and optical confinement is proposed and demonstrated using MBE regrowth. The epitaxial regrowth approach has significant advantages over oxide confinement due to elimination of strain, aperture size controllability across wafer, and the aperture size controllability from wafer to wafer. A simple microcavity model is used to demonstrate the lateral mode confinement effect obtained by blue-shifting resonance frequency in the lateral regions of cavity, which leads to the new design concept for engineering waveguided VCSELs by modulation of the optical cavity length through MBE regrowth over selectively etched surface structures. The lithographically-defined aperture can be scaled to submicron level---simplifying its post-growth processing and thus making it easier to incorporate additional structural modifications (such as air-gap DBR VCSELs) for improved device performance. Enabling techniques, which include various surface protection and current blocking methods, have been developed in this work for the epitaxial regrowth approach. In-situ low-temperature-grown InAs capping is used to protect the first-step-grown wafer from standard chemical process, and is gently evaporated inside growth chamber before regrowth. Various current blocking structures have been investigated including reversed p-n junction assisted with resistive LT material, buried tunnel junction, and implanted current aperture. Excellent current confinement is achieved, which consequently leads to the first demonstration of GaAs-based air-gap DBR VCSELs and buried tunnel junction (BTJ) VCSELs. A novel fabrication process of air-gap/GaAs DBR mirrors has been realized by selectively removing AlGaAs sacrificial layers. Air-gap/GaAs DBR mirrors have the highest achievable refractive index contrast. This allows Air-gap/GaAs DBR mirrors to achieve desirable features, including a higher reflectivity, wider reflection stopband, lower diffraction loss, and smaller penetration depth than conventional DBR mirrors. An electrically-pumped MBE-regrown 980 nm VCSELs using p-type air-gap DBRs is demonstrated with a low threshold current density of 764 A/cm2 at room temperature under continuous-wave operation. (Abstract shortened by UMI.)

  5. Formation of indium arsenide atomic wires on the In/Si(111)-4 × 1 surface (United States)

    Guerrero-Sánchez, J.


    Density functional theory calculations have been applied to describe the formation of InAs atomic-size wires on the In/Si(111)-4 × 1 surface. Two different coverages, ¼ ML and ½ ML, were considered. We have taken in to consideration different high symmetry sites for As adsorption. At ¼ ML coverage, in the energetically stable configuration, As and In atoms form atomic wires. Upon increasing the coverage up to ½ ML of As, a pair of InAs atomic wires are formed. Surface formation energy calculations help to clarify the stability ranges of these structures: for arsenic poor conditions the stable configuration corresponds to the In/Si(111)-4 × 1 surface (with no As atoms). Increasing the arsenic content, for intermediate to rich As conditions, results in the formation of an InAs wire. At the arsenic rich limit, the formation of two InAs wires is favorable. The InAs wires are highly symmetric, and charge density distributions and projected density of states show the covalent character of the Insbnd As bonds of the wire. These results demonstrate that the In/Si(111)-4 × 1 surface may be used as a substrate to growth quasi-unidimensional InAs wires.

  6. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices (United States)

    Mascarenhas, Angelo


    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  7. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Angelo


    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  8. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys (United States)


    Russia semiconductor web: SVA /NSM/Semicond/ 119 6.4 Refractive Index Measurements Refractive index measurements on wafer shaped...coefficient”, Appl. Phys. Lett. 66 (16) p2101-2103, (1995). 76. SVA /NSM/Semicond 77. Sadao Adachi, “Band gaps and refractive indices

  9. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)


    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  10. Infrared focal plane array based on gallium indium arsenideGaInAs/InP quantum well infrared photodetectors (United States)

    Jiang, Jutao

    There are many military and commercial applications for Infrared (IR) focal plane arrays (FPAs). Today, most IR FPAs are made with intrinsic HgCdTe (MCT) photodetectors. IR photodetectors based on intersubband-transition mechanism, such as quantum well infrared photodetectors (QWIPs), possess many advantages by comparing with MCTs. The goal of this research is to develop IR FPAs based on these novel QWIPS. First, the relevant theoretical basis for intersubband n-type QWIP and infrared imaging array will be presented. Next, the material growth and characterization using low-pressure metalorganic chemical vapor deposition technique will be discussed in detail. Developing a FPA fabrication process is the most important part of this work and it will be given in detail. The important technologies and equipment involved in the fabrication process will also be described. The FPA sample is bonded to a 256 x 256 Litton readout integrated circuit chip for testing. Important aspects related to the Litton chip will also be discussed. Finally, the infrared FPA testing and results will be described in detail. Additionally, to prepare for our long-term goal---monolithic integration of focal plane array with Silicon based readout circuit, the growth technique of QWIP on Si substrate is also studied in this work. The culmination of this work includes many "best" and "first" reported results: a record high detectivity of QWIP grown on Si substrate and the first reported long-wavelength IR FPA based on Al-free corrugated InGaAs/InP QWIPs.

  11. A Novel Approach to Modeling the Effects of Radiation in Gallium-Arsenide Solar Cells Using Silvaco's ATLAS Software

    National Research Council Canada - National Science Library

    Crespin, Aaron


    The effects of radiation in GaAs solar cells has been extensively researched and the results of numerous investigation have yielded a considerable amount of information about the degradation in irradiated solar cells...

  12. Physicochemical conditions for the stability of manganese-doped nanolayers of gallium arsenide and its iso-electronic analogues

    Directory of Open Access Journals (Sweden)

    Yu. V. Terenteva


    Full Text Available In this paper research of stability of nanolayers of manganese doped materials of AIIIBV and AIIBIVСV2 types holding much promise as spintronic semiconductor compounds is described. The method of non-local density functional has been applied to calculate bonding energies {εij (r} in atomic pairs for structures of AIIIBV and AIIBIVСV2 types and for MnAs. According to the calculations of internal energy, entropy and free energy of Helmholtz (Т = 298К, in the context of used models, addition of manganese to the arsenide’s AIIIBV and AIIBIVСV2 nanolayers affects its stability in different ways depending on its morphology and substitution mode. However, a critical instability in nanofilm leading to the tendency of growing of a new phase germ may be formed under any manganese concentrations. This leads to deterioration of electrophysical parameters of magnetic semiconductor compounds that is agreed with experimental data.

  13. The galium arsenide (GaAs laser radiation in the radial nerve regeneration submitted to secundary surgical repair

    Directory of Open Access Journals (Sweden)

    Daniel Roulim Stainki


    Full Text Available Vinte e quatro cães adultos, sem raça definida, foram separados em quatro grupos e submetidos a neurotomia bilateral do nervo radial, em nível do terço distal do úmero e, 21 dias após, sofreram anastomose epineural secundária, término-terminal. Nos 10 dias subseqüentes à neuroanastomose, o membro esquerdo de todos os cães foi irradiado com laser arseneto de gálio no intuito de investigar sua influência na regeneração do nervo. O membro contralateral serviu como testemunha. A recuperação funcional foi verificada através da característica da deambulação, testes de sensibilidade e avaliação motora. Foram efetuadas biópsias bilaterais, na região de anastomose, aos 10 dias (grupo A, 30 dias (grupo B, 60 dias (grupo C e 90 dias (grupo D após a reconstituição cirúrgica, para estudo morfológico em microscopia óptica. A proliferação de tecido conjuntivo na linha de anastomose é a complicação mais séria no processo de regeneração nervosa. A radiação laser diminui a intensidade da resposta inflamatória ao fio de sutura, mas pode contribuir para a formação de neuroma mais exuberante.

  14. Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide (United States)

    Schaar, Joseph Eden

    Three types of micro-structured GaAs have been used to generate THz radiation by parametric frequency down-conversion: (i) orientation-patterned GaAs, OP-GaAs, (ii) optically contacted GaAs wafers, OC-GaAs, and (iii) diffusion-bonded GaAs plates, DB-GaAs. THz frequencies between 0.5--3.5 THz were generated using the various GaAs samples. THz average powers as large as 1 mW generated from a pump power of 8.5 W, corresponding to an optical-to-THz power conversion efficiency of 1.2 x 10-4, were observed by placing the GaAs inside a doubly resonant synchronously pumped optical parametric oscillator. The quantum conversion efficiencies were as large as 1.2%. The parametric conversion efficiency for THz generation is inherently small since the ratio of the THz and optical frequencies is small. Difference-frequency generation (DFG) between the intracavity signal and idler waves generated the THz radiation. The doubly resonant optical parametric oscillator (DRO) resonated the signal and idler pulses, with picosecond-scale pulse widths and greater than 50 W of average power in each wave at lambda ≈ 2 microm. The frequency splitting between the signal and idler waves was tuned by adjusting the temperature of the DRO gain material, periodically poled LiNbO3 (PPLN). The bandwidths of the resonant signal and idler waves were between 100--200 GHz since the OPO process used Type-II QPM where the signal and idler fields were orthogonally polarized. Designs for maximizing the THz power for both the singly and doubly resonant OPOs were described yielding expressions for the THz, signal, idler, and pump powers in terms of crystal length, optical beam size, and optical absorption coefficient. A THz-cascading process was observed during which the THz wave was amplified in the GaAs crystal by multiple pairs of infrared waves. Quantum-mechanically, THz cascading corresponds to the generation of multiple THz photons from a single infrared photon. For proper designs of the OPO-cavity losses and compensation of the dispersion of the intracavity PPLN and GaAs crystals, quantum conversion efficiencies far greater than 100% can be achieved. An electronic feedback system was developed to stabilize the intracavity power of the DRO as well as the generated THz power. Locked operation lasted as long as 30 minutes limited only by the thermal expansion of the optical table and the finite expansion of the PZT element. A passive thermo-optic feedback effect also stabilized the DRO power, where absorbed optical power in the GaAs deposited heat leading to a rise in the refractive index of the GaAs. A characterization of this thermo-optic effect in terms of a negative feedback system has been described. Independently varying the signal and idler cavity lengths in the DRO led to the discovery of certain cavity-length regimes where oscillation may not occur as well as cavity-length regimes where the temporal overlap of the signal and idler pulses is maximized. A numerical simulation was developed modeling the temporal features of the DRO. The results of the numerical simulations agreed well with experimental measurements. The temporal overlap of the pulses was calculated for several values of parametric gain and DRO round-trip loss, and operating regimes where the pulses were symmetric and the temporal overlap was nearly maximized were identified. An approach to re-time the pulses using a pair of intracavity birefringent crystals, such that the temporal overlap is maximized, is described. Fluctuations of the intracavity power of the synchronously pumped optical parametric oscillator were measured. Over certain cavity-length detunings, the fluctuations were aperiodic with microsecond-scale transients. At longer cavity-length detunings, the fluctuations were periodic (and nearly sinusoidal) with fundamental frequencies between 200--700 kHz. The numerical simulations reproduced the fluctuations and showed that the minimum set of physical effects necessary to produce the fluctuations are three-wave mixing, group-velocity mismatch, and self-phase-modulation of the resonant wave in the case of a singly resonant oscillator. The fluctuations were also observed in the doubly resonant OPO both experimentally and in the results of the numerical simulations. Operating regimes that evade the appearance of these oscillations were identified. (Abstract shortened by UMI.)

  15. Experimental Determination of Quantum and Centroid Capacitance in Arsenide-Antimonide Quantum-Well MOSFETs Incorporating Nonparabolicity Effect (United States)


    14]. While extracting the effective mass from SdH oscillations, the background magnetoresistance was corrected as follows. The envelope of maxima... magnetoresistance that was subtracted from the measured ρXX. Fig. 10 shows the periodic SdH oscillations in ΔρXX/ρ0 (after removing the background...demonstration of metal gate plasmon screening and channel strain engineering in high-κ/metal-gate CMOS transistors, and the investigation of the

  16. Growth of thick lattice mismatched layers of gallium indium arsenic antimonide on gallium arsenide substrates from quaternary melts (United States)

    Kumar, Anika

    Compound semiconductors (III-V, II-VI, IV-IV) with variable band gaps are desirable to obtain high performance electronic and optoelectronic devices. Currently, lattice mismatched epilayers of variable bandgap semiconductors are grown on commercially available binary substrates by non-equilibrium growth techniques (such as MOCVD and MBE) using a variety of buffer layer schemes. Although thick epilayers are observed to result in lower dislocation densities even for large lattice mismatches, achieving thick epitaxial layers remains a challenge due to the slow growth rates of MBE and MOCVD techniques that are commonly used in the industry. Hence, there is a necessity for devising a technique that will grow thick layers of lattice mismatched compounds at high growth rates. In this research, we have demonstrated a new quaternary melt thermochemistry to grow thick layers of uniform composition of desired ternaries and quaternaries on commercially available binary substrates (such as GaAs). Using this approach, we have achieved the growth of thick (˜ 100 mum) uniform composition GaxIn1-xAs, InxGa1-xSb yAs1-y and InAs ySb1-y layers on GaAs substrate. The growth rates achieved in our growth experiments are significantly higher than any other traditional epitaxial growth process. One of the interesting features observed in our growth experiments is the occurance of a compositionally graded quaternary buffer layer between the substrate and the final layer (of uniform composition). This is found to efficiently relieve misfit strain and lead to lower dislocation densities in the epilayers. It is important to point out that no specific efforts were made to change growth conditions (during epi-growth) to compositionally grade the buffer layers, making this growth scheme extremely simple to implement for large scale applications. One of the key achievements of this work is the growth of thick In xGa1-xAs ySb1-y layers of constant composition with cut off wavelength of 10 mum on GaAs substrates. The dislocation densities were found to be as low as 7 x 105 cm -2 for a lattice mismatch of 13.08% which is considerable less than any reported value for similar mismatches. The layers had a room temperature electron mobility as high as 1.4 x 104 cm2/Vs and carrier concentration of 4.2 x 1016 cm-3 has been achieved indicating the high quality of the grown epilayers and potential applications for infra-red detectors. Transmission electron microscopy studies have been used to investigate the interfacial and crystalline quality of the epilayers. It is observed that the dissolution of GaAs by the InSb melt leads to the delineation of the (111) family of planes. Twin ning is also observed within the epilayer. These observations have helped us arrive at a model for the growth mechanism and the explanation of the polycrystallinity of the epilayer.

  17. Transient Velocity Assessment in Gallium Arsenide, and of Other GaAs Characteristics Related to Device Functions. (United States)


    it is vital that it be amenable to comp- lete control, since the existence of SI GaAs grown by the "undoped LEC" method in a boron nitride crucible is...cation Crystals used or Journal Date (a) Based on Etch Pit Counting Grant at a1. Evian Conf. 1982 50 n LEC (lIP) Mosaic sap display of EPD bonnet at al...34 " 1982 50 n LEC (RP) Mosaic map of EPD Holnes at al. A.P.L. 1983 75 a LEC (HP) Radial line trace of EPD Nmtsusura et al. J.J.A.P. 1983 50 - LEC (HP

  18. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    Directory of Open Access Journals (Sweden)

    Farahiyah Mustafa


    Full Text Available We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector.

  19. Lifetime Measurements of High Polarization Strained-Superlattice Gallium Arsenide at Beam Current > 1 Milliamp using a New 100kV Load Lock Photogun

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Grames; P. A. Adderley; J. Brittian; J. Clark; J. Hansknecht; D. Machie; M. Poelker; M. L. Stutzman; R. Suleiman; K. E. L. Surles-Law


    A new 100 kV GaAs DC Load Lock Photogun has been constructed at Jefferson Laboratory, with improvements for photocathode preparation and for operation in a high voltage, ultra-high vacuum environment. Although difficult to gauge directly, we believe that the new gun design has better vacuum conditions compared to the previous gun design, as evidenced by longer photocathode lifetime, that is, the amount of charge extracted before the quantum efficiency of the photocathode drops by 1/e of the initial value via the ion back-bombardment mechanism. Photocathode lifetime measurements at DC beam intensity of up to 10 mA have been performed to benchmark operation of the new gun and for fundamental studies of the use of GaAs photocathodes at high average current*. These measurements demonstrate photocathode lifetime longer than one million Coulombs per square centimeter at a beam intensity higher than 1 mA. The photogun has been reconfigured with a high polarization strained superlattice photocathode (GaAs/GaAsP) and a mode-locked Ti:Sapphire laser operating near band-gap. Photocathode lifetime measurements at beam intensity greater than 1 mA are measured and presented for comparison.

  20. A Novel Approach to Modeling the Effects of Radiation in Gallium-Arsenide Solar Cells Using Silvaco’s ATLAS Software (United States)


    software version 5.6.0.R, Silvaco International, Sunnyvale, CA, 2003. 7. Kasap , S.O., Principles of Electronic Materials and Devices , McGraw Hill, New... electron , displacement damage, trap, ATLAS, Silvaco, GaAs, AlGaAs, physically based device simulation, simulation, model 16. PRICE CODE 17. SECURITY...obtained from an article published in IEEE Trans- actions on Electronic Devices , written by Robert Y. Loo, Sanj iv Kamath, and Sheng S. Li in 1990

  1. Synergic phototoxic effect of visible light or Gallium-Arsenide laser in the presence of different photo-sensitizers on Porphyromonas gingivalis and Fusobacterium nucleatum

    Directory of Open Access Journals (Sweden)

    Habibollah Ghanbari


    Conclusion: Within the limitations of this study, the synergic phototoxic effect of visible light in combination with each of the photosensitizers on P. gingivalis and F. nucleatum. However, the synergic phototoxic effect of laser exposure and hydrogen peroxide and curcumin as photosensitizers on F. nucleatum was not shown.

  2. Pre-Irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. (United States)

    Hagiwara, Satoshi; Iwasaka, Hideo; Hasegawa, Akira; Noguchi, Takayuki


    Low-level laser therapy (LLLT) has been reported to relieve pain, free of side effects. However, the mechanisms underlying LLLT are not well understood. Recent studies have also demonstrated that opioid-containing immune cells migrate to inflamed sites and release beta-endorphins to inhibit pain as a mode of peripheral endogenous opioid analgesia. We investigated whether pre-irradiation of blood by LLLT enhances peripheral endogenous opioid analgesia. The effect of LLLT pretreatment of blood on peripheral endogenous opioid analgesia was evaluated in a rat model of inflammation. Additionally, the effect of LLLT on opioid production was also investigated in vitro in rat blood cells. The expression of the beta-endorphin precursors, proopiomelanocortin and corticotrophin releasing factor, were investigated by reverse transcription polymerase chain reaction. LLLT pretreatment produced an analgesic effect in inflamed peripheral tissue, which was transiently antagonized by naloxone. Correspondingly, beta-endorphin precursor mRNA expression increased with LLLT, both in vivo and in vitro. These findings suggest that that LLLT pretreatment of blood induces analgesia in rats by enhancing peripheral endogenous opioid production, in addition to previously reported mechanisms.

  3. Surface passivation and performance characteristics of type-II indium arsenide/gallium antimonide superlattice infrared photodetectors for focal plane arrays (United States)

    Hood, Andrew D.

    Leakage currents limit the operation of high performance type II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant, limiting factor to the ideal performance of a photodiode, especially at the scale of a focal plane array pixel (cleaning, prior to passivation, is demonstrated as well. Some sample preparation suggestions are given to reduce the formation of oxides and adsorption of deleterious process contaminants on the semiconductor surface. In addition to work centered on surface passivation, type II photodetector performance characteristics will be analyzed and discussed. These will include capacitance voltage measurements done on type II superlattice photodiodes to identify record low residual impurity background concentration values, indicating very high quality material growth. Additionally, enhancement of the device quantum efficiency for LWIR photodetectors is shown through modeling and growth optimization. Two custom designed systems are also presented, which include a portable, reconfigurable infrared and UV camera system as well as a mid infrared free-space communications system operating at room temperature with a quantum cascade laser as the source and a mid infrared type II InAs/GaSb superlattice photodiode as the receiver.

  4. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang


    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature.......The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  5. An experimental investigation of the feasibility of using silicone and gallium arsenide solar batteries on space vehicles for receiving energy of laser infrared emission (United States)

    Bogushevskaya, V. A.; Zhalnin, B. V.; Zayats, O. V.; Maslyakov, Ya. N.; Matsak, I. S.; Nikonov, A. A.; Obrucheva, Ye. V.; Tugaenko, V. Yu.


    The feasibility of transmitting electric power in space to solar batteries of space vehicles via the channel of laser infrared emission is shown. Evaluation of the efficiency of solar batteries for the given type of power transmission has been made. Possible methods of optimizing the design of space solar batteries in regard to conditions of detection of energy of laser infrared emission have been discussed.

  6. Initial hafnium oxide growth on silicon(100) and gallium arsenide(100) substrates using TEMAH+water and TDMAH+water ALD processes (United States)

    Hackley, Justin Cain

    Atomic layer deposition (ALD) is a cyclic growth process that is distinguished by a self-limiting, two-step surface reaction that results in precise growth control and high quality, conformal thin films. Due to the continuous downscaling of MOSFET devices, a large interest has recently developed in the ALD of high-kappa dielectric materials as gate oxide layers on Si and III-V substrates. The ALD of HfO2 is an established process; however, there is still controversy over the initial growth mechanisms on differently prepared Si surfaces. This motivated a comparison of the nucleation stage of HfO 2 films grown on OH-(Si-OH) and H-terminated (Si-H) Si(100) surfaces. Two different ALD chemistries are investigated, including tetrakis[ethylmethylamino]hafnium (Hf[N(CH3)(C2H5)]4), abbreviated as TEMAH, and tetrakis[dimethylamino]hafnium (Hf[N(CH3)2] 4, abbreviated as TDMAH. H2O is used as the oxidizing precursor. Deposition temperatures of 250-275°C result in a linear growth per cycle of 1 A/cycle. Techniques including Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and transmission electron microscopy are used to examine the film interface and initial film growth. HfO2 films are also subjected to post-deposition anneals, and the film morphology is examined with X-ray diffraction, Fourier transform infrared spectroscopy and atomic force microscopy. GaAs MOSFET devices have long proven elusive due to the lack of a stable native oxide. Recent research into high-kappa dielectric materials for use in Si-based devices has presented many new options for insulating layers on GaAs. HfO2 growth on GaAs(100) from a TDMAH+H2O ALD process is studied here. Three different GaAs surface treatments are examined, including buffered oxide etch (BOE), NH4OH, and a simple acetone/methanol wash (to retain the native oxide surface). Initial HfO2 growth on these surfaces is characterized with RBS and SE. The interfacial composition is examined with XPS both before and after HfO2 deposition. Also, an interesting native oxide 'consumption' mechanism is investigated, which involves the dissolution of the GaAs native oxide during the ALD process. This project presents the first detailed study of HfO2 growth on GaAs with the TDMAH/H2O ALD chemistry, providing XPS, RBS and SE characterization of early film growth.

  7. Local Orthorhombicity in the Magnetic C4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr1 -xNax Fe2 As2 (United States)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E.; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J.


    We report on temperature-dependent pair distribution function measurements of Sr1 -xNax Fe2 As2 , an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C4 phase. Quantitative refinements indicate that the instantaneous local structure in the C4 phase comprises fluctuating orthorhombic regions with a length scale of ˜2 nm , despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C4 phase and the neighboring C2 and superconducting phases.

  8. Local Orthorhombicity in the Magnetic C_{4} Phase of the Hole-Doped Iron-Arsenide Superconductor Sr_{1-x}Na_{x}Fe_{2}As_{2}. (United States)

    Frandsen, Benjamin A; Taddei, Keith M; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J


    We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of ∼2  nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.

  9. Onboard high data rate signal processing and storage (United States)

    Miller, Warner H.


    The objective is to advance the state of the art in onboard image data processing and storage through the use of advanced gallium arsenide integrated circuit technology. Viewgraphs are given on research and development efforts, an adaptive programmable processor chip set, design characteristics of an eight bit general processor, and a density comparison of silicon and gallium arsenide integrated circuits.

  10. Compression and Associated Properties of Boron Carbide (United States)


    arsenide have been associated with icosahedron - chain modes (Tallent et al., 1989). Therefore, we tentatively assign these features in B4C to... icosahedron - chain modes. In boron arsenide, the intensity of these modes was found to be immensely sensitive to the crystalline orientation and a

  11. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)


    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  12. Discovery of isotopes of the transuranium elements with 93≤Z≤98

    Energy Technology Data Exchange (ETDEWEB)

    Fry, C.; Thoennessen, M., E-mail:


    One hundred and five isotopes of the transuranium elements neptunium, plutonium, americium, curium, berkelium, and californium have been observed so far; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  13. Separation of Transplutonium Elements from Neutron Irradiated Americium-241

    National Research Council Canada - National Science Library

    UENO, Kaoru; WATANABE, Kenju; SAGAWA, Chiaki; ISHIMORI, Tomitaro


    .... The ratios of the amounts present of these isotopes were determined by mass spectrometry. It was not possible to identify 249Bk in the berkelium fraction owing to the interference from other β-ray emitting nuclides. In the californium fraction, both spontaneous fission and a-activities due to 250, 252 were observed.

  14. Neutron-Activated Gamma-Emission: Technology Review (United States)


    flux sources developed for boron neutron capture therapy ( BNCT ), found to be an experimental success in cancer treatment (26). 30 Improved flux on...achievable Am americium API associated particle imaging B boron Be beryllium BNCT boron neutron capture therapy C carbon Cf californium Cl

  15. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.


    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  16. High-power X- and Ka-band Gallium Nitride Amplifiers with Exceptional Efficiency Project (United States)

    National Aeronautics and Space Administration — Achieving very high-power amplification with maximum efficiency at X- and Ka-band is challenging using solid-state technology. Gallium Arsenide (GaAs) has been the...


    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  18. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    van Wanum, Maurice; Lebouille, Tom; Visser, Guido; van Vliet, Frank Edward


    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are

  19. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    National Research Council Canada - National Science Library

    Henson, Richard


    .... Sanders is leading development of gallium arsenide wafer processing technology for the MMIC "T" gate process, and is carrying out a prototype fabrication run of 35 GHz MMIC low noise amplifiers...

  20. Ultra-broadband optical signal processing using AlGaAs-OI devices

    DEFF Research Database (Denmark)

    Galili, Michael; Da Ros, Francesco; Hu, Hao


    Aluminum Gallium Arsenide on insulator (AlGaAs-OI) has recently been developed into a very attractive platform for optical signal processing. This paper reviews key results of broadband optical signal processing using this platform.......Aluminum Gallium Arsenide on insulator (AlGaAs-OI) has recently been developed into a very attractive platform for optical signal processing. This paper reviews key results of broadband optical signal processing using this platform....

  1. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar; Reducao de processo inflamatorio com aplicacao de laser de arseneto de galio aluminio ({lambda}=830 nm) em pos-operatorio de exodontia de terceiros molares inferiores inclusos ou semi-inclusos

    Energy Technology Data Exchange (ETDEWEB)

    Atihe, Mauricio Martins


    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser ({lambda}=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser ({lambda}=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  2. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  3. Cold valleys in the radioactive decay of 248−254Cf isotopes

    Indian Academy of Sciences (India)

    Geiger–Nuttal plots of log10(T1/2) vs. Q−1/2 for 48−52Ca emitting from various californium isotopes. Acknowledgement. One of the authors (KPS) would like to thank University Grants Commis- sion, Govt. of India for the financial support under project No. MRP(S)-. 352/2005(X Plan)/KLKA 002/UGC-SWRO. References.

  4. Directed evolution of the periodic table: probing the electronic structure of late actinides. (United States)

    Marsh, M L; Albrecht-Schmitt, T E


    Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.

  5. Open Source: Potential in Latin America for Radiological Weapons (United States)


    terrorist group would need to acquire a radioactive isotope with a relatively short half-life. 36,37 As an aside, the IAEA verified that (accessed March 3, 2010), Useful RDD isotopes include cobalt-60, strontium-90, yttrium-90, iridium-192, cesium-137...plutonium-238, radium -226, americium-241, and californium-252. 37 Hansell and Salama, “Does intent equal capability?,” 640-641. 38 Internation Atomic

  6. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies (United States)


    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  7. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2 (United States)


    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  8. Electrochemical capacitance-voltage measurements and modeling of GaAs nanostructures with delta-doped layers (United States)

    Shestakova, L.; Yakovlev, G.; Zubkov, V.


    The paper presents the results of electrochemical capacitance-voltage profiling and simulation of quantum-sized semiconductor structures with quantum wells and delta-doped layers based on gallium arsenide. The experimental ECV data were obtained by superposition of measured capacitance-voltage characteristics during the gradual etching of the nanostructure. As a result of simulation, the concentration distribution and energy lineups for structures with delta-layers and quantum wells in gallium arsenide were calculated. The results of simulation are in qualitative agreement with the experimental results and data found in literature.

  9. Current switching in superconductor semiconductor bilayers (United States)

    Rahman, F.; Thornton, T. J.; Huber, R.


    We describe results of electrical transport experiments on niobium-on-indium arsenide and aluminium-on-indium arsenide bilayers. The temperature-dependent properties of electrical conduction in these bilayers is examined first in order to characterize the quality of super-semi interfaces. Next, we look at the differential resistance of the bilayers as a function of bias current. The switching of current between the metal and semiconductor components of the bilayer gives rise to a quasi-inductive effect as it causes voltage spikes in the composite system. Also described is the variation of critical current for these bilayers with temperature and magnetic field.

  10. Feasibility of producing photodiode bases on a single crystal strip of germanium obtained by Stephanov's method

    CERN Document Server

    Menshikova, V A; Zatalovskii, L M; Chaikin, P M; Frimer, A I


    The single-crystal strip was obtained by Stepanov's method. involving the use of a fusing shaper and a flexible priming wire holder. The epitaxial growth of a gallium arsenide layer on this strip was then studied, and photodiodes were prepared from it. The surface properties of the strip were investigated microstructurally and deposition rates for gallium arsenide recorded at different temperatures. At each stage the figures were compared with results obtained with common germanium. The characteristics of photodiodes prepared from the single-crystal strip and common germanium were compared, and the former gave greater integral sensitivity. (3 refs).

  11. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R


    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  12. LPEE Growth and Characterization of InxGa(1-x)ASySb(1-y) Lattice Matched to GaSb and InAs for Photodetectors (United States)


    S. Nishiyama, S. Isozumi and K.Nakajima, Appl.Phys.Lett. 56, 239 (1990). 25. S.J.Eglash and H.K. Choi , Gallium Arsenide and Related Compounds. 1991...51 (1986). 3*S. J, Eglash and H. K. Choi , in Gallium Arsenide and Related Compounds, 1991, edited by G. B. Stringfellow (IOP, London, 1992), p...GalnAsSb layers on a (100) GaSb substrate. Considering the fact that this is a quater- nary alloy system and hence even a small statistical inho

  13. Simple intrinsic defects in GaAs : numerical supplement.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  14. Temperature Insensitive and Radiation Hard Photonics (United States)


    stacks of InAs quantum dots in an InGaAs quantum well , the so-called DWELL structure. These layers are separated by GaAs barriers grown by elemental...layers buffering the gain region act as the optical waveguide boundaries as well as strain mitigation. A low step index, 30% AlGaAs cladding...HR High-Reflection InAs Indium Arsenide InGaAs Indium Gallium Arsenide LEO Low Earth Orbit MBE Molecular Beam Epitaxy QD Quantum Dot QDMLL Quantum

  15. Modeling the cutoff frequency of single-heterojunction bipolar transistors subjected to high collector-layer current (United States)

    Liou, J. J.; Lindholm, F. A.; Wu, B. S.


    High current densities in the collector layer reduce the cutoff frequency of heterojunction bipolar transistors. A model is developed based on analytical expressions that describe this reduction. These expressions represent the contributions from each of six regions defined in the output current-voltage characteristic. The model has parameters determined entirely by device physical makeup. It has no fitting parameters. Its predictions agree well with experimental data taken on two N/p+/n aluminum-gallium-arsenide/gallium-arsenide transistors having abrupt junctions grown by molecular-beam epitaxy. The development of the model considers the effects that compound-semiconductor properties, such as velocity overshoot, have on the cutoff frequency.

  16. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L. [ed.; Kane, L.S.; Henline, D.M.


    Photovoltaic Energy: Electricity from Sunlight (PHV) announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  17. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.


    This publication announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amporphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. The abstracts are arranged under the headings Solar Cells, and Photovoltaic Power Supplies.

  18. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures

    DEFF Research Database (Denmark)

    Frederiksen, Rune Schøneberg; Alarcon-Llado, Esther; Madsen, Morten H.


    High aspect ratio nanostructures have gained increasing interest as highly sensitive platforms for biosensing. Here, well-defined biofunctionalized vertical indium arsenide nanowires are used to map the interaction of light with nanowires depending on their orientation and the excitation waveleng...

  19. Notch filtering the nuclear environment of a spin qubit

    DEFF Research Database (Denmark)

    Malinowski, F. K.; Martins, F.; Nissen, P. D.


    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots, and accurate qubit ...

  20. Endangered Elements of the Periodic Table

    Indian Academy of Sciences (India)

    (Z = 47), tin (Z = 50), and lead (Z = 82), 70% of gold (Z = 79) and zinc (Z = 30), and 50% of copper (Z = 29) and ... indium is obtained as a byproduct during the extraction. Since 1960's gallium arsenide-based ... recovery of indium from unwanted devices is not very cost effec- tive. So scientists are thinking of alternatives to ...

  1. Resonance-like tunneling across a barrier with adjacent wells

    Indian Academy of Sciences (India)

    Furthermore, with the advent of nanotechnology it is envisaged .... we describe the potential application of the concept of resonant tunneling in the design of novel electronic devices using the electrical properties of gallium arsenide and SiO2. In the emerging era of nanoscience these concepts will have wider appli- cations.

  2. Nonlinear optical study of ultrafast carrier dynamics in GaAs

    NARCIS (Netherlands)

    Jong, W. de


    This thesis reports on optical second harmonic generation (SHG) and electric field induced SHG (EFISHG) studies performed on gold-gallium arsenide (Au-GaAs) Schottky barrier (SB) systems. The most interesting are the dynamics of excited carriers behind the Schottky barrier interface which are

  3. Fiber grating sensing interrogation based on an InGaAs photodiode linear array. (United States)

    Li, Guoyu; Guo, Tuan; Zhang, Hao; Gao, Hongwei; Zhang, Jian; Liu, Bo; Yuan, Shuzhong; Kai, Guiyun; Dong, Xiaoyi


    We present a new method of the fiber grating sensing interrogation technique by utilizing an indium gallium arsenide photodiode linear array and blazed fiber Bragg gratings. An interrogation system based on an InGaAs photodiode linear array is designed, and the system performance is analyzed. The interrogation system shows a good prospect for smart sensing.

  4. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, M. van; Lebouille, T.T.N.; Visser, G.C.; Vliet, F.E. van


    In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are Silicon, Gallium Arsenide and Gallium Nitride. The diodes in the diverse semiconductor technologies themselves are close in

  5. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.


    As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...

  6. Alkali Metal Thermal to Electric Conversion Research. (United States)


    Acquisition System GaAs Gallium Arsenide HCI Hydrochloric Acid Mo Molybdenum Na Sodium NaS Sodium Sulfur PL Phillips Laboratory Si Silicon TC Thermocouple...back to the heat source and the hot liquid reservoir to complete the thermodynamic cycle. The Sodium - Sulfur (NaS) battery differs from AMTEC only in

  7. The Physics and Operations of Ultra-Submicron Length Semiconductor Devices (United States)


    Shaw, P. R. Solomon , and H. L. Grubin, IBM J. Res. Dev: 13, 587 (1%9). 26 INTRODUCTION TO THE PHYSICS OF GALLIUM ARSENIDE DEVICES 17. E. M. Azoff...and P. Kocevar, Phys. Rev. B 28, 7040 (1980). 9. M. Asche and 0. G. Sarbei, Phys. Stat. Sol. (b) 126, 607 (1984). 10. M. A. Osman, U. Ravaioli, R

  8. Quaterly Assessment of Irradiance Variation on Power Output and Storable Excess Power of Solar Panels

    National Research Council Canada - National Science Library

    T O Familusi; Y K Sanusi; H O Efunwole; A M Raimi


      This paper verified the input solar irradiance and average power output per day of a 10W polycrystalline silicon solar panel and a 10W gallium arsenide solar panel, both of dimension 350x290x25mm^sup 3^, fill-factor...

  9. Modeling the Growth of Aluminum Gallium Nitride ((Al)GaN) Films Grown on Aluminum Nitride (AlN) Substrates (United States)


    cadmium zinc telluride ( CdZnTe or CZT) on Si using a superlattice (SL) in which the SL layers had different compositions (10). We found that the...Abbreviations, and Acronyms (Al)GaN aluminum gallium arsenide AlN aluminum nitride ARL U.S. Army Research Laboratory CdZnTe or CZT cadmium zinc

  10. Surround-gated vertical nanowire quantum dots

    NARCIS (Netherlands)

    Van Weert, M.H.M.; Den Heijer, M.; Van Kouwen, M.P.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.


    We report voltage dependent photoluminescence experiments on single indium arsenide phosphide (InAsP) quantum dots embedded in vertical surround-gated indium phosphide (InP) nanowires. We show that by tuning the gate voltage, we can access different quantum dot charge states. We study the

  11. Low temperature transport in p-doped InAs nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra; Jespersen, Thomas Sand; Madsen, Morten Hannibal


    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature d...

  12. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds (United States)

    Steel, G. G.


    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  13. Simple intrinsic defects in InAs :

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  14. 500 MHz transient digitizers based on GaAs CCds (charged coupled devices)

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Cresswell, J.V.; LeNoble, M.; Poutissou, R.


    A wide bandwidth transient digitizer based on a recently produced gallium arsenide charge coupled device (CCD) is under development. The CCD's have 128 pixels and operate at 500 MHz. Initial testing of prototype modules in Experiment 787 at Brookhaven National Laboratory is reported. 8 refs., 6 figs.

  15. 500 MHz transient digitizers based on GaAs CCDs (United States)

    Bryman, D.; Cresswell, J. V.; LeNoble, M.; Poutissou, R.


    A wide-bandwidth transient digitizer based on a gallium arsenide charged-coupled device (CCD) is under development. The CCDs have 128 pixels and operate at 500 MHz. Prototype CCD digitizers which sample at 2-ns intervals for a period of 256 ns have been constructed and tested in Experiment 787 at Brookhaven National Laboratory.

  16. 500 MHz transient digitizers based on GaAs CCDs (United States)

    Bryman, D. A.; Constable, M.; Cresswell, J. V.; Daviel, A.; LeNoble, M.; Mildenberger, J.; Poutissou, R.


    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment to study rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCDs are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz.

  17. Extreme sensitivity of superconductivity to stoichiometry in Fe1+?Se

    NARCIS (Netherlands)

    McQueen, T.M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y.S.; Allred, J.; Williams, A.J.; Qu, D.; Checkelsky, J.; Ong, N.P.; Cava, R.J.


    The recently discovered iron arsenide superconductors appear to display a universal set of characteristic features, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+?Se, which can be

  18. Modeling of High Efficiency Solar Cells Under Laser Pulse for Power Beaming Applications (United States)

    Jain, Raj K.; Landis, Geoffrey A.


    Solar cells may be used as receivers for laser power beaming. To understand the behavior of solar cells when illuminated by a pulsed laser, the time response of gallium arsenide and silicon solar cells to pulsed monochromatic input has been modeled using a finite element solar cell model.

  19. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper (United States)

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma


    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  20. High-temperature optically activated GaAs power switching for aircraft digital electronic control (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.


    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.


    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.; Street Jr., Kenneth; Thompson, Stanley G.; Ghiorso, Albert


    This volume includes the talks given on January 20, 1975, at a symposium in Berkeley on the occasion of the celebration of the 25th anniversary of the discovery of berkelium and californium. Talks were given at this symposium by the four people involved in the discovery of these elements and by a number of people who have made significant contributions in the intervening years to the investigation of their nuclear and chemical properties. The papers are being published here, without editing, in the form in which they were submitted by the authors in the months following the anniversary symposium, and they reflect rather faithfully the remarks made on that occasion.

  2. Composition containing transuranic elements for use in the homeopathic treatment of aids

    Energy Technology Data Exchange (ETDEWEB)

    Lustig, D.


    A homeopathic remedy consisting of a composition containing one or more transuranic elements, particularly plutonium, for preventing and treating acquired immunodeficiency syndrome (AIDS) in humans, as well as seropositivity for human immunodeficiency virus (HIV). Said composition is characterized in that it uses any chemical or isotopic form of one or more transuranic elements (neptunium, plutonium, americium, curium, berkelium, californium or einsteinium), particularly plutonium, said form being diluted and dynamized according to conventional homeopathic methods, particularly the so-called Hahnemann and Korsakov methods, and provided preferably but not exclusively in the form of lactose and/or saccharose globules or granules impregnated with the active principle of said composition. (author).

  3. Advanced development of the spectrum sciences Model 5005-TF, single-event test fixture

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.R.; Browning, J.S. (Sandia National Labs., Albuquerque, NM (USA)); Hughlock, B.W. (Boeing Aerospace and Electronics Co., Seattle, WA (USA)); Lum, G.K. (Lockheed Missiles and Space Co., Sunnyvale, CA (USA)); Tsacoyeanes, W.C. (Draper (Charles Stark) Lab., Inc., Cambridge, MA (USA)); Weeks, M.D. (Spectrum Sciences, Inc., Santa Clara, CA (USA))


    This report summarizes the advanced development of the Spectrum Sciences Model 5005-TF, Single-Event Test Fixture. The Model 5005-TF uses a Californium-252 (Cf-252) fission-fragment source to test integrated circuits and other devices for the effects of single-event phenomena. Particle identification methods commonly used in high-energy physics research and nuclear engineering have been incorporated into the Model 5005-TF for estimating the particle charge, mass, and energy parameters. All single-event phenomena observed in a device under test (DUT) are correlated with an identified fission fragment, and its linear energy transfer (LET) and range in the semiconductor material of the DUT.


    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas


    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  5. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State


    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  6. Annealing furnace for III-V semiconductor devices (United States)

    O'Connor, J. M.; Hier, H. S.; Ketchum, R. M.


    A furnace for annealing ion implantation damage in III-V semiconductors has been built and tested. Designed for research applications, the furnace can accommodate odd shapes of material up to 2 in. in diameter. Samples are loaded onto a novel cantilevered support and are not moved during the annealing operation, facilitating proximity annealing techniques. Both chambers of this dual chambered system are O-ring sealed for added safety during annealing in an arsine gas ambient. Electron mobilities between 4400 and 4600 cm2/V s at 300 K are routinely measured for 2×1017 cm-3 gallium arsenide material annealed in this sytem. The system has been used to anneal indium phosphide as well as gallium arsenide wafers.

  7. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang


    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  8. Solar-electrochemical power system for a Mars mission (United States)

    Withrow, Colleen A.; Morales, Nelson


    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  9. 31% European InGaP/GaAs/InGaAs Solar Cells for Space Application

    Directory of Open Access Journals (Sweden)

    Campesato Roberta


    Full Text Available We report a triple junction InGaP/GaAs/InGaNAs solar cell with efficiency of ~31% at AM0, 25 °C fabricated using a combined molecular beam epitaxy (MBE and metal-organic chemical vapour deposition (MOCVD processes. The prototype cells comprise of InGaNAs (Indium Gallium Nitride Arsenide bottom junction grown on a GaAs (Gallium Arsenide substrate by MBE and middle and top junctions deposited by MOCVD. Repeatable cell characteristics and uniform efficiency pattern over 4-inch wafers were obtained. Combining the advantages offered by MBE and MOCVD opens a new perspective for fabrication of high-efficiency space tandem solar cells with three or more junctions. Results of radiation resistance of the sub-cells are also presented and critically evaluated to achieve high efficiency in EOL conditions.

  10. Terminal tungsten pnictide complex formation through pnictaethynolate decarbonylation. (United States)

    Joost, Maximilian; Transue, Wesley J; Cummins, Christopher C


    Tungsten(iv) tetrakis(2,6-diisopropylphenoxide) (1) has been demonstrated to be a competent platform for decarbonylative formation of anionic terminal pnictide complexes upon treatment with pnictaethynolate anions: cyanate, 2-phosphaethynolate, and 2-arsaethynolate. These transformations constitute the first examples of terminal phosphide and arsenide complex formation at a transition metal center from OCP- and OCAs-, respectively. The phosphide and arsenide complexes are also the first to be isolated in a tetragonal, all-oxygen ligand environment. The scalar NMR coupling constants between tungsten-183 and nitrogen-15 or phosphorus-31 have been measured and contextualized using natural bond orbital (NBO) methods in terms of s orbital character in the σ bonding orbital and pnictide lone pair.

  11. Coherent Cancellation of Photothermal Noise in GaAs/Al$_{0.92}$Ga$_{0.08}$As Bragg Mirrors

    CERN Document Server

    Chalermsongsak, Tara; Cole, Garrett D; Follman, David; Seifert, Frank; Arai, Koji; Gustafson, Eric K; Smith, Joshua R; Aspelmeyer, Markus; Adhikari, Rana X


    Thermal noise is a limiting factor in many high-precision optical experiments. A search is underway for novel optical materials with reduced thermal noise. One such pair of materials, gallium arsenide and aluminum-alloyed gallium arsenide (collectively referred to as AlGaAs), shows promise for its low Brownian noise when compared to conventional materials such as silica and tantala. However, AlGaAs has the potential to produce a high level of thermo-optic noise. We have fabricated a set of AlGaAs crystalline coatings, transferred to fused silica substrates, whose layer structure has been optimized to reduce thermo-optic noise by inducing coherent cancellation of the thermoelastic and thermorefractive effects. By measuring the photothermal transfer function of these mirrors, we find evidence that this optimization has been successful.

  12. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary (United States)


    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  13. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA (United States)

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.


    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  14. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials (United States)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.


    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  15. Use of a semiconductor-diode laser in urology (United States)

    Watson, Graham M.


    The gallium arsenide semiconductor laser can emit in the near infrared where the depth of penetration into tissue is great although scattering is less than with the Nd:YAG laser. The laser is highly compact. It runs off a normal electrical outlet with no cooling requirement. It is therefore quiet and convenient. The laser has been assessed in a wide variety of applications in our urological department.

  16. Optical beam induced current investigations of particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [INFM, Bologna (Italy)


    OBIC analyses of particle detectors are presented. The depletion layer width W of semi-insulating gallium arsenide Schottky detectors versus biasing has been studied and it is concluded that at high voltages W linearly increases with the applied bias. Furthermore, the electric field distribution in silicon p-i-n detectors has been investigated before and after heavy irradiation and a V-shaped distribution has been assessed. (orig.)

  17. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.


    This publication announces, bimonthly, current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. It contains abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information.

  18. The AMOS cell - An improved metal-semiconductor solar cell. [Antireflection coated Metal Oxide Semiconductor (United States)

    Stirn, R. J.; Yeh, Y.-C. M.


    A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.

  19. JPRS Report, Science & Technology, Europe (United States)


    Microprocessor Program Launched [R. Loukil; Paris INDUSTRIES ET TECHNIQUES, 20 Sep 91] 43 Eastern German Firm Becomes Sole European Gallium Arsenide Producer...that the reaction of tissues in contact with a nickel-titanium prosthesis stabilizes, as with stainless steel, within the first 3 months after...many others, has been brought to its knees by Japan, could adopt SLMI, since it is a highly innovative product that can be used to develop an

  20. Embedment of metal nanoparticles in GaAs and Si for plasmonic absorption enhancement in intermediate band solar cells


    Moura Dias Mendes, Manuel Joao de; Hernández Martín, Estela; Tobías Galicia, Ignacio; Martí Vega, Antonio; Luque López, Antonio


    The high near-field enhancement occurring in the vicinity of metallic nanoparticles (MNPs) sustaining surface plasmons can only be fully exploited in photovoltaic devices if the MNPs are placed inside their semiconducting material, in the photoactive region. In this work an experimental procedure is studied to embed MNPs in gallium arsenide (GaAs) and silicon (Si), which can be applied to other semiconductor host materials. The approach consists in spin-coating colloidal MNPs dispersed i...

  1. Spatial light modulation in compound semiconductor materials (United States)

    Cheng, Li-Jen (Inventor); Gheen, Gregory O. (Inventor); Partovi, Afshin (Inventor)


    Spatial light modulation (22) in a III-V single crystal (12), e.g., gallium arsenide, is achieved using the photorefractive effect. Polarization rotation created by beam coupling is utilized in one embodiment. In particular, information (16)on a control beam (14) incident on the crystal is transferred to an input beam (10), also incident on the crystal. An output beam (18) modulated in intensity is obtained by passing the polarization-modulated input beam through a polarizer (20).

  2. Base-Level Management of Laser Radiation Protection Program (United States)


    gallium-aluminum-arsenide (GaAlAs), or alexandrite. Liquid materials that are used as active mediums include: rhodamine dye and coumarin . Section D...a source of radiation and the dye emits radiation at a longer wavelength. Coumarin dyes are useful as active media for emissions inthe blue to green...plastic, or quartz. Optical fibers have found uses in many areas including: industrial laser welding; medical surgery; dental work; product-code

  3. Failure Mechanisms of GaAs Transistors - A Literature Survey (United States)


    Orito et al, Large Size Dislocation-Free Gallium Arsenide Single Crystals for LSI Applications, GaAs IC Symposium, October 1986, Technical Digest 1986...the channel resistance is modulated by the channel dimensions and the transconductance is degraded by the parasitic resistance. gn = gmo /(l+Rs gmo is the terminal transconductance, gmo is the internal (Rs=0 ) transconductance and Rs is the parasitic source resistance. It’s obvious that it’s

  4. Diffusion theory and optimization of ohmic contacts to n-layer of bipolar nanoheterostructures (United States)

    Nezhentsev, A. V.; Zemlyakov, V. E.; Egorkin, V. I.; Garmash, V. I.


    Ohmic contacts to n-layers of gallium arsenide-based heterobipolar nanoheterostructures obtained by layer electron-beam evaporation Ge/Au/Ni/Au are studied. Time and temperature dependencies of diffusion profiles of doping Ge distribution are calculated. The interface of metal-semiconductor is analyzed with SEM, then an RTA installation design and methodology of RTA are suggested based on the results of this study. This allows to obtain ohmic contacts with low resistance and minimum transition layer.

  5. Lunar Laser Communication System (United States)


    gallium arsenide ( InGaAs ) quad- rant detector enables fast spatial acqui- sition and coarse tracking of the optical uplink. Transmit and receive...October–November 2013 month-long demonstration of the high-data-rate transmission from a lunar-orbiting satellite. The array of transmit apertures is...located above the array of receive apertures. This work is sponsored by the National Aeronautics and Space Administration under U.S. Air Force

  6. [Use of laser therapy in inflammatory diseases of the paranasal sinuses]. (United States)

    Elistratov, V V; Naumov, G P; Naumov, O G; Fishkin, V A


    105 patients with acute and chronic inflammation of the paranasal sinuses were exposed to the radiation of the semiconductor laser Uzor using gallium arsenide. The treatment combined antiinflammatory drugs with vasoconstrictive nasal drops, maxillary puncture and laser radiation. Intolerance to laser effects was registered in 3 patients. The course of treatment included 5-6 sessions in acute sinusitis and 10 sessions in chronic sinusitis. Laser therapy was found effective as it reduced the time of treatment by 1-2 days.

  7. Small Business Innovations (Photodetector) (United States)


    Epitaxx, Inc. of Princeton, NJ, developed the Epitaxx Near Infrared Room Temperature Indium-Gallium-Arsenide (InGaAs) Photodetector based on their Goddard Space Flight Center Small Business Innovation Research (SBIR) contract work to develop a linear detector array for satellite imaging applications using InGaAs alloys that didn't need to be cooled to (difficult and expensive) cryogenic temperatures. The photodetectors can be used for remote sensing, fiber optic and laser position-sensing applications.

  8. Design and characterization of a novel diamond resonator


    Maricar, Mohamed Ismaeel; Glover, James; Evans, Gwynne; Khalid, Ata-ul-Habib; Cumming, David; Oxley, Chris


    In this article, the resonant frequency and quality factor of a novel coplanar waveguide (cpw) diamond-shaped resonator were analyzed using advanced design system-2009 momentum model software. The diamond resonator was compared with the cpw radial stub resonator on gallium arsenide (GaAs); the work indicated that the diamond resonator had a smaller physical size and higher quality factor (Q) at millimetric wave frequencies. Experimentally measured diamond cpw resonators fabricated on GaAs wer...

  9. Kondo physics in tunable semiconductor nanowire quantum dots


    Jespersen, T. S.; Aagesen, M.; Soerensen, C.; Lindelof, P. E.; Nygaard, J.


    We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.

  10. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears


    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  11. Low-level laser therapy: Case-control study in dogs with sterile pyogranulomatous pododermatitis


    Roberta Perego; Proverbio, D.; Zuccaro, A.; Spada, E.


    Aim: Low-level laser therapy (LLLT) is a therapeutic photobiostimulation with properties in reducing swelling, inflammation, and promoting tissue healing. The objective of this pilot study was to evaluate LLLT in sterile pyogranulomatous pododermatitis in five dogs. Materials and Methods: In each dog, one lesion was designated as the control (treated with a 0.0584% hydrocortisone aceponate spray), and one or more other lesions were treated with a gallium aluminum arsenide-laser, daily for ...

  12. Air Force Manufacturing Technology Electronics Program, FY72-FY85. (United States)


    magnetic films of the composition Yl.52 EuO.30 TmO.30 CaO.88 Fe4.12 012 on 1.5 inch and 2.0 inch gadolinium gallium garnet substrates. Ten film were...economical and reliable manufacture of complex thin walled extruded aluminum alloy precision parts for antenna systems. Process 42 quantities of gallium ... gallium arsenide materials, mini traveling wave tubes, polyimide printed wiring boards, hermetic chip carriers, and the laser pattern generator to

  13. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lundeberg, T.; Zhou, J.


    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  14. ONR Far East Scientific Bulletin. Volume 7. Number 1, January-March 1982. (United States)


    of deep levels and Shanghai Institute of Metallurgy space charge in Gallium Arsenide Chinese Academy of Sciences 865 Change Ning Road Shanghai 200050...plant for Kuwait, equipment for a power plant in Shanghai for steel manufacture, and an impressive control system for subways in Hong Kong. A great deal...are primarily towards small refrigerators of LOW capacity at 4.2 K for use as onboard refrigerators on MAGLEV vehicles and foi cryopumps. When

  15. SPS Energy Conversion Power Management Workshop (United States)


    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  16. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Laboratory (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Laboratory (ANL), Argonne, IL (United States)


    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  17. Monolithic AlGaAs second-harmonic nanoantennas

    CERN Document Server

    Gili, V F; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G


    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.

  18. Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

    Directory of Open Access Journals (Sweden)

    Jens Klier


    Full Text Available We present in this paper spectral and spatial characteristics of terahertz emission from standard dipole antenna structures used as emitters depending on the substrate material. All antenna structures were lithographically fabricated on low-temperature (LT grown, few-micrometers-thick gallium arsenide (GaAs layers. To investigate the effect of the substrate material on the radiation pattern of terahertz beams, either semi-insulating gallium arsenide or high-resistivity silicon substrate wafers have been used. As detector a standard 40 µm long dipole antenna on a semi-insulating GaAs substrate with a low-temperature grown gallium arsenide layer on it has been employed; this configuration allows for broadband detection and is still efficient enough for the characterization purpose. Strong dependence of the radiation pattern on the substrate used for the terahertz source is demonstrated. The measured patterns and differences between the two cases of substrates are well explained by means of classical diffraction.

  19. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O


    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  20. A gas secondary electron detector

    CERN Document Server

    Drouart, A; Alamanos, N; Auger, F; Besson, P; Bougamont, E; Bourgeois, P; Lobo, G; Pollacco, E C; Riallot, M


    A new Secondary Electron gas Detector (SED) is under development to be used in conjunction with an emissive foil to detect low energy heavy ions as an alternative to micro-channel plates. It could measure position and time of flight. Secondary electrons are accelerated to 10 keV so that they can cross through the 0.9 mu m Mylar entrance window. The electrons then are multiplied in the isobutane gas of the detector at 4-10 Torr. A time resolution of 150 ps and a spatial resolution of 3 mm have been obtained by using californium fission fragments on a prototype detector of 7x7 cm sup 2. The advantage of the SED against MCP is that its size is not limited. Our final goal is to build a large size detector (15x40 cm sup 2) that will operate at the focal plane of the VAMOS magnetic spectrometer at GANIL.

  1. Environmental assessment of the thermal neutron activation explosive detection system for concourse use at US airports

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.G.


    This document is an environmental assessment of a system designed to detect the presence of explosives in checked airline baggage or cargo. The system is meant to be installed at the concourse or lobby ticketing areas of US commercial airports and uses a sealed radioactive source of californium-252 to irradiate baggage items. The major impact of the use of this system arises from direct exposure of the public to scattered or leakage radiation from the source and to induced radioactivity in baggage items. Under normal operation and the most likely accident scenarios, the environmental impacts that would be created by the proposed licensing action would not be significant. 44 refs., 19 figs., 18 tabs.

  2. Chelation and stabilization of berkelium in oxidation state +IV (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.


    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  3. The CARIBU EBIS control and synchronization system (United States)

    Dickerson, Clayton; Peters, Christopher


    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.

  4. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N., E-mail:; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  5. Populations of selected microbial and fungal species growing on the surface of rape seeds following treatment with desiccants or plant growth regulators. (United States)

    Frac, Magdalena; Jezierska-Tys, Stefania; Tys, Jerzy


    The aim of this study was to determine the effects of desiccants and plant growth regulators on selected microbial species affecting rape seeds, with special emphasis on the growth of fungi and identification of the genus and species composition. The experimental material in the study was seeds of winter rape cv. Californium that were collected from the field during combine harvest. The chemical agents applied, both desiccants and growth regulators, generally decreased the populations of bacteria occurring on the surface of rape seeds. The responses of fungi depended upon the type of agent applied and were manifested as either stimulation or inhibition of the growth of the fungal species. The fungi isolated from the surface of rape seeds were characteristic of those found in the field environment (Cladosporium and Penicillium) and typical for those present on the surface of rape seeds (Alternaria).

  6. Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka


    Full Text Available The wide-spread use of semiconductor and gas-filled diodes for non-linear over-voltage protection results in a variety of possible working conditions. It is therefore essential to have a thorough insight into their reliability in exploitation environments which imply exposure to ionizing radiation. The aim of this paper is to investigate the influence of irradiation on over-voltage diode characteristics by exposing the diodes to californium-252 combined neutron/gamma radiation field. The irradiation of semiconductor over-voltage diodes causes severe degradation of their protection characteristics. On the other hand, gas-filled over-voltage diodes exhibit a temporal improvement of performance. The results are presented with the accompanying theoretical interpretations of the observed changes in over-voltage diode behaviour, based on the interaction of radiation with materials constituting the diodes.

  7. Triton and alpha-particle contribution from LiF converter for neutron dosimeter

    CERN Document Server

    Camacho, M E; Balcazar, M


    A personnel neutron dosimeter prototype based on chemical and electrochemical etched CR-39 detector, combined with LiF converter, has been calibrated using an ICRP-like phantom, under a heavy-water moderated Californium source neutron spectra; A conversion factor of 1.052+-126 spots cm sup - sup 2 mSv sup - sup 1 was obtained. The sealing properties of the detector holder showed a ten-fold reduction in radon background when it was tested in a high radon atmosphere. A convenient mechanical shock resistance was achieved in LiF converters by sintering to 11 tons pressure LiF powder at 650 deg. C, during one hour.

  8. Study of reproducibility of measurements with the spectrometer of Bonner multispheres

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, G.A.; Pereira, W.W.; Patrao, K.C.S.; Fonseca, E.S., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Radionprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)


    This work aims to study the metrological behavior of the Bonner Multisphere Spectrometer (BMS) of the LN / LNMRI / IRD - Laboratorio Metrologia de Neutrons / Laboratorio Nacional de Metrologia e Radiacao Ionizante / Instituto de Radioprotecao e Dosimetria, for measurements in repeatability and reproducibility conditions. Initially, a simulation was done by applying the Monte Carlo method, using the MCNP code and respecting the ISO 8529-1 (2001), using the sources of Californium ({sup 252} Cf), Americium-Beryllium ({sup 241} AmBe) and californium in heavy water (Cf + D{sub 2}O), all located at a distance of 100 cm from the neutron detector ({sup 6}Li (Eu) - crystal scintillator). In this program, the counting of neutrons that are captured by the detector was made. The source is located in the center of a sphere of radius 300 cm. Analyzes the impact of these neutrons in a point of the sphere wall, which in this case acted as a neutron detector and from there, it is estimated the number of neutrons that collide in the whole sphere. The purpose is to obtain the neutron count for different energy bands in a solid field of neutrons, since they have a spectrum ranging from a low to a high energy that can also vary within a particular environment. Wishes to obtain new fields with different sources and moderators materials to be used as new reference fields. Measurements are being conducted for these fields, with the aim of analyzing the variability conditions of the measurement (repeatability and reproducibility) in LEN - Laboratorio de Espectrometria de Neutrons of the LN/LMNRI/IRD. Thus, the spectrometer will be used to improve both the knowledge of the spectrum as the standard of neutrons of the lab, proving that a spectrometry is essential for correct measurement.

  9. Nonlinear THz spectroscopy on n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Gaal, Peter


    In this thesis, the ultrafast dynamics of conduction band electrons in semiconductors are investigated by nonlinear terahertz (THz) spectroscopy. In particular, n-doped gallium arsenide samples with doping concentrations in the range of 10{sup 16} cm{sup -3} to 10{sup 17} cm{sup -3} are studied. A novel source for the generation of intense THz radiation is developed which yields single-cycle THz transients with field amplitudes of more then 400 kV/cm. The THz source uses ultrashort optical laser pulses provided by a Ti:sapphire oscillator. In addition, a two-color THz-pump mid-infrared-probe setup is implemented, which allows for two-dimensional time-resolved experiments in the far-infrared wavelength range. Field ionization of neutral shallow donors in gallium arsenide with intense, ultrashort THz pulses and subsequent coherent radiative recombination of electrons to impurity ground states is observed at room temperature. The superradiant decay of the nonlinear polarization results in the emission of a coherent signal with picosecond lifetimes. Such nonlinear signals, which exhibit a lifetime ten times longer than in the linear regime are observed for the first time. At low temperatures and THz field strengths below 5 kV/cm, Rabi flopping on shallow donor transitions is demonstrated. For the first time, the polar electron-LO phonon interaction is directly measured in the quantum kinetic transport regime. Quasi-instantaneous acceleration of conduction band electrons in the polar gallium arsenide lattice by the electric field of intense THz pulses and subsequent probing of the mid-infrared transmission reveals a modulation of the transmission along the THz-mid-infrared delay coordinate with the frequency of the LO phonon. These modulations directly display the relative phase between the electron motion and its surrounding virtual phonon cloud. Quantum kinetic model calculations fully account for the observed phenomena. (orig.)

  10. Medical Applications and Toxicities of Gallium Compounds (United States)

    Chitambar, Christopher R.


    Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use. PMID:20623028

  11. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar


    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  12. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics. (United States)

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M


    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  13. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail:; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)


    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.

  14. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A. E-mail:; Polenta, L.; Canali, C.; Nava, F


    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  15. Photovoltaic Energy: Electricity from Sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.


    Photovoltaic Energy: Electricity from Sunlight (PHV) announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements.

  16. A 15% efficient antireflection-coated metal-oxide-semiconductor solar cell (United States)

    Stirn, R. J.; Yeh, Y. C. M.


    A new effect is being developed which significantly improves the conversion efficiency of antireflection-coated metal-oxide-semiconductor (AMOS) solar cells. The effect, a marked increase in the open-circuit voltage, is produced by the addition of an oxide layer to the semiconductor. Cells using gold on n-type gallium arsenide have been made with efficiencies up to 15% in terrestrial sunlight. All processing steps are amenable to the use of low-cost polycrystalline films of GaAs in place of the single crystals now used.

  17. Site control technique for quantum dots using electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Minami-saitama, Saitama 3458501 (Japan)


    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement.

  18. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F


    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  19. Ab-initio study of the electronic structure of sup 1 sup 9 F implanted in GaAs and GaN crystals

    CERN Document Server

    Park, J H; Cho, H S; Shin, Y N


    We have studied the nuclear quadrupole interaction of a fluorine atom implanted in gallium arsenide and gallium nitride cluster models using the ab-initio Hartree-Fock theory. For the three possible fluorine sites in GaAs and GaN, we have determined the location of the implanted fluorine atom by using a self-consistent calculation, the electric field gradient at the implanted atom, and the electronic structure. Good agreement is found with experimental data wherever they are available. Predictions are made for the implanted fluorine site associated with the total energy and the electric field gradient which are expected to be measurable by a variety of experimental techniques.

  20. Comparative High Field Magneto-transport Of Rare Earth Oxypnictides With Maximum Transition Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, Fedor F [Los Alamos National Laboratory; Migliori, A [MPA-NHMFL; Riggs, S [NHMFL-FSU; Hunte, F [NHMFL-FSU; Gurevich, A [NHMFL-FSU; Larbalestier, D [NHMFL-FSU; Boebinger, G [NHMFL-FSU; Jaroszynski, J [NHMFL-FSU; Ren, Z [CHINA; Lu, W [CHINA; Yang, J [CHINA; Shen, X [CHINA; Dong, X [CHINA; Zhao, Z [CHINA; Jin, R [ORNL; Sefat, A [ORNL; Mcguire, M [ORNL; Sales, B [ORNL; Christen, D [ORNL; Mandrus, D [ORNL


    We compare magnetotransport of the three iron-arsenide-based compounds ReFeAsO (Re=La, Sm, Nd) in very high DC and pulsed magnetic fields up to 45 and 54 T, respectively. Each sample studied exhibits a superconducting transition temperature near the maximum reported to date for that particular compound. While high magnetic fields do not suppress the superconducting state appreciably, the resistivity, Hall coefficient, and critical magnetic fields, taken together, suggest that the phenomenology and superconducting parameters of the oxypnictide superconductors bridges the gap between MgB{sub 2} and YBCO.

  1. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S., E-mail: [Center for Quantum Devices and Nano Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen 2100 (Denmark); Madsen, M. H. [Danish Fundamental Metrology, Matematiktorvet 307, Kgs. Lyngby 2800 (Denmark); Liao, Z.; Vosch, T. [Nano-Science Center, Department of Chemistry, University of Copenhagen, Copenhagen 2100 (Denmark)


    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  2. X-ray detection with GaAs RGCCDs

    CERN Document Server

    Passmore, S; Rogalla, M; Runge, K; Bryman, D; Cresswell, J


    Gallium-Arsenide Resistive-Gate CCDs with an active depth of up to 30 mu m were used to detect X-rays with energies between 14 and 60 keV. Five different X-ray sources were used to investigate the signal-to-noise ratio, energy resolution and linearity of the device. An energy resolution better than 11% at 60 keV was observed. The charge transport efficiency (CTE) of these 128 pixel CCDs was determined using two independent methods to be CTE>0.9992. (author)

  3. A comparative evaluation to assess the efficacy of 5% sodium fluoride varnish and diode laser and their combined application in the treatment of dentin hypersensitivity


    Suri, Isha; Singh, Poonam; Shakir, Quaid Johar; Shetty, Arvind; Bapat, Ranjeet; Thakur, Roshani


    Background: Dentin hypersensitivity (DH) is an age old complaint with a great number of treatment modalities, but none of these are totally effective till date. Lasers being one of the latest treatment options in periodontics, a study was conducted to test the efficacy of diode laser (DL) in DH alone and in comparison with 5% sodium fluoride (NaF) varnish. Aim: The aim of the present study was to compare the effectiveness of 5% topical NaF varnish and 980 nm gallium aluminum arsenide (GaAlAs)...

  4. Resonant metamaterial detectors based on THz quantum-cascade structures (United States)

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.


    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  5. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta


    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very...... high material nonlinearity and low nonlinear loss. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths with an ultra-high device nonlinearity...

  6. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R


    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  7. Study of terahertz intensity dependence on time resolved dynamic fringes in the interferometric autocorrelation setup (United States)

    Venkatesh, M.; Chaudhary, A. K.


    Terahertz signal is generated from Low temperature gallium arsenide photoconductive dipole antennas (gap = 5μm, length = 20μm) by focusing 15 fs laser pulses and applying 12V DC across it. Terahertz intensity is detected by Pyroelectric detector (THZ1.5MB-USB). The collinear autocorrelation arrangement provides dynamic fringes which are allowed to be incident on photoconductive antennas to study the variation in terahertz intensity with respect to delay between laser pulses. Interestingly, the profile of THz intensity variation was similar to interferometric autocorrelation signal of laser pulses. The THz power attenuation with its propagation distance in atmosphere was measured.

  8. Role of substrate quality on IC performance and yields (United States)

    Thomas, R. N.


    The development of silicon and gallium arsenide crystal growth for the production of large diameter substrates are discussed. Large area substrates of significantly improved compositional purity, dopant distribution and structural perfection on a microscopic as well as macroscopic scale are important requirements. The exploratory use of magnetic fields to suppress convection effects in Czochralski crystal growth is addressed. The growth of large crystals in space appears impractical at present however the efforts to improve substrate quality could benefit from the experiences gained in smaller scale growth experiments conducted in the zero gravity environment of space.

  9. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J


    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  10. Functional and electrophysiological evaluation of the effect of laser therapy in the treatment of peripheral facial paralysis (United States)

    Ladalardo, Thereza C.; Brugnera, Aldo, Jr.; Takamoto, Marcia; Pinheiro, Antonio L. B.; Campos, Roberto A. d. C.; Castanho Garrini, Ana E.; Bologna, Elisangela D.; Settanni, Flavio


    This clinical case report relates to a total of 4 patients, carriers of idiopathic facial paralysis, treated with Low Level Laser Therapy using a Gallium-Aluminum-Arsenide diode laser of 780 nm, 50 mW, continuous wave emission, spot size 3 mm2 and total dosage of 20 joules per session distributed to the peripheral trajectory of the injured nerve in a point by point contact mode. Altogether 24 treatment sessions were performed in a period of 12 consecutive weeks twice a week All treated patients presented recovery signs from the initial degree of paralysis.

  11. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.


    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  12. Modeling distributed feedback GaAs-based lasers in dentistry (United States)

    Shih, Meng-Mu


    Distributed-feedback gallium-arsenide-based lasers with metal-gratings can generate stable wavelength at 980nm for applications in dentistry. This model uses the periodic optical waveguide method to calculate the coupling coefficient, which is a key parameter of laser performance. This model shows how the optical, geometrical, and material parameters depending on each other and how they affect the coupling coefficients in the laser waveguides. Numerical results compare the coupling coefficients of 980 nm lasers with those of 810 nm lasers. The modeling processes, including results, discussions, and physical interpretations, help to design and analyze lasers for more clinical and research applications in dentistry.

  13. Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors. (United States)

    Zhang, Tianhao; Kuznetsova, Irina; Meier, Torsten; Li, Xiaoqin; Mirin, Richard P; Thomas, Peter; Cundiff, Steven T


    Optical 2D Fourier transform spectroscopy (2DFTS) provides insight into the many-body interactions in direct gap semiconductors by separating the contributions to the coherent nonlinear optical response. We demonstrate these features of optical 2DFTS by studying the heavy-hole and light-hole excitonic resonances in a gallium arsenide quantum well at low temperature. Varying the polarization of the incident beams exploits selection rules to achieve further separation. Calculations using a full many-body theory agree well with experimental results and unambiguously demonstrate the dominance of many-body physics.

  14. NLO 󈨞. Nonlinear Optics: Materials, Phenomena and Devices Digest. Internation Meeting on Nonlinear Optics (1st) Held in Kauai, Hawaii on 16-20 July 1990 (United States)


    hear all oral presentations and discussions. We hope you will take full advantage of the free time in the afternoons to enjoy Hawaii and to discuss...Hagan, M. Sheik- Bahae , and M.J. Soileau 311 FI 1 Nonlinearities of Gallium Arsenide Doping Superlattices, M.S. Tobin, G.J. Simonis, and J.D. Bruno 313 Fl...An averaging of the atom-field interaction is required simultaneously over the temporal aid sp.-tial variations of the fieids. A solution has been

  15. Cameras Reveal Elements in the Short Wave Infrared (United States)


    Goodrich ISR Systems Inc. (formerly Sensors Unlimited Inc.), based out of Princeton, New Jersey, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory, Marshall Space Flight Center, Kennedy Space Center, Goddard Space Flight Center, Ames Research Center, Stennis Space Center, and Langley Research Center to assist in advancing and refining indium gallium arsenide imaging technology. Used on the Lunar Crater Observation and Sensing Satellite (LCROSS) mission in 2009 for imaging the short wave infrared wavelengths, the technology has dozens of applications in military, security and surveillance, machine vision, medical, spectroscopy, semiconductor inspection, instrumentation, thermography, and telecommunications.

  16. NIEL calculations for estimating the displacement damage introduced in GaAs irradiated with charged particles (United States)

    El Allam, E.; Inguimbert, C.; Addarkaoui, S.; Meulenberg, A.; Jorio, A.; Zorkani, I.


    The application of Non-Ionizing Energy Loss (NIEL) in estimating the impact of electron, proton, and heavy ion irradiations on Gallium Arsenide is presented in this paper. The NIEL for deuteron, alpha particle, lithium ion and oxygen ion is computed using the SR-NIEL and NEMO codes. The NIEL calculations are compared with the introduction rate of displacement damage measured in n-type GaAs. Very good agreement is found between the NIEL and experimental results for protons (ions. However, a discrepancy can be observed for high-energy protons.

  17. Overview of SWIR detectors, cameras, and applications (United States)

    Hansen, Marc P.; Malchow, Douglas S.


    Imaging in the short wave infrared (SWIR) can bring useful contrast to situations and applications where visible or thermal imaging cameras are ineffective. This paper will define the short wave infrared technology and discuss developing imaging applications; then describe newly available 2-D (area) and 1-D (linear) arrays made with indium-gallium-arsenide (InGaAs), while presenting the wide range of applications with images and videos. Applications mentioned will be web inspection of continuous processes such as high temperature manufacturing processes, agricultural raw material cleaning and sorting, plastics recycling of automotive and consumer products, and a growing biological imaging technique, Spectral-Domain Optical Coherence Tomography.

  18. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function. (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S


    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  19. Development of Non-Toxic Quantum Dots for Flexible Display Applications (United States)


    and VI (Fig. 2) have significant impact on our day to day life. Materials such as CdSe, ZnS, CdS, CdTe , GaAs, aluminum gallium arsenide (AlGaAs...gallium nitride (GaN), indium phosphide (InP), zincselenide (ZnSe), cadmiumtelluride ( CdTe ), and copper indium gallium selenide Cu(In1-xGax)Se2 (CIGS...regards specifically to InGaN, full compositional tunability has been claimed in nanowires, though mild compositional modulation was observed for 70

  20. Small-scale and large-scale testing of photo-electrochemically activated leaching technology in Aprelkovo and Delmachik Mines (United States)

    Sekisov, AG; Lavrov, AYu; Rubtsov, YuI


    The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.

  1. The role of cobalt in the ecosystem – likelihood of adverse effects

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka


    Full Text Available Cobalt occurs in nature primarily as arsenides, oxides and sulphides. It is an essential element necessary for the formation of vitamin B12. It is also indispensable for regular growth of animals, plankton, and plants life. For the general population the diet is the main source of exposure to cobalt. The toxic effect due to environmental exposure has not been detected so far with the exception of cardiomyopathy in beer drinkers. Contaminated soils in the vicinity of industrial emittors pose a particular threat to children

  2. Summary of Research 1993 (United States)


    DIUNEs Wolfe , Kurtio A., about the same sensitivity to SEUs, LT, USK, S8ingle Event Upsets in or is perhaps a little les Gallium Arsenide Two-Phase...CUITIY:L"X To analyze the present Bruneau, T. C., "The Role of the and likely relationships between the Provisional Governments in the Iberian ...and the two Iberian countries of Portugal and Spain have 0U3 PRUBJE7I3=00: Bruneau, changed very substantially during the T. C., OPortuguese Defense

  3. Laser Atmospheric Absorption Studies. (United States)


    uuuuuyyuuuyuiyuJijUJUJuiUiUJuuuuyuJUJuJUJULj "U*-ON C\\l*4KO»0©[Ve\\.*l{C»«O«-l*-*Ha>»0* 0>0»^OMOVŘN • QlJUr**<M»N« HDn »flRljr»ClflOK>WC«)OlflW^D*0*ONmfy«-t*r- f-»-i ►- •■ H»il...An interesting aspect of this laser is introduced by the presence of the gallium arsenide flat, which serves as the output mirror, i.e., it is

  4. X-ray detection with GaAs RGCCDs (United States)

    Passmore, S.; Ludwig, J.; Rogalla, M.; Runge, K.; Bryman, D.; Cresswell, J.


    Gallium-Arsenide Resistive-Gate CCDs with an active depth of up to 30 μm were used to detect X-rays with energies between 14 and 60 keV. Five different X-ray sources were used to investigate the signal-to-noise ratio, energy resolution and linearity of the device. An energy resolution better than 11% at 60 keV was observed. The charge transport efficiency (CTE) of these 128 pixel CCDs was determined using two independent methods to be CTE>0.9992.

  5. X-ray detection with GaAs RGCCDs

    Energy Technology Data Exchange (ETDEWEB)

    Passmore, S. E-mail:; Ludwig, J.; Rogalla, M.; Runge, K.; Bryman, D.; Cresswell, J


    Gallium-Arsenide Resistive-Gate CCDs with an active depth of up to 30 {mu}m were used to detect X-rays with energies between 14 and 60 keV. Five different X-ray sources were used to investigate the signal-to-noise ratio, energy resolution and linearity of the device. An energy resolution better than 11% at 60 keV was observed. The charge transport efficiency (CTE) of these 128 pixel CCDs was determined using two independent methods to be CTE>0.9992. (author)

  6. Organic compounds used in animal husbandry: Chapter 13 (United States)

    Wershaw, Robert L.; Shore, Laurence S.; Pruden, Amy; Shore, Laurence S.


    Although in general, the same drugs are used by humans as for animal husbandry, some compounds are unique to CAFOs. In raising and fattening steers, anabolic steroids are widely used in the US. In the cattle industry, large use is made of the acaricides, avermectins, and the cypermethrins as well as juvenile growth hormone inhibitor for fly and tick control that could affect soil fauna in very small quantities as they reach the environment without any modification. In poultry, the organic arsenides have been widely used for decades to control coccidiosis and increase growth. The environmental fate of the arsenic excreted in the poultry feces is therefore been an area of concern.

  7. Considerations for millimeter wave printed antennas (United States)

    Pozar, D. M.


    Calculated data are presented on the performance of printed antenna elements on substrates which may be electrically thick, as would be the case for printed antennas at millimeter wave frequencies. Printed dipoles and microstrip patch antennas on polytetrafluoroethylene (PTFE), quartz, and gallium arsenide substrates are considered. Data are given for resonant length, resonant resistance, bandwidth, loss due to surface waves, loss due to dielectric heating, and mutual coupling. Also presented is an optimization procedure for maximizing or minimizing power launched into surface waves from a multielement printed antenna array. The data are calculated by a moment method solution.

  8. Photovoltaic energy technologies: Health and environmental effects document (United States)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.


    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  9. Semiconductor Spatial Light Modulators. (United States)


    68 29 Experimental time-expansion of modulated C02 laser beam for three levels of punp energies. CalcJlaten time-aependent solution is super... Gallium -Arsenide sample. Tre photo-excited carriers decay i Ga~s in a shorter distance because of their lower diffusion lengths as co’,nared to InSb...electron populations and producing large changes in te Far3day Dotation of another beam tined to a frequency close to tie absorption line. It has been shown

  10. Numerical Self-Consistent Analysis of VCSELs

    Directory of Open Access Journals (Sweden)

    Robert Sarzała


    Full Text Available Vertical-cavity surface-emitting lasers (VCSELs yield single-longitudinal-mode operation, low-divergence circular output beam, and low threshold current. This paper gives an overview on theoretical, self-consistent modelling of physical phenomena occurring in a VCSEL. The model has been experimentally confirmed. We present versatile numerical methods for nitride, arsenide, and phosphide VCSELs emitting light at wavelengths varying from violet to near infrared. We also discuss different designs with respect to optical confinement: gain guidance using tunnel junctions and index guidance using oxide confinement or photonic crystal and we focus on the problem of single-transverse-mode operation.

  11. Infrared spectra of some sulfides and their analogs of binary composition in the long-wave region (United States)

    Povarennykh, A. S.; Sidorenko, G. A.; Solntseva, L. S.; Solntsev, B. P.


    The far infrared spectra (500-60/cm) of some simple sulfides and their analogs were studied. In all, 22 minerals with different structure types were investigated, out of which 14 are sulfides (galena, alabandite, pyrrhotite, sphalerite, wurtzite, cinnabar, realgar, orpiment, getchelite antimonite, molybdenite, pyrite, marcasite and heazlewoodite) 6 arsenides (niccolite, domeykite, arsenopyrite, lollingite, rammelsbergite and skutterudite), one telluride (tetradymite) and native arsenic. The main bands of infrared absorption spectra of the minerals are compared with the relative strength of the interatomic bonds and their interpretation is given.

  12. Noise-based approximation to thermal spin-injection in Fe/GaAs (United States)

    Wagner, T.; Haigh, J. A.; Olejník, K.; Irvine, A. C.; Novák, V.; Wunderlich, J.


    We analyze the prospects for thermal spin-injection from iron into gallium arsenide via the application of electrical noise. By estimating the applied effective temperature-equivalent gradients, we characterize the magnitude of any electrical part of the thermal spin-injection efficiency or the spin-dependent Seebeck effect. The magnitude of the non-local spin signal associated with this effect suggests that temperature differences on the order of ˜100 K would be needed for true thermal spin-injection experiments. The large size of the effective temperature gradients induced by the noise-based method means that even very small thermo-electric effects can be quantified.

  13. Semiconductor-metal subwavelength grating VCSELs: new concept of emission mirror enabling vertical current injection (United States)

    Czyszanowski, Tomasz; Gebski, Marcin; Dems, Maciej; Panajotov, Krassimir


    We propose semiconductor-metal subwavelength grating (SMSG) which can be implemented as VCSEL mirror. Such new type of SMSG plays a double role of the electric contact and mirror simultaneously. It facilitates high optical power reflectance, perfectly vertical current injection. Such construction eliminates the inbuilt current confinement and allows scaling of emitted power by simple variation of SMSG spatial dimensions. To give the credibility to proposed design we perform numerical analysis of VCSEL with SMSG using fully vectorial optical model. We discuss properties of the proposed design realized in arsenide-based material configuration.

  14. Enhanced adhesion of films to semiconductors or metals by high energy bombardment (United States)

    Tombrello, Thomas A. (Inventor); Qiu, Yuanxun (Inventor); Mendenhall, Marcus H. (Inventor)


    Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70.

  15. Single and multiband THz Metamaterial Polarizers

    CERN Document Server

    Sangala, Bagvanth Reddy; Deshmukh, Prathmesh; Surdi, Harshad; Rana, Goutam; Gopal, Achanta Venu; Prabhu, S S


    We report single and multiband linear polarizers for terahertz (THz) frequencies using cut-wire metamaterials (MM). The MMs are designed by finite element method, fabricated by electron beam lithography, and characterized by THz time-domain spectroscopy. The MM unit cells consist of single or multiple length cut-wire pads of gold on semi-insulating Gallium Arsenide for single or multiple band polarizers. The dependence of the resonance frequency of the single band polarizer on the length of the cut-wires is explained based a transmission line model.

  16. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard


    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  17. Quantum mechanical effects analysis of nanostructured solar cell models

    Directory of Open Access Journals (Sweden)

    Badea Andrei


    Full Text Available The quantum mechanical effects resulted from the inclusion of nanostructures, represented by quantum wells and quantum dots, in the i-layer of an intermediate band solar cell will be analyzed. We will discuss the role of these specific nanostructures in the increasing of the solar cells efficiency. InAs quantum wells being placed in the i-layer of a gallium arsenide (GaAs p-i-n cell, we will analyze the quantum confined regions and determine the properties of the eigenstates located therein. Also, we simulate the electroluminescence that occurs due to the nanostructured regions.

  18. Detection of Light Dark Matter With Optical Phonons in Polar Materials


    Knapen, Simon; Lin, Tongyan; Pyle, Matt; Zurek, Kathryn M.


    We show that polar materials are ideal targets for direct detection of sub-GeV dark matter due to the presence of gapped optical phonons as well as acoustic phonons with high sound speed. We take the example of Gallium Arsenide (GaAs), which has the properties needed for experimental realization, and where many results can be estimated analytically. We find GaAs has excellent reach to dark photon absorption, can completely cover the freeze-in benchmark for scattering via an ultralight dark ph...

  19. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile (United States)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.


    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  20. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo


    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  1. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland (United States)

    Piestrzyński, Adam; Pieczonka, Jadwiga; Głuszek, Adam


    A new type of gold mineralisation containing minor amounts of platinum and palladium has been found proximal to the secondary redox interface located below the Cu-Ag Kupferschiefer orebody of the Polkowice-Sieroszowice mine in the south-western part of the Lubin-Sieroszowice district, Poland. This deposit can be classified as redbed-type gold. Our study shows that gold, platinum and palladium occur in secondary red-coloured sections of the basal Zechstein sedimentary rocks and in the uppermost Weissliegendes sandstone. Noble metal mineralisation occurs within an average interval of 0.22 m, which lies directly below the copper ores. The average grade of the horizon is 2.25 ppm Au, 0.138 ppm Pt and 0.082 ppm Pd with a metal content of several tens of tonnes of gold. A transition zone has been recognised between the gold-bearing horizon and the copper deposit. This transition zone is characterised by the presence of low grades of copper (0.5 ppm). Native gold accompanied by electrum, mercury-bearing gold, haematite, covellite, chalcocite, bornite and chalcopyrite has been identified in the gold-bearing horizon. In some sections, Pd-arsenides, tetra-auricupride, Co-arsenides, clausthalite, tennantite, digenite, yarrowite, spionkopite and galena have also been noted.

  2. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications (United States)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger


    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  3. Synchrotron X-ray diffraction study of 112-type Ca{sub 1−x}La{sub x}FeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, N., E-mail:; Sugawara, K.; Nakano, A.; Kitou, S.; Sugiyama, Y.; Kawaguchi, N.; Ito, H.; Higuchi, T.; Fujii, T.; Sawa, H.


    Highlights: • Synchrotron X-ray diffraction structural studies of Ca{sub 1−x}La{sub x}FeAs{sub 2} are presented. • Crystal twins are found in Ca{sub 1−x}La{sub x}FeAs{sub 2} with nominal compositions of x = 0.25. • Contribution of sp hybridization for arsenic zigzag chains are discussed. • Possible structures of novel 112-type iron arsenides are discussed. - Abstract: Synchrotron X-ray diffraction studies of Ca{sub 1−x}La{sub x}FeAs{sub 2} with monovalent arsenic zigzag chain layers are presented. While the crystal twins appear in all samples for the nominal composition of x = 0.25, we successfully obtained the samples without crystal twins for the nominal composition of x = 0.17. We present the structural parameters obtained using the synchrotron X-ray diffraction data and physical properties for the samples with x = 0.17. We further discuss the tactics for exploring novel 112-type iron arsenides without arsenic zigzag chains.

  4. Transformational III-V Electronics

    KAUST Repository

    Nour, Maha A.


    Flexible electronics using III-V materials for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. This thesis describes a complementary metal oxide semiconductor (CMOS) compatible process for transforming traditional III-V materials based electronics into flexible one. The thesis reports releasing 200 nm of Gallium Arsenide (GaAs) from 200 nm GaAs / 300 nm Aluminum Arsenide (AlAs) stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes that contributes to the better transparency (45 % at 724 nm wavelengths) observed. Fabrication of metal oxide semiconductor capacitor (MOSCAPs) on GaAs is followed by releasing it to have devices on flexible 200 nm GaAs. Similarly, flexible GaSb and InP fabrication process is also reported to transform traditional electronics into large-area flexible electronics.

  5. Diffusion in Intrinsic and Highly Doped III-V Semiconductors

    CERN Multimedia

    Stolwijk, N


    %title\\\\ \\\\Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinsic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.\\\\ \\\\The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. P...

  6. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Rufangura, Patrick [Sustainable Environment and Energy Systems, Middle East Technical University - Northern Cyprus Campus, Kalkanli, Guzelyurt, 99738, TRNC/Mersin 10 (Turkey); Sabah, Cumali, E-mail: [Department of Electrical and Electronics Engineering, Middle East Technical University - Northern Cyprus Campus, Kalkanli, Guzelyurt, 99738, TRNC/Mersin 10 (Turkey)


    This paper proposes a metamaterial absorber design for solar energy harvesting using a simplified and symmetric structure. A unit cell of this design consists of three important layers namely, the bottom metallic layer, which is gold lossy, the intermediate layer: made of a lossy dielectric material that is gallium arsenide and patches which formed by a combination of gold and gallium arsenide. These three important layers are being carefully arranged at the top of a dielectric spacer. The geometric structure was being examined for its contribution towards absorption characteristics. The simulation results show outstanding dual-bands absorption (99.96% and 99.37%) in the visible frequency regime of electromagnetic wave. Due to the excellent symmetric nature of the proposed structure, its absorptance capacity exhibits polarization insensitivity for a wide range of incident angles for electromagnetic radiation. - Highlights: • New and dual-band metamaterial absorber for solar cells. • Geometrically simple and easy to fabricate metamaterial absorber. • Wide range of visible range scavenging applications. • Efficient harvesting for the novel photonic materials and innovative photonic devices.

  7. Growth initiation processes for GaAs and AlGaAs in CBE

    CERN Document Server

    Hill, D


    'in-growth' reconstruction to stabilise. However unlike for TMGa, GaAs growth with TEGa proceeds by a non-self limiting growth mode and TEGa rapidly dissociates. The result of this is that TEGa decomposes on top of other TEGa molecules, or their fragments and due to the high flux rate this leads to a 'stacking-up' of Ga on the surface. The presence of excess Ga provides a rapid increase of surface reflectance and then its subsequent decay as the excess Ga is incorporated by the increasing As content of the surface. The average growth rate during the transient period is equal to that of subsequent 'post-transient' period. However it is not certain as to whether the growth rate is constant throughout the transient period. The aim of this work was to investigate the nature of the transient period found in reflectance anisotropy (RA) measurements of high III:V BEP ratio growth of gallium arsenide (GaAs) and aluminium gallium arsenide (AIGaAs) by chemical beam epitaxy (CBE). Growth at substrate temperatures betwee...

  8. Generalized Synthesis of EAs [E = Fe, Co, Mn, Cr] Nanostructures and Investigating Their Morphology Evolution

    Directory of Open Access Journals (Sweden)

    P. Desai


    Full Text Available This paper illustrates a novel route for the synthesis of nanostructured transition metal arsenides including those of FeAs, CoAs, MnAs, and CrAs through a generalized protocol. The key feature of the method is the use of one-step hot-injection and the clever use of a combination of precursors which are low-melting and highly reactive such as metal carbonyls and triphenylarsine in a solventless setup. This method also facilitates the formation of one-dimensional nanostructures as we move across the periodic table from CrAs to CoAs. The chemical basis of this reaction is simple redox chemistry between the transition metals, wherein the transition metal is oxidized from elemental state (E0 to E3+in lieu of reduction of As3+ to As3−. While the thermodynamic analysis reveals that all these conversions are spontaneous, it is the kinetics of the process that influences morphology of the product nanostructures, which varies from extremely small nanoparticles to nanorods. Transition metal pnictides show interesting magnetic properties and these nanostructures can serve as model systems for the exploration of their intricate magnetism as well as their applications and can also function as starting materials for the arsenide based nanosuperconductors.

  9. Hybrid solar collector using nonimaging optics and photovoltaic components (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr


    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  10. Two-Dimensional Massless Dirac Fermions in Antiferromagnetic AFe_{2}As_{2} (A=Ba,Sr). (United States)

    Chen, Zhi-Guo; Wang, Luyang; Song, Yu; Lu, Xingye; Luo, Huiqian; Zhang, Chenglin; Dai, Pengcheng; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel


    We report infrared studies of AFe_{2}As_{2} (A=Ba, Sr), two representative parent compounds of iron-arsenide superconductors, at magnetic fields (B) up to 17.5 T. Optical transitions between Landau levels (LLs) were observed in the antiferromagnetic states of these two parent compounds. Our observation of a sqrt[B] dependence of the LL transition energies, the zero-energy intercepts at B=0  T under the linear extrapolations of the transition energies and the energy ratio (∼2.4) between the observed LL transitions, combined with the linear band dispersions in two-dimensional (2D) momentum space obtained by theoretical calculations, demonstrates the existence of massless Dirac fermions in the antiferromagnet BaFe_{2}As_{2}. More importantly, the observed dominance of the zeroth-LL-related absorption features and the calculated bands with extremely weak dispersions along the momentum direction k_{z} indicate that massless Dirac fermions in BaFe_{2}As_{2} are 2D. Furthermore, we find that the total substitution of the barium atoms in BaFe_{2}As_{2} by strontium atoms not only maintains 2D massless Dirac fermions in this system, but also enhances their Fermi velocity, which supports that the Dirac points in iron-arsenide parent compounds are topologically protected.

  11. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, C.A.; Marina, O.A.; Thomsen, E.C.; Edwards, D.J.; Cramer, C.D.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)


    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0-10 ppm arsenic at 700-800 C. Arsenic was found to interact strongly with nickel, resulting in the formation of nickel-arsenic solid solution, Ni{sub 5}As{sub 2} and Ni{sub 11}As{sub 8}, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence that is consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration. Failure occurred when arsenic reached the anode/electrolyte interface, though agglomeration of nickel reaction products may have also contributed. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet. Arsenic concentrations of {proportional_to}10 ppb or less are estimated to result in acceptable rates of fuel cell degradation. (author)

  12. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Christopher A.; Marina, Olga A.; Thomsen, Edwin C.; Edwards, Danny J.; Cramer, Carolyn N.; Coffey, Greg W.; Pederson, Larry R.


    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0 to 10 ppm arsenic introduced as arsine. Arsenic was found to interact strongly with nickel in the anode, resulting in the formation of nickel-arsenic solid solution, Ni5As2 and Ni11As8, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration in coal gas, and occurred when arsenic reached the anode/electrolyte interface. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet.

  13. Monolithic subwavelength high refractive-index-contrast grating VCSELs (United States)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz


    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  14. Growth of superconducting FeSe films (United States)

    Naito, Michio; Agatsuma, Shinya; Ueda, Shinya


    The recently discovered Fe arsenide and chalcogenide superconductors have provided the superconducting community with a great surprise that Fe-based compounds are not ferromagnetic but superconducting with high Tc. The superconducting Fe arsenides and chalcogenides are also interested from the viewpoint of superconducting electronics. One can see good lattice compatibility between the superconducting Fe family and the existing III-V and II-VI semiconducting family (GaAs, ZnSe). All-epitaxial super-semiconductor multilayer structures may be ideal for superconducting electronics and spintronics. Toward this goal, we have attempted to grow epitaxial thin films of the superconducting Fe family. Of this family, tetragonal α-FeSe seems to be the easiest to grow thin films. We employed two approaches for FeSe film growth: post-annealing and MBE growth. In the post-annealing, precursor films of Fe are annealed at 500 - 600 ^oC with Se vapor in an evacuated quartz tube. Annealing with elemental Se produced semiconducting FeSe2 whereas annealing with FeSe polycrystalline pellets produced superconducting FeSe with Tc(onset) ˜ 10 K. In the MBE growth, we attempted the growth similar to GaAs growth, namely with the vapor rich in Se, expecting self-limiting adsorption of Se. MBE films so far obtained with the growth temperature of 330 ^oC are nonsuperconducting hexagonal β-FeSe.

  15. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  16. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.


    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  17. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer


    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  18. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  19. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  20. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pederson, Larry R. [North Dakota State University, Fargo, ND 58102 (United States)


    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below {proportional_to}800 C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing {<=}2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co){sub 3}O{sub 4} protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr){sub 3}O{sub 4} passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr{sub 2}O{sub 3}. On SS 441, reaction of phosphorus with (Mn,Cr){sub 3}O{sub 4} led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe{sub 3}P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co){sub 3}O{sub 4} spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn{sub 3}(PO{sub 4}){sub 2} and Co{sub 2}P. A thin Cr{sub 2}O{sub 3} passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr{sub 2}O{sub 3} was apparent. On alumel, an Al{sub 2}O{sub 3} passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al{sub 2}O{sub 3} occurred. This work shows that unprotected metallic components of

  1. Synthesis, evaluation and defect compensation of tetrahedral glasses as possible solar cell materials. Final report, February 1, 1979-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, R.D.; Rose, T.L.; Scoville, A.N.


    The work reported was directed towards evaluation of new amorphous compounds for application in solar cells. The ternary A/sup II/B/sup IV/C/sub 2//sup V/ chalcopyrite systems were selected because of their inexpensive constituent elements and tetrahedral geometry. Polycrystalline samples of the ternary arsenides with Cd and Zn as the group II element and Ge, Si, Sn as the group IV element were synthesized. Thin films were deposited by vacuum evaporation of the bulk ternary arsenides. The stoichiometries of the films were irreproducible and were usually deficient in the lower vapor pressure group IV element. Films made by evaporating polycrystalline ZnAs/sub 2/, which also has a tetrahedral bonding structure, had stoichiometries generally in the range from Zn/sub 3/As/sub 2/ to ZnAs/sub 2/. The former compound is formed by the decomposition of ZnAs/sub 2/ to Zn/sub 3/As/sub 2/ and As/sub 4/. The intermediate stoichiometries are thought to be mixtures of the decomposition products. Preliminary results from annealing of the films indicate that heat treatment produces the stoichiometries expected for one of the two forms of zinc arsenide. The as-deposited films are amorphous when the substrate temperature is kept below 100/sup 0/C. The a-ZnAs/sub x/ films were characterized. EDAX and Auger analysis showed that films were homogeneous in the plane of the substrate, but that some variation occurred in the depth profile of the films. This change in composition is consistent with the sample decomposition which occurs during the evaporation. The as-prepared films were p-type with room temperature resistivities on the order of 10/sup 2/-10/sup 4/..cap omega..-cm. Optical absorption measurements gave optical band gap values of 1.2 eV for a-Zn/sub 3/As/sub 2/ and 1.5 eV for a-ZnAs/sub 2/. The ZnAs/sub x/ films were photoconductive.

  2. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan, E-mail: [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Coulon, Romain; Bertrand, Guillaume H.V.; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)


    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  3. Systematic studies of the fundamental chemistry of pyrochlore oxides. An{sub 2}Zr{sub 2}O{sub 7} [An=Pu, Am, Cm, Bk and Cf

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.; Assefa, Z. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Raison, P.E. [Commissariat a l' Energie Atomique, CEA-Cadarache DRN/DEC/SPUA/LACA (France)


    Our efforts to pursue the fundamental science of actinide pyrochlore oxides, An{sub 2}Zr{sub 2}O{sub 7}, (An=plutonium through californium), are presented. We have addressed their structural and chemical behavior via X-ray diffraction, Raman spectroscopy and by considering the pseudo-oxidation potentials of the actinides. The structure, fundamental chemistry, ionic radii and the electronic configuration of the specific actinide involved in these oxide systems all have a significant impact on their science. We are also exploring a calculational approach based on valence-bond relationships to assess the position of the oxygen atoms located at the general crystallographic position. The oxygen position is important regarding the chemical behavior and thermal stability of these materials. Also considered is the structural stability of the materials regarding self-irradiation, and with some compounds, their resistance towards oxidation. These aspects will be discussed using a systematic evaluation of the five-actinide systems together with comparable lanthanide systems studied. (author)

  4. 1982 US-CEC neutron personnel dosimetry intercomparison study

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Greene, R.T.; Schraube, H.; Burger, G.


    A neutron personnel dosimetry intercomparison study was conducted during April 19-23, 1982, as a joint effort between the United States and the Commission of European Communities. Dosimeters from 48 participating agencies were mounted on cylindrical phantoms and exposed to a range of low-level dose equivalents (0.48-13.91 mSv neutron and 0.02-1.32 mSv gamma) in nine different radiation fields. Exposure conditions considered in this study included four mixed-field spectra produced using the Health Physics Research Reactor, four monoenergetic neutron fields generated by accelerators, and one 15-cm D/sub 2/O-moderated californium source spectrum. In general, neutron results reported by the participating agencies were consistent with expected dosimeter performance based on energy response characteristics of the detection systems. Albedo dosimeters, which were the most popular neutron monitoring systems used in this study, provided the best overall accuracy for all exposure conditions. Film, Cr-39 recoil track, and Th-232 fission track systems generally underestimated dose equivalents relative to reference values. Associated gamma measurements showed that TLD monitors produced more accurate results than film dosimeters although both systems overestimated gamma dose equivalents in mixed radiation fields. 24 references, 10 figures, 19 tables.

  5. Application of the backward extrapolation method to pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry


    Particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts over time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. The backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.

  6. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118 (United States)

    Jadambaa, Khuyagbaatar


    The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.


    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Haight, R.C.


    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  8. Activation analysis of ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Muratov, V. [RDIPE (NIKIET), Moscow (Russian Federation)


    To analyze the activation of ITER blanket structural components, the authors have prepared the AUCDAS code that calculates changes in nuclide concentrations and radioactivity characteristics during neutron irradiation and during cooling. UCDAS takes into account all neutron reactions and decay types, the prepared library of constants contains nuclear data of nuclides from hydrogen to californium. A comparative analysis of the results as obtained using UCDAS code and the widely known FISPACT code is given. The analysis of decay heat, gas generation and activity of ITER blanket first wall`s structural components was carried out. The beryllium coating, copper alloy and stainless steel were analysed. Calculations were performed for the first plasma burning pulse, 6 months and 1 year of operation in accordance with the ITER scenario. The materials recommended by ITER central team and their Russian analogs were considered: TGR and B1 (beryllium coating), GlidCop AL-25 Ds and Br-MKX (copper alloy), 316LN-IG and 12Cr18Ni10Ti (stainless steel). It has been demonstrated that there is a difference in all of the considered characteristics between the above materials. It is caused by impurities which are present in the materials. The report also considers the accumulation of gases (H, D, T, He{sup 3}, He{sup 4}) in the above materials. Besides, the change in the activity of irradiated materials during the cooling of up to 10{sup 7} years was calculated. (orig.) 7 refs.

  9. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.


    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement. These 3 mm × 3 mm detectors were fabricated from 50 μm thick freestanding and flexible 10B enriched h-BN (h-10BN) films, grown by metal organic chemical vapor deposition followed by mechanical separation from sapphire substrates. Mobility-lifetime results suggested that holes are the majority carriers in unintentionally doped h-BN. The detectors were tested under thermal neutron irradiation from californium-252 (252Cf) moderated by a high density polyethylene moderator. A thermal neutron detection efficiency of ˜53% was achieved at a bias voltage of 200 V. Conforming to traditional solid-state detectors, the realization of h-BN epilayers with enhanced electrical transport properties is the key to enable scaling up the device sizes. More specifically, the present results revealed that achieving an electrical resistivity of greater than 1014 Ωṡcm and a leakage current density of below 3 × 10-10 A/cm2 is needed to fabricate large area h-BN detectors and provided guidance for achieving high sensitivity solid state neutron detectors based on h-BN.

  10. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: [Argonne National Laboratory, Argonne, IL 60439, USA and Illinois Institute of Technology, Chicago, IL 60616 (United States); Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)


    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  11. Analysis of patents on mining technology

    Energy Technology Data Exchange (ETDEWEB)

    Menyailo, N.I.; Grishchenko, A.N.; Ratner, M.V.; Kobylyanskii, A.Ya.; Tyshlek, E.G.


    Analyses the current work being carried out with the aim of developing and perfecting coal mining technology with regard to improving safety and working conditions (equipment is currently responsible for 6.3% of all hazards in coal mines) by examining patents of class ES 21 S produced in the USSR, USA, UK, FRG, Japan and France between 1970-1984. By far the majority of patents is concerned with improving technology and productivity and a disappointing number deals with safety matters (only 7.2% of the patents for new cutter loader designs deal with dust suppression systems and most of these come from the FRG; no patents for powered mining complexes deal with the problem of noise and vibration reduction). The patents with the most direct relevance to health and safety concern remote control devices for mining equipment, in particular, devices based on radioactive isotopes (e.g. cesium-137, americum-241, selenium-75, californium-252) but measures for monitoring them and protecting against them are not found.

  12. MinT: Middleware for Cooperative Interaction of Things

    Directory of Open Access Journals (Sweden)

    Soobin Jeon


    Full Text Available This paper proposes an Internet of Things (IoT middleware called Middleware for Cooperative Interaction of Things (MinT. MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.

  13. MinT: Middleware for Cooperative Interaction of Things (United States)

    Jeon, Soobin; Jung, Inbum


    This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182

  14. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL


    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  15. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division


    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  16. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)


    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  17. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)


    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  18. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    Directory of Open Access Journals (Sweden)

    Jadambaa Khuyagbaatar


    Full Text Available The synthesis of superheavy elements beyond oganesson (Og, which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98 forces the use of projectiles heavier than 48Ca (Z = 20, which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to “cold” and “hot” fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  19. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations. (United States)

    Brandão, S F; Campos, T P R


    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  20. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations (United States)

    Brandão, S F


    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  1. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator. (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C


    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  2. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.


    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  3. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF) (United States)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.


    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  4. Universal Test Facility (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  5. An Ultra-Efficient Nonlinear Platform: AlGaAs-On-Insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    nonlinearity, a high-index contrast as SOI, and low linear and nonlinear losses is highly desired. Aluminium gallium arsenide (AlGaAs) was early identified as a promising candidate and even nominated as “the silicon of nonlinear optical material” [4] when operated just below half its bandgap energy. It offers......]. Though tremendous technological work in those platforms have greatly improved device performances, the relatively low intrinsic material nonlinearities of those materials limit device performances concerning efficiency. Therefore, an integrated nonlinear platform that combines a high material...... a nonlinear index (n2) on the order of 10−17 W/m2 and a high refractive index (n ≈3.3), a large transparency window (from near- to mid-infrared), and the ability to engineer the material bandgap to mitigate TPA [5]. In this presentation, we introduce AlGaAson-insulator (AlGaAsOI) platform which combines both...

  6. Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching

    DEFF Research Database (Denmark)

    Kallesoe, C.; Mølhave, Kristian; Larsen, K. F.


    Epitaxial growth of heterostructure nanowires allows for the definition of narrow sections with specific semiconductor composition. The authors demonstrate how postgrowth engineering of III-V heterostructure nanowires using selective etching can form gaps, sharpening of tips, and thin sections...... simultaneously on multiple nanowires. They investigate the potential of combining nanostencil deposition of catalyst, epitaxial III-V heterostructure nanowire growth, and selective etching, as a road toward wafer scale integration and engineering of nanowires with existing silicon technology. Nanostencil...... lithography is used for deposition of catalyst particles on trench sidewalls and the lateral growth of III-V nanowires is achieved from such catalysts. The selectivity of a bromine-based etch on gallium arsenide segments in gallium phosphide nanowires is examined, using a hydrochloride etch to remove the III...

  7. Focused ion beam fabrication of graded channel FETs in GaAs and Si (United States)

    Melngailis, John


    The goal of this research is to exploit the novel capability of the focused ion beam to implant dopants whose density is a function of the lateral position. Thus, Field Effect Transistors in Gallium Arsenide and Silicon can be fabricated with a gradient of doping from source to drain. We have fabricated and tested such graded FET's in GaAs and have fabricated Si devices up to the point of focused ion beam implantation. In addition, programs for modeling the devices on the computer have been written. Recently, we have conceived and fabricated a new device: a tunable Gunn oscillator which makes use of doping gradients. To carry out these implantations, we have further developed the performance of our focused ion beam machine.

  8. Buffer layer between a planar optical concentrator and a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E. [Departamento de Ingeniería Matemática and CI" 2 MA, Universidad de Concepción, Concepción, Casilla 160-C (Chile); Barber, Greg D. [Penn State Institute of Energy and the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Faryad, Muhammad [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)


    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  9. Pressure effects on the elastic and lattice dynamics properties of AlP from first-principles calculations (United States)

    Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.


    We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ɛ0, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III-V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.

  10. Linear electro-optic effect in cubic silicon carbide (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.


    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  11. Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. (United States)

    Tanta, Rawa; Kanne, Thomas; Amaduzzi, Francesca; Liao, Zhiyu; Madsen, Morten H; Alarcón-Lladó, Esther; Krogstrup, Peter; Johnson, Erik; Morral, Anna Fontcuberta I; Vosch, Tom; Nygård, Jesper; Jespersen, Thomas S


    Any device exposed to ambient conditions will be prone to oxidation. This may be of particular importance for semiconductor nanowires because of the high surface-to-volume ratio and only little is known about the consequences of oxidation for these systems. Here, we study the properties of indium arsenide nanowires which were locally oxidized using a focused laser beam. Polarization dependent micro-Raman measurements confirmed the presence of crystalline arsenic, and transmission electron microscopy diffraction showed the presence of indium oxide. The surface dependence of the oxidation was investigated in branched nanowires grown along the [Formula: see text] and [Formula: see text] wurtzite crystal directions exhibiting different surface facets. The oxidation did not occur at the [Formula: see text] direction. The origin of this selectivity is discussed in terms transition state kinetics of the free surfaces of the different crystal families of the facets and numerical simulations of the laser induced heating.

  12. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I


    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  13. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics


    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  14. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)


    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  15. Analysis of the active layer in SI GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [Bologna Univ. (Italy). Dipt. di Fisica]|[INFM, Bologna (Italy); Canali, C. [INFM and Dipartimento di Scienze dell`Ingegneria, Universita` di Modena, Via Campi 213/B, Modena (Italy); Nava, F. [INFN and Dipartimento di Fisica, Universita` di Modena, Via Campi 213/A, Modena (Italy)


    The behavior of the active region width W of semi-insulating gallium arsenide Schottky diodes versus reverse biasing has been investigated by optical beam induced current and surface potential techniques. It has been found that at low applied voltages, W follows the square root law peculiar to a Schottky barrier while, for a bias higher than 20 V, the active layer increases linearly with the voltage applied. To go deeper into this matter, the spatial distribution of the electric field has been analyzed in a wide range of bias voltages and it has been observed that at high voltages a plateau occurs, followed by a linear decrease down to a quasi-zero value. In terms of space charge distribution this means that there is a box-shaped space charge region moving towards the ohmic contact at increasing bias. (orig.) 21 refs.

  16. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying


    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  17. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting. (United States)

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi


    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm.

  18. Enhanced superconductivity in ThNiAsN (United States)

    Wang, Zhi-Cheng; Shao, Ye-Ting; Wang, Cao; Wang, Zhen; Xu, Zhu-An; Cao, Guang-Han


    We report the synthesis and physical properties of a nickel-based arsenide ThNiAsN. The new compound crystallizes in a ZrCuSiAs-type structure (space group P4/nmm ) with lattice parameters a=4.0804(4) \\AA and c=7.9888(6) \\AA . Bulk superconductivity at Tc =4.3 \\text{K} is demonstrated by the measurements of electrical resistivity, dc magnetic susceptibility, and heat capacity. The upper critical field at zero temperature, Hc2(0) , and the specific-heat jump at T c are 6.1 T and 40 \\text{mJ} \\cdot \\text{K}-1\\cdot \\text{mol}-1 , respectively. These two physical quantities, together with the T c value, are the highest among the Ni-based ZrCuSiAs-type materials. We discuss this enhanced superconductivity in terms of the internal chemical pressure in ThNiAsN.

  19. Angle-resolved cathodoluminescence imaging polarimetry

    CERN Document Server

    Osorio, Clara I; Brenny, Benjamin; Polman, Albert; Koenderink, A Femius


    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductor...

  20. Phase equilibrium modeling for high temperature metallization on GaAs solar cells (United States)

    Chung, M. A.; Davison, J. E.; Smith, S. R.


    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  1. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    CERN Document Server

    Glinchuk, K D


    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  2. The influence of phonon bath on the control of single photon (United States)

    Zhang, Wei; Lu, Hai-Tao


    The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both considered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel’s Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of temperature. Theoretically, when the structure parameter of arsenide quantum dots α scaled to 0.1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature. Project supported by the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2014zzts145).

  3. Obtaining thin films of compounds of constant composition of the A/sup 2/B/sup 6/ type by the chemical assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Aleskovskii, V.B.; Drozd, V.E.; Gubaidullin, V.I.; Romanychev, A.I.


    The chemical assembly method has been developed and studied in the syntesis of oxides of a number of elements on different substrates. The goal of this work was to obtain thin films of the semiconductor compounds ZnS, ZnSe, CdS, and CdSe by this method. As the substrate, the authors used plates of silica, mica, quartz glass, gallium arsenide, sodium chloride. The thickness of the synthesized layers was measured ellipsometrically. The authors simultaneously measured the mass of these layers using piezoelectric resonator weights. The authors determined the thickness of the synthesized layers of the listed compounds A/sup 2/B/sup 6/ as a function of the number of chemical assembly reaction cycles at different temperatures.

  4. A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns (United States)

    Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.


    A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.

  5. Characterization of InGaAs Linear Array for Applications to Remote Sensing (United States)

    Garcia, Christopher S.; Refaat, Tamer F.; Farnsworth, Glenn R.; Abedin, M. N.; Elsayed-Ali, Hani E.


    An Indium Gallium Arsenide linear photodiode array in the 1.1-2.5 micron spectral range was characterized. The array has 1024x1 pixels with a 25 micron pitch and was manufactured by Sensors Unlimited, Inc. Characterization and analysis of the electrical and optical properties of a camera system were carried out at room temperature to obtain detector performance parameters. The signal and noise were measured while the array was uniformly illuminated at varying exposure levels. A photon transfer curve was generated by plotting noise as a function of average signal to obtain the camera gain constant. The spectral responsivity was also measured, and the quantum efficiency, read noise and full-well capacity were determined. This paper describes the characterization procedure, analyzes the experimental results, and discusses the applications of the InGaAs linear array to future earth and planetary remote sensing mission.

  6. Performace of Dilute Nitride Triple Junction Space Solar Cell Grown by MBE

    Directory of Open Access Journals (Sweden)

    Aho Arto


    Full Text Available Dilute nitride arsenide antimonide compounds offer widely tailorable band-gaps, ranging from 0.8 eV to 1.4 eV, for the development of lattice-matched multijunction solar cells with three or more junctions. Here we report on the performance of GaInP/GaAs/GaInNAsSb solar cell grown by molecular beam epitaxy. An efficiency of 27% under AM0 conditions is demonstrated. In addition, the cell was measured at different temperatures. The short circuit current density exhibited a temperature coefficient of 0.006 mA/cm2/°C while the corresponding slope for the open circuit voltage was −6.8 mV/°C. Further efficiency improvement, up to 32%, is projected by better current balancing and structural optimization.

  7. A simple model of space radiation damage in GaAs solar cells (United States)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.


    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  8. Semiconductor Nanomembranes for Quantum Photonics: Quantum Light Sources and Optomechanics

    DEFF Research Database (Denmark)

    Liu, Jin

    This thesis describes the fabrication and characterizations of semiconductor nanomembranes, i.e., gallium arsenide (GaAs) photonic crystal (PC) and optomechanical nanomemebranes. Processing techniques are developed and optimized in order to fabricate PC membranes for quantum light sources......-record mechanical Q-factor up to 1 million have been fabricated with two step selective wet etches. These optomechanical naonmembranes exhibit superb performances in cavity optomechanical cooling experiments in which a mechanical mode has been cooled from room temperature to 4 K. The interaction between single...... quantum dots (QDs) and PC cavities has been modeled in the framework of Jaynes-Cummings model (JCM) with the focus on single artificial atom lasers. In the experiments, a highly efficient single photon source with a collection efficiency up to 38% has been achieved and detailed measurements suggest...

  9. Surface impedance of BaFe2-xNixAs2 in the radio frequency range

    Directory of Open Access Journals (Sweden)

    A. Abbassi


    Full Text Available We report measurements of the temperature dependence of the surface impedance in superconducting BaFe1.93Ni0.07As2 crystals using the radiofrequency reflection technique in the 5arsenide superconductors BaFe2-xNixAs2 has attracted much interest. For a Ni doping level of 7% the superconducting phase transition is found around 20K. The temperature dependence of the superconducting penetration depth was determined.

  10. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals (United States)

    Kovalenko, Maksym V.; Protesescu, Loredana; Bodnarchuk, Maryna I.


    Semiconducting lead halide perovskites (LHPs) have not only become prominent thin-film absorber materials in photovoltaics but have also proven to be disruptive in the field of colloidal semiconductor nanocrystals (NCs). The most important feature of LHP NCs is their so-called defect-tolerance—the apparently benign nature of structural defects, highly abundant in these compounds, with respect to optical and electronic properties. Here, we review the important differences that exist in the chemistry and physics of LHP NCs as compared with more conventional, tetrahedrally bonded, elemental, and binary semiconductor NCs (such as silicon, germanium, cadmium selenide, gallium arsenide, and indium phosphide). We survey the prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells, emphasizing the practical hurdles that remain to be overcome.

  11. Dynamic kirigami structures for integrated solar tracking. (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max


    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  12. The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    Directory of Open Access Journals (Sweden)

    Florent Ravaux


    Full Text Available To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM structures of molybdenum (Mo were fabricated on indium phosphide (InP substrate on the top of an indium gallium arsenide (InGaAs layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS showed that the amount of oxides (InxOy, GaxOy or AsxOy was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process.

  13. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [MPI-CPFS (Germany); Bachmann, M. [MPI-CPFS (Germany); Moll, P.J.W. [MPI-CPFS (Germany); Balicas, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Eric Dietzgen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ronning, Filip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-Tc and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivity appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.

  14. Extraction of second harmonic from the In0.53Ga0.47As planar Gunn diode using radial stub resonators (United States)

    Maricar, Mohamed Ismaeel; Khalid, A.; Glover, J.; Evans, G. A.; Vasileious, P.; Li, Chong; Cumming, D.; Oxley, C. H.


    Planar Indium Gallium Arsenide (InGaAs) Gunn diodes with on chip matching circuits have been fabricated on a semi-insulating Indium Phosphide (InP) substrate to enable the extraction of the second harmonic in millimeter-wave and terahertz frequencies. The planar Gunn diodes were designed in coplanar waveguide (CPW) format with an active channel length of 4 μm and width 120 μm integrated to CPW matching circuit and radial stub resonator to suppress the fundamental and to extract the second harmonic. The initial experimental measurements have given a second harmonic signal at 118 GHz with an output power of -20 dBm and the fundamental signal at 59 GHz was suppressed to the noise level of the experimental set-up.

  15. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei


    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  16. Scanning SQUID microscopy on polycrystalline SmFeAsO_{0.85} and NdFeAsO_{0.94}F_{0.06}

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Clifford W.; Lippman, Thomas M.; Moler, Kathryn A.; /Stanford U., Geballe Lab.; Huber, Martin E.; /Colorado U.; Ren, Zhi-An; Zhao, Zhong-Xian; /Beijing, Inst. Phys.


    The order parameter of the recently-discovered ferric arsenide family of superconductors remains uncertain. Some early experiments on polycrystalline samples suggested line nodes in the order parameter, however later experiments on single crystals have strongly supported fully-gapped superconductivity. An absence of nodes does not rule out unconventional order: {pi} phase shifts between the separate Fermi sheets and time-reversal symmetry-breaking components in the order parameter remain possibilities. One test for unconventional order is scanning magnetic microscopy on well-coupled polycrystalline samples: d- or p-wave order would result in orbital frustration, leading to spontaneous currents and magnetization in the superconducting state. We have performed scanning SQUID microscopy on SmFeAsO{sub 0.85} and NdFeAsO{sub 0.94}F{sub 0.06}, and in neither material do we find spontaneous orbital currents, ruling out p- or d-wave order.

  17. Universal Infantry Weapons Trainer (UIWT). Volume 1. M-16 Rifle Model. (United States)


    source used in the system is a semiconductor, gallium arsenide laser. The laser is collimated by a simple plano convex lens. The laser is attached where...UfSATSOATA LITE~tlY ’%.CH’, /s PIF#, 3-48 OF 80/2P MAUAL U5MRTSSTATUS LITERALLY 6ED9’, /* PiE 3-44 *./ EcC LITERALLY ’±R; /* AS(I I "EsCFm * ZERO LITERALLY...H EI E CHIP CT 9026 15 1 EN I E6t E EXTEIEI INTEPRUPTS 41? A 2 WRIT: NOY R,R2 ,GET PIE STATUS *218 627 93 JZ WRIT ,IF 0lJETE ENPTY NO ACTION 𔄁 𔄂

  18. Thermally Stable Ohmic Contacts on Silicon Carbide Developed for High- Temperature Sensors and Electronics (United States)

    Okojie, Robert S.


    The NASA aerospace program, in particular, requires breakthrough instrumentation inside the combustion chambers of engines for the purpose of, among other things, improving computational fluid dynamics code validation and active engine behavioral control (combustion, flow, stall, and noise). This environment can be as high as 600 degrees Celsius, which is beyond the capability of silicon and gallium arsenide devices. Silicon-carbide- (SiC-) based devices appear to be the most technologically mature among wide-bandgap semiconductors with the proven capability to function at temperatures above 500 degrees Celsius. However, the contact metalization of SiC degrades severely beyond this temperature because of factors such as the interdiffusion between layers, oxidation of the contact, and compositional and microstructural changes at the metal/semiconductor interface. These mechanisms have been proven to be device killers. Very costly and weight-adding packaging schemes that include vacuum sealing are sometimes adopted as a solution.

  19. GaN Monolithic Power Amplifiers for Microwave Backhaul Applications

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia


    Full Text Available Gallium nitride integrated technology is very promising not only for wireless applications at mobile frequencies (below 6 GHz but also for network backhaul radiolink deployment, now under deep revision for the incoming 5G generation of mobile communications. This contribution presents three linear power amplifiers realized on 0.25 μ m Gallium Nitride on Silicon Carbide monolithic integrated circuits for microwave backhaul applications: two combined power amplifiers working in the backhaul band around 7 GHz, and a more challenging third one working in the higher 15 GHz band. Architectures and main design steps are described, highlighting the pros and cons of Gallium Nitride with respect to the reference technology which, for these applications, is represented by gallium arsenide.

  20. Optical characterization of InAs film grown on SnO2 substrate by the electrodeposition technique (United States)

    Lajnef, M.; Ezzaouia, H.; Chtourou, R.


    Indium arsenide films have been grown by an electrodeposition process at low temperature on a tin oxide (SnO2) substrate. X-ray diffraction studies showed that the as-grown films are poorly crystallized and heat treatment improved the crystallinity of InAs films. Atomic force microscopic measurements revealed that the InAs film surface is formed by particles for which the grain size depends on the electrolysis parameters; we have found that the grain size increases with the electrolysis current density. Absorption measurements show that the band gap energy red-shifts with increasing particle size. This result can be interpreted as a consequence of the quantum confinement effect on the carriers in the nanocrystallites.

  1. Optical characterization of InAs film grown on SnO{sub 2} substrate by the electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M; Ezzaouia, H; Chtourou, R [Laboratoire de Photovoltaique et Semiconducteurs et de Nanostructure, Centre de Recherche et de Technologie de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)], E-mail:


    Indium arsenide films have been grown by an electrodeposition process at low temperature on a tin oxide (SnO{sub 2}) substrate. X-ray diffraction studies showed that the as-grown films are poorly crystallized and heat treatment improved the crystallinity of InAs films. Atomic force microscopic measurements revealed that the InAs film surface is formed by particles for which the grain size depends on the electrolysis parameters; we have found that the grain size increases with the electrolysis current density. Absorption measurements show that the band gap energy red-shifts with increasing particle size. This result can be interpreted as a consequence of the quantum confinement effect on the carriers in the nanocrystallites.

  2. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature. (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E


    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  3. Dopant profiling with the scanning electron microscope

    CERN Document Server

    Elliott, S L


    This dissertation is a detailed study of dopant profiling with the scanning electron microscope (SEM) using secondary electrons. The technique has been applied to a wide variety of doped silicon, gallium arsenide and gallium nitride semiconductor test structures as well as a metal-oxide field effect transistor and several light emitting diodes. A concise set of guide-lines are provided for users of this technique, including the optimum SEM operating conditions that should be used for maximum contrast, an image manipulation procedure, and the resolution and sensitivity limits that can be expected. Dopant contrast observed with the SEM has been studied over the past few years by a number of researchers, and a theory for the contrast has evolved. This theory considers the patch fields outside the specimen to be the dominant factor determining the secondary electron intensity. In this dissertation the contrast mechanism has been further investigated by examining the contrast at different temperatures and after su...

  4. Superconductivity at 35 K by self doping in RbGd2Fe4As4O2 (United States)

    Wang, Zhi-Cheng; He, Chao-Yang; Wu, Si-Qi; Tang, Zhang-Tu; Liu, Yi; Ablimit, Abduweli; Tao, Qian; Feng, Chun-Mu; Xu, Zhu-An; Cao, Guang-Han


    We report synthesis, crystal structure and physical properties of a novel quinary compound RbGd2Fe4As4O2. The new iron oxyarsenide is isostructural to the fluo-arsenide KCa2Fe4As4F2, both of which contain separate double Fe2As2 layers that are self hole-doped in the stoichiometric composition. Bulk superconductivity at {{T}\\text{c}}=35 K is demonstrated by the measurements of electrical resistivity, dc magnetic susceptibility and heat capacity. An exceptionally high value of the initial slope of the upper critical field ({μ0} d{{H}\\text{c2}} /dT{{|}{{T\\text{c}}}}= 16.5 T K-1) is measured for the polycrystalline sample.

  5. Inherent polarization entanglement generated from a monolithic semiconductor chip. (United States)

    Horn, Rolf T; Kolenderski, Piotr; Kang, Dongpeng; Abolghasem, Payam; Scarcella, Carmelo; Della Frera, Adriano; Tosi, Alberto; Helt, Lukas G; Zhukovsky, Sergei V; Sipe, J E; Weihs, Gregor; Helmy, Amr S; Jennewein, Thomas


    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices.

  6. Fin width dependence on gate controllability of InGaAs channel FinFETs with regrown source/drain (United States)

    Kise, Nobukazu; Kinoshita, Haruki; Yukimachi, Atsushi; Kanazawa, Toru; Miyamoto, Yasuyuki


    In this paper, we report on the structure and characteristics of an indium gallium arsenide (InGaAs) channel fin field effect transistor (FinFET) with a regrown source/drain. The fabrication process we propose is suitable for forming a channel with a high aspect ratio. In simulations, the subthreshold characteristics and drain current (Id) were improved by reducing the fin width. Following the simulations, fabricated devices showed improved gate controllability after the fin width was reduced. A short-channel device (Lch = 50 nm, Hfin = 50 nm, and Wfin = 20 nm) showed an Id of 367 μA/μm and a minimum subthreshold swing (SSmin) of 211 mV/dec at Vd = 0.5 V. The maximum-to-minimum Id ratio was 105.

  7. PDT in non-surgical treatment of periodontitis in kidney transplanted patients: a split-mouth, randomized clinical trial (United States)

    Marinho, Kelly C. T.; Giovani, Elcio M.


    This study was to evaluate clinical and microbiological effectiveness of photodynamic therapy (PDT) in the treatment of periodontal disease in kidney-transplanted patients. Eight kidney transplanted patients treated at Paulista University were arranged in two groups: SRP performed scaling and root planning by ultrasound; SRP+PDT- in the same patient, which was held to PDT in the opposite quadrant, with 0.01% methylene blue and red laser gallium aluminum arsenide, wavelength 660 nm, power 100 mW. There was reduction in probing pocket depth after 45 days and 3 months regardless the group examined; plaque and bleeding index showed improvement over time, regardless the technique used, and bleeding index in the SRP+PDT group was lower when compared with the baseline the other times. There was no difference in the frequency of pathogens. Photodynamic therapy may be an option for treatment of periodontal disease in renal-transplanted patients and its effectiveness is similar to conventional therapy.

  8. X-ray induced optical reflectivity

    Directory of Open Access Journals (Sweden)

    Stephen M. Durbin


    Full Text Available The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4, a semiconductor (gallium arsenide, GaAs, and a metal (gold, Au, obtained with ∼100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  9. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications (United States)

    Manohara, Harish M.; Wong, Eric W.; Schlecht, Erich; Hunt, Brian D.; Siegel, Peter H.


    We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.

  10. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor


    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  11. Influence of photon recycling effects in the operation and design of GaAs solar cells; Influencia del reciclaje de fotones en el funcionamiento y del diseno de las celulas solares de Arsenico de Galio

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui Manzanares, J. L.


    Photon recycling (PR) is the process by which photons internally emitted in a semiconductor can be re-absorbed by the material, giving as result new electron-hole pairs. Although this process has been receiving some international research from the Sixties, because their effects revealed as relevant in certain devices and materials (as in gallium arsenide), its influence in the operation of solar cells has been scarcely considered in the past. Thus deposited it has been demonstrated that one of its major effects is an enhancement of the radiative carrier lifetine, photon recycling is not usually taken into account in photovoltaic, neither in device modelling and simulation, nor from the perspective of taking advantage of the phenomenon to improve the efficiency of solar cells. This work describes the results of our investigations in the field of photon recycling. (Author)

  12. Filter-based ultralow-frequency Raman measurement down to 2 cm-1 for fast Brillouin spectroscopy measurement (United States)

    Liu, Xue-Lu; Liu, He-Nan; Wu, Jiang-Bin; Wu, Han-Xu; Zhang, Tao; Zhao, Wei-Qian; Tan, Ping-Heng


    Simultaneous Stokes and anti-Stokes ultralow-frequency (ULF) Raman measurement down to ˜2 cm-1 or 60 GHz is realized by a single-stage spectrometer in combination with volume-Bragg-grating-based notch filters. This system reveals its excellent performance by probing Brillouin signal of acoustic phonons in silicon, germanium, gallium arsenide, and gallium nitride. The deduced sound velocity and elastic constants are in good accordance with previous results determined by various methods. This system can shorten the integration time of the Brillouin signal with a good signal-to-noise ratio by more than 2000-fold compared to a Fabry-Perot interferometer (FPI). This study shows how a filter-based ULF Raman system can be used to reliably achieve Brillouin spectroscopy for condensed materials with high sensitivity and high signal-to-noise ratio, stimulating fast Brillouin spectrum measurements to probe acoustic phonons in semiconductors.

  13. Structural and magnetic phase transitions in Na1-δFeAs (United States)

    Li, Shiliang; de La Cruz, Clarina; Huang, Q.; Chen, G. F.; Xia, T.-L.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng


    We use neutron scattering to study the spin and lattice structures of single crystal and powder samples of Na1-δFeAs (Tc=23K) . Upon cooling from room temperature, the system goes through a series of phase transitions: first changing the crystal symmetry from tetragonal to orthorhombic at 49 K, then ordering antiferromagnetically with a spin structure similar to that of LaFeAsO and a small moment (0.09±0.04μB) , and finally becoming superconducting below about 23 K. These results confirm that antiferromagnetic order is ubiquitous for the parent compounds of the iron arsenide superconductors and suggest that the separated structural and magnetic phase-transition temperatures are due to the reduction in the c -axis exchange coupling of the system.

  14. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)


    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  15. The metal-insulator transition in Fe{sub 1.01-x}Cu{sub x}Se

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A J; McQueen, T M; Cava, R J [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Ksenofontov, V; Felser, C [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet, Staudinger Weg 9, D-55099 Mainz (Germany)


    Iron selenide, Fe{sub 1.01}Se, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature of 8 K. Here we show that copper can be substituted at the iron site in Fe{sub 1.01}Se up to a solubility limit of 20-30%, after which a first-order transition to the three-dimensional CuFeSe{sub 2} structure type is observed. As little as 1.5% copper is sufficient to suppress the superconductivity, and 4% drives the system through a metal-insulator transition. A local magnetic moment is introduced, which maximizes near 12% doping, where a spin-glass transition near 15 K is observed.

  16. The metal-insulator transition in Fe(1.01-x)Cu(x)Se. (United States)

    Williams, A J; McQueen, T M; Ksenofontov, V; Felser, C; Cava, R J


    Iron selenide, Fe(1.01)Se, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature of 8 K. Here we show that copper can be substituted at the iron site in Fe(1.01)Se up to a solubility limit of 20-30%, after which a first-order transition to the three-dimensional CuFeSe(2) structure type is observed. As little as 1.5% copper is sufficient to suppress the superconductivity, and 4% drives the system through a metal-insulator transition. A local magnetic moment is introduced, which maximizes near 12% doping, where a spin-glass transition near 15 K is observed.

  17. Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects (United States)

    Turquet, Léo; Kakko, Joona-Pekko; Karvonen, Lasse; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri; Kauranen, Martti; Bautista, Godofredo


    Non-diffractive Bessel beams are receiving significant interest in optical microscopy due to their remarkably large depth of field. For example, studies have shown the superiority of Bessel beams over Gaussian beams for volumetric imaging of three-dimensionally thick or extended samples. However, the vectorial aspects of the focal fields of Bessel beams are generally obscured when traditional methods are used to characterize their three-dimensional point-spread function in space, which contains contributions from all optical field components. Here, we show experimentally the three-dimensional spatial distribution and enhanced depth of field of the longitudinal electric field components of a focused linearly-polarized Bessel beam. This is done through second-harmonic generation from well-defined vertically-aligned gallium-arsenide nanowires, whose second-order response is primarily driven by the longitudinal fields at the beam focus.

  18. SnAs-Based Layered Superconductor NaSn2As2 (United States)

    Goto, Yosuke; Yamada, Akira; Matsuda, Tatsuma D.; Aoki, Yuji; Mizuguchi, Yoshikazu


    Superconducting behavior with exotic characteristics is often observed in materials with a layered two-dimensional crystal structure. Low dimensionality affects the electronic structure of these materials, potentially leading to high transition temperatures (Tc) and/or unconventional pairing mechanisms. In this letter, we report on superconductivity in layered tin arsenide NaSn2As2. The crystal structure consists of Sn2As2 bilayers, bound by the van der Waals forces and separated by Na+ ions. Measurements of electrical resistivity and specific heat confirm the bulk nature of superconductivity of NaSn2As2, with Tc of 1.3 K. Our results suggest that layered SnAs is a basic structure, offering another universality class in the family of layered superconductors. The results provide a new platform for the studies of physics and chemistry of low-dimensional superconductors with lone pair electrons.

  19. Pulling the trigger on LHC electronics

    CERN Document Server

    CERN. Geneva


    The conditions at CERN's Large Hadron Collider pose severe challenges for the designers and builders of front-end, trigger and data acquisition electronics. A recent workshop reviewed the encouraging progress so far and discussed what remains to be done. The LHC experiments have addressed level one trigger systems with a variety of high-speed hardware. The CMS Calorimeter Level One Regional Trigger uses 160 MHz logic boards plugged into the front and back of a custom backplane, which provides point-to-point links between the cards. Much of the processing in this system is performed by five types of 160 MHz digital applications-specific integrated circuits designed using Vitesse submicron high-integration gallium arsenide gate array technology. The LHC experiments make extensive use of field programmable gate arrays (FPGAs). These offer programmable reconfigurable logic, which has the flexibility that trigger designers need to be able to alter algorithms so that they can follow the physics and detector perform...

  20. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    DEFF Research Database (Denmark)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi


    the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW...... solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between...... arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended...

  1. Micro-cooler enhancements by barrier interface analysis

    Directory of Open Access Journals (Sweden)

    A. Stephen


    Full Text Available A novel gallium arsenide (GaAs based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  2. Suppressed intermixing in InAlGaAs/AlGaAs/GaAs and AlGaAs/GaAs quantum well heterostructures irradiated with a KrF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Genest, J.; Dubowski, J.J.; Aimez, V. [Universite de Sherbrooke, Centre de recherche en Nanofabrication et Nanocaracteriasation (CRN2), Departement de Genie Electrique et Genie Informatique, Sherbrooke, Quebec (Canada)


    The influence of gallium arsenide surface modification induced by irradiation with a KrF excimer laser on the magnitude of the quantum well (QW) intermixing effect has been investigated in InAlGaAs/AlGaAs/GaAs QW heterostructures. The irradiation in an air environment with laser pulses of fluences between 60 and 100 mJ/cm{sup 2} has resulted in the formation of a gallium oxide-rich film at the surface. Following the annealing at 900 C, up to 35 nm suppression of the band gap blue shift was observed in all the laser irradiated samples when compared to the non-irradiated samples. The origin of suppression has been discussed in terms of stress controlled diffusion. (orig.)

  3. Temperature mapping of operating nanoscale devices by scanning probe thermometry (United States)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd


    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  4. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars


    assembled monolayer on gold, a technique useful for creating diverse monolayer patterns in a direct-write fashion. Addition of a second alkanethiol forms a topologically ultra flat but chemically patterned surface, which by inspection with scanning electron microscopy and atomic force microscopy revealed...... submicron feature sizes, varying linearly in size with laser power and irradiation time. In Part II - “Nanoscale Biosensors” - Indium Arsenide (InAs) nanowires (NW) incorporated in field effect transistor (FET) devices provide a sensitive platform for detection of charged analyte species binding to the NW...... surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...

  5. Clinical and Experimental Study of Gaalas Phototherapy for Tемрoromandibular Disorders

    Directory of Open Access Journals (Sweden)

    Nencheva-Svechtarova S.


    Full Text Available The objective of this study was to test the clinical effectiveness of the gallium-aluminum-arsenide laser (GaAlAs; 785 nm and superluminiscent diodes (633 nm phototherapy (MedX 1100 device for the treatment of patients with temporomandibular disorders and myofascial pain syndrome. The results demonstrated a positive effect in pain relief. A significant reduction (p < 0.05 in the level of pain was observed for the temporomandibular joint and for the masseter muscles using paired samples t-test and Wilcoxon signed rank test. The experimental study on pork muscle samples showed that a the main part of laser radiation is absorbed by the tissue in thin layer of 3-4 mm, b in the spectral region 650-950 nm the intensity of light penetration is about 0.2-0.25 percent of the initial light intensity.

  6. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.


    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  7. Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique. (United States)

    Huang, Lingxia; Zhou, Yibin; Meng, Liuwei; Wu, Di; He, Yong


    This study investigated the potential of using hyperspectral imaging technique in tandem with chemometrics for rapid and invasive predicting total anthocyanin content and antioxidant activity of mulberry fruit. Two calibration methods of partial least square regression and least-squares support vector machines and three wavelength selection algorithms of successive projections algorithm, uninformation variable elimination, and competitive adaptive reweighted sampling were applied. The best prediction models for the analysis of total anthocyanin content and antioxidant activity had Rval(2) of 0.959 and 0.995 respectively. The performances of two CCD detectors named silicon (Si) and indium gallium arsenide (InGaAs) were compared. The results show that hyperspectral imaging has a great potential for the assessment of total anthocyanin content and antioxidant activity of mulberry fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pulsed laser heating of silicon-nitride capped GaAs: Optical properties at high temperature (United States)

    Bhat, A.; Yao, H. D.; Compaan, A.; Horak, A.; Rys, A.


    The optical properties of silicon nitride and gallium arsenide were studied at temperatures up to and beyond the melting point of GaAs by means of laser heating. XeCl excimer and pulsed dye laser pulses, ˜10 ns in duration, were used to heat the semiconductor under nitride capping layers of varying thickness. The transient reflectivity response at 514.5 nm was used together with a multilayer interference analysis to obtain the optical constants of solid and molten GaAs and of solid Si3N4 near the 1513-K melting point of GaAs. In addition, we report the melt duration as a function of laser pulse energy for GaAs with and without capping layers.


    Directory of Open Access Journals (Sweden)

    E Aravindraj


    Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.

  10. Three Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs

    CERN Document Server

    Heckl, Oliver H; Winkler, Georg; Changala, P Bryan; Spaun, Ben; Porat, 1 Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin; Schunemann, Peter G; Ye, Jun


    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  11. AlGaAs-On-Insulator Nonlinear Photonics

    CERN Document Server

    Pu, Minhao; Semenova, Elizaveta; Yvind, Kresten


    The combination of nonlinear and integrated photonics has recently seen a surge with Kerr frequency comb generation in micro-resonators as the most significant achievement. Efficient nonlinear photonic chips have myriad applications including high speed optical signal processing, on-chip multi-wavelength lasers, metrology, molecular spectroscopy, and quantum information science. Aluminium gallium arsenide (AlGaAs) exhibits very high material nonlinearity and low nonlinear loss when operated below half its bandgap energy. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths. Using newly developed fabrication processes, we show high-quality-factor (Q>100,000) micro-resonators with integrated bus waveguides in a planar circuit where optical parametric oscillation is achieved with a record low threshold power of 3 mW and a frequency comb spanning 350 nm i...

  12. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces

    CERN Document Server

    Liu, Sheng; Keeler, Gordon A; Sinclair, Michael B; Yang, Yuanmu; Reno, John; Pertsch, Thomas; Brener, Igal


    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently, allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scales render phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using Gallium Arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance we measure an absolute nonlinear conversion efficiency o...

  13. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo


    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  14. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation (United States)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.


    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  15. Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion. (United States)

    Belchior, Ana Carulina Guimarães; dos Reis, Filipe Abdalla; Nicolau, Renata Amadei; Silva, Iandara Schettert; Perreira, Daniel M; de Carvalho, Paulo de Tarso Camillo


    With the aim of accelerating the regenerative processes, the objective was to study the influence of gallium-aluminum-arsenide (GaAlAs) laser (660 nm) on functional and histomorphological recovery of the sciatic nerve in rats. The sciatic nerves of 12 Wistar rats were crushed divided into two groups: control and laser therapy. For the latter, GaAlAs laser was utilized (660 nm, 4 J/cm(2), 26.3 mW and 0.63 cm(2) beam), at three equidistant points on the lesion, for 20 days. Comparison of the sciatic functional index (SFI) showed that there was a significant difference only between the pre-lesion value of the laser therapy group and that after the 21st day in the control group. It was concluded that the parameters and methods utilized demonstrated positive results regarding the SFI over the time period evaluated.

  16. Efficacy of multiwavelength light therapy in the treatment of pressure ulcers in subjects with disorders of the spinal cord: A randomized double-blind controlled trial. (United States)

    Taly, Arun B; Sivaraman Nair, Krishan P; Murali, Thyloth; John, Archana


    To study the efficacy of multiwavelength light therapy in the treatment of pressure ulcers in subjects with spinal cord disorders. Randomized controlled trial. Neurologic rehabilitation ward of a referral center in India. Thirty-five subjects with spinal cord injury, with 64 pressure ulcers (stage 2, n=55; stage 3, n=8; stage 4, n=1), were randomized into treatment and control groups. One subject refused consent. Mean duration of ulcers in the treatment group was 34.2+/-45.5 days and in the control group, 57.1+/-43.5 days. Treatment group received 14 sessions of multiwavelength light therapy, with 46 probes of different wavelengths from a gallium-aluminum-arsenide laser source, 3 times a week. Energy used was 4.5 J/cm(2). Ulcers in the control group received sham treatment. Healing of the ulcer, defined as the complete closure of the wound with healthy scar tissue, time taken for the ulcer to heal, and stage of the ulcer and Pressure Sore Status Tool score 14 days after last treatment. There was no significant difference in healing between the treatment and control groups. Eighteen ulcers in treatment group and 14 in control group healed completely ( P =.802). Mean time taken by the ulcers to heal was 2.45+/-2.06 weeks in the treatment group and 1.78+/-2.13 weeks in the control group ( P =.330). Time taken for stage 3 and 4 ulcers to reach stage 2 was 2.25+/-0.5 weeks in treatment group and 4.33+/-1.53 weeks in control group ( P =.047). Multiwavelength light therapy from a gallium-aluminum-arsenide laser source did not influence overall healing pressure ulcers. Limited evidence suggested that it improved healing of stage 3 and 4 pressure ulcers.

  17. Superconducting properties and pseudogap from preformed Cooper pairs in the triclinic (CaFe1-xPtxAs ) 10Pt3As8 (United States)

    Surmach, M. A.; Brückner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P. Y.; Park, J. T.; Ghambashidze, G.; Luetkens, H.; Biswas, P. K.; Choi, W. J.; Seo, Y. I.; Kwon, Y. S.; Klauss, H.-H.; Inosov, D. S.


    Using a combination of muon-spin relaxation (μ SR ) , inelastic neutron scattering (INS), and nuclear magnetic resonance (NMR), we investigated the novel iron-based superconductor with a triclinic crystal structure (CaFe1-xPtxAs ) 10Pt3As8 (Tc=13 K), containing platinum-arsenide intermediary layers. The temperature dependence of the superfluid density obtained from the μ SR relaxation-rate measurements indicates the presence of two superconducting gaps, Δ1≫Δ2 . According to our INS measurements, commensurate spin fluctuations are centered at the (π ,0 ) wave vector, like in most other iron arsenides. Their intensity remains unchanged across Tc, indicating the absence of a spin resonance typical for many Fe-based superconductors. Instead, we observed a peak in the spin-excitation spectrum around ℏ ω0=7 meV at the same wave vector, which persists above Tc and is characterized by the ratio ℏ ω0/kBTc≈6.2 , which is significantly higher than typical values for the magnetic resonant modes in iron pnictides (˜4.3 ) . The temperature dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1 /T1T , observed by NMR immediately below T* without any notable subsequent anomaly at Tc, indicates that T* could mark the onset of a pseudogap in (CaFe1-xPtxAs ) 10Pt3As8 , which is likely associated with the emergence of preformed Cooper pairs.

  18. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay. (United States)

    Olivares, Christopher I; Field, Jim A; Simonich, Michael; Tanguay, Robert L; Sierra-Alvarez, Reyes


    Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. (United States)

    Santinoni, Carolina Dos Santos; Oliveira, Hiskell Francine Fernandes; Batista, Victor Eduardo de Souza; Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos


    This systematic review evaluates the effectiveness of low-level laser therapy (LLLT) to enhance maxillofacial area bone repair. A comprehensive search of studies published up to February 2017 and listed in PubMed/MEDLINE, Scopus, and Cochrane Library databases was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The 15 selected studies evaluated a total of 374 patients (mean age, 28.5years) who were treated with LLLT. Gallium-arsenide (GaAs) and gallium aluminium arsenide (GaAlAs) were the most commonly used devices, and LLLT parameters varied greatly. Wavelengths varied from 500 to 1000nm. Tooth extraction, distraction osteogenesis, maxillary expansion, periodontal defects, orthodontic movement and maxillary cystic defects were evaluated. From the 15 selected studies, six evaluated bone repair (primary outcomes). Of these, four studies showed improvement in bone formation after using LLLT, two demonstrated improved results for only one follow up period, and one showed no additional benefits. The other 9 studies evaluated secondary parameters related to healing (secondary outcomes) in the maxillofacial area after applying LLLT, including anti-inflammatory, analgesic, and healing accelerator effects, and quality of life related to oral health. There were no adverse or negative effects of LLLT reported. Within the limitation of this review, a possible improvement in bone density can be found when LLLT is applied postoperatively in maxillofacial bony defects. LLLT also seems to promote anti-inflammatory and analgesic effects and accelerate healing, as well as enhance quality of life related to oral health. However, LLLT use protocols need to be standardized before more specific conclusions can be drawn about this subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. External beam radiation and high-dose-rate brachytherapy for elderly patients with gastroesophageal junction adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei Zhang


    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 96 elderly patients with gastroesophageal junction adenocarcinoma (GEJAC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT with or without chemotherapy. Material and methods: From January 2002 to November 2012, 96 patients with GEJAC underwent treatment. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in 2 to 5 fractions, with 1 fraction per week. The total dose via EBRT was 40-54 Gy, which was delivered over a period of 4 to 5.5 weeks with normal fraction. Results: The median survival time for the 96 patients was 15.3 months, and the 1-, 2-, 3-, and 5-year rates of overall survival (OS were 62.5%, 33.7%, 20.1%, and 7.9%, respectively. The 1-, 2-, 3-, and 5-year rates for local-regional control (LRC were 78.7%, 57.9%, 41.8%, and 26.4%, respectively. The patients’ age was an independent factor that was significantly associated with OS (p = 0.006 and LRC (p = 0.0005, according to univariate analysis. The 3-year OS (LRC was 31.9% (62.9% for patients aged 70-74 years and 16.1% (19.5% for patients aged ≥ 75 years. From the time of treatment completion to the development of local-regional recurrence or death, 5 (5.2% patients experienced fistula and 7 (7.3% experienced massive bleeding. Conclusions: The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with GEJAC, and that the side effects were tolerable. The patient’s age could be used to select the appropriate treatment in an elderly patient.

  1. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division


    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  2. Questions to the radiological protection in the Universidad Nacional Autonoma de Mexico; Cuestionamientos a la proteccion radiologica en la Universidad Nacional Autonoma de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salas M, B., E-mail: [UNAM, Facultad de Ciencias, Departamento de Fisica, Circuito exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)


    In the Physics Department of the Sciences Faculty of the Universidad Nacional Autonoma de Mexico (UNAM) exist at least 3 sites where radioactive sources and generating equipment s of ionizing radiation are managed: The Modern Physics Laboratory, the Radiological Analysis of Environmental Samples Workshop and the Collisions Workshop; the first of them has two neutron sources, in addition to other emitted sources of gamma and beta radiation. The neutron sources are of Americium 241-Beryllium and other of Californium-252 which have been operated outside of the control of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) that is the regulator organ in Mexico in nuclear matter, because the Operation License No. 183/85, with file number 657 that protected them, lost their validity from August 13, 1987 (25 years behind), what motivated to that the CNSNS assured them. Later to the closing of the Radiological Analysis of Environmental Samples Workshop was believed that a Barium-133 source had been extracted in an illegal way; an investigation realized by the CNSNS determined that the radioactive source was always inside of the detection systems and radiation measurement, for what this source was never lost. In the Collisions Workshop operated an Experimental Accelerator of Particles that the CNSNS prohibited its operation for not having the corresponding license. These examples can be considered as bad practices of radiological protection that should be pointed out to eradicate their promotion and to avoid this way the exposure to the radiation of the occupational exposed personnel and people in general, being also avoided dose of unnecessary radiation. The Instituto Federal de Acceso a la Informacion Publica y Proteccion de Datos (IFAI) in Mexico was a key factor to obtain the information that allowed the realization of this work that was carried out in the Sciences Faculty of the UNAM. (Author)

  3. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Austin Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Talou, Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stetcu, Ionel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kiedrowski, Brian Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jaffke, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivity of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.

  4. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out. (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne


    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  5. Blend Down Monitoring System Fissile Mass Flow Monitor Implementation at the ElectroChemical Plant, Zelenogorsk, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, T.


    The implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the ElectroChemical Plant (ECP), Zelenogorsk, Russia, are presented in this report. The FMFM, developed at Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS), developed for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower-assay ({approx}4%) product low enriched uranium (P-LEU) to the United States from down-blended weapons-grade HEU are meeting the nonproliferation goals of the government-to-government HEU Purchase Agreement, signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999 and is successfully providing HEU transparency data to the United States. The second BDMS was installed at ECP in February 2003. The FMFM makes use of a set of thermalized californium-252 ({sup 252}Cf) spontaneous neutron sources for a modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments. The FMFM provides unattended, nonintrusive measurements of the {sup 235}U mass flow in the HEU, LEU blend stock, and P-LEU process legs. The FMFM also provides the traceability of the HEU flow to the product process leg. This report documents the technical installation requirements and the expected operational characteristics of the ECP FMFM.

  6. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA (United States)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.


    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  7. Moderator design studies for a new neutron reference source based on the D-T fusion reaction (United States)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.


    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  8. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available In the view of transmutation of transuranium (TRU elements, molten salt fast reactors (MSFRs offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs. In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  9. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.


    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  10. Fabrication of uranium-based ceramics using internal gelation for the conversion of trivalent actinides; Herstellung uranbasierter Keramiken mittel interner Gelierung zur Konversion trivalenter Actinoiden

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Henrik


    Alternative to today's direct final waste disposal strategy of long-lived radionuclides, for example the minor actinides neptunium, americium, curium and californium, is their selective separation from the radioactive wastestream with subsequent transmutation by neutron irradiation. Hereby it is possible to obtain nuclides with a lower risk-potential concerning their radiotoxicity. 1 neutron irradiation can be carried out either with neutron sources or in the next generation of nuclear reactors. Before the treatment, the minor actinides need to be converted in a suitable chemical and physical form. Internal gelation offers a route through which amorphous gel-spheres can be obtained directly from a metal-salt solution. Due to the presence of different types of metal ions as well as changing pH-values in a stock solution, a complex hydrolysis behaviour of these elements before and during gelation occurs. Therefore, investigations with uranium and neodymium as a minor actinide surrogate were carried out. As a result of suitable gelation-parameters, uraniumneodymium gel-spheres were successfully synthesised. The spheres also stayed intact during the subsequent thermal treatment. Based upon these findings, uranium-plutonium and uranium-americium gels were successfully created. For theses systems, the determined parameters for the uraniumneodymium gelation could also be applied. Additionally, investigations to reduce the acidity of uranium-based stock solutions for internal gelation were carried out. The necessary amount of urea and hexamethylenetetramine to induce gelation could hereby be decreased. This lead to a general increase of the gel quality and made it possible to carry out uranium-americium gelation in the first place. To investigate the stability of urea and hexamethylenetetramine, solutions of these chemicals were irradiated with different radiation doses. These chemicals showed a high stability against radiolysis in aqueous solutions.

  11. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.


    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  12. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McMath, Garrett Earl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grogan, Brandon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify results from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.

  13. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T., E-mail:; Barros, H.; Pino, F.; Sajo-Bohus, L. [Universidad Simón Bolívar, Nuclear Physics Laboratory, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Dávila, J. [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)


    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  14. Structure of a streptococcal adhesion carbohydrate receptor

    Energy Technology Data Exchange (ETDEWEB)

    Cassels, F.J.; Fales, H.M.; London, J.; Carlson, R.W.; van Halbeek, H. (National Institute of Dental Research, Bethesda, MD (USA))


    Interactions between complementary protein and carbohydrate structures on different genera of human oral bacteria have been implicated in the formation of dental plaque. The carbohydrate receptor on Streptococcus sanguis H1 that is specific for the adhesion on Capnocytophaga ochracea ATCC 33596 has been isolated from the streptococcal cell wall, purified, and structurally characterized. The hexasaccharide repeating unit of the polysaccharide was purified by reverse-phase, amino-bonded silica, and gel permeation high performance liquid chromatography. Earlier studies established that the repeating unit was a hexasaccharide composed of rhamnose, galactose, and glucose in the ration of 2:3:1, respectively. In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D. 252Californium plasma desorption mass spectrometry of the native, the acetylated and the reduced and acetylated hexasaccharide determined that the molecular mass of the native hexasaccharide was 959, and that the 2 rhamnose residues were linked to each other at the nonreducing terminus of the linear molecule. Methylation analysis revealed the positions of the glycosidic linkages in the hexasaccharide and showed that a galactose residue was present at the reducing end. The structural characterization of the hexasaccharide was completed by one and two dimensional 1H and 13C NMR spectroscopy. Complete 1H and 13C assignments for each glycosyl residue were established by two-dimensional (1H,1H) correlation spectroscopy, homonuclear Hartmann-Hahn, and (13C,1H) correlation experiments. The configurations of the glycosidic linkages were inferred from the chemical shifts and coupling constants of the anomeric 1H and 13C resonances.

  15. On the Use of a Molten Salt Fast Reactor to Apply an Idealized Transmutation Scenario for the Nuclear Phase Out (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne


    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768

  16. Investigation of the physics potential and detector development for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ohlerich, Martin


    interaction point and surrounding the beam pipe. Due to its location, a lot of beamstrahlung pair particles will hit this calorimeter, representing a challenge for the operational reliability of the sensors under such harsh radiation conditions. We investigated single-crystal and polycrystalline CVD diamond, gallium arsenide and radiation-hard silicon as sensor candidates for their radiation hardness and found that diamond and gallium arsenide are promising. We used a 10 MeV electron beam of few nA to irradiate the samples under investigation up to doses of 5 MGy for diamond, up to about 1.5 MGy for gallium arsenide and up to about 90 kGy for silicon. We measured in regular periods the CCD to characterize the impact of the absorbed dose on the size of the signal, which is generated by electrons of a {sup 90}Sr source crossing the sensor. Additional measurements such as the dark current and the CCD as functions of the voltage completed the characterization of the sensor candidates. For the single-crystal CVD diamond, also the termally stimulated current was measured to determine amongst others the defect density created by irradiation. In the diamond samples, evidence for strong polarization effects inside the material was found and investigated in more detail. A phenomenological model based on semi-conductor physics was developed to describe the sensor properties as a function of the applied electric field, the dose and the dose rate. Its predictions were compared with the results of the measurements. Several parameters such as time scales and cross-sections were determined using this model, which led to ongoing investigations. (orig.)

  17. Arsenic-enriched Cu-Ni-PGE Mineralization in Wetlegs, Duluth Complex, St. Louis County, Minnesota, USA (United States)

    Raič, Sara; Mogessie, Aberra; Benkó, Zsolt; Molnár, Ferenc; Hauck, Steven; Severson, Mark


    The magmatic sulfide ore deposit Wetlegs is found within the troctolitic Partridge River Intrusion (PRI) of the 1.1 Ga Duluth Complex. It is of great interest, due to its highly mineralized zones containing Cu-Ni-Fe-Sulfides, platinum-group minerals (PGM) and arsenic-enriched ores. Sulfides appear as disseminated patches of primary pyrrhotite, chalcopyrite, Co-rich pentlandite and cubanite within a plagioclase, olivine and pyroxene matrix. Ores associated with hydrous silicate phases are secondary chalcopyrite, arsenic-enriched minerals, PGMs like sperrylite, stibiopalladinite and other precious minerals such as clausthalite, parkerite and electrum. Based on textural relationships, mineral compositions and sulfur isotopic studies, a paragenetic sequence of ore genesis in Wetlegs could be reconstructed starting with the formation of composite sulfides such as pyrrhotite, chalcopyrite, Co-enriched pentlandite and cubanite (at increased sulfur fugacity), defined as the Sulfide Stage. The Arsenide Stage is characterized by increased arsenic fugacity and a strong drop in sulfur fugacity with the following succession of precipitated minerals: 1) Monoarsenides (nickeline) found as remnants in diarsenides. 2) Diarsenides comprising members of the rammelsbergite - safflorite - loellingite solid-solution series (RSLss) and minerals of the rammelsbergite - loellingite solid-solutions series (RLss). Their crystallization temperature is between 550 and 625°C, estimated with solvus lines postulated by ROSEBOOM (1963) and GERVILLA & RØNSBO (1992) in the system CoAs2 - NiAs2 - FeAs2. This is subsequently followed by an Arsenide/Sulfide Stage which marks the formation of sulfarsenides of the cobaltite - gersdorffite solid-solution series at increased sulfur fugacity (drop in arsenic fugacity). Sulfarsenides display a clear cobalt trend from core to rim, and formed around 650°C with a decrease in temperature to ~ 500°C, documented by cobalt enriched rims, based on the solvus

  18. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  19. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.


    Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a

  20. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu


    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase