WorldWideScience

Sample records for california water year

  1. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shraddhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  2. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.

    Science.gov (United States)

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2017-07-01

    Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.

  3. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  4. Lunchtime School Water Availability and Water Consumption Among California Adolescents.

    Science.gov (United States)

    Bogart, Laura M; Babey, Susan H; Patel, Anisha I; Wang, Pan; Schuster, Mark A

    2016-01-01

    To examine the potential impact of California SB 1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 years were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, body mass index, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, bivariate (standard error) = .67 (.28), p = .02. School water access did not significantly vary across the 2 years. Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  5. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  6. Water Resources Data--California, Water Year 2002, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  7. Water Resources Data -- California, Water Year 2003, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  8. Water resources data, California, water year 2004, volume 1: Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  9. Water Resources Data for California, Water Year 1985. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  10. Water Resources Data for California, Water Year 1986. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  11. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  12. Water Resources Data for California, Water Year 1988. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Water Resources Data for California, Water Year 1987. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  14. Water resources data for California, water year 1979; Volume 1: Colorado River basin, Southern Great Basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Water-resources data for the 1979 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  15. Water resources data for California, water year 1978; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1979-01-01

    Water-resources data for the 1978 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  16. Water Resources Data for California, water year 1981: Vol. 1. Colorado River basin, Southern Great basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1982-01-01

    Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  17. Staggering successes amid controversy in California water management

    Science.gov (United States)

    Lund, J. R.

    2012-12-01

    Water in California has always been important and controversial, and it probably always will be. California has a large, growing economy and population in a semi-arid climate. But California's aridity, hydrologic variability, and water controversies have not precluded considerable economic successes. The successes of California's water system have stemmed from the decentralization of water management with historically punctuated periods of more centralized strategic decision-making. Decentralized management has allowed California's water users to efficiently explore incremental solutions to water problems, ranging from early local development of water systems (such as Hetch Hetchy, Owens Valley, and numerous local irrigation projects) to more contemporary efforts at water conservation, water markets, wastewater reuse, and conjunctive use of surface and groundwater. In the cacophony of local and stakeholder interests, strategic decisions have been more difficult, and consequently occur less frequently. California state water projects and Sacramento Valley flood control are examples where decades of effort, crises, floods and droughts were needed to mobilize local interests to agree to major strategic decisions. Currently, the state is faced with making strategic environmental and water management decisions regarding its deteriorating Sacramento-San Joaquin Delta. Not surprisingly, human uncertainties and physical and fiscal non-stationarities dominate this process.

  18. Water resources data for California, water year 1980; Volume 1, Colorado River basin, Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Volume 1 of water resources data for the 1980 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lake and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 51 stations; water levels for 165 observation wells. Also included are 9 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Hydrologic data for the Walker River Basin, Nevada and California, water years 2010–14

    Science.gov (United States)

    Pavelko, Michael T.; Orozco, Erin L.

    2015-12-10

    Walker Lake is a threatened and federally protected desert terminal lake in western Nevada. To help protect the desert terminal lake and the surrounding watershed, the Bureau of Reclamation and U.S. Geological Survey have been studying the hydrology of the Walker River Basin in Nevada and California since 2004. Hydrologic data collected for this study during water years 2010 through 2014 included groundwater levels, surface-water discharge, water chemistry, and meteorological data. Groundwater levels were measured in wells, and surface-water discharge was measured in streams, canals, and ditches. Water samples for chemical analyses were collected from wells, streams, springs, and Walker Lake. Chemical analyses included determining physical properties; the concentrations of major ions, nutrients, trace metals, dissolved gases, and radionuclides; and ratios of the stable isotopes of hydrogen and oxygen. Walker Lake water properties and meteorological parameters were monitored from a floating platform on the lake. Data collection methods followed established U.S. Geological Survey guidelines, and all data are stored in the National Water Information System database. All of the data are presented in this report and accessible on the internet, except multiple-depth Walker Lake water-chemistry data, which are available only in this report.

  20. Drought Water Rationing Necessitates an Equitable and Multidimensional Approach: Evidence from California

    Science.gov (United States)

    Ponce de Leon Barido, D.; Fildier, B.; Cucchi, K.

    2016-12-01

    Since 2011 many areas across California have experienced their driest years on record, with conditions barely improving since then. Reservoirs and snowpack water content have recorded some of the lowest measurements ever, with users (individuals, towns and cities) using groundwater to buffer the potentially devastating effects of the drought. Among other strategies, rationing has been one of they key interventions that the state has adopted to better manage its water resources. April 1st 2015 marked the first day in California's history when mandatory water reductions were instated statewide. By executive order, Governor Brown directed the State Water Resources Control Board to impose a 25% reduction on California's 400 local water supply agencies, which serve 90% of California residents. Since then, local agencies have been responsible for allocating restrictions to reduce water consumption and monitor compliance. A variety of research organizations and media outlets have begun exploring the equity considerations of the drought, but their analyses are often one-dimensional (water consumption per capita). Here we explore the multi-dimensional dynamics of rationing and drought in California using Census and California Water Resources Board data for over 300 communities in the state. We use data mining, parallel coordinates, and a nearest neighbors clustering algorithm to explore relationships between rationing and community spatial distribution, weather, drought related climate variables, economic sector employment, race, localized income inequality, household size, and income. The data suggests that there are nine distinct rationing groups across the state, that rationing was performed without taking into account the localized effects of the drought (hard hit communities rationing as much as less affected communities), that severely drought affected low-income communities (using SPI and SPEI 3 year indices) were asked to ration as much (and sometimes more) than

  1. Water resources data for California, water year 1977; Volume 1: Colorado River Basin, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1978-01-01

    Water-resources data for the 1977 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Winchell Smith, Assistant District Chief for Hydrologic Data and Leonard N. Jorgensen, Chief of the Basic-Data Section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  2. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  3. California State Waters Map Series: offshore of Half Moon Bay, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  4. Management experiences and trends for water reuse implementation in Northern California.

    Science.gov (United States)

    Bischel, Heather N; Simon, Gregory L; Frisby, Tammy M; Luthy, Richard G

    2012-01-03

    In 2010, California fell nearly 300,000 acre-ft per year (AFY) short of its goal to recycle 1,000,000 AFY of municipal wastewater. Growth of recycled water in the 48 Northern California counties represented only 20% of the statewide increase in reuse between 2001 and 2009. To evaluate these trends and experiences, major drivers and challenges that influenced the implementation of recycled water programs in Northern California are presented based on a survey of 71 program managers conducted in 2010. Regulatory requirements limiting discharge, cited by 65% of respondents as a driver for program implementation, historically played an important role in motivating many water reuse programs in the region. More recently, pressures from limited water supplies and needs for system reliability are prevalent drivers. Almost half of respondents (49%) cited ecological protection or enhancement goals as drivers for implementation. However, water reuse for direct benefit of natural systems and wildlife habitat represents just 6-7% of total recycling in Northern California and few financial incentives exist for such projects. Economic challenges are the greatest barrier to successful project implementation. In particular, high costs of distribution systems (pipelines) are especially challenging, with $1 to 3 million/mile costs experienced. Negative perceptions of water reuse were cited by only 26% of respondents as major hindrances to implementation of surveyed programs.

  5. Water resources data for California, water year 1976; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1976 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic-data section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  6. Preliminary Investigation into the Water Usage from Fracking in Drought Ridden California

    Science.gov (United States)

    Lew, S.; Wu, M.

    2014-12-01

    Hydraulic fracking is a common method used to obtain natural gas as well as oil from the ground. The process begins with drilling the ground, which is then followed by thousands of gallons of fluid being pumped into the ground to break the shale rock and release natural gas. The job requires thousands of gallons of water, and chemicals are added to the water, often making it unusable for other purposes. The amount of water being used for fracking in California has been recently brought to attention because the state is currently facing a drought. Currently California is experiencing the worst drought since the 1920's. In the time frame of 2013-2014 California rainfall has been 50% below the average with 2013 being the driest year. The lack of rain is attributed to the Pacific Decadal Oscillation which occurs every 20-30 years and causes the Pacific Ocean to cool, leading to less rain because storms are diverted to the north. As a result of the drought, food prices are expected to rise and farmers are pumping 75% of their water need from reserved aquifers.

  7. California's 2002 Clean Water Act Section 303(d) - Impaired Waterbodies

    Data.gov (United States)

    California Natural Resource Agency — This dataset contains California's 2002 Clean Water Act Section 303(d) list which is submitted by the California State Water Resources Control Board. The layer has...

  8. California State Waters Map Series—Offshore of Santa Cruz, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.

    2016-03-24

    upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The inner shelf is characterized by bedrock outcrops that have local thin sediment cover, the result of regional uplift, high wave energy, and limited sediment supply. The midshelf occupies part of an extensive, shore-parallel mud belt. The thickest sediment deposits, inferred to consist mainly of lowstand nearshore deposits, are found in the southeastern and northwestern parts of the map area.Coastal sediment transport in the map area is characterized by northwest-to-southeast littoral transport of sediment that is derived mainly from ephemeral streams in the Santa Cruz Mountains and also from local coastal-bluff erosion. During the last approximately 300 years, as much as 18 million cubic yards (14 million cubic meters) of sand-sized sediment has been eroded from the area between Año Nuevo Island and Point Año Nuevo and transported south; this mass of eroded sand is now enriching beaches in the map area. Sediment transport is within the Santa Cruz littoral cell, which terminates in the submarine Monterey Canyon.Benthic species observed in the Offshore of Santa Cruz map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 300 km south of the map area), although its associated

  9. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  10. Seasonal water storage, stress modulation and California seismicity

    Science.gov (United States)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  11. California community water systems quarterly indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains quarterly measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  12. California community water systems annual indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains annual measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  13. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  14. Ground water level, Water storage, Soil moisture, Precipitation Variability Using Multi Satellite Data during 2003-2016 Associated with California Drought

    Science.gov (United States)

    Li, J. W.; Singh, R. P.

    2017-12-01

    The agricultural market of California is a multi-billion-dollar industry, however in the recent years, the state is facing severe drought. It is important to have a deeper understanding of how the agriculture is affected by the amount of rainfall as well as the ground conditions in California. We have considered 5 regions (each 2 degree by 2 degree) covering whole of California. Multi satellite (MODIS Terra, GRACE, GLDAS) data through NASA Giovanni portal were used to study long period variability 2003 - 2016 of ground water level and storage, soil moisture, root zone moisture level, precipitation and normalized vegetation index (NDVI) in these 5 regions. Our detailed analysis of these parameters show a strong correlation between the NDVI and some of these parameters. NDVI represents greenness showing strong drought conditions during the period 2011-2016 due to poor rainfall and recharge of ground water in the mid and southern parts of California. Effect of ground water level and underground storage will be also discussed on the frequency of earthquakes in five regions of California. The mid and southern parts of California show increasing frequency of small earthquakes during drought periods.

  15. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  16. California State Waters Map Series--Offshore of Ventura, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    , and the region is characterized by urban and agricultural development. Ventura Harbor sits just north of the mouth of the Santa Clara River, in an area formerly occupied by lagoons and marshes. The Offshore of Ventura map area lies in the eastern part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates of about 700,000 to 1,150,000 tons/yr have been reported at Ventura Harbor. At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported into the deep-water Santa Monica Basin. The largest sediment source to this littoral cell (and the largest in all of southern California) is the Santa Clara River, which has an estimated annual sediment flux of 3.1 million tons. In addition, the Ventura River yields about 270,000 tons of sediment annually. Despite the large local sediment supply, coastal erosion problems are ongoing in the map area. Riprap, revetments, and seawalls variably protect the coast within and north of Ventura. The offshore part of the map area mainly consists of relatively flat, shallow continental shelf, which dips so gently (about 0.2° to 0.4°) that water depths at the 3-nautical-mile limit of California’s State Waters are just 20 to 40 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and west by Point Conception and the Channel Islands; long-period swells affecting the area are mainly from the south-southwest. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated up and down in the last several hundred thousand years. Seafloor habitats in the broad Santa

  17. California's 2002 Clean Water Act Section 303(d) - Impaired Streams and Rivers

    Data.gov (United States)

    California Natural Resource Agency — This dataset contains California's 2002 Clean Water Act Section 303(d) list which is submitted by the California State Water Resources Control Board. The layer has...

  18. Ag-to-urban water transfer in California: Win-win solutions

    International Nuclear Information System (INIS)

    Jacobi, L.A.; Carley, R.L.

    1993-01-01

    The current long-term drought in California has generated interest in water transfers. Water transfers from farms to the cities are widely viewed as the next major source of supply to urban California. Ag-to-Urban permanent water transfers may have negative consequences to the agricultural sector and to the environment. This paper presents agricultural water use statistics, discusses sources of water for transfer, and suggests sources of water for win-win transfers

  19. California State Waters Map Series: offshore of Pacifica, California

    Science.gov (United States)

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. 

  20. Summary appraisals of the Nation's ground-water resources; California region

    Science.gov (United States)

    Thomas, H.E.; Phoenix, D.A.

    1976-01-01

    Most people in the California Region live in a semiarid or arid climate, with precipitation less than the potential evapotranspiration- environments of perennial water deficiency. The deficiency becomes most onerous during the characteristically rainless summers and during recurrent droughts that may continue for 10--20 years. However, water from winter rain and snow can be stored for use during the dry summer months, and water stored during a wet climatic period can be used in a succeeding dry period; moreover, perennial deficiency can be overcome by bringing water from areas of perennial surplus. Ground-water reservoirs have especial significance in arid and semiarid regions as repositories where water is stored or can be stored with minimum loss by evaporation.

  1. Water supply studies. [management and planning of water supplies in California

    Science.gov (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  2. California State Waters Map Series: offshore of Refugio Beach, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  3. California State Waters Map Series: offshore of San Francisco, California

    Science.gov (United States)

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  4. Mapping Multi-Cropped Land Use to Estimate Water Demand Using the California Pesticide Reporting Database

    Science.gov (United States)

    Henson, W.; Baillie, M. N.; Martin, D.

    2017-12-01

    Detailed and dynamic land-use data is one of the biggest data deficiencies facing food and water security issues. Better land-use data results in improved integrated hydrologic models that are needed to look at the feedback between land and water use, specifically for adequately representing changes and dynamics in rainfall-runoff, urban and agricultural water demands, and surface fluxes of water (e.g., evapotranspiration, runoff, and infiltration). Currently, land-use data typically are compiled from annual (e.g., Crop Scape) or multi-year composites if mapped at all. While this approach provides information about interannual land-use practices, it does not capture the dynamic changes in highly developed agricultural lands prevalent in California agriculture such as (1) dynamic land-use changes from high frequency multi-crop rotations and (2) uncertainty in sub-annual crop distribution, planting times, and cropped areas. California has collected spatially distributed data for agricultural pesticide use since 1974 through the California Pesticide Information Portal (CalPIP). A method leveraging the CalPIP database has been developed to provide vital information about dynamic agricultural land use (e.g., crop distribution and planting times) and water demand issues in Salinas Valley, California, along the central coast. This 7 billion dollar/year agricultural area produces up to 50% of U.S. lettuce and broccoli. Therefore, effective and sustainable water resource development in the area must balance the needs of this essential industry, other beneficial uses, and the environment. This new tool provides a way to provide more dynamic crop data in hydrologic models. While the current application focuses on the Salinas Valley, the methods are extensible to all of California and other states with similar pesticide reporting. The improvements in representing variability in crop patterns and associated water demands increase our understanding of land-use change and

  5. California State Waters Map Series: offshore of Tomales Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 200 m) subsurface geology.

  6. Introduction. [usefulness of modern remote sensing techniques for studying components of California water resources

    Science.gov (United States)

    Colwell, R. N.

    1973-01-01

    Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.

  7. California's Drought - Stress test for the future

    Science.gov (United States)

    Lund, J. R.

    2014-12-01

    The current California drought is in its third dry years, with this year being the third driest years in a 106-year record. This drought occurs at a time when urban, agricultural, and environmental water demands have never been greater. This drought has revealed the importance of more quantitative evaluation and methods for water assessment and management. All areas of water and environmental management are likely to become increasingly stressed, and have essentially drought-like conditions, in the future, as California's urban, agricultural, and environmental demands continue to expand and as the climate changes. In the historical past, droughts have pre-viewed stresses developing in the future and helped focus policy-makers, the public, and stakeholders on preparing for these developing future conditions. Multi-decade water management strategies are often galvinized by drought. Irrigation was galvanized by California droughts in the 1800s, reservoir systems by the 1928-32 drought, urban water conservation by the 1976-77 drought, and water markets by the 1988-92 drought. With each drought, demands for tighter accounting, rights, and management have increased. This talk reviews the prospects and challenges for increased development and use of water data and systems analysis in the service of human and environmental water demands in California's highly decentralized water management system, and the prospects if these challenges are not more successfully addressed.

  8. Availability of Drinking Water in California Public Schools. Testimony Presented before the California State Assembly Subcommittee on Education on April 2, 2008

    Science.gov (United States)

    Schuster, Mark A.

    2008-01-01

    A senior researcher and hospital Chief of General Pediatrics, testifies about his work with a California school district to prevent obesity by developing a middle school program to promote healthy eating and physical activity. A two-year study has found that students have limited access to drinking water, especially at meals. In the schools being…

  9. Using Landsat-based evapotranspiration data to assess the linkages between water right transfers and economic transactions in southern California

    Science.gov (United States)

    Senay, G. B.; Velpuri, N. M.; Schauer, M.; Friedrichs, M.; Singh, R. K.

    2017-12-01

    We used 31 years (1984-2014) of cloud-free Landsat data (3,396 Landsat scenes) to estimate evapotranspiration over the southwestern United States using the Operational Simplified Surface Energy Balance (SSEBop) model. We focused on some of California's most agriculture-intensive watersheds (8 central valley watersheds and Palo Verde Irrigation District (PVID)). Farmers in southern California (including PVID) have water rights on the Colorado River. After meeting competing demands for agriculture (irrigation) and rural domestic use, the Colorado River is diverted to meet urban water demands in southern California. Due to the population growth and increasing domestic use, farmers have entered a special agreement to transfer their water rights under the fallowing program to the Metropolitan Water District (MWD) of southern California. MWD supplies water to 19 million people, more than half of California's population, and is the largest supplier of treated water in the United States. In this study, we presented the total annual volumetric water use in the Palo Verde Irrigation District since 1984 and computed historical annual crop water saved due to a fallowing program. We then converted volumetric water saved to total payouts to farmers in dollars and estimated the number of beneficiary households in the Greater Los Angeles area. It is interesting to see that nearly 120,000 acre-feet of water was transferred from PVID to MWD in 2011 and the cost of water payouts were over $20 million. This water saving met the demands of over 325,000 households in the Greater Los Angeles area. This analysis helps to a) demonstrate an approach to estimate and compare annual water use and water payments/savings using satellite data, b) monitor water rights compliance in an irrigation district, c) demonstrate the impact of water savings, and d) understand the interconnections between land-water management and socio-economic transactions across multiple spatio-temporal scales.

  10. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    Science.gov (United States)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically analysis indicates some fraction of returning fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of

  11. A shallow-diving seabird predator as an indicator of prey availability in southern California waters: A longitudinal study

    Science.gov (United States)

    Horn, M. H.; Whitcombe, C. D.

    2015-06-01

    We tested the hypothesis that the Elegant Tern (Thalasseus elegans), a plunge-diving predator, is an indicator of changes in the prey community in southern California coastal waters. Shannon diversity (H‧) of the tern's diet determined from dropped fish collected variously at the three nesting sites for 18 years over a 21-year interval (1993-2013) showed no significant change in diet diversity. Based on a species-accumulation curve, total diet species represented about 70% of an extrapolated asymptotic richness. Abundance patterns of five prey species making up > 75% of prey numbers for all years were compared with abundance patterns of the same species in independent surveys obtained from zooplankton tows, bottom trawls and power-plant entrapments. Three of the five species - northern anchovy, kelp pipefish and California lizardfish - showed significant, positive correlations between diet and survey abundances. Even though the tern's diet has been dominated by anchovy and pipefish, its diet is still broad, with prey taxa representing > 75% of the 42 species groups making up the California shelf fish fauna. Altogether, our results support the hypothesis that the Elegant Tern, with its flexible diet, is a qualitative indicator, a sentinel, of changes in the prey communities in southern California coastal waters.

  12. An integrated study of earth resources in the State of California using remote sensing techniques. [supply, demand, and impact of California water resources

    Science.gov (United States)

    Colwell, R. N.; Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Estes, J. E.; Bowden, L. W. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The supply, demand, and impact relationships of California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan are discussed.

  13. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  14. Development of water facilities in the Santa Ana River Basin, California, 1810-1968: a compilation of historical notes derived from many sources describing ditch and canal companies, diversions, and water rights

    Science.gov (United States)

    Scott, M.B.

    1977-01-01

    This report traces by text, maps, and photographs, the development of the water supply in the Santa Ana River basin from its beginning in 1810 or 1811 to 1968. The value of the report lies in the fact that interpretation of the hydrologic systems in the basin requires knowledge of the concurrent state of development of the water supply, because that development has progressively altered the local regimen of both surface water and ground water. Most of the information for the earlier years was extracted and condensed from an investigation made by W. H. Hall, California State Engineer during the years 1878-87. Hall's study described irrigation development in southern California from its beginning through 1888. Information for the years following 1888 was obtained from the archives of the numerous water companies and water agencies in the Santa Ana River basin and from the various depositories of courthouse, county, and municipal records. The history of water-resources development in the Santa Ana River basin begins with the introduction of irrigation in the area by the Spanish, who settled in southern California in the latter part, of the 18th century. The first irrigation diversion from the Santa Ana River was made in 1810 or 1811 by Jose Antonio Yorba and Juan Pablo Peralta. Irrigation remained a localized practice during the Mexican-Californian, or rancho, period following the separation of Mexico from Spain in 1821. Rancho grantees principally raised cattle, horses, and sheep and irrigated only small· plots of feed grain for their livestock and fruit crops for household use. The breakup of the ranchos through sales to Americans, who were migrating to California in ever-increasing numbers following the acquisition of California by the United States in 1848, marked the beginning of a rapid increase in water use and the beginning of widespread irrigation. Many water companies and water agencies were organized to divert the surface flow of the Santa Ana River and

  15. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  16. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  17. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  18. Elevated levels of radioactivity in water wells in Los Angeles and Orange Counties, California

    International Nuclear Information System (INIS)

    Weigand, J.; Yamamoto, G.; Gaston, W.

    1987-01-01

    Levels of gross alpha particle radioactivity nearly three times the maximum contamination levels (MCL) have been detected for several years in well waters and related surface waters in Los Angeles and Orange Counties, California. A few elevated levels of uranium have also been recorded. The affected wells and related surface waters represent only a minor fraction of the water sampled and tested in this area. None of the excessive radioactivity is believed to persist in the municipal waters sold to the public, due to the customary blending of waters from several wells or sources which water purveyors practice. This papers is a preliminary survey of the occurrence, possible sources, fate, and implications of these elevated radioactivity levels

  19. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    Science.gov (United States)

    Matios, Edward; Burney, Jennifer

    2017-03-07

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km 3 (all ±17%; 1 MAF ≈ 1.233 km 3 ), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km 3 (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km 3 on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  20. California State Waters Map Series: offshore of Carpinteria, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors

  1. California State Waters Map Series—Offshore of Monterey, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.

    2016-08-18

    , a secondary fault within the distributed plate boundary, cuts through (and is roughly aligned with) Carmel Canyon, a submarine canyon in the southwest corner of the map area that is part of the Monterey Canyon system. The San Gregorio Fault Zone is part of a fault system that is present predominantly in the offshore for about 400 km, from Point Conception in the south (where it is known as the Hosgri Fault) to Bolinas and Point Reyes in the north.The offshore part of the map area primarily consists of relatively flat continental shelf, bounded on the west by the steep flanks of Carmel Canyon. Shelf width varies from 2 to 3 km in the southern part of the map area, near the mouth of Carmel Canyon, to 14 km in Monterey Bay. Bedrock beneath the shelf is overlain in many areas by variable amounts (0 to 16 m) of upper Quaternary shelf and nearshore sediments deposited as sea level fluctuated in the late Pleistocene. “Soft-induration,” unconsolidated sediment is the dominant (about 63 percent) habitat type on the continental shelf, followed by “hard-induration” rock and boulders (about 34 percent) and “mixed-induration” substrate (about 3 percent). At water depths of about 100 to 130 m, the shelf break approximates the shoreline during the sea-level lowstand of the Last Glacial Maximum, about 21,000 years ago.Carmel Canyon and other parts of the Monterey Canyon system in the map area extend from the shelf break to water depths that reach 1,600 m. Most of the extensive incision of the shelf break and canyon flanks probably occurred during repeated Quaternary sea-level lowstands. The relatively straight floor of Carmel Canyon notably is aligned with the San Gregorio Fault Zone. Mixed hard-soft substrate is the most common (about 51 percent) habitat type in Carmel Canyon; hard bedrock and soft, unconsolidated sediment cover about 40 percent and 9 percent of canyon habitat, respectively.This part of the central California coast is exposed to large North Pacific

  2. Determination of trifluoroacetic acid in 1996--1997 precipitation and surface waters in California and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. [Univ. of Nevada, Reno, NV (United States)

    1999-05-15

    The atmospheric degradation of three chlorofluorocarbon (CFC) replacement compounds, namely HFC-134a, HCFC-123, and HCFC-124, results in the formation of trifluoroacetic acid (TFA). Concentrations of TFA were determined in precipitation and surface water samples collected in California and Nevada during 1996--1997. Terminal lake systems were found to have concentrations 4--13 times higher than their calculated yearly inputs, providing evidence for accumulation. The results support dry deposition as the primary contributor of TFA to surface waters in arid and semiarid environments. Precipitation samples obtained from three different locations contained 20.7--1530 ng/L with significantly higher concentrations in fogwater over rainwater. Elevated levels of TFA were observed for rainwater collected in Nevada over those collected in California, indicating continual uptake and concentration as clouds move from a semiarid to arid climate. Thus several mechanisms exist, including evaporative concentration, vapor-liquid phase partitioning, lowered washout volumes of atmospheric deposition water, and dry deposition, which may lead to elevated concentrations of TFA in atmospheric and surface waters above levels expected from usual rainfall washout.

  3. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  4. Total- and monomethyl-mercury and major ions in coastal California fog water: Results from two years of sampling on land and at sea

    Directory of Open Access Journals (Sweden)

    Peter Weiss-Penzias

    2016-04-01

    Full Text Available Abstract Marine fog water samples were collected over two summers (2014–2015 with active strand collectors (CASCC at eight coastal sites from Humboldt to Monterey counties in California, USA, and on four ocean cruises along the California coastline in order to investigate mercury (Hg cycling at the ocean-atmosphere-land interface. The mean concentration of monomethylmercury (MMHg in fog water across terrestrial sites for both years was 1.6 ± 1.9 ng L-1 (<0.01–10.4 ng L-1, N = 149, which corresponds to 5.7% (2.0–10.8% of total Hg (HgT in fog. Rain water samples from three sites had mean MMHg concentrations of 0.20 ± 0.12 ng L-1 (N = 5 corresponding to 1.4% of HgT. Fog water samples collected at sea had MMHg concentrations of 0.08 ± 0.15 ng L-1 (N = 14 corresponding to 0.4% of HgT. Significantly higher MMHg concentrations in fog were observed at terrestrial sites next to the ocean relative to a site 40 kilometers inland, and the mean difference was 1.6 ng L-1. Using a rate constant for photo-demethylation of MMHg of -0.022 h-1 based on previous demethylation experiments and a coastal-inland fog transport time of 12 hours, a mean difference of only 0.5 ng L-1 of MMHg was predicted between coastal and inland sites, indicating other unknown source and/or sink pathways are important for MMHg in fog. Fog water deposition to a standard passive 1.00 m2 fog collector at six terrestrial sites averaged 0.10 ± 0.07 L m-2 d-1, which was ∼2% of typical rainwater deposition in this area. Mean air-surface fog water fluxes of MMHg and HgT were then calculated to be 34 ± 40 ng m-2 y-1 and 546 ± 581 ng m-2 y-1, respectively. These correspond to 33% and 13% of the rain fluxes, respectively.

  5. Southern California Water Bulletin for 1953: General review of the water resources of Southern California for the water year of 1952-53 with special reference to the surface runoff for the water year of 1951-52

    Science.gov (United States)

    Hofman, Walter; Briggs, R.C.; Littlefield, W.M.

    1954-01-01

    This WATER BULLETTIN is one of a series issued annually since June 1944. Its main purpose is to present a brief analysis of those phases of the local water supply associated with the work of the Geological Survey. The first part of this review deals with the water resources for the water year ending September 30, 1953. It contains a brief analysis of the annual precipitation, the provisional runoff at a few stations, the changes in water reserves both in surface reservoirs and underground, and the imported waters. It concludes by pointing out the deficiences in the local water reserves. This bulletin has been prepared by the Surface Water Branch; the section on ground-water conditions was prepared chiefly from information supplied by the Ground Hater Branch.

  6. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  7. Evaluating water resources in California using a synoptic typing methodology

    Science.gov (United States)

    Schroeter, Derek W.

    Snowpack in the Sierra Nevada Mountain Range is the key component of water resources in California, and hence has been extensively investigated by many researchers. This study focuses on establishing a link between hemispheric-scale forcing mechanisms and the spring snowpack through a synoptic pathway. Daily meteorological data from Fresno, CA for the snow accumulation season from November to March over the period from 1950 to 2011 is used in a synoptic typing procedure in order to classify days with similar meteorological conditions into groups representing individual synoptic types. Twelve synoptic types are classified and subsequently related to 1 April snow water equivalent (SWE) values. One synoptic type proved to be particularly important for the magnitude of the spring snowpack explaining 50% to 70% of the variance in 1 April SWE at most snow courses. High frequencies of this synoptic type are found to be associated with the warm phase of the El Nino/Southern Oscillation and the negative phase of the Tropical Northern Hemisphere pattern. Moreover, univariate and multiple linear regression analyses show that this synoptic type is significantly related to indices of the Pacific Hadley-Walker circulation during the snow accumulation season and during the preceding fall. During the snow accumulation season the Northern Oscillation Index explains 43% of the variance while during the preceding fall the Southern Oscillation Index accounts for 23% of the variance in this synoptic type. Thus, a more complete understanding of tropical and extra-tropical interactions associated with the Pacific Hadley-Walker circulation may provide a basis for forecasting synoptic-scale conditions conducive to producing heavy snowfall and thereby California's water supply earlier in the water year.

  8. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  9. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  10. ­­Drought, water conservation, and water demand rebound in California

    Science.gov (United States)

    Gonzales, P.; Ajami, N.

    2017-12-01

    There is growing recognition that dynamic community values, preferences, and water use behaviors are important drivers of water demand in addition to external factors such as temperature and precipitation. Water demand drivers have been extensively studied, yet they have traditionally been applied to models that assume static conditions and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Yet previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this study we explore cycles of decreased water demand during drought and subsequent water use rebound observed in California in recent decades. We have developed a novel dynamic system model for water demand in three diverse but interconnected service areas in the San Francisco Bay Area, exposing local trends of changing water use behaviors and long-term impacts on water demand since 1980 to the present. In this model, we apply the concept of social memory, defined as a community's inherited knowledge about hazardous events or degraded environmental conditions from past experiences. While this concept has been applied to further conceptual understanding of socio-hydrologic systems in response to hydrological extremes, to the best of our knowledge this the first study to incorporate social memory to model the water demand rebound phenomenon and to use such a model in the examination of changing dynamics validated by historical data. In addition, we take a closer look at water demand during the recent historic drought in California from 2012-16, and relate our

  11. California State Waters Map Series: offshore of Santa Barbara, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively

  12. California State Waters Map Series: offshore of Coal Oil Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and

  13. Future land-use related water demand in California

    Science.gov (United States)

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  14. Municipal water powers small hydro in California

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, C.W.

    1985-07-01

    The city council of San Luis Obispo, California approved a scheme in 1984 to install a hydropower plant into an existing water distribution network. The Stenner Canyon project is under construction on the site of an abandoned water treatment plant. A 750 kW Pelton turbine will be fed via a 20 km pipeline from the Salimas Reservoir. A remote telemetry system will control turbine output. The primary objectives are to generate extra power for the area and provide additional revenue for the city. Computer simulation helped hydraulics engineers design the system. Tax-exempt industrial development bonds will finance the $1.5 million project. 2 figures.

  15. Electricity price and Southern California's water supply options

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry [Lawrence Berkeley National Laboratory, Camilla Dunham Whitehead, Andre Fargeix, Golden Gate Economics, 1 Cycltron Road, Berkeley, CA 94720 (United States)

    2004-11-01

    This paper evaluates the impact of fluctuating electricity prices on the cost of five options to increase the water supply to urban areas in Southern California-new surface storage, water purchases, desalination, wastewater recycling, and conservation.We show that the price of electricity required to produce and transport water influences the cost of water supply options and may alter the decision makers economic ranking of these options. When electricity prices are low, water purchase is the cost effective option. When prices exceed US$ 86/MWh, conservation of electricity and water through installation of high efficiency clothes washers is the most effective option.

  16. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  17. Nearshore marine fish diversity in southern California using trawl information from the Southern California Coastal Water Research Project.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a point file of mean fish diversity within 5 minute grid cells. The Shannon Index of diversity was calculated from Southern California Coastal Water Research...

  18. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  19. 100 years of California’s water rights system: patterns, trends and uncertainty

    Science.gov (United States)

    Grantham, Theodore E.; Viers, Joshua H.

    2014-08-01

    For 100 years, California’s State Water Resources Control Board and its predecessors have been responsible for allocating available water supplies to beneficial uses, but inaccurate and incomplete accounting of water rights has made the state ill-equipped to satisfy growing societal demands for water supply reliability and healthy ecosystems. Here, we present the first comprehensive evaluation of appropriative water rights to identify where, and to what extent, water has been dedicated to human uses relative to natural supplies. The results show that water right allocations total 400 billion cubic meters, approximately five times the state’s mean annual runoff. In the state’s major river basins, water rights account for up to 1000% of natural surface water supplies, with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and in coastal streams in southern California. Comparisons with water supplies and estimates of actual use indicate substantial uncertainty in how water rights are exercised. In arid regions such as California, over-allocation of surface water coupled with trends of decreasing supply suggest that new water demands will be met by re-allocation from existing uses. Without improvements to the water rights system, growing human and environmental demands portend an intensification of regional water scarcity and social conflict. California’s legal framework for managing its water resources is largely compatible with needed reforms, but additional public investment is required to enhance the capacity of the state’s water management institutions to effectively track and regulate water rights.

  20. Solar water-heating performance evaluation-San Diego, California

    Science.gov (United States)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  1. Determining the in situ water content of the Geysers Graywacke of Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, A.

    1994-12-01

    The water content, porosity and permeability measurements of the Northern California Geysers rocks are used to predict the lifetime of the geothermal resource, which provides 10% of Northern California`s electricity. The Geysers rock was drilled from defunct well SB-15-D, and some cores wee sealed in aluminum tubes to preserve the in situ water content. These cores were sent to the Lawrence Livermore Laboratory to measure the water content. Humidity measurements were taken of the air around a one and a half foot encased core, recovered from a depth of 918.9 feet. Over a seven day period, the humidity reached almost 100% indicating that the air around the core was saturated in water vapor. We believe the sealing method is effective, preserving the in-situ water content. To measure water content, I will use Archimede`s principle to determine the density of the core before and after drying in an oven. Ultrasonic measurements will be taken of the core upon removal from aluminum tube to determine the change of p-wave velocity with change in water content. Water in the pores increases the effective compressibility of the rock therefore increasing the p-velocity. The measured p-wave velocities can then be used in the field to determine in-situ water content. Three dimensional x-ray images will be used to determine the deviations from average density within individual cores. Since the density depends on water content as well as mineralogy, images can show the location of pore fluid and drilling mud. Archimede`s principle, humidity detection, ultrasonics and x-ray scanning are viable methods to measure the in-situ water content and pore water distribution in the graywacke.

  2. Water quality and supply on Cortina Rancheria, Colusa County, California

    Science.gov (United States)

    Yates, E.B.

    1989-01-01

    Cortina Rancheria covers an area of 1 sq mi in Colusa County, California, near the western edge of the Sacramento Valley. Local sources of water for residents of the rancheria are of poor quality or limited availability. Domestic needs are presently met by water from a hand-dug well and from a drilled well with a potential yield of 15 gal/min. Water from both wells fails to meet California State drinking-water standards, primarily because of high concentrations of chloride and dissolved solids. High concentrations of sodium and boron pose additional problems for agricultural use of the water. The dissolved ions originate in Upper Cretaceous marine sediments of the Cortina Formation, which occurs at or near land surface throughout the rancheria. Small quantities of fresh groundwater may occur locally in the Tehama Formation which overlies the Cortina Formation in the eastern part of the rancheria. Canyon Creek, the largest stream on the rancheria, flows only during winter and spring. Water from one of the rancheria 's three springs meet drinking water standards, but it almost stops flowing in summer. The generally poor quality of ground and surface water on the rancheria is typical of areas along the west side of the Sacramento Valley. Additional hydrologic information could indicate more precisely the quantity and quality of surface and groundwater on Cortina Rancheria. Principal features of a possible data-collection program would include monitoring of discharge and water quality in three springs and in Canyon Creek, electromagntic terrain conductivity surveys, and monitoring of water levels and quality in two existing wells and several proposed test wells. (USGS)

  3. Beyond User Acceptance: A Legitimacy Framework for Potable Water Reuse in California.

    Science.gov (United States)

    Harris-Lovett, Sasha R; Binz, Christian; Sedlak, David L; Kiparsky, Michael; Truffer, Bernhard

    2015-07-07

    Water resource managers often tout the potential of potable water reuse to provide a reliable, local source of drinking water in water-scarce regions. Despite data documenting the ability of advanced treatment technologies to treat municipal wastewater effluent to meet existing drinking water quality standards, many utilities face skepticism from the public about potable water reuse. Prior research on this topic has mainly focused on marketing strategies for garnering public acceptance of the process. This study takes a broader perspective on the adoption of potable water reuse based on concepts of societal legitimacy, which is the generalized perception or assumption that a technology is desirable or appropriate within its social context. To assess why some potable reuse projects were successfully implemented while others faced fierce public opposition, we performed a series of 20 expert interviews and reviewed in-depth case studies from potable reuse projects in California. Results show that proponents of a legitimated potable water reuse project in Orange County, California engaged in a portfolio of strategies that addressed three main dimensions of legitimacy. In contrast, other proposed projects that faced extensive public opposition relied on a smaller set of legitimation strategies that focused near-exclusively on the development of robust water treatment technology. Widespread legitimation of potable water reuse projects, including direct potable water reuse, may require the establishment of a portfolio of standards, procedures, and possibly new institutions.

  4. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    Science.gov (United States)

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  5. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  6. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  7. Hg concentrations in fish from coastal waters of California and Western North America

    Science.gov (United States)

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  8. Water quality of some logged and unlogged California streams

    Science.gov (United States)

    Fredric R. Kopperdahl; James W. Burns; Gary E. Smith

    1971-01-01

    Water quality was monitored in 1968 and 1969 in six coastal streams in northern California, four of which were subjected to logging and/or road building (Bummer Lake Creek, South Fork Yager Creek, Little North Fork Noyo River, and South Fork Caspar Creek), while the others remained undisturbed (Godwood Creek and North Fork Caspar Creek). The purposes of this study were...

  9. Evaluating Options for Improving California's Drought Resilience

    Science.gov (United States)

    Ray, P. A.; Schwarz, A.; Wi, S.; Correa, M.; Brown, C.

    2015-12-01

    Through a unique collaborative arrangement, the University of Massachusetts (UMass) and the California Department of Water Resources (DWR) have together performed a baseline climate change analysis of the California state (State Water Project) and federal (Central Valley Project) water systems. The first step in the baseline analysis was development of an improved basinwide hydrologic model covering a large area of California including all major tributaries to the state and federal water systems. The CalLite modeling system used by DWR for planning purposes allowed simulation of the system of reservoirs, rivers, control points, and deliveries which are then used to create performance metrics that quantify a wide range of system characteristics including water deliveries, water quality, and environmental/ecological factors. A baseline climate stress test was conducted to identify current vulnerabilities to climate change through the linking of the modeling chain with Decision Scaling concepts through the UMass bottom-up climate stress-testing algorithm. This procedure allowed the first comprehensive climate stress analysis of the California state and federal water systems not constrained by observed historical variability and wet-dry year sequences. A forward-looking drought vulnerability and adaptation assessment of the water systems based on this workflow is ongoing and preliminary results will be presented. Presentation of results will include discussion of the collaborative arrangement between DWR and UMass, which is instrumental to both the success of the research and the education of policy makers.

  10. Effective Decision Maker-Scientist Engagement:Climate Change Vulnerability Analysis of California's Water System to Using Decision Scaling.

    Science.gov (United States)

    Schwarz, A. M.; Ray, P.; Brown, C.; Wi, S.

    2016-12-01

    For nearly 2 years the California Department of Water Resources (CDWR) has been working with the University of Massachusetts Amherst (UMass) to evaluate climate change vulnerabilities to the California State Water Project. Working cooperatively, the team has developed tools and methods to employ a decision scaling approach to CDWR's existing water system model (CalSim-II/CalLite 3.0). This presentation will discuss how and why this partnership came to be, the co-production model the team has developed to share expertise, the new understanding of the system that has been gained through the process, and current and future efforts to influence planning and investments based on the findings of the work. This cooperative decision-maker-with-scientist engagement is unique in that CDWR has not outsourced the application of the science to their systems, and instead has worked directly with UMass researchers to develop the process, produce results, and interpret findings. Further, CDWR staff has worked with UMass researchers to present results in ways that are more useable and actionable for decision-makers. As will be shown, many of these graphics allow the team to use the science differently to improve decision making.

  11. An open source hydroeconomic model for California's water supply system: PyVIN

    Science.gov (United States)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  12. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  13. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  14. Lessons from the first year of competition in the California electricity markets

    International Nuclear Information System (INIS)

    Earle, R.L.; Hanser, P.Q.; Johnson, W.C.; Reitzes, J.D.

    1999-01-01

    Situated at the western edge of the continent and the eastern rim of the Pacific, California has always possessed allure as a place of frontiers. California's developing competitive electricity markets represent another frontier that has attracted widespread interest. At the first birthday of these markets, it seems appropriate to review their current state of development, even though they are surely in a transitional state. The authors do not undertake to make a comprehensive assessment of the efficiency of these markets, given their evolving nature. Rather, in reviewing one year of data, their goal is to examine the economic and technical relationships between the various power markets arising under the California Power Exchange (PX) and the California Independent System Operator (ISO). The analysis also considers the decision faced by generators selling into both the PX and ancillary service markets, identifying those areas where there may be losses in both efficiency and profits

  15. California Library Statistics, 2009: Fiscal Year 2007-2008 from Public, Academic, Special and County Law Libraries

    Science.gov (United States)

    Bray, Ira, Ed.

    2009-01-01

    Each year the State Library sends annual report forms to California's public, academic, special, state agency, and county law libraries. Statistical data from those reports are tabulated in this publication, with directory listings published in the companion volume, "California Library Directory." For this fiscal year, 389 libraries of…

  16. California Library Statistics, 2005: Fiscal Year 2003-2004 from Public, Academic, Special and County Law Libraries

    Science.gov (United States)

    Bray, Ira, Ed.

    2005-01-01

    Each year the State Library sends annual report forms to California's academic, public, special, state agency, and county law libraries. Statistical data from those reports are tabulated in this publication, with directory listings published in the companion volume, California Library Directory. For this fiscal year four hundred and eight…

  17. Construction, calibration, and validation of the RBM10 water temperature model for the Trinity River, northern California

    Science.gov (United States)

    Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.

    2016-03-31

    We constructed a one-dimensional daily averaged water-temperature model to simulate Trinity River temperatures for 1980–2013. The purpose of this model is to assess effects of water-management actions on water temperature and to provide water temperature inputs for a salmon population dynamics model. Simulated meteorological data, observed streamflow data, and observed water temperatures were used as model inputs to simulate a continuous 34-year time series of historical daily mean water temperature at eight locations along 112.2 river miles from Lewiston Dam near Weaverville, California, downstream to the Klamath River confluence. To demonstrate the utility of the model to inform management actions, we simulated three management alternatives to assess the effects of bypass flow augmentation in a drought year, 1994, and compared those results to the simulated historical baseline, referred to as the “No Action” alternative scenario. Augmentation flows from the Lewiston Dam bypass consist of temperature-controlled releases capable of cooling downstream water temperatures in hot times of the year, which can reduce the probability of disease outbreaks in fish populations. Outputs from the Trinity River water-temperature model were then used as inputs to an existing water-temperature model of the Klamath River to evaluate the effect of augmentation flow releases on water temperatures in the lower Klamath River. 

  18. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  19. The California Seafloor Mapping Program — Providing science and geospatial data for California's State Waters

    Science.gov (United States)

    Johnson, S. Y.; Cochrane, G. R.; Golden, N. E.; Dartnell, P.; Hartwell, S. R.; Cochran, S. A.; Watt, J. T.

    2017-12-01

    The California Seafloor Mapping Program (CSMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters, which extend for 1,350 km from the shoreline to 5.6 km offshore. CSMP began in 2007 when the California Ocean Protection Council and NOAA allocated funding for high-resolution bathymetric mapping to support the California Marine Life Protection Act and update nautical charts. Collaboration and support from the USGS and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSMP data collection includes: (1) High-resolution bathymetric and backscatter mapping using swath sonar sensors; (2) "Ground-truth" imaging from a sled mounted with video and still cameras; (3) High-resolution seismic-reflection profiling at 1 km line spacing. Processed data are all publicly available. Additionally, 25 USGS map and datasets covering one third of California's coast have been published. Each publication contains 9 to 12 pdf map sheets (1:24,000 scale), an explanatory pamphlet, and a catalog of digital geospatial data layers (about 15 to 25 per map area) with web services. Map sheets display bathymetry, backscatter, perspective views, habitats, groundtruth imagery, seismic profiles, sediment distribution and thickness, and onshore-offshore geology. The CSMP goal is to serve a large constituency, ranging from senior GIS analysts in large agencies, to local governments with limited resources, to non-governmental organizations, the private sector, and concerned citizens. CSMP data and publications provide essential science and data for ocean and coastal management, stimulate and enable research, and raise public education and awareness of coastal and ocean issues. Specific applications include: Delineation and designation of marine protected areas Characterization and modeling of benthic habitats and ecosystems Updating nautical charts Earthquake hazard

  20. Development of California Public Health Goals (PHGs) for chemicals in drinking water.

    Science.gov (United States)

    Howd, R A; Brown, J P; Morry, D W; Wang, Y Y; Bankowska, J; Budroe, J D; Campbell, M; DiBartolomeis, M J; Faust, J; Jowa, L; Lewis, D; Parker, T; Polakoff, J; Rice, D W; Salmon, A G; Tomar, R S; Fan, A M

    2000-01-01

    As part of a program for evaluation of environmental contaminants in drinking water, risk assessments are being conducted to develop Public Health Goals (PHGs) for chemicals in drinking water, based solely on public health considerations. California's Safe Drinking Water Act of 1996 mandated the development of PHGs for over 80 chemicals by 31 December 1999. The law allowed these levels to be set higher or lower than federal maximum contaminant levels (MCLs), including a level of zero if data are insufficient to determine a specific level. The estimated safe levels and toxicological rationale for the first 26 of these chemicals are described here. The chemicals include alachlor, antimony, benzo[a]pyrene, chlordane, copper, cyanide, dalapon, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-D, diethylhexylphthalate, dinoseb, endothall, ethylbenzene, fluoride, glyphosate, lead, nitrate, nitrite, oxamyl, pentachlorophenol, picloram, trichlorofluoromethane, trichlorotrifluoroethane, uranium and xylene(s). These risk assessments are to be considered by the State of California in revising and developing state MCLs for chemicals in drinking water (which must not exceed federal MCLs). The estimates are also notable for incorporation or consideration of newer guidelines and principles for risk assessment extrapolations.

  1. Multi-year Droughts in California in the Last Two Decades

    Science.gov (United States)

    Myoung, B.; Kafatos, M.

    2016-12-01

    Multi-year droughts in California including the notorious 2013-2014 drought became serious problems recently, causing significant socio-economic damages. In the present study, focusing on the three multi-year droughts in California, i.e., 1999-2002, 2007-2009, and 2012-2014, during the recent two decades (1995-2014), we compared and investigated their characteristics of the atmosphere and the oceans. By positioning abnormally strong anticyclonic circulations at 500 hPa over the North Pacific, the droughts seem to start around strong La Niña years and continued or intensified until the year prior to an El Niño. While precipitation decreases in La Niña years have been well documented previously, the intensification of droughts in the later period has not. The Empirical Orthogonal Function (EOF) and correlation analyses suggest that, around strong La Niña years, the first EOF mode (EOF1) of the 500 hPa height is active, while the second EOF mode (EOF2) becomes active in moderate/weak La Nina years. It is also found that while EOF1 is sensitive to SST variability in the central Pacific which is associated with the major ENSO events, EOF2 is sensitive to that in the western/South Pacific. Relations to various climate variability other than ENSO, e.g., Pacific Decadal Oscillation (PDO), Tropical/Northern Hemisphere (TNH), Pacific/North American (PNA), and North Atlantic Oscillation (NAO), are also examined.

  2. The Water Risks of Hydraulic Fracturing (Fracking): Key Issues from the New California Assessment

    Science.gov (United States)

    Gleick, P. H.

    2015-12-01

    A key component of the Water-Energy Nexus is the effort over the past decade or so to quantify the volumes and form of water required for the energy fuel cycle from extraction to generation to waste disposal. The vast majority of the effort in this area has focused on the water needs of electricity generation, but other fuel-cycle components also entail significant water demands and threats to water quality. Recent work for the State of California (managed by the California Council on Science and Technology - CCST) has produced a new state-of-the-art assessment of a range of potential water risks associated with hydraulic fracturing and related oil and gas extraction, including volumetric water demands, methods of disposal of produced water, and aquifer contamination. For example, this assessment produced new information on the disposal of produced water in surface percolation pits and the potential for contamination of local groundwater (see Figure). Understanding these risks raises questions about current production and future plans to expand production, as well as tools used by state and federal agencies to manage these risks. This talk will summarize the science behind the CCST assessment and related policy recommendations for both water and energy managers.

  3. Six years of aerial and ground monitoring surveys for sudden oak death in California

    Science.gov (United States)

    Lisa Bell; Jeff Mai; Zachary Heath; Erik Haunreiter; Lisa M. Fischer

    2008-01-01

    Aerial surveys have been conducted since 2001 to map recent hardwood mortality and consequently target ground visits for detection of Phytophthora ramorum, the pathogen that causes sudden oak death (SOD). Each year the aerial and ground surveys monitored much of California?s forests at risk for SOD resulting in new maps of hardwood mortality,...

  4. An inventory of published and unpublished fluvial-sediment data for California, 1956-70

    Science.gov (United States)

    Porterfield, George

    1972-01-01

    This inventory was prepared to provide a convenient reference to published and unpublished fluvial-sediment data for water years 1956-70, and updates substantially previous inventories. Sediment stations are listed in downstream order, and an alphabetical list of stations is also included. Figure 1 shows the approximate location of sediment stations in California. Most of the fluvial-sediment data in California were collected by the U.S. Geological Survey, under cooperative agreements with the following Federal, State, and local agencies: California Department of Water Resources, California Department of Navigation and Ocean Development, California Department of Fish and Game, Bolinas Harbor District, Monterey County Flood Control and Water Conservation District, Orange County Flood Control District, Riverside County Flood Control and Water Conservation District, San Diego County Department of Sanitation and Flood Control, San Luis Obispo County, San Mateo County, Santa Clara County Flood Control and Water District, Santa Cruz County Flood Control and Water Conservation District, Santa Cruz, city of, University of California, Ventura County Flood Control District, Forest Service, U.S. Department of Agriculture, Soil Conservation Service, U.S. Department of Agriculture, Corps of Engineers, U.S. Army, Bureau of Reclamation, U.S. Department of the Interior, National Park Service, U.S. Department of the Interior. This report was prepared by the Geological Survey under the general supervision of R. Stanley Lord, district chief in charge of water-resources investigations in California.

  5. Perceptions about availability and adequacy of drinking water in a large California school district.

    Science.gov (United States)

    Patel, Anisha I; Bogart, Laura M; Uyeda, Kimberly E; Rabin, Alexa; Schuster, Mark A

    2010-03-01

    Concerns about the influence of sugar-sweetened beverage consumption on obesity have led experts to recommend that water be freely available in schools. We explored perceptions about the adequacy of drinking water provision in a large California school district to develop policies and programs to encourage student water consumption. From March to September 2007, we used semistructured interviews to ask 26 California key stakeholders - including school administrators and staff, health and nutrition agency representatives, and families - about school drinking water accessibility; attitudes about, facilitators of, and barriers to drinking water provision; and ideas for increasing water consumption. Interviews were analyzed to determine common themes. Although stakeholders said that water was available from school drinking fountains, they expressed concerns about the appeal, taste, appearance, and safety of fountain water and worried about the affordability and environmental effect of bottled water sold in schools. Stakeholders supported efforts to improve free drinking water availability in schools, but perceived barriers (eg, cost) and mistaken beliefs that regulations and beverage contracts prohibit serving free water may prevent schools from doing so. Some schools provide water through cold-filtered water dispensers and self-serve water coolers. This is the first study to explore stakeholder perceptions about the adequacy of drinking water in US schools. Although limited in scope, our study suggests that water available in at least some schools may be inadequate. Collaborative efforts among schools, communities, and policy makers are needed to improve school drinking water provision.

  6. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  7. Paleoceanographic changes on the Farallon Escarpment off central California during the last 16,000 years

    Science.gov (United States)

    McGann, M.

    2011-01-01

    New benthic and planktic foraminiferal assemblage census data and Benthic Foraminiferal Oxygen Index (BFOI) values, previously published marine climate proxy data (stable isotopes and Ca/Cd), and unpublished results of total carbon, organic carbon, and calcium carbonate analyses of sediments recovered off central California on the Farallon Escarpment (1605m water depth; 37??13.4???N, 123??14.6???W; core F-8-90-G21) document paleoceanographic changes during the latest Quaternary which reflect the intensity and source of North Pacific Intermediate Water (NPIW) and surface productivity. Accelerator mass spectrometry radiocarbon dates of both benthic and planktic species provide an excellent age-depth model for the last 16,000 years, covering the latest glacial, B??lling-Aller??d, Younger Dryas, and early, middle, and late Holocene intervals. A Q-mode cluster analysis separated the benthic fauna into three clusters, one Pleistocene and two Holocene, whereas the planktic fauna was divided only into Pleistocene and Holocene clusters. Stable oxygen isotope values show an increase in water temperature of ~1??C from the late glacial to late Holocene and a change in faunal composition of the planktic assemblage implies surface waters warmed as well. A general trend of decreasing dissolved oxygen concentration from the Pleistocene (high oxic; 3.0-6.0+ ml/l O2) to the Holocene (low oxic; 1.5-3.0ml/l O2) suggested by the BFOI and Cd/Ca data reflect decreased ventilation as the source of the NPIW shifted from the Sea of Okhotsk to the tropical east Pacific at ~11,000 cal BP. The middle Holocene cooling reported in other central and northern California margin studies is not apparent in F-8-90-G21, which compares more favorably with studies from southern California and British Columbia. Total carbon and organic carbon values are highest in the B??lling-Aller??d, early Holocene, and late Holocene. Similarly, calcium carbonate values are high in the B??lling-Aller??d and peak in the

  8. Building America Case Study: Multifamily Central Heat Pump Water Heaters, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16-month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  9. Building America Case Study: Multifamily Central Heat Pump Water Heaters, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-08

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16-month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  10. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  11. California State Waters Map Series—Monterey Canyon and vicinity, California

    Science.gov (United States)

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The

  12. Physical, Nutrient, and Biological Measurements of Coastal Waters off Central California in November 2007

    National Research Council Canada - National Science Library

    Rago, Thomas A; Michisaki, Reiko; Marinovic, Baldo; Blum, Marguerite; Whitaker, Katherine

    2008-01-01

    The results of analyses of hydrographic, nutrient, and biological data collected in coastal ocean waters off Central California in November 2007 aboard the NOAA Ship David Starr Jordan are presented...

  13. Water demand studies. [central and southern California regions

    Science.gov (United States)

    Bowden, L. W.; Estes, J. E.; Churchman, C. W.; Johnson, C. W.; Huning, J. R.; Rozelle, K.; Hamilton, J.; Washburn, G.; Tinney, L. R.; Thaman, R. R.

    1973-01-01

    The areas of focus of the Santa Barbara and Riverside groups in conducting water demand studies are the central and southern California regional test sites, respectively. Within each test site, sub-areas have been selected for use in the making of detailed investigations. Within each of these sub-areas an in-depth evaluation is being made as to the capability of remote sensing systems to provide pertinent data relative to water demand phenomena. These more limited sub-areas are: (1) Kern County and the San Joaquin Basin; (2) Chino-Riverside Basin; and (3) the Imperial Valley. Rational for the selection of these subareas included the following: Much of the previous remote sensing research had been conducted in these areas and therefore a great deal of remote sensing imagery and pertinent ground truth for the areas was already available.

  14. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  15. Health risk assessment of dichloromethane (methylene chloride) in California ground water

    International Nuclear Information System (INIS)

    Bogen, K.T.; Hall, L.C.; Wright, K.; McKone, T.E.

    1992-01-01

    This document presents an assessment of potential health risks associated with exposure to dichloromethane (DCM) dissolved in California drinking water, focusing primarily on information relevant to a determination of potential cancer risk that may be associated with such exposures to DCM. This assessment is being provided to the California Environmental Protection Agency for the development of drinking-water standards to manage the health risks of DCM exposures. Other assessments required in the risk-management process include analyses of the technical and economic feasibilities of treating water supplies contaminated with DCM. The primary goal of this health-risk assessment is to evaluate scientifically plausible dose-response relationships for observed and potential DCM-induced cancer in order to define dose rates that can be used to establish standards that win protect members of the general public from this chronic toxicity endpoint resulting solely from groundwater-based exposures to DCM, based on information obtained from the scientific literature. The document consists of seven sections, plus one supporting appendix. Each section provides information that can be used to develop DCM drinking-water standards that will safeguard human health. Evaluation of this information in support of specific groundwater safety standards for DCM was not conducted in this report; rather, the basis for selection of alternative standards, along with a narrative description of certain key sources of underlying uncertainty, are presented for evaluation through the regulatory risk-management process

  16. Adaptive Regulation of the Northern California Reservoir System for Water, Energy, and Environmental Management

    Science.gov (United States)

    Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.

    2014-12-01

    The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying

  17. Dissolved Pesticide Concentrations Detected in Storm-Water Runoff at Selected Sites in the San Joaquin River Basin, California, 2000-2001

    National Research Council Canada - National Science Library

    Orlando, James L; Kuivila, Kathryn M; Whitehead, Andrew

    2003-01-01

    ...) and the University of California Davis Bodega Marine Laboratory (BML) water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides...

  18. Human health implications of extreme precipitation events and water quality in California, USA: a canonical correlation analysis

    Directory of Open Access Journals (Sweden)

    Alexander Gershunov, PhD

    2018-05-01

    Full Text Available Background: Pathogens and pollutants collect on the land surface or in infrastructure between strong rainfall episodes and are delivered via storm runoff to areas of human exposure, such as coastal recreational waters. In California, USA, precipitation events are projected to become more extreme and simultaneously decrease in frequency as storm tracks move poleward due to polar-amplified global warming. Precipitation extremes in California are dominated by atmospheric rivers, which carry more moisture in warmer climates. Thus, the physical driver of extreme precipitation events is expected to grow stronger with climate change, and pollutant accumulation and runoff-generated exposure to those pollutants are expected to increase, particularly after prolonged dry spells. Microbiological contamination of coastal waters during winter storms exposes human populations to elevated concentrations of microorganisms such as faecal bacteria, which could cause gastrointestinal and ear infections, and lead to exposure to pathogens causing life-threatening conditions, such as hepatitis A. The aim of this study was to quantitatively assess the effect of precipitation on coastal water quality in California. Methods: We used a recently published catalogue of atmospheric rivers, in combination with historical daily precipitation data and levels of three indicators of faecal bacteria (total and faecal coliforms, and Escherichia coli detected at roughly 500 monitoring locations in coastal waters along California's 840-mile coastline, to explore weekly associations between extreme precipitation events, particularly those related to atmospheric rivers, and the variability in water quality during 2003–09. We identified ten principal components (together explaining >90% of the variability in precipitation and faecal bacteria time-series to reduce the dimensionality of the datasets. We then performed canonical correlation analysis of the principal components to

  19. Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Deng, Xin; Geraci, Jeff; Worcester, Karen; Tjeerdema, Ron S

    2018-03-01

    Regulation of agriculture irrigation water discharges in California, USA, is assessed and controlled by its 9 Regional Water Quality Control Boards under the jurisdiction of the California State Water Resources Control Board. Each Regional Water Board has developed programs to control pesticides in runoff as part of the waste discharge requirements implemented through each region's Irrigated Lands Regulatory Program. The present study assessed how pesticide use patterns differ in the Imperial (Imperial County) and the Salinas and Santa Maria (Monterey County) valleys, which host 3 of California's prime agriculture areas. Surface-water toxicity associated with current use pesticides was monitored at several sites in these areas in 2014 and 2015, and results were linked to changes in pesticide use patterns in these areas. Pesticide use patterns appeared to coincide with differences in the way agriculture programs were implemented by the 2 respective Regional Water Quality Control Boards, and these programs differed in the 2 Water Board Regions. Different pesticide use patterns affected the occurrence of pesticides in agriculture runoff, and this influenced toxicity test results. Greater detection frequency and higher concentrations of the organophosphate pesticide chlorpyrifos were detected in agriculture runoff in Imperial County compared to Monterey County, likely due to more rigorous monitoring requirements for growers using this pesticide in Monterey County. Monterey County agriculture runoff contained toxic concentrations of pyrethroid and neonicotinoid pesticides, which impacted amphipods (Hyalella azteca) and midge larvae (Chironomus dilutus) in toxicity tests. Study results illustrate how monitoring strategies need to evolve as regulatory actions affect change in pesticide use and demonstrate the importance of using toxicity test indicator species appropriate for the suite of contaminants in runoff in order to accurately assess environmental risk. Integr

  20. Therapeutic Community in a California Prison: Treatment Outcomes after 5 Years

    Science.gov (United States)

    Zhang, Sheldon X.; Roberts, Robert E. L.; McCollister, Kathryn E.

    2011-01-01

    Therapeutic communities have become increasingly popular among correctional agencies with drug-involved offenders. This quasi-experimental study followed a group of inmates who participated in a prison-based therapeutic community in a California state prison, with a comparison group of matched offenders, for more than 5 years after their initial…

  1. Preliminary design of four aircraft to service the California Corridor in the year 2010: The California Condor, California Sky-Hopper, high capacity short range transport tilt rotor aircraft needed to simplify intercity transportation

    Science.gov (United States)

    1989-01-01

    The major objective of this project was to design an aircraft for use in the California Corridor in the year 2010. The design process, completed by students in a senior design class at California Polytechnic State University, San Luis Obispo, used a Class 1 airplane design analysis from Jan Roskam's Airplane Design. The California Condor (CC-38), a 38 passenger, 400 mph aircraft, was designed to meet the needs of tomorrow's passengers while conforming to the California Corridor's restrictions. Assumptions were made using today's technology with forecasts into 21st Century technology. Doubling today's commuter aircraft passenger capacity, travelling at Mach .57 with improved cruise efficiencies of over 10 percent, with the ability to land within field lengths of 4000 feet, are the CC-38's strongest points. The California Condor has a very promising future in helping to relieve the air traffic and airport congestion in the 21st Century.

  2. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  3. California State Waters Map Series — Offshore of Point Conception, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.

    2018-04-20

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Point Conception map area is in the westernmost part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and this region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south and west flanks of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 340 m in the map area, lies about 5 km north and east of the arcuate shoreline.The onland part of the coastal zone is remote and sparsely populated. The road to Jalama Beach County Park provides the only public coastal access in the entire map area. North of this county park, the coastal zone is part of Vandenberg Air Force Base. South of Jalama Beach County Park, most of the coastal zone is part of the Cojo-Jalama Ranch, purchased by the Nature Conservancy in December 2017. A relatively small part of the coastal zone in the eastern part of the map area lies within the privately owned Hollister Ranch. The nearest significant commercial centers are Lompoc

  4. Ancient water bottle use and polycyclic aromatic hydrocarbon (PAH) exposure among California Indians: a prehistoric health risk assessment.

    Science.gov (United States)

    Sholts, Sabrina B; Smith, Kevin; Wallin, Cecilia; Ahmed, Trifa M; Wärmländer, Sebastian K T S

    2017-06-23

    Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern humans are well established, but their health impacts on past populations are unclear. It has previously been suggested that a prehistoric health decline among the native people living on the California Channel Islands may have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and manufacture of bitumen-coated water bottles by ancient California Indian societies. We replicated prehistoric bitumen-coated water bottles with traditional materials and techniques of California Indians, based on ethnographic and archaeological evidence. In order to estimate PAH exposure related to water bottle manufacture and use, we conducted controlled experiments to measure PAH contamination 1) in air during the manufacturing process and 2) in water and olive oil stored in a completed bottle for varying periods of time. Samples were analyzed with gas chromatography/mass spectrometry (GC/MS) for concentrations of the 16 PAHs identified by the US Environmental Protection Agency (EPA) as priority pollutants. Eight PAHs were detected in concentrations of 1-10 μg/m 3 in air during bottle production and 50-900 ng/L in water after 2 months of storage, ranging from two-ring (naphthalene and methylnaphthalene) to four-ring (fluoranthene) molecules. All 16 PAHs analyzed were detected in olive oil after 2 days (2 to 35 μg/kg), 2 weeks (3 to 66 μg/kg), and 2 months (5 to 140 μg/kg) of storage. For ancient California Indians, water stored in bitumen-coated water bottles was not a significant source of PAH exposure, but production of such bottles could have resulted in harmful airborne PAH exposure.

  5. EVIDENCE FOR METAL ATTENUATION IN ACID MINE WATER BY SULFATE REDUCTION, PENN MINE, CALAVERAS COUNTY, CALIFORNIA

    Science.gov (United States)

    The Penn Mine in Calaveras County, California, produced Cu from massive sulfide ores from 1861 to 1953. Mine wastes were removed to a landfill during the late 1990s, improving surface-water quality, but deep mine workings were not remediated and contain metalliferous water with p...

  6. 3000 years of environmental change at Zaca Lake, California, USA

    Directory of Open Access Journals (Sweden)

    Theodore eDingemans

    2014-07-01

    Full Text Available Climatic variations of the last few millennia can reveal patterns of variability beyond that recorded by the instrumental record. In this study we use pollen and sediments to generate a high resolution 3000 year record of vegetation and climate along the southern California coast. An increase in Pinus and Quercus pollen found in the top 100 years of the record is a result of known planting and fire suppression by the forest service. In the pre-historic record, a period of high Salix percentages and high pollen concentration from 500-250 cal yr BP represents the wettest period of the record and coincides with the Little Ice Age. We also find evidence for 3 warm periods between 1350 and 650 cal yr BP which are identified in the record by the presence of Pediastrum boryanum var. boryanum. The latter two of these periods, dating from 1070-900 and 700–650 cal yr BP correspond to Medieval Climatic Anomaly droughts identified in other records. In addition to these events, we identify a multi-centennial scale drought between 2700 and 2000 cal yr BP in Zaca Lake, corroborating evidence from across the Great Basin and extending the regional spread of this multi-centennial drought to southern California. Corresponding wetter conditions in the northwest indicate that the modern ENSO precipitation dipole also occurred during this persistent drought. Today this dipole is associated with La Niña conditions and we note a coincidence with intriguing evidence for a change in ENSO dynamics from marine records in the tropical Pacific. This dry period is remarkably persistent and has important implications for understanding the possible durations of drought conditions in the past in California.

  7. Save water or save wildlife? Water use and conservation in the central Sierran foothill oak woodlands of California, USA

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2017-06-01

    Full Text Available More frequent drought is projected for California. As water supplies constrict, and urban growth and out-migration spread to rural areas, trade-offs in water use for agriculture, biodiversity conservation, fire hazard reduction, residential development, and quality of life will be exacerbated. The California Black Rail (Laterallus jamaicensis coturniculus, state listed as "Threatened," depends on leaks from antiquated irrigation district irrigation systems for much of its remnant small wetland habitat in the north central Sierra Nevada foothills. Residents of the 1295 km² foothill habitat distribution of the Black Rail were surveyed about water use. Results show that the most Black Rail habitat is owned by those purchasing water to irrigate pasture, a use that commonly creates wetlands from leaks and tailwater. Promoting wildlife, agricultural production, and preventing wildfire are common resident goals that call for abundant and inexpensive water; social and economic pressures encourage reduction in water use and the repair of leaks that benefit wildlife and greenery. Broad inflexible state interventions to curtail water use are likely to create a multitude of unintended consequences, including loss of biodiversity and environmental quality, and alienation of residents as valued ecosystem services literally dry up. Adaptive and proactive policies are needed that consider the linkages in the social-ecological system, are sensitive to local conditions, prevent landscape dewatering, and recognize the beneficial use of water to support ecosystem services such as wildlife habitat. Much Black Rail habitat is anthropogenic, created at the nexus of local governance, plentiful water, agricultural practices, historical events, and changing land uses. This history should be recognized and leveraged rather than ignored in a rush to "save" water by unraveling the social-ecological system that created the landscape. Policy and governance needs to identify

  8. Cr(VI) occurrence and geochemistry in water from public-supply wells in California

    Science.gov (United States)

    Izbicki, John; Wright, Michael; Seymour, Whitney A.; McCleskey, R. Blaine; Fram, Miranda S.; Belitz, Kenneth; Esser, Bradley K.

    2015-01-01

    Hexavalent chromium, Cr(VI), in 918 wells sampled throughout California between 2004 and 2012 by the Groundwater Ambient Monitoring and Assessment-Priority Basin Project (GAMA-PBP) ranged from less than the study reporting limit of 1 microgram per liter (μg/L) to 32 μg/L. Statewide, Cr(VI) was reported in 31 percent of wells and equaled or exceeded the recently established (2014) California Maximum Contaminant Level (MCL) for Cr(VI) of 10 μg/L in 4 percent of wells. Cr(VI) data collected for regulatory purposes overestimated Cr(VI) occurrence compared to spatially-distributed GAMA-PBP data. Ninety percent of chromium was present as Cr(VI), which was detected more frequently and at higher concentrations in alkaline (pH ≥ 8), oxic water; and more frequently in agricultural and urban land uses compared to native land uses. Chemical, isotopic (tritium and carbon-14), and noble-gas data show high Cr(VI) in water from wells in alluvial aquifers in the southern California deserts result from long groundwater-residence times and geochemical reactions such as silicate weathering that increase pH, while oxic conditions persist. High Cr(VI) in water from wells in alluvial aquifers along the west-side of the Central Valley results from high-chromium in source rock eroded to form those aquifers, and areal recharge processes (including irrigation return) that can mobilize chromium from the unsaturated zone. Cr(VI) co-occurred with oxyanions having similar chemistry, including vanadium, selenium, and uranium. Cr(VI) was positively correlated with nitrate, consistent with increased concentrations in areas of agricultural land use and mobilization of chromium from the unsaturated zone by irrigation return.

  9. Information Management System for the California State Water Resources Control Board (SWRCB)

    Science.gov (United States)

    Heald, T. C.; Redmann, G. H.

    1973-01-01

    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included.

  10. California's hardwood resource: managing for wildlife, water, pleasing scenery, and wood products

    Science.gov (United States)

    Philip M. McDonald; Dean W. Huber

    1995-01-01

    A new management perspective that emphasizes a variety of amenities and commodities is needed for California’s forest-zone hardwoods. For the near future and perhaps more on public than on private land, these "yields" are wildlife, water, esthetics, and wood products. Each is presented first as an individual yield and then as part of a combined yield. As an...

  11. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  12. Southern California Edison High Penetration Photovoltaic Project - Year 1

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  13. Connecting the surface to near-shore bottom waters in the California Current ecosystem: a study of Northern California interannual to decadal oceanographic variability

    Science.gov (United States)

    Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.

    2017-12-01

    Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.

  14. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  15. Nurseries surveyed in Southern California adopt best practices for water quality

    OpenAIRE

    Mangiafico, Salvatore S; Newman, Julie; Mochizuki, Maren; Zurawski, Dale; Merhaut, Donald J.; Faber, Ben

    2010-01-01

    A variety of good management practices have been recommended to minimize the impact of water runoff from production nurseries. However, studies have not been conducted to gauge which management practices nursery producers are most likely to adopt in response to education and increased government oversight. We surveyed 85 production nurseries in Southern California about their existing practices to limit the impacts of runoff from their facilities. Of these, 65 in Ventura County were resurveye...

  16. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  17. California's transition from conventional snowpack measurements to a developing remote sensing capability for water supply forecasting

    Science.gov (United States)

    Brown, A. J.; Peterson, N.

    1980-01-01

    California's Snow Survey Program and water supply forecasting procedures are described. A review is made of current activities and program direction on such matters as: the growing statewide network of automatic snow sensors; restrictions on the gathering hydrometeorological data in areas designated as wilderness; the use of satellite communications, which both provides a flexible network without mountaintop repeaters and satisfies the need for unobtrusiveness in wilderness areas; and the increasing operational use of snow covered area (SCA) obtained from satellite imagery, which, combined with water equivalent from snow sensors, provides a high correlation to the volumes and rates of snowmelt runoff. Also examined are the advantages of remote sensing; the anticipated effects of a new input of basin wide index of water equivalent, such as the obtained through microwave techniques, on future forecasting opportunities; and the future direction and goals of the California Snow Surveys Program.

  18. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    Science.gov (United States)

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  19. Economic and Water Supply Effects of Ending Groundwater Overdraft in California's Central Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art7Surface water and groundwater management are often tightly linked, even when linkage is not intended or expected. This link is especially common in semi-arid regions, such as California. This paper summarizes a modeling study on the effects of ending long-term overdraft in California’s Central Valley, the state’s largest aquifer system. The study focuses on economic and operational aspects, such as surface water pumping and diversions, groundwater recharge, water scarcity, and the associated operating and water scarcity costs. This analysis uses CALVIN, a hydro-economic optimization model for California’s water resource system that suggests operational changes to minimize net system costs for a given set of conditions, such as ending long-term overdraft. Based on model results, ending overdraft might induce some major statewide operational changes, including large increases to Delta exports, more intensive conjunctive-use operations with increasing artificial and in-lieu recharge, and greater water scarcity for Central Valley agriculture. The statewide costs of ending roughly 1.2 maf yr-1 of groundwater overdraft are at least $50 million per year from additional direct water shortage and additional operating costs. At its worst, the costs of ending Central Valley overdraft could be much higher, perhaps comparable to the recent economic effects of drought. Driven by recent state legislation to improve groundwater sustainability, ending groundwater overdraft has important implications statewide for water use and management, particularly in the Sacramento–San Joaquin Delta. Ending Central Valley overdraft will amplify economic pressure to increase Delta water exports rather than reduce them, tying together two of California’s largest water management problems.

  20. Water quality improvement policies: lessons learned from the implementation of Proposition O in Los Angeles, California

    Science.gov (United States)

    Mi-Hyun Park; Michael Stenstrom; Stephanie Pincetl

    2009-01-01

    This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had...

  1. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  2. The influence of Pacific Equatorial Water on fish diversity in the southern California Current System

    Science.gov (United States)

    McClatchie, Sam; Thompson, Andrew R.; Alin, Simone R.; Siedlecki, Samantha; Watson, William; Bograd, Steven J.

    2016-08-01

    The California Undercurrent transports Pacific Equatorial Water (PEW) into the Southern California Bight from the eastern tropical Pacific Ocean. PEW is characterized by higher temperatures and salinities, with lower pH, representing a source of potentially corrosive (aragonite,Ωaragonite saturation with depth. Although there is substantial variability in PEW presence as measured by spice on the 26.25-26.75 isopycnal layer, as well as in pH and aragonite saturation, we found fish diversity to be stable over the decades 1985-1996 and 1999-2011. We detected significant difference in species structure during the 1998 La Niña period, due to reduced species evenness. Species richness due to rare species was higher during the 1997/1998 El Niño compared to the La Niña but the effect on species structure was undetectable. Lack of difference in the species abundance structure in the decade before and after the 1997/1999 ENSO event showed that the assemblage reverted to its former structure following the ENSO perturbation, indicating resilience. While the interdecadal species structure remained stable, the long tail of the distributions shows that species richness increased between the decades consistent with intrusion of warm water with more diverse assemblages into the southern California region.

  3. Monitoring of the water quality of the Surata River in the mining area of Vetas and California

    International Nuclear Information System (INIS)

    Gomez, Vladimir Illich

    2004-01-01

    The regional autonomous corporation for the defense of the Bucaramanga plateau, environmental authority in the area of influence of the Mining District of Vetas and California, exercises among other activities, the pursuit and control to the auriferous exploitations. Two of the components of this pursuit are: the monitoring of the water quality of the Surata River, final receiver of the effusions coming from of the mineral benefit and the discharges control of cyanidation sand or cyanidation lines, by means of the monthly programming of daily discharges for mining company; in order to diminish the events of high cyanide concentrations in the hydraulic averages and to reduce the cyanide consumptions for the recovery of gold. The mining exploitations of the municipality pour their residuals to the Vetas River, while those of the Municipality of California, pour them to the gulch La Baja, flowing of the Vetas River who in turn is flowing of the Surata River, that supplies a part of the system of aqueduct of the Bucaramanga Municipality. The water quality of mining effusions is determined in three monitored points on the gulch La Baja, the Vetas River and the Surata River; additionally it is made a sampling and analysis of silts in four points on the same currents. The sampling frequency for the water quality is monthly, while for the silts analysis is biweekly. This monitoring is carried out from the year 1988, although it has suffered some interruptions in the time. The technique of water sampling is punctual, integrated to the wide of the bed and without seating capacity, the taking of silts is punctual and integrated to the wide of the bed and without seating capacity, these samples are preserved and transported to the laboratory of waters and soils of the CDMB, where the following parameters are analyzed: for the water sample, mercury, free cyanide and total cyanide, suspended solids, turbidity, pH and conductivity; for the sample of silts only mercury is analyzed

  4. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  5. Climate change impacts on high-elevation hydroelectricity in California

    Science.gov (United States)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  6. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    Science.gov (United States)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (pcompliance burdens in accordance with EPA standards fell most heavily on socio-economically disadvantaged communities. Selected References Cory DC, Rahman T. 2009. Environmental justice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The human costs of nitrate-contaminated drinking water in the San Joaquin Valley. Oakland, CA: Pacific Institute. Morello-Frosch R, Pastor M, Sadd J. 2001

  7. The role of carrion supply in the abundance of deep-water fish off California.

    Science.gov (United States)

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  8. California air transportation study: A transportation system for the California Corridor of the year 2010

    Science.gov (United States)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  9. Does Year Round Schooling Affect the Outcome and Growth of California's API Scores?

    Science.gov (United States)

    Wu, Amery D.; Stone, Jake E.

    2010-01-01

    This paper examined whether year round schooling (YRS) in California had an effect upon the outcome and growth of schools' Academic Performance Index (API) scores. While many previous studies had examined the connection between YRS and academic achievement, most had lacked the statistical rigour required to provide reliable interpretations. As a…

  10. WAVE DIRECTION and Other Data from FIXED STATIONS From Coastal Waters of California from 19750313 to 19750525 (NODC Accession 9400044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Wave Surface Data collected in Coastal Waters of California between March 13, 1975 and May 25, 1975. Water surface elevation data was...

  11. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Science.gov (United States)

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  12. diurnal and seasonal water relations of the desert phreatophyte prosopis-glandulosa (honey mesquite) in the Sonoran Desert of California

    OpenAIRE

    Nilsen, E. T.; Sharifi, M. R.; Rundel, P. W.; Jarrell, W. M.; Virginia, R. A.

    1983-01-01

    Diurnal and Seasonal water relations were monitored in a population of Prosopis glandulosa var. torreyana in the Sonoran Desert of southern California. Prosopis glandulosa at this research site acquired its water from a ground water source 4-6 m deep. Measurements of diurnal and seasonal cycles of aboveground environmental conditions, soil moisture, and soil water potential (to 6 m depth) were taken to ascertain environmental water availability and water stress. Leaf water potential, leaf con...

  13. Developing decision-relevant data and information systems for California water through listening and collaboration

    Science.gov (United States)

    Bales, R. C.; Bernacchi, L.; Conklin, M. H.; Viers, J. H.; Fogg, G. E.; Fisher, A. T.; Kiparsky, M.

    2017-12-01

    California's historic drought of 2011-2015 provided excellent conditions for researchers to listen to water-management challenges from decision makers, particularly with regard to data and information needs for improved decision making. Through the UC Water Security and Sustainability Research Initiative (http://ucwater.org/) we began a multi-year dialog with water-resources decision makers and state agencies that provide data and technical support for water management. Near-term products of that collaboration will be both a vision for a 21st-century water data and information system, and near-term steps to meet immediate legislative deadlines in a way that is consistent with the longer-term vision. While many university-based water researchers engage with state and local agencies on both science and policy challenges, UC Water's focus was on: i) integrated system management, from headwaters through groundwater and agriculture, and on ii) improved decision making through better water information systems. This focus aligned with the recognition by water leaders that fundamental changes in the way the state manages water were overdue. UC Water is focused on three "I"s: improved water information, empowering Institutions to use and to create new information, and enabling decision makers to make smart investments in both green and grey Infrastructure. Effective communication with water decision makers has led to engagement on high-priority programs where large knowledge gaps remain, including more-widespread groundwater recharge of storm flows, restoration of mountain forests in important source-water areas, governance structures for groundwater sustainability, and filling information gaps by bringing new technology to bear on measurement and data programs. Continuing engagement of UC Water researchers in public dialog around water resources, through opinion pieces, feature articles, blogs, white papers, social media, video clips and a feature documentary film have

  14. Assessing aquifer vulnerability from lumped parameter modeling of modern water proportions in groundwater mixtures - Application to nitrate pollution in California's South Coast Range

    Science.gov (United States)

    Hagedorn, B.; Ruane, M.; Clark, N.

    2017-12-01

    In California, the overuse of synthetic fertilizers and manure in agriculture have caused nitrate (NO3) to be one of the state's most widespread groundwater pollutants. Given that nitrogen fertilizer applications have steadily increased since the 1950s and given that soil percolation and recharge transit times in California can exceed timescales of decades, the nitrate impact on groundwater resources is likely a legacy for years and even decades to come. This study presents a methodology for groundwater vulnerability assessment that operates independently of difficult-to-constrain soil and aquifer property data (i.e., saturated thickness, texture, porosity, conductivity, etc.), but rather utilizes groundwater age and, more importantly, groundwater mixing information to illustrate actual vulnerability at the water table. To accomplish this, the modern (i.e., less than 60-year old) water proportion (MWP) in groundwater mixtures is computed via lumped parameter modeling of chemical tracer (i.e., 3H, 14C and 3Hetrit) data. These MWPs are then linked to groundwater dissolved oxygen (DO) values to describe the risk for soil zone-derived nitrate to accumulate in the saturated zone. Preliminary studies carried out for 71 wells in California's South Coast Range-Coastal (SCRC) study unit reveal MWP values derived from binary dispersion models of 3.24% to 21.8%. The fact that high MWPs generally coincide with oxic (DO ≥1.5 mg/L) groundwater conditions underscores the risk towards increased groundwater NO3 pollution for many of the tested wells. These results support the conclusion that best agricultural management and policy objectives should incorporate groundwater vulnerability models that are developed at the same spatial scale as the decision making.

  15. Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California.

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    Full Text Available We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2 °C, 4 °C, and 6 °C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5-21 days. The integrated agricultural model responds with increased water demands 2 °C (1.4-2.0%, 4 °C (2.8-3.9%, and 6 °C (4.2-5.8%. In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84-0.90 under historical conditions to 0.75-0.79 under 6 °C warming scenario.

  16. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  17. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    Science.gov (United States)

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all

  18. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Science.gov (United States)

    2012-02-27

    ..., recreational, conservation, research, educational, and aesthetic values, and are becoming increasingly more... sewage; and (2) it will improve California marine waters for commercial fisheries, tourism, aesthetics...-out facilities, educational outreach, and establishment of small NDZs under CWA Section 312(f)(3) in...

  19. From Drought to Flood: Biological Responses of Large River Salmonids and Emergent Management Challenges Under California's Extreme Hydroclimatic Variability

    Science.gov (United States)

    Anderson, C.

    2017-12-01

    California's hydroclimatic regime is characterized by extreme interannual variability including periodic, multi-year droughts and winter flooding sequences. Statewide, water years 2012-2016 were characterized by extreme drought followed by likely one of the wettest years on record in water year 2017. Similar drought-flood patterns have occurred multiple times both in the contemporary empirical record and reconstructed climate records. Both the extreme magnitude and rapid succession of these hydroclimatic periods pose difficult challenges for water managers and regulatory agencies responsible for providing instream flows to protect and recover threatened and endangered fish species. Principal among these riverine fish species are federally listed winter-run and spring-run Chinook salmon (Oncorhynchus tshawytscha), Central Valley steelhead (Oncorhynchus mykiss), and the pelagic species Delta smelt (Hypomesus transpacificus). Poor instream conditions from 2012-2016 resulted in extremely low abundance estimates and poor overall fish health, and while fish monitoring results from water year 2017 are too preliminary to draw substantive conclusions, early indicators show continued downward population trends despite the historically wet conditions. This poster evaluates California's hydroclimatic conditions over the past decade and quantifies resultant impacts of the 2012-2016 drought and the extremely wet 2017 water year to both adult escapement and juvenile production estimates in California's major inland salmon rivers over that same time span. We will also examine local, state, and federal regulatory actions both in response to the extreme hydroclimatic variability and in preparation for future drought-flood sequences.

  20. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  1. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California

    Science.gov (United States)

    Vernon, Michael J.; Sherriff, Rosemary L.; van Mantgem, Phillip; Kane, Jeffrey M.

    2018-01-01

    Drought is an important stressor in forest ecosystems that can influence tree vigor and survival. In the U.S., forest managers use two primary management techniques to promote resistance and resilience to drought: prescribed fire and mechanical thinning. Generally applied to reduce fuels and fire hazard, treatments may also reduce competition for resources that may improve tree-growth and reduce mortality during drought. A recent severe and prolonged drought in California provided a natural experiment to investigate tree-growth responses to fuel treatments and climatic stress. We assessed tree-growth from 299 ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) in treated and untreated stands during severe drought from 2012 to 2015 in the mixed-conifer forests of Whiskeytown National Recreation Area (WNRA) in northern California. The treatment implemented at WNRA removed 34% of live basal area through mechanical thinning with a subsequent pile burning of residual fuels. Tree-growth was positively associated with crown ratio and negatively associated with competition and a 1-year lag of climate water deficit, an index of drought. Douglas-fir generally had higher annual growth than ponderosa pine, although factors affecting growth were the same for both species. Drought resistance, expressed as the ratio between mean growth during drought and mean growth pre-drought, was higher in treated stands compared to untreated stands during both years of severe drought (2014 and 2015) for ponderosa pine but only one year (2014) for Douglas-fir. Thinning improved drought resistance, but tree size, competition and species influenced this response. On-going thinning treatments focused on fuels and fire hazard reduction are likely to be effective at promoting growth and greater drought resistance in dry mixed-conifer forests. Given the likelihood of future droughts, land managers may choose to implement similar treatments to reduce potential impacts.

  2. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds.

    Directory of Open Access Journals (Sweden)

    Scott Bauer

    Full Text Available Marijuana (Cannabis sativa L. cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state- and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species.

  3. Coastal California Wastewater Effluent as a Resource for Seawater Desalination Brine Commingling

    Directory of Open Access Journals (Sweden)

    Kelly E. Rodman

    2018-03-01

    Full Text Available California frequently experiences water scarcity, especially in high population areas. This has generated increased interest in using the Pacific Ocean as a water resource, with seawater desalination becoming a popular solution. To mitigate the environmental impacts of the high salinity brine from seawater desalination, California recommends commingling brine with wastewater effluent before ocean discharge. Results reveal that throughout the California coast, approximately 4872 MLD (1287 MGD of treated wastewater are discharged into the ocean and might be available as dilution water. Most of this dilution water resource is produced in Southern California (3161 MLD or 835 MGD and the San Francisco Bay Area (1503 MLD or 397 MGD, which are also the areas with the highest need for alternative water sources. With this quantity of dilution water, in principle, over 5300 MLD (1400 MGD of potable water could be produced in California through seawater desalination. Furthermore, this study provides a survey of the treatment levels and typical discharge violations of ocean wastewater treatment facilities in California.

  4. Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-01-01

    During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

  5. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    Science.gov (United States)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower

  6. California State Waters Map Series—Offshore of Gaviota, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.

    2018-04-20

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south flank of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 760 m in the map area, lies about 4 km north of the shoreline.Gaviota is an unincorporated community that has a sparse population (less than 100), and the coastal zone is largely open space that is locally used for cattle grazing. The Union Pacific railroad tracks extend westward along the coast through the entire map area, within a few hundred meters of the shoreline. Highway 101 crosses the eastern part of the map area, also along the coast, then turns north (inland) and travels through Cañada de la Gaviota and Gaviota Pass en route to Buellton. Gaviota State Park lies at the mouth of Cañada de la Gaviota. West of Gaviota, the onland coastal zone is occupied by the Hollister Ranch, a privately owned

  7. Technological Developments That Will Influence Teachers' Use of Technology to Improve Student Learning in California's Public Middle Schools by the Year 2017

    Science.gov (United States)

    Solorzano, Monica

    2013-01-01

    Purpose. The purpose of this study was to (a) identify 5 top developments in educational technology that will be available to California's public middle schools in the next 5 years, (b) determine the likelihood of implementing these technological developments in California's public middle schools in the next 5 years, (c) determine the impact these…

  8. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  9. Effects of the proposed California WaterFix North Delta Diversion on flow reversals and entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel, northern California

    Science.gov (United States)

    Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.

    2018-02-27

    bias in Delta Simulation Model 2 (DSM2) flow predictions at the junction of the Sacramento River, DCC, and Georgiana Slough. Because DSM2 was being used to simulate California WaterFix operations, understanding the extent of bias relative to USGS streamgages was important since fish routing models were based on flow data at streamgages. We determined that river flow predicted by DSM2 was biased for Georgiana Slough and the Sacramento River. Therefore, for subsequent analysis, we bias-corrected the DSM2 flow predictions using measured stream flows as predictor variables.In the third analysis, we evaluated the effect of the NDD on the daily probability of fish entering Georgiana Slough and the DCC. We applied an existing model to predict entrainment from 15-minute flow simulations for an 82-year time series of flows simulated by DSM2 under the Proposed Action (PA), where the North Delta Diversion is implemented under California WaterFix, and the No Action Alternative (NAA), where the diversion is not implemented. To estimate the daily fraction of fish entering each river channel, entrainment probabilities were averaged over each day. To evaluate the two scenarios, we then compared mean annual entrainment probabilities by month, water year classification, and three different assumed run timings. Overall, the probability of remaining in the Sacramento River was lower under the PA scenario, but the magnitude of the difference was small (3/s. At flows greater than 41,000 ft3/s, we hypothesize that entrainment into the interior Delta is relatively constant, which would have caused little difference between scenarios at higher flows.

  10. FREE AND COMBINED AMINO COMPOUNDS IN ATMOSPHERIC FINE PARTICLES (PM2.5) AND FOG WATERS FROM NORTHERN CALIFORNIA. (R825433)

    Science.gov (United States)

    Atmospheric fine particles (PM2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM2.5 and fog waters, the averag...

  11. Is wetland mitigation successful in Southern California?

    Science.gov (United States)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  12. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  13. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  14. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  15. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  16. 40 CFR 131.37 - California.

    Science.gov (United States)

    2010-07-01

    ... criteria are applicable to waters specified in the Water Quality Control Plan for Salinity for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary, adopted by the California State Water Resources Control... increased mortality and loss of habitat from increased water salinity; or for plants, significant reduction...

  17. SWFSC/MMTD/CCE: California Harbor Porpoise Survey (CAHPS) 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A ship-based marine mammal survey in California from Point Conception, California to the California-Oregon border, with the survey extent limited to waters from the...

  18. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  19. LiDAR data for the Delta Area of California

    Data.gov (United States)

    California Natural Resource Agency — LiDAR data for the Delta Area of California from the California Department of Water Resources. Bare earth grids from LiDAR.This data is in ESRI Grid format with 2...

  20. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  1. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  2. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  3. Increasing precipitation volatility in twenty-first-century California

    Science.gov (United States)

    Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex

    2018-05-01

    Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.

  4. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  5. Electric energy demand and supply prospects for California

    Science.gov (United States)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  6. Desalination and Water Security: The Promise and Perils of a Technological Fix to the Water Crisis in Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Jamie McEvoy

    2014-10-01

    Full Text Available Across the globe, desalination is increasingly being considered as a new water supply source. This article examines how the introduction of desalinated water into the municipal water supply portfolio has affected water security in the coastal tourist city of Cabo San Lucas in Baja California Sur (BCS, Mexico. It also analyses the competing discourses surrounding desalination in the region and discusses alternative water management options for achieving water security. This article challenges the notion that desalination is an appropriate and sufficient technological solution for arid regions. The findings provide evidence of increased yet delimited water security at a neighbourhood scale while identifying new vulnerabilities related to desalination, particularly in the context of the global South. This article concludes that implementing a technological fix on top of a water management system that is plagued with more systemic and structural problems does little to improve long-term water management and is likely to foreclose or forestall other water management options. This multi-scalar analysis contributes to the emerging literature on water security by considering both a narrow and broad framing of water security and identifying a range of factors that influence water security.

  7. Water use impacts of future transport fuels: role of California's climate policy & National biofuel policies (Invited)

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.; Tiedeman, K.; Yang, C.

    2013-12-01

    In the coming decades, growing demand for energy and water and the need to address climate change will create huge challenges for energy policy and natural resource management. Synergistic strategies must be developed to conserve and use both resources more efficiently. California (CA) is a prime example of a region where policymakers have began to incorporate water planning in energy infrastructure development. But more must be done as CA transforms its energy system to meet its climate target. We analyze lifecycle water use of current and future transport fuel consumption to evaluate impacts & formulate mitigation strategies for the state at the watershed scale. Four 'bounding cases' for CA's future transportation demand to year 2030 are projected for analysis: two scenarios that only meet the 2020 climate target (business-as-usual, BAU) with high / low water use intensity, and two that meet long-term climate target with high / low water use intensity (Fig 1). Our study focuses on the following energy supply chains: (a) liquid fuels from conventional/unconventional oil & gas, (b) thermoelectric and renewable generation technologies, and (c) biofuels (Fig 2-3). We develop plausible siting scenarios that bound the range of possible water sources, impacts, and dispositions to provide insights into how to best allocate water and limit water impacts of energy development. We further identify constraints & opportunities to improve water use efficiency and highlight salient policy relevant lessons. For biofuels we extend our scope to the entire US as most of the biofuels consumed in California are and will be produced from outside of the state. We analyze policy impacts that capture both direct & indirect land use effects across scenarios, thus addressing the major shortcomings of existing studies, which ignore spatial heterogeneity as well as economic effects of crop displacement and the effects of crop intensification and extensification. We use the agronomic

  8. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  9. Effectiveness of the California State Ban on the Sale of Caulerpa Species in Aquarium Retail Stores in Southern California

    Science.gov (United States)

    Diaz, Stephanie; Smith, Jayson R.; Zaleski, Susan F.; Murray, Steven N.

    2012-07-01

    The invasion of the aquarium strain of the green alga Caulerpa taxifolia and subsequent alteration of community structure in the Mediterranean Sea raised awareness of the potential for non-native seaweeds to impact coastal communities. An introduction of C. taxifolia in southern California in 2000, presumably from the release of aquarium specimens, cost ~7 million for eradication efforts. Besides C. taxifolia, other Caulerpa species being sold for aquarium use also may have the potential to invade southern Californian and U.S. waters. Surveys of the availability of Caulerpa species in southern California aquarium retail stores in 2000-2001 revealed that 26 of 50 stores sold at least one Caulerpa species (52 %) with seven stores selling C. taxifolia. In late 2001, California imposed a ban on the importation, sale, or possession of nine Caulerpa species; the City of San Diego expanded these regulations to include the entire genus. To determine the effectiveness of the California ban, we resurveyed Caulerpa availability at 43 of the 50 previously sampled retail stores in southern California in ~2006, ~4 years following the ban. Of the 43 stores, 23 sold Caulerpa (53 %) with four stores selling C. taxifolia. A χ2 test of frequency of availability before and after the California ban suggests that the ban has not been effective and that the aquarium trade continues to represent a potential vector for distributing Caulerpa specimens, including C. taxifolia. This study underscores the need for increased enforcement and outreach programs to increase awareness among the aquarium industry and aquarium hobbyists.

  10. Co-creating Understanding in Water Use & Agricultural Resilience in a Multi-scale Natural-human System: Sacramento River Valley--California's Water Heartland in Transition

    Science.gov (United States)

    Fairbanks, D. H.; Brimlowe, J.; Chaudry, A.; Gray, K.; Greene, T.; Guzley, R.; Hatfield, C.; Houk, E.; Le Page, C.

    2012-12-01

    The Sacramento River Valley (SRV), valued for its $2.5 billion agricultural production and its biodiversity, is the main supplier of California's water, servicing 25 million people. . Despite rapid changes to the region, little is known about the collective motivations and consequences of land and water use decisions, or the social and environmental vulnerability and resilience of the SRV. The overarching research goal is to examine whether the SRV can continue to supply clean water for California and accommodate agricultural production and biodiversity while coping with climate change and population growth. Without understanding these issues, the resources of the SRV face an uncertain future. The defining goal is to construct a framework that integrates cross-disciplinary and diverse stakeholder perspectives in order to develop a comprehensive understanding of how SRV stakeholders make land and water use decisions. Traditional approaches for modeling have failed to take into consideration multi-scale stakeholder input. Currently there is no effective method to facilitate producers and government agencies in developing a shared representation to address the issues that face the region. To address this gap, researchers and stakeholders are working together to collect and consolidate disconnected knowledge held by stakeholder groups (agencies, irrigation districts, and producers) into a holistic conceptual model of how stakeholders view and make decisions with land and water use under various management systems. Our approach integrates a top-down approach (agency stakeholders) for larger scale management decisions with a conceptual co-creation and data gathering bottom-up approach with local agricultural producer stakeholders for input water and landuse decisions. Land use change models that combine a top-down approach with a bottom-up stakeholder approach are rare and yet essential to understanding how the social process of land use change and ecosystem function are

  11. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley Caldera, Mono County, California, USA

    International Nuclear Information System (INIS)

    Farrar, C.D.; Lyster, D.L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. This paper reports that early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by ground-water or geothermal development

  12. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  13. Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California

    Energy Technology Data Exchange (ETDEWEB)

    LD Antrim; NP Kohn

    2000-05-26

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and

  14. Impact of transient soil water simulation to estimated nitrogen leaching and emission at high- and low-deposition forest sites in southern California

    Science.gov (United States)

    Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek

    2011-01-01

    Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...

  15. The ancient blue oak woodlands of California: longevity and hydroclimatic history

    Science.gov (United States)

    Stahle, D.W.; Griffin, R.D.; Meko, D.M.; Therrell, M.D.; Edmondson, J.R.; Cleaveland, M.K.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; Dettinger, M.D.; Cayan, D.R.

    2013-01-01

    Ancient blue oak trees are still widespread across the foothills of the Coast Ranges, Cascades, and Sierra Nevada in California. The most extensive tracts of intact old-growth blue oak woodland appear to survive on rugged and remote terrain in the south Coast Ranges and on the foothills west and southwest of Mt. Lassen. In our sampling of old-growth stands, most blue oak appear to have recruited to the canopy in the mid- to late-19th century. The oldest living blue oak tree sampled was over 459-years old and several dead blue oak logs had over 500 annual rings. Precipitation sensitive tree-ring chronologies up to 700-years long have been developed from old blue oak trees and logs. Annual ring-width chronologies of blue oak are strongly correlated with cool season precipitation totals, streamflow in the major rivers of California, and the estuarine water quality of San Francisco Bay. A new network of 36 blue oak chronologies records spatial anomalies in growth that arise from latitudinal changes in the mean storm track and location of landfalling atmospheric rivers. These long, climate-sensitive blue oak chronologies have been used to reconstruct hydroclimatic history in California and will help to better understand and manage water resources. The environmental history embedded in blue oak growth chronologies may help justify efforts to conserve these authentic old-growth native woodlands.

  16. Increasing climate whiplash in 21st century California

    Science.gov (United States)

    Swain, D. L.; Langenbrunner, B.; Neelin, J. D.; Hall, A. D.

    2017-12-01

    Temperate "Mediterranean" climate regimes across the globe are particularly susceptible to wide swings between drought and flood—of which California's rapid transition from record multi-year dryness between 2012-2016 to extreme wetness during 2016-2017 provides a dramatic example. The wide-ranging human and environmental impacts of this recent "climate whiplash" event in a highly-populated, economically critical, and biodiverse region highlight the importance of understanding weather and climate extremes at both ends of the hydroclimatic spectrum. Previous studies have examined the potential contribution of anthropogenic warming to recent California extremes, but findings to date have been mixed and primarily drought-focused. Here, we use specific historical California flood and drought events as thresholds for quantifying long-term changes in precipitation extremes using a large ensemble of multi-decadal climate model simulations (CESM-LENS). We find that greenhouse gas emissions are already responsible for a detectable increase in both wet and dry extremes across portions of California, and that increasing 21st century "climate whiplash" will likely yield large increases in the frequency of both rapid "dry-to-wet" transitions and severe flood events over a wide range of timescales. This projected intensification of California's hydrological cycle would seriously challenge the region's existing water storage, conveyance, and flood control infrastructure—even absent large changes in mean precipitation.

  17. California cooperative oceanic fisheries investigations. Reports volume 37, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1996-10-01

    Scientists from the California Department of Fish and Game (CDFG), the Southwest Fisheries Science Center of the National Marine Fisheries Service (NMFS), and the Scripps Institution of Oceanography, University of California, San Diego (UCSD), have collaborated for 46 years in the longest-running large-scale study ever undertaken in the ocean. This study was begun in order to understand the causes of changes in population, over time, of commercially important fishes in California`s coastal waters. When the study began, the Pacific sardine was by far the most significant species of economic concern to the State of California. Because its population changes were thought to be caused by a diversity of atmospheric, oceanic, and biological variables, a wide array of measurements in the California Current region were begun and have been continued to this day. This long time series of data allows not only a better understanding of the flux of fish populations, but also lays the foundation for understanding interdecadal and secular change in the seas. This document contains papers from symposium of the 1995 CalCOFI Conference related to interdecadal changes in the ecology of the California current.

  18. Simulation-optimization aids in resolving water conflict: Temecula Basin, Southern California

    Science.gov (United States)

    Hanson, Randall T.; Faunt, Claudia C.; Schmid, Wolfgang; Lear, Jonathan

    2014-01-01

    The productive agricultural areas of Pajaro Valley, California have exclusively relied on ground water from coastal aquifers in central Monterey Bay. As part of the Basin Management Plan (BMP), the Pajaro Valley Water Management Agency (PVWMA) is developing additional local supplies to replace coastal pumpage, which is causing seawater intrusion. The BMP includes an aquifer storage and recovery (ASR) system, which captures and stores local winter runoff, and supplies it to growers later in the growing season in lieu of ground-water pumpage. A Coastal Distribution System (CDS) distributes water from the ASR and other supplemental sources. A detailed model of the Pajaro Valley is being used to simulate the coupled supply and demand components of irrigated agriculture from 1963 to 2006. Recent upgrades to the Farm Process in MODFLOW (MF2K-FMP) allow simulating the effects of ASR deliveries and reduced pumping for farms in subregions connected to the CDS. The BMP includes a hierarchy of monthly supply alternatives, including a recovery well field around the ASR system, a supplemental wellfield, and onsite farm supply wells. The hierarchy of delivery requirements is used by MF2K-FMP to estimate the effects of these deliveries on coastal ground-water pumpage and recovery of water levels. This integrated approach can be used to assess the effectiveness of the BMP under variable climatic conditions, and to test the impacts of more complete subscription by coastal farmers to the CDS deliveries. The model will help managers assess the effects of new BMP components to further reduce pumpage and seawater intrusion.

  19. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  20. California sea lions (Zalophus californianus californianus) have lower chlorinated hydrocarbon contents in northern Baja California, Mexico, than in California, USA

    International Nuclear Information System (INIS)

    Del Toro, Ligeia; Heckel, Gisela; Camacho-Ibar, Victor F.; Schramm, Yolanda

    2006-01-01

    Chlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, Mexico, January 2000-November 2001. ΣDDTs were the dominant group (geometric mean 3.8 μg/g lipid weight), followed by polychlorinated biphenyls (ΣPCBs, 2.96 μg/g), chlordanes (0.12 μg/g) and hexachlorocyclohexanes (0.06 μg/g). The ΣDDTs/ΣPCBs ratio was 1.3. We found CH levels more than one order of magnitude lower than those reported for California sea lion samples collected along the California coast, USA, during the same period as our study. This sharp north-south gradient suggests that Z. californianus stranded in Ensenada (most of them males) would probably have foraged during the summer near rookeries 500-1000 km south of Ensenada and the rest of the year migrate northwards, foraging along the Baja California peninsula, including Ensenada, and probably farther north. - Results suggest that sea lion prey must also have lower hydrocarbons in Baja California than in California in the USA

  1. California sea lions (Zalophus californianus californianus) have lower chlorinated hydrocarbon contents in northern Baja California, Mexico, than in California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Del Toro, Ligeia [Universidad Autonoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California (Mexico); Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico); Heckel, Gisela [Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico) and Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, B.C. Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)]. E-mail: gheckel@cicese.mx; Camacho-Ibar, Victor F. [Instituto de Investigaciones Oceanologicas, UABC, Apdo. Postal 453, Ensenada, Baja California 22860 (Mexico); Schramm, Yolanda [Universidad Autonoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California (Mexico); Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico)

    2006-07-15

    Chlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, Mexico, January 2000-November 2001. {sigma}DDTs were the dominant group (geometric mean 3.8 {mu}g/g lipid weight), followed by polychlorinated biphenyls ({sigma}PCBs, 2.96 {mu}g/g), chlordanes (0.12 {mu}g/g) and hexachlorocyclohexanes (0.06 {mu}g/g). The {sigma}DDTs/{sigma}PCBs ratio was 1.3. We found CH levels more than one order of magnitude lower than those reported for California sea lion samples collected along the California coast, USA, during the same period as our study. This sharp north-south gradient suggests that Z. californianus stranded in Ensenada (most of them males) would probably have foraged during the summer near rookeries 500-1000 km south of Ensenada and the rest of the year migrate northwards, foraging along the Baja California peninsula, including Ensenada, and probably farther north. - Results suggest that sea lion prey must also have lower hydrocarbons in Baja California than in California in the USA.

  2. Relationship between annual precipitation variability and ENSO in Southern California for the Common Era (last 2,000 years)

    Science.gov (United States)

    DU, X.; Hendy, I. L.; Hinnov, L.; Brown, E. T.; Schimmelmann, A.; Pak, D. K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has a major influence on Southern California's hydroclimate as demonstrated by both historical observations and model simulations. Santa Barbara Basin (SBB) off Southern California preserves a unique varved (i.e. annually laminated) marine sedimentary archive of modern and Holocene hydroclimate variability, notably including the transition from the regionally dry Medieval Climate Anomaly (MCA) to the wetter Little Ice Age (LIA). Here we present sub-annually resolved scanning XRF elemental counts for the last 2,000 years in SBB from core SPR0901-03KC. Titanium (associated with silicate minerals) is delivered more efficiently to SBB sediments during times of enhanced river flow and in the Mediterranean climate of Southern California, river flow only occurs after precipitation. The Ti record suggests that the precipitation frequency was reduced during the MCA except for a pluvial episode at CE 1075-1121, but increased during the LIA. Time series analysis of Ti counts indicates ENSO variability robustly increased during the intervals CE 450-520, 650-720, 980-1150, 1380-1550 and 1720-1750, and experienced relatively quiescent intervals between CE 50-150, 250-400, 550-650, 750-950, 1150-1280 and 1580-1620. Generally the LIA in Southern California is characterized by more active ENSO variability with long periodicities (4-7 yr) and multi-decadal variability (54 yr). MCA drought episodes were associated with less active ENSO. Active ENSO variability in Southern California during the last 2,000 years coincided with reconstructed southward migration of the Intertropical Convergence Zone (ITCZ) suggesting the ITCZ may play a role in the waxing and waning of ENSO teleconnections between the central Pacific and the west coast of North America.

  3. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  4. California Watershed Hydrologic Units

    Data.gov (United States)

    California Natural Resource Agency — This dataset is intended to be used as a tool for water-resource management and planning activities, particularly for site-specific and localized studies requiring a...

  5. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  6. Sea Grant in California: Twenty Years of Achievement.

    Science.gov (United States)

    Amidei, Rosemary

    Since 1968, the California Sea Grant program has operated to produce scientific research oriented to solving problems in marine resource development, management, and conservation. This document decribes the facets of this program, their accomplishments and goals. Discussions include: (1) historical notes; (2) coastal governance; (3) coastal…

  7. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and

  8. CHEMISTRY OF FOG WATER IN CALIFORNIA'S CENTRAL VALLEY: 2. PHOTOCHEMICAL TRANSFORMATIONS OF AMINO ACIDS AND ALKYL AMINES. (R825433)

    Science.gov (United States)

    Although amino compounds are seemingly ubiquitous in atmospheric particles and deposition, little is known of their fate in the troposphere. We report here on the fate of 21 amino acids and alkyl amines in fog waters from Davis, California, illuminated with simulated sunlight ...

  9. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  10. SEDIMENT PROPERTIES and Other Data from FIXED PLATFORM From Coastal Waters of California from 19780411 to 19781203 (NODC Accession 8000315)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sediment properties and other data from FIXED PLATFORM From Coastal Waters of California from April 11 to December 3, 1978. This data set consists of the results of...

  11. An Integrated Hydrologic Model and Remote Sensing Synthesis Approach to Study Groundwater Extraction During a Historic Drought in the California Central Valley

    Science.gov (United States)

    Thatch, L. M.; Maxwell, R. M.; Gilbert, J. M.

    2017-12-01

    Over the past century, groundwater levels in California's San Joaquin Valley have dropped more than 30 meters in some areas due to excessive groundwater extraction to irrigate agricultural lands and feed a growing population. Between 2012 and 2016 California experienced the worst drought in its recorded history, further exacerbating this groundwater depletion. Due to lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. We use a synthesis of integrated hydrologic model simulations and remote sensing products to quantify the impact of drought and groundwater pumping on the Central Valley water tables. The Parflow-CLM model was used to evaluate groundwater depletion in the San Joaquin River basin under multiple groundwater extraction scenarios simulated from pre-drought through recent drought years. Extraction scenarios included pre-development conditions, with no groundwater pumping; historical conditions based on decreasing groundwater level measurements; and estimated groundwater extraction rates calculated from the deficit between the predicted crop water demand, based on county land use surveys, and available surface water supplies. Results were compared to NASA's Gravity Recover and Climate Experiment (GRACE) data products to constrain water table decline from groundwater extraction during severe drought. This approach untangles various factors leading to groundwater depletion within the San Joaquin Valley both during drought and years of normal recharge to help evaluate which areas are most susceptible to groundwater overdraft, as well as further evaluating the spatially and temporally variable sustainable yield. Recent efforts to improve water management and ensure reliable water supplies are highlighted by California's Sustainable Groundwater Management Act (SGMA) which mandates Groundwater Sustainability Agencies to determine the maximum quantity of groundwater that can be withdrawn through

  12. From Drought to Recovery: a GRACE-Based Assessment of Groundwater Storage Variations in California

    Science.gov (United States)

    McEvoy, A.; Famiglietti, J. S.; Liu, P. W.; Reager, J. T., II

    2017-12-01

    The 2011-2015 drought in California was the most severe on record and significantly depleted state water reserves. However, after the consecutive wet winters of 2015-16 and 2016-17, water storage in reservoirs, soil, snowpack, and aquifers began recovering and the state government lifted the drought emergency for all California counties except four. But is the drought really "over"? Quantifiable metrics of groundwater storage are necessary to provide such evidence, yet in situ measurements are sparse at best. Here we holistically test whether California state water resources have fully recovered in the Sacramento, San Joaquin, and Tulare Lake basins of California, using remote sensing satellite observations, in situ measurements, and numerical models. Specifically, we partition water storage into four components of the terrestrial water cycle: soil moisture, snow water equivalent, surface water, and groundwater. We derive soil moisture and snow water equivalent from the North American Land Data Assimilation System (NLDAS) and we use the California Data Exchange Center (CDEC) network to measure in situ reservoir storage. To estimate changes in groundwater storage, we subtract these three components from the total water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellite. Preliminary results show that the groundwater storage plummeted to a record low during the 2011-2015 drought. The results also show a rapid recovery in total water storage from 2015-2017. Moreover, we find that groundwater accounts for, on average, 60% of the total water storage variations in the study basins. Our results hold social significance when placed in the context of arid California: Did the groundwater recover? Is this the largest recovery that California can expect? Finally, our results have implications for the utility of remote sensing to inform water resource management decisions.

  13. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  14. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    Energy Technology Data Exchange (ETDEWEB)

    Fram, Miranda S., E-mail: mfram@usgs.gov [U.S. Geological Survey California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819-6129 (United States); Belitz, Kenneth, E-mail: kbelitz@usgs.gov [U.S. Geological Survey California Water Science Center, 4165 Spruance Road, Suite 200, San Diego, CA 95101-0812 (United States)

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 {mu}g/L), caffeine (stimulant, 0.24%, 0.29 {mu}g/L), carbamazepine (mood stabilizer, 1.5%, 0.42 {mu}g/L), codeine (opioid analgesic, 0.16%, 0.214 {mu}g/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 {mu}g/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 {mu}g/L), and trimethoprim (antibiotic, 0.08%, 0.018 {mu}g/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: {yields

  15. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    International Nuclear Information System (INIS)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: → Pharmaceuticals analyzed in

  16. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  17. NREPS Applications for Water Supply and Management in California and Tennessee

    Science.gov (United States)

    Gatlin, P.; Scott, M.; Carery, L. D.; Petersen, W. A.

    2011-01-01

    Management of water resources is a balancing act between temporally and spatially limited sources and competitive needs which can often exceed the supply. In order to manage water resources over a region such as the San Joaquin Valley or the Tennessee River Valley, it is pertinent to know the amount of water that has fallen in the watershed and where the water is going within it. Since rain gauge networks are typically sparsely spaced, it is typical that the majority of rainfall on the region may not be measured. To mitigate this under-sampling of rainfall, weather radar has long been employed to provide areal rainfall estimates. The Next-Generation Weather Radars (NEXRAD) make it possible to estimate rainfall over the majority of the conterminous United States. The NEXRAD Rainfall Estimation Processing System (NREPS) was developed specifically for the purpose of using weather radar to estimate rainfall for water resources management. The NREPS is tailored to meet customer needs on spatial and temporal scales relevant to the hydrologic or land-surface models of the end-user. It utilizes several techniques to mitigate artifacts in the NEXRAD data from contaminating the rainfall field. These techniques include clutter filtering, correction for occultation by topography as well as accounting for the vertical profile of reflectivity. This presentation will focus on improvements made to the NREPS system to map rainfall in the San Joaquin Valley for NASA s Water Supply and Management Project in California, but also ongoing rainfall mapping work in the Tennessee River watershed for the Tennessee Valley Authority and possible future applications in other areas of the continent.

  18. Benefits and Economic Costs of Managed Aquifer Recharge in California

    Directory of Open Access Journals (Sweden)

    Debra Perrone

    2016-07-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss2art4Groundwater management is important and challenging, and nowhere is this more evident than in California. Managed aquifer recharge (MAR projects can play an important role in ensuring California manages its groundwater sustainably. Although the benefits and economic costs of surface water storage have been researched extensively, the benefits and economic costs of MAR have been little researched. Historical groundwater data are sparse or proprietary within the state, often impairing groundwater analyses. General obligation bonds from ballot propositions offer a strategic means of mining information about MAR projects, because the information is available publicly. We used bond-funding applications to identify anticipated MAR project benefits and proposed economic costs. We then compared these costs with actual project costs collected from a survey, and identified factors that promote or limit MAR. Our analysis indicates that the median proposed economic cost for MAR projects in California is $410 per acre-foot per year ($0.33 per cubic meter per year. Increasing Water Supply, Conjunctive Use, and Flood Protection are the most common benefits reported. Additionally, the survey indicates that (1 there are many reported reasons for differences between proposed and actual costs ($US 2015 and (2 there is one primary reason for differences between proposed recharge volumes and actual recharge volumes (AFY: availability of source water for recharge. Although there are differences between proposed and actual costs per recharge volume ($US 2015/AFY, the ranges for proposed costs per recharge volume and actual costs per recharge volume for the projects surveyed generally agree. The two most important contributions to the success of a MAR project are financial support and good communication with stakeholders.

  19. Recent results on the exchange of physical properties between the Gulf of California and the Pacific.

    Science.gov (United States)

    Mascarenhas, A.

    2001-11-01

    The entrance to the Gulf of California, the only evaporative basin on the Pacific, is wide (200 km) and deep (>2.5 km), allowing free exchanges of waters with the Pacific Ocean. Although being comparable to the Mediterranean and Red Seas with respect to evaporation rate (0.61 m/year), the gulf differs from these seas because it actually gains heat at an annual rate of 60 W/m^2. These water loss and heat gain result in modification of water properties, creation of unique water masses, and strong exchanges with the Pacific Ocean. Here the results of the analysis of a recent set of observations is discussed from the point of view of exchange of thermohaline properties and the fluxes of heat, salt and volume. The thermohaline structure at the entrance to the Gulf suggested a thermal (saline) gradient toward Sinaloa (Baja California) shelf. This structure is associated to a cyclonic gyre that is not well defined in the upper layer due to the influence of the wind field. The computed heat flux display an annual cycle with maximum outflow (inflow) during November (May). The salt outflow maximum occurs when the Gulf of California Water is most predominant in the entrance (winter and spring). The volume fluxes appear to have a semiannual signal.

  20. Real-time management of water quality in the San Joaquin River Basin, California.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  1. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  2. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  3. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites

  4. Inferring seawater temperature over the past 2,500 years in the Southern California Bight on the basis of brachiopods

    Science.gov (United States)

    Tomašových, Adam; Müller, Tamás; Kidwell, Susan M.

    2017-04-01

    Use of calcite δ18O in brachiopod shells in assessing past variations in seawater temperature remains poorly constrained in the absence of other methods due to vital effects and unknown variations in seawater density, salinity. Here, in order to evaluate past changes in seawater temperature of mainland shelf habitats off the Southern California Bight over the past 2,500 years, we analyze δ18O and Mg/Ca ratio of dead shells of the terebratulid brachiopod Laqueus erythraeus collected at 60-80 m water depths and age-dated by radiocarbon-calibrated amino acid racemization. These dead Holocene shells show excellent preservation (Mn concentrations < 10 ppm and Sr concentrations above 800 ppm). Although historical changes in sea-surface temperature in the southern California Bight were inferred on the basis of alkenones and δ18O in of planktonic foraminifers, temperature history of deeper shelf below storm wave base in this region remains unclear. First, we investigate thermal sensitivity of Mg/Ca ratio (using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and wavelength-dispersive spectrometry) in the terebratulid brachiopod Laqueus erythraeus (collected in 1994 at Santa Catalina Island at 116 m water depth). At this depth, annual temperature range is relatively small (between 9-11°C), although at times of El Nino events in 1982-1983, 1986-1987, and 1992-1993, monthly temperature attained 13 °C. We find that δ18O measured along a growth profile of a shell precipitated in oxygen isotopic equilibrium with ambient seawater, and maxima in Mg/Ca ratio coincide with minima in δ18O, suggesting that fluctuations in Mg/Ca ratio trace temperature fluctuations, as observed also in other brachiopod species. Second, preliminary observations of Holocene shells show that Mg/Ca ratios show centennial-scale fluctuations but on average remain remarkably constant, with minima and maxima staying within intra-shell seasonal variations captured by extant specimens

  5. Social disparities in nitrate-contaminated drinking water in California's San Joaquin Valley.

    Science.gov (United States)

    Balazs, Carolina; Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-09-01

    Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. We hypothesized that CWSs in California's San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. We used water quality monitoring data sets (1999-2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS's estimated NO3 concentration [95% confidence interval (CI), -0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, -0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03-0.84) and a decrease of 0.15 mg NO3/L (95% CI, -0.64 to 0.33), respectively. Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality.

  6. Private Water Districts

    Data.gov (United States)

    California Natural Resource Agency — Private Water District boundaries are areas where private contracts provide water to the district in California. This database is designed as a regions polygon...

  7. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  8. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  9. State Water Districts

    Data.gov (United States)

    California Natural Resource Agency — State Water Project District boundaries are areas where state contracts provide water to the district in California. This database is designed as a regions polygon...

  10. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  11. Water Quality Investigations at Lake Merritt in Oakland, California

    Science.gov (United States)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that

  12. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  13. Observations of Drinking Water Access in School Food Service Areas Before Implementation of Federal and State School Water Policy, California, 2011

    Science.gov (United States)

    Chandran, Kumar; Hampton, Karla E.; Hecht, Kenneth; Grumbach, Jacob M.; Kimura, Amanda T.; Braff-Guajardo, Ellen; Brindis, Claire D.

    2012-01-01

    Introduction Recent legislation requires schools to provide free drinking water in food service areas (FSAs). Our objective was to describe access to water at baseline and student water intake in school FSAs and to examine barriers to and strategies for implementation of drinking water requirements. Methods We randomly sampled 24 California Bay Area public schools. We interviewed 1 administrator per school to assess knowledge of water legislation and barriers to and ideas for policy implementation. We observed water access and students’ intake of free water in school FSAs. Wellness policies were examined for language about water in FSAs. Results Fourteen of 24 schools offered free water in FSAs; 10 offered water via fountains, and 4 provided water through a nonfountain source. Four percent of students drank free water at lunch; intake at elementary schools (11%) was higher than at middle or junior high schools (6%) and high schools (1%). In secondary schools when water was provided by a nonfountain source, the percentage of students who drank free water doubled. Barriers to implementation of water requirements included lack of knowledge of legislation, cost, and other pressing academic concerns. No wellness policies included language about water in FSAs. Conclusion Approximately half of schools offered free water in FSAs before implementation of drinking water requirements, and most met requirements through a fountain. Only 1 in 25 students drank free water in FSAs. Although schools can meet regulations through installation of fountains, more appealing water delivery systems may be necessary to increase students’ water intake at mealtimes. PMID:22765930

  14. Serving California's Science and Governance Needs through Crisis-driven Collaborations

    Science.gov (United States)

    Bernacchi, L.

    2015-12-01

    Due to its magnitude, the ongoing drought in California (USA) serves as an experimental space for innovative resource management and will define responses to predicted widespread drought. Due to the magnitude of its effect on humans and natural ecosystems and the water resources on which they depend, governmental programs are granting support to scientifically-valid, locally-produced solutions to water scarcity. Concurrently, University of California Water (UC Water) Security and Sustainability Research Initiative is focused on strategic research to build the knowledge base for better water resources management. This paper examines how a team of transdisciplinary scientists are engaged in water governance and information, providing examples of actionable research successfully implemented by decision makers. From a sociology of science perspective, UC Water scientists were interviewed about their engagement practices with California water decision makers. Their "co-production of knowledge" relationships produce effective responses to climatic, landcover and population changes by expanding from singularly information-based, unidirectional communication to governance-relevant, co-constructed knowledge and wisdom. This is accomplished by serving on decision making organizational boards and developing information in a productive format. The perceived crisis of California's drought is an important impetus in cross-sector collaborations, and in combination with governance and institution parameters, defines the inquiry and decision space. We conclude by describing a process of clear problem-solution definition made possible through transparent communication, salient and credible information, and relevant tools and techniques for interpreting scientific findings.

  15. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  16. Use of Isotopic, Genetic, and Chemical Data to Evaluate the Source of Fecal Indicator Bacteria near Malibu, California

    International Nuclear Information System (INIS)

    Izbicki, John A.; Burton, Carmen A.; Swarzenski, Peter W.

    2011-01-01

    Each year, over 550 million people visit California's public beaches. To protect beachgoers from exposure to waterborne disease, California state law requires water-quality monitoring for fecal indicator bacteria (FIB), such as enterococci and Escherichia coli (E. coli), at beaches with more than 50,000 yearly visitors. FIB are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the occurrence of certain waterborne diseases. Periodically, tests show that FIB concentrations exceed U.S. Environmental Protection Agency (EPA) public health standards for recreational water in Malibu Lagoon and at several Malibu beaches. There are several potential sources of FIB to Malibu Lagoon and the nearby coastline including: - Seepage from commercial and residential onsite sewage treatment systems that may enter the lagoon or near-shore ocean water through the groundwater system; - Discharge or runoff from commercial and residential developments into Malibu Creek and Malibu Lagoon; - Bird and wildlife feces, either deposited directly into the lagoon or onto beaches, or washed into these areas by tides and storms.

  17. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  18. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  19. Drought Tip: Irrigating Citrus with Limited Water

    OpenAIRE

    Faber, Ben

    2015-01-01

    As an evergreen in California's Mediterranean climate, with wet winters and dry summers, citrus requires some water all year long. Depending on the cultivar and rootstock, citrus can sustain certain levels of drought stress.

  20. Impacts of pesticides in a Central California estuary.

    Science.gov (United States)

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured

  1. Water Quality Monitoring Around Submerged Wastewater Outfalls in Southern California: From Compliance Assessment to Impact of Climate Change

    Science.gov (United States)

    Nezlin, N. P.

    2016-02-01

    Routine monitoring near major submerged ocean outfalls in southern California is focused on the assessment of the effects of wastewater discharge on water-quality (WQ), including dissolved oxygen, pH, transmissivity, and phytoplankton biomass. The proposed WQ compliance assessment using DO as an indicator includes 1) identification of the area affected by effluent wastewater using Colored Dissolved Organic Matter (CDOM) as an effluent plume tracer, 2) selection of reference sampling sites representing `natural' conditions, and 3) comparison between DO profiles in the reference and plume-affected zones. This strategy is implemented as an interactive web-based tool including convenient data visualization options. At the same time, the data of WQ monitoring (regular quarterly observations starting 1998-present) provides an excellent platform to analyze the spatial and temporal (seasonal and interannual) variations in near-shore ocean ecosystem. An illustrative example is the trends in the depths of the euphotic layer and subsurface chlorophyll maximum layer (SCML), abruptly deepening during the most recent four-year period (2011-2014). These dramatic changes are associated with declining intensity of the North Pacific gyre circulation (NPGO index), decreasing upwelling and increasing transport of warm water from equatorial Pacific (PDO and ENSO cycles).

  2. Invertebrate diversity in southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile displays mean invertebrate diversity within 5 minute grid cells. The Shannon Index of diversity was calculated from Southern California Coastal Water...

  3. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    Science.gov (United States)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  4. Social Diffusion of Water Conservation: A Study of Residential Turf Rebate Programs in Orange County, California

    Science.gov (United States)

    Duong, K.; Grant, S. B.; Rippy, M.; Feldman, D.

    2017-12-01

    From 2011 to 2017, the combination of record low precipitation and extreme warm temperatures resulted in the most severe drought in California's written history. In April 2015, Governor Jerry Brown issued an executive order mandating a statewide 25% reduction in potable urban water usage. Under such circumstances, outdoor watering is an obvious target for restriction, because it can account for a large fraction of total domestic water usage, up to 50% in the arid southwest [Syme et. al 2004, Cameron et. al 2012]. In this study we analyzed one such effort, in which the Irvine Ranch Water District (IRWD) in Orange County (California) offered a financial incentive through a turf rebate program to encourage Irvine residents to replace turf grass with drought tolerant landscaping. We focused specifically on the number of residents who applied to the turf rebate program. Our hypothesis was that the observed application rate (number of applicants per month) is influenced by a combination of (a) financial incentives issued by IRWD, (b) drought awareness, and (c) the fraction of neighbors that have already applied to the program (a phenomenon that can be described quantitatively through models of social contagion or social diffusion [Karsai et. al 2014]). Our preliminary results indicate that applications to the program occurred in geographic "hot spots", consistent with the idea that early adopters may have influenced neighbors to retrofit their lawns. We are currently evaluating the geographic, demographic, and temporal drivers that influence the rate of spontaneous adoption, the rate of adoption under influence, and the total size of the susceptible population. Overall, our goal is to identify the key factors that contribute to early rapid uptake of conservation behavior, and the rapid diffusion of that behavior through the community.

  5. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  6. Eddy properties in the Southern California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent

    2018-05-01

    The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.

  7. GIS tool for California state legislature electoral history

    Science.gov (United States)

    Artham, Swathi

    The California State Legislature contains two bodies consisting of the lower house, the California State Assembly, with eighty members, and the upper house, the California State Senate, with forty members. Elections are held for every two years for both Senate and Assembly. The terms of the Senators are staggered so that half the membership is elected every two years, whereas all the Assembly members are elected every two years. The electoral district boundaries vary after every 10-year census. My main objective is to provide a summary of both California State Senate and California State Assembly election results in a single GIS tool, from the years 1970 to 2012. This tool provides information about different trends in the California State Senate and State Assembly elections along the years. This tool was designed to help students, and teachers to interactively learn about the California State Legislature elections. Users can view the election results by selecting a particular year for Senate or Assembly, which results in adding a new layer on the map with a coloring scheme for better understanding of change of parties; red for Republicans, blue for Democrats and green for Independents. Users can click on any district shown on the map using a hotlink tool to see the electoral trends for the districts for the past years. This application provides a powerful Stored Query Language (SQL) query option to enter queries and get election results in the form of tables with various fields. This data can be further used to aid other analysis as per user requirements. This tool also provides various visual statistics using graphs and tables for voter turnout, number of candidates won by each party, number of seats changed from one party to another. It also features a color matrix table that helps users to see trends in California State Senate and Assembly. Every two-year election results are shown in the form of graphs and tables for better understanding by the user. The tool

  8. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-10-01

    Full Text Available This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI. I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from 6.5 to 3.5 (measured as megajoules (MJ delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining. Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut.

  9. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples

  10. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California.

    Science.gov (United States)

    Vasey, Michael C; Loik, Michael E; Parker, V Thomas

    2012-10-01

    Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.

  11. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  12. Geology and ground-water hydrology of the Mokelumne area, California

    Science.gov (United States)

    Piper, A.M.; Gale, H.S.; Thomas, H.E.; Robinson, T.W.

    1939-01-01

    The Mokelumne River basin of central California comprises portions of the California Trough and the Sierra Nevada section of the Pacific Mountain system. The California Trough is divisible into four subsections-the Delta tidal plain, the Victor alluvial plain, tlie river flood plains and channels, and the Arroyo Seco dissected pediment. These four subsections comprise the land forms produced by the Mokelumne River and other streams since the Sierra Nevada attained its present height in the Pleistocene epoch. The Victor alluvial plain rises eastward from the Delta plain and abuts on the dissected Arroyo Seco pediment; in the Mokelumne area it is 12 to 16 miles wide and slopes between 5 and 8 feet in a mile. It includes relatively extensive tracts that are intensively cultivated and irrigated with water pumped from wells. The Victor plain has been compounded of overlapping alluvial fans along the western base of the Sierra Nevada. It is prolonged eastward into the pediment by tongues of alluvium along several of the present streams; thus it seems likely that the present stream pattern in the eastern part of the area has been fixed since dissection of the pediment began. Three of the four major streams-the Mokelumne and Cosumnes Rivers and Dry Creek-traverse the Victor plain in trenches which are 15 to 40 feet deep at the heads of their respective alluvial fans but which die out toward the west. The floors of these trenches, the historic flood plains, are from 100 yards to a mile wide. The exceptional major stream, which has not entrenched itself, is the Calaveras River. The Arroyo Seco pediment, which lies east of the Victor plain, was initially at least 8 to 15 miles wide and lay along the western foot of the Sierra Nevada entirely .across the Mokelumne area. Its numerous remnants decline 15 to 35 feet in a mile toward the west. The Sierra Nevada section adjoins and lies east of the California Trough. Its major ridge crests define a volcanic plain whose westward

  13. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality...

  14. Public Health-Related Impacts of Climate Change inCalifornia

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, D.M.; Motallebi, N.; Kleeman, M.; Cayan, D.; Hayhoe,K.; Kalkstein, L.S.; Miller, N.L.; Jin, J.; VanCuren, R.A.

    2005-12-01

    In June 2005 Governor Arnold Schwarzenegger issued Executive Order S-3-05 that set greenhouse gas emission reduction targets for California, and directed the Secretary of the California Environmental Protection Agency to report to the governor and the State legislature by January 2006 and biannually thereafter on the impacts to California of global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry, and to prepare and report on mitigation and adaptation plans to combat these impacts. This report is a part of the report to the governor and legislature, and focuses on public health impacts that have been associated with climate change. Considerable evidence suggests that average ambient temperature is increasing worldwide, that temperatures will continue to increase into the future, and that global warming will result in changes to many aspects of climate, including temperature, humidity, and precipitation (McMichael and Githeko, 2001). It is expected that California will experience changes in both temperature and precipitation under current trends. Many of the changes in climate projected for California could have ramifications for public health (McMichael and Githeko, 2001), and this document summarizes the impacts judged most likely to occur in California, based on a review of available peer-reviewed scientific literature and new modeling and statistical analyses. The impacts identified as most significant to public health in California include mortality and morbidity related to temperature, air pollution, vector and water-borne diseases, and wildfires. There is considerable complexity underlying the health of a population with many contributing factors including biological, ecological, social, political, and geographical. In addition, the relationship between climate change and changes in public health is difficult to predict for the most part, although more detailed information is available on temperature

  15. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  16. Concentrations, Deposition, and Effects of Nitrogenous Pollutants in Selected California Ecosystems

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Atmospheric deposition of nitrogen (N in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3 and particulate ammonium (NH4+ from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx, nitric acid (HNO3, and particulate nitrate (NO3– resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95% of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3, drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.

  17. California Dreaming - Sustaining American Lifestyle and the Car

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2001-01-01

    California has for several years supported new innovation in zero-emission and low emission cars and set measures for the reduction of emissions in the state for the coming years.......California has for several years supported new innovation in zero-emission and low emission cars and set measures for the reduction of emissions in the state for the coming years....

  18. Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California March 1985 to March 1986

    Science.gov (United States)

    Fujii, Roger

    1988-01-01

    Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)

  19. Aquifer geometry, lithology, and water levels in the Anza–Terwilliger area—2013, Riverside and San Diego Counties, California

    Science.gov (United States)

    Landon, Matthew K.; Morita, Andrew Y.; Nawikas, Joseph M.; Christensen, Allen H.; Faunt, Claudia C.; Langenheim, Victoria E.

    2015-11-24

    The population of the Anza–Terwilliger area relies solely on groundwater pumped from the alluvial deposits and surrounding bedrock formations for water supply. The size, characteristics, and current conditions of the aquifer system in the Anza–Terwilliger area are poorly understood, however. In response to these concerns, the U.S. Geological Survey, in cooperation with the High Country Conservancy and Rancho California Water District, undertook a study to (1) improve mapping of groundwater basin geometry and lithology and (2) to resume groundwater-level monitoring last done during 2004–07 in the Anza–Terwilliger area. 

  20. Managing water to protect fish: A review of California's environmental water account, 2001-2005

    Science.gov (United States)

    Brown, L.R.; Kimmerer, W.; Brown, R.

    2009-01-01

    The Sacramento-San Joaquin Delta, the landward reach of the San Francisco Estuary, provides habitat for threatened delta smelt, endangered winter-run Chinook salmon, and other species of concern. It is also the location of huge freshwater diversion facilities that entrain large numbers of fish. Reducing the entrainment of listed fishes into these facilities has required curtailment of pumping, reducing the reliability of water deliveries. We reviewed the first 5 years (2001-2005) of the Environmental Water Account (EWA), a program instituted to resolve conflicts between protecting listed fishes and providing a reliable water supply. The EWA provided fishery agencies with control over 0.2-0.4 km3 of water to be used for fish protection at no cost to users of exported water, and fish agencies guaranteed no disruption of water supply for fish protection. The EWA was successful in reducing uncertainty in water supply; however, its contribution to the recovery of listed fishes was unclear. We estimated the effectiveness of the EWA to be modest, increasing the survival of winter-run Chinook salmon by 0-6% (dependent on prescreen mortality), adult delta smelt by 0-1%, and juvenile delta smelt by 2-4%. Allocating EWA water for a single life stage of one species could provide larger gains in survival. An optimally allocated EWA of equal size to the median of the first 5 years could increase abundance of juvenile delta smelt up to 7% in the springs of dry years. If the EWA is to become a long-term program, estimates of efficacy should be refined. If the program is to be held accountable for quantitative increases in fish populations, it will be necessary to integrate scientific, possibly experimental, approaches. ?? 2008 Springer Science+Business Media, LLC.

  1. Access to public drinking water fountains in Berkeley, California: a geospatial analysis.

    Science.gov (United States)

    Avery, Dylan C; Smith, Charlotte D

    2018-01-24

    In January 2015, Berkeley, California became the first city in the Unites States to impose a tax on sugar-sweetened beverages. The tax is intended to discourage purchase of sugary beverages and promote consumption of healthier alternatives such as tap water. The goal of the study was to assess the condition of public drinking water fountains and determine if there is a difference in access to clean, functioning fountains based on race or socio-economic status. A mobile-GIS App was created to locate and collect data on existing drinking water fountains in Berkeley, CA. Demographic variables related to race and socio-economic status (SES) were acquired from the US Census - American Community Survey database. Disparities in access to, or condition of drinking water fountains relative to demographics was explored using spatial analyses. Spatial statistical-analysis was performed to estimate demographic characteristics of communities near the water fountains and logistic regression was used to examine the relationship between household median income or race and condition of fountain. Although most fountains were classified as functioning, some were dirty, clogged, or both dirty and clogged. No spatial relationships between demographic characteristics and fountain conditions were observed. All geo-located data and a series of maps were provided to the City of Berkeley and the public. The geo-database created as an outcome of this study is useful for prioritizing maintenance of existing fountains and planning the locations of future fountains. The methodologies used for this study could be applied to a wide variety of asset inventory and assessment projects such as clinics or pharmaceutical dispensaries, both in developed and developing countries.

  2. Characterization of California Central Coast Aquifers using Pneumatic Slug Tests

    Science.gov (United States)

    Aurelius, S.; Platt, D.; Whetsler, B.; Malama, B.

    2017-12-01

    The recent prolonged drought in California, where about 75% of the population depends to some extent ongroundwater, has led to increased stresses on the state's groundwater resources due to reduced recharge andincreased abstraction to supplement dwindling surface water supplies for irrigation and other urban uses.These factors have conspired to cause historic lows in groundwater levels, lost aquifer storage capacity dueincreased potential for land subsidence, and degraded water quality in coastal aquifers faced with increasedrates of seawater intrusion. Groundwater accounts for about a third of the total water uses in California,with some coastal communities being 100% dependent on groundwater. Irrigation accounts for over 60%of all state groundwater withdrawals in California. In light of this, the state of California recently passedthe Sustainable Groundwater Management Act (SGMA) aimed at bringing the State's groundwater basinsinto sustainable regimes of abstraction, recharge and storage. Groundwater ow models are critical to thesuccessful implementation of the SGMA legislation. However, the usefulness of the models is severely limitedby a lack of detailed knowledge of aquifer properties at spatial scales that allow for accurate projections tobe made about groundwater basin sustainability by resource managers. We report here the results of highresolution pneumatic slug tests performed in two shallow aquifers in San Luis Obispo County on the CaliforniaCentral Coast to obtain detailed information about aquifer properties, including permeability and storage,and their spatial variability.

  3. Hydrologic models and analysis of water availability in Cuyama Valley, California

    Science.gov (United States)

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    supplied by groundwater, which is augmented by precipitation during wet winter and spring seasons. In addition, the amount of groundwater used for irrigation varies from year to year in response to climate variation and can increase dramatically in dry years. Model simulation results, however, also indicated that irrigation may have been less efficient during wet years. Agricultural pumpage is a major component to simulated outflow that is often poorly recorded. Therefore, an integrated, coupled farm-process model is used to estimate historical pumpage for water-balance subregions that evolved with the development of groundwater in the Valley from 1949 through 2010. The integrated hydrologic model includes these water-balance subregions and delineates natural, municipal, and agricultural land use; streamflow networks; and groundwater flow systems. The redefinition of the geohydrologic framework (including the internal architecture of the sedimentary units) and incorporation of these units into the simulation of the regional groundwater flow system indicated that faults have compartmentalized the alluvial deposits into subregions, which have responded differently to regional groundwater flow, locations of recharge, and the effects of development. The Cuyama Valley comprises nine subregions grouped into three regional zones, the Main, Ventucopa Uplands, and Sierra Madre Foothills, which are fault bounded, represent different proportions of the three alluvial aquifers, and have different water quality. The CUVHM uses MF-OWHM to simulate and assess the use and movement of water, including the evolution of land use and related water-balance regions. The model is capable of being accurate at annual to interannual time frames and at subregional to valley-wide spatial scales, which allows for analysis of the groundwater hydrologic budget for the water years 1950–2010, as well as potential assessment of the sustainable use of groundwater. Simulated changes in storage over time

  4. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    Science.gov (United States)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine

    2016-03-01

    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  5. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  6. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  7. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  8. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  9. Tobacco Control in California 2003-2007: Missed Opportunities

    OpenAIRE

    Hong, MPH, Mi-Kyung; Barnes,, Richard L JD; Glantz,, Stanton PhD

    2007-01-01

    While smoking prevalence in California continued its decline (reaching an historic low of 13.3% in 2006), this rate was slower than in earlier years, reflecting the fact that tobacco control efforts in California in the period 2003-2007 continued to drift, with no clear indications that California would regain its international leadership in tobacco control. Neither the Schwarzenegger Administration nor the California Legislature sought to divert the Proposition 99 funding allocation...

  10. Potential effects of drought on carrying capacity for wintering waterfowl in the Central Valley of California

    Science.gov (United States)

    Petrie, Mark J.; Fleskes, Joseph P.; Wolder, Mike A.; Isola, Craig R.; Yarris, Gregory S.; Skalos, Daniel A.

    2016-01-01

    We used the bioenergetics model TRUEMET to evaluate potential effects of California's recent drought on food supplies for waterfowl wintering in the Central Valley under a range of habitat and waterfowl population scenarios. In nondrought years in the current Central Valley landscape, food supplies are projected to be adequate for waterfowl from fall through early spring (except late March) even if waterfowl populations reach North American Waterfowl Management Plan goals. However, in all drought scenarios that we evaluated, food supplies were projected to be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in nondrought water years. Delayed flooding of some managed wetlands may help alleviate food shortages by providing wetland food resources better timed with waterfowl migration and abundance patterns in the Central Valley, as well as reducing the amount of water needed to manage these habitats. However, future research is needed to evaluate the impacts of delayed flooding on waterfowl hunting, and whether California's existing water delivery system would make delayed flooding feasible. Securing adequate water supplies for waterfowl and other wetland-dependent birds is among the greatest challenges facing resource managers in coming years, especially in the increasingly arid western United States.

  11. Diel cycles of hydrogen peroxide in marine bathing waters in Southern California, USA: In situ surf zone measurements

    International Nuclear Information System (INIS)

    Clark, Catherine D.; De Bruyn, Warren J.; Hirsch, Charlotte M.; Aiona, Paige

    2010-01-01

    Hydrogen peroxide is photochemically produced in natural waters. It has been implicated in the oxidative-induced mortality of fecal indicator bacteria (FIB), a microbial water quality measure. To assess levels and cycling of peroxide in beach waters monitored for FIB, diel studies were carried out in surf zone waters in July 2009 at Crystal Cove State Beach, Southern California, USA. Maximum concentrations of 160-200 nM were obtained within 1 h of solar noon. Levels dropped at night to 20-40 nM, consistent with photochemical production from sunlight. Day-time production and night-time dark loss rates averaged 16 ± 3 nM h -1 and 12 ± 4 nM h -1 respectively. Apparent quantum yields averaged 0.07 ± 0.02. Production was largely dominated by sunlight, with some dependence on chromophoric dissolved organic matter (CDOM) levels in waters with high absorption coefficients. Peroxide levels measured here are sufficient to cause oxidative-stress-induced mortality of bacteria, affect FIB diel cycling and impact microbial water quality in marine bathing waters.

  12. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  13. Interdisciplinary approach on evaluation and sustainable usage of the water resources in the semi-arid Northwest Mexico to counter the imbalance of water: Case study Valle de Guadalupe, Baja California

    Science.gov (United States)

    Kretzschmar, T.; Hernandez, R.; Valenzuela, C.; Cabello, A.

    2012-12-01

    In the Baja California peninsula are several watersheds present, of which the hydrogeological conditions are of great importance to communities in the area. The Valle de Guadalupe watershed, for instance has a wine industry of national importance. Irrigation of crops is carried out exclusively with water from the aquifer, which consists of Quaternary sediments filling this depression of Post-Miocene age. Apart from the use of the aquifer by the wine industry, the water utility of Ensenada operates 10 drinking water wells with a total capacity of 320 L/s or 42% of supply in the valley. In the arid northern Mexico mountain front recharge is an important recharge source to the aquifers. Other important recharge sources are related to direct infiltration of the precipitation, recharge from runoff into streams (mountain block recharge) and the provision by active faults. The knowledge of the aquifer is crucial to maintain sustainable management of water resources in the Valle de Guadalupe. This intense use of water resources is reflected in a degradation of the aquifer water quality and reduced water table. The integrated approach for a sustainable evaluation and usage of the aquifer includes besides the hydrogeological evaluation, the determination of the water stress on the vineyards as well as the usage of treated waste water as alternative resource as well the evaluation of the effects of climatic variations and measurement and modeling of the vegetation, the main interface between atmosphere and soil, affecting the hydrology in the process of interception, infiltration, runoff and evapotranspiration. With these detailed ongoing studies we expect to identify and counter imbalance of water in the study area. This requires 1) modeling and hydrogeological studies for the determination of the present and future imbalance 2) estimation of the impacts of industrial activities on water resources 3) characterization of alternative water sources, 4) optimization of the water

  14. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    Science.gov (United States)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;

    2016-01-01

    Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  15. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  16. Inevitable changes in snowpack and water resources over California's Sierra Nevada

    Science.gov (United States)

    Hall, A. D.; Sun, F.; Walton, D.; Berg, N.; Schwartz, M. A.

    2015-12-01

    Here we use a downscaling technique incorporating both dynamical and statistical methods to project end-of-century changes in spring snow water equivalent in California's Sierra Nevada. The technique produces outcomes for all Global Climate Models (GCMs) and the four greenhouse gas forcing scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC). For all GCMs and forcing scenarios, significant snow loss occurs at elevations below 2500 meters, despite increasing precipitation in many GCMs. The loss is significantly enhanced by snow albedo feedback. The approximate intermodel range in percent of total snow remaining in the entire region is 60-85% for a likely "mitigation" scenario, and 35-55% for the "business-as-usual" scenario. Thus significant snowpack decrease by century's end is inevitable, even if the loss can be cushioned through greenhouse gas emissions reductions over the coming decades. The snowpack loss also leads to significant changes in runoff timing, which are also inevitable.

  17. Temperature profile and other data collected using bottle and CTD casts from the ARGO and other platforms from the Coastal Waters of California during the California Cooperative Fisheries Investigation (CALCOFI) project, 1964-03-16 to 1964-12-20 (NODC Accession 7600333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from ARGO and other platforms in the Coastal Waters of California...

  18. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  19. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  20. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected

  1. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  2. Analyses of Gas, Steam and Water Samples Collected in and Around Lassen Volcanic National Park, California, 1975-2002

    Science.gov (United States)

    Janik, Cathy J.; Bergfeld, D.

    2010-01-01

    This report contains physical and chemical data from gas, steam, and water samples collected between July 1975 and September 2002 from locations in and around Lassen Volcanic National Park, California. Data are compiled as tables in Excel spreadsheets and are organized by locale. Most data are keyed to 1 of 107 site codes that are shown on local- and regional-scale maps. Brief descriptions of terminology, sampling, and analytical methods are provided.

  3. The Labor Market in the Central California Raisin Industry: Five Years after IRCA. California Agricultural Studies.

    Science.gov (United States)

    Alvarado, Andrew; And Others

    This report examines the effects of the Immigration Reform and Control Act of 1986 (IRCA) on the raisin industry's labor market, and provides educators with background on California migrant workers and their deteriorating working conditions. Because the raisin harvest lasts only 3-4 weeks but employs 40,000-50,000 workers, any effects of IRCA on…

  4. 77 FR 14349 - Availability of Report: California Eelgrass Mitigation Policy

    Science.gov (United States)

    2012-03-09

    ... contributed to these losses, impacts from human population expansion and associated pollution and upland... aquatic site under the 404(b)(1) guidelines of the Clean Water Act (40 CFR 230.43). Pursuant to the... California (U.S./Mexico border to Pt. Conception), central California (Point Conception to San Francisco Bay...

  5. Welfare Reform in California. State and County Implementation of CalWORKs in the Second Year

    National Research Council Canada - National Science Library

    Klerman, Jacob

    2001-01-01

    .... California's response to PRWORA was the California Work and Responsibility to Kids (CalWORKs) program-a "work-first" program that provides support services to help recipients move from welfare to work and toward self-sufficiency...

  6. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  7. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    Science.gov (United States)

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  8. California GAMA Special Study: Analysis of Carbamazepine, Oxcarbazepine and Metabolites as Wastewater Tracers in Water Resource Studies

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vu, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-20

    The Groundwater Ambient Monitoring and Assessment (GAMA) Program is a comprehensive groundwater quality monitoring program managed by the California State Water Resources Control Board (SWRCB). The GAMA Special Studies project provides analyses and interpretation of constituents of concern that allow assessment of current groundwater conditions. In addition, the Special Studies project develops analyses that will enhance the monitoring and assessment effort by focusing on specific constituents of concern and water quality parameters, such as disinfection byproducts (DBP), wastewater indicators, and redox conditions, as it relates to irrigation and groundwater management. This study developed a robust analytical method for the quantitation of CBZ, OXC, CBZ-E, CBZ-DiOH, and CBZ-10-OH in wastewater treatement plant (WWTP) effluent and in groundwater in the parts per trillion range.

  9. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  10. Using small mammals to understand the effects of urbanization in Southern California over the last 100 years

    Science.gov (United States)

    Loza, E.; Cotton, J. M.; Smiley, T. M.; Terry, R. C.

    2017-12-01

    Environmental and climate change due to urbanization has been occurring for the last 100 years, but we do not yet know the full extent of these impacts on ecosystems at local to regional scales. To investigate these impacts, we leverage extensive historical collections of small mammals, which can serve as indicators of past and modern ecosystem change. Here, we use the stable isotopic composition of hair from Peromyscus maniculatus, a widespread generalist rodent, to better understand the influence of urbanization over the last 100 years. The stable isotopic composition of small-mammal diets are recorded in the hair of these historical specimens, thereby providing a long-term record of climate and environmental change. Carbon isotopes (δ13C) can inform about the vegetation composition of an animal's diet, while nitrogen isotopes (δ15N) offer a view into agriculture signatures and atmospheric deposition of nitrogen-based pollutants through time. We focus on Los Angeles and southern California, which has experienced a population increase of 15 million people and dramatic land-use change over the past century. We have collected hair from historical P. maniculatus specimens found in natural history museums across the county to investigate spatial and temporal changes in δ13C and δ15N in southern California. We also use specimens from nearby and relatively pristine Channel Islands as a comparison to assess the impacts of anthropogenic land-use change on the mainland. We will present `isoscapes', or isotope landscape models for the δ13C and δ15N of P. maniculatus, in southern California through time. Understanding the isotopic signatures of urbanization provides better insight to the ecosystem response to urbanization and climate change and is useful for guiding future conservation and management decisions.

  11. Culicoides variipennis (Diptera: Ceratopogonidae) complex in California.

    Science.gov (United States)

    Holbrook, F R; Tabachnick, W J

    1995-07-01

    Genetic relationships were examined among 24 collections, representing 23 populations of Culicoides variipennis (Coquillett) using isozyme electrophoresis of 11 protein encoding loci. The populations were collected from alkaline or fresh water larval habitats in California. Distance analysis demonstrated that C. v. occidentalis Wirth and Jones and C. v. sonorensis Wirth and Jones are genetically distinct. All C. v. occidentalis were geographically isolated from each other in highly alkaline or saline larval habitats, whereas C. v. sonorensis populations were collected from artificial freshwater habitats that were polluted with organic wastes. Higher levels of gene flow were found between C. v. sonorensis populations than from C. v. sonorensis populations to nearby C. v. occidentalis populations, indicative of genetic isolation between subspecies. Northern California C. v. sonorensis were genetically distinguishable from southern California C. v. sonorensis. The relationship between this variation and bluetongue disease epidemiology in California is discussed.

  12. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  13. Public Versus Private: Does It Matter for Water Conservation? Insights from California

    Science.gov (United States)

    Kallis, Giorgos; Ray, Isha; Fulton, Julian; McMahon, James E.

    2010-01-01

    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.

  14. California Drought Recovery Assessment Using GRACE Satellite Gravimetry Information

    Science.gov (United States)

    Love, C. A.; Aghakouchak, A.; Madadgar, S.; Tourian, M. J.

    2015-12-01

    California has been experiencing its most extreme drought in recent history due to a combination of record high temperatures and exceptionally low precipitation. An estimate for when the drought can be expected to end is needed for risk mitigation and water management. A crucial component of drought recovery assessments is the estimation of terrestrial water storage (TWS) deficit. Previous studies on drought recovery have been limited to surface water hydrology (precipitation and/or runoff) for estimating changes in TWS, neglecting the contribution of groundwater deficits to the recovery time of the system. Groundwater requires more time to recover than surface water storage; therefore, the inclusion of groundwater storage in drought recovery assessments is essential for understanding the long-term vulnerability of a region. Here we assess the probability, for varying timescales, of California's current TWS deficit returning to its long-term historical mean. Our method consists of deriving the region's fluctuations in TWS from changes in the gravity field observed by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. We estimate the probability that meteorological inputs, precipitation minus evaporation and runoff, over different timespans will balance the current GRACE-derived TWS deficit (e.g. in 3, 6, 12 months). This method improves upon previous techniques as the GRACE-derived water deficit comprises all hydrologic sources, including surface water, groundwater, and snow cover. With this empirical probability assessment we expect to improve current estimates of California's drought recovery time, thereby improving risk mitigation.

  15. BAROMETRIC PRESSURE and Other Data from NOAA Ship RAINIER From Coastal Waters of California from 1994-03-30 to 1994-04-20 (NODC Accession 9400056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Coastal Waters of California. Data was collected from NOAA Ship RAINIER. The data was...

  16. Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate

    Science.gov (United States)

    Beutel, Marc W.; Horne, Alexander J.

    2018-03-01

    A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.

  17. Watching the Creation of Southern California's Largest Reservoir

    Science.gov (United States)

    2001-01-01

    The new Diamond Valley Lake Reservoir near the city of Hemet in Riverside County is billed as the largest earthworks construction project in U.S.history. Construction began in 1995 and involved 31 million cubic meters of foundation excavation and 84 million cubic meters of embankment construction. This set of MISR images captures the most recent phase in the reservoir's activation. At the upper left is a natural-color view acquired by the instrument's vertical-viewing (nadir) camera on March 14, 2000 (Terra orbit 1273), shortly after the Metropolitan Water District began filling the reservoir with water from the Colorado River and Northern California. Water appears darker than the surrounding land. The image at the upper right was acquired nearly one year later on March 1, 2001 (Terra orbit 6399), and shows a clear increase in the reservoir's water content. When full, the lake will hold nearly a trillion liters of water.According to the Metropolitan Water District, the 7 kilometer x 3 kilometer reservoir nearly doubles Southern California's above-groundwater storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a major aqueduct. In the face of electrical power shortages, it is also expected to reduce dependence on the pumping of water from northern mountains during the high-demand summer months. An unexpected result of site excavation was the uncovering of mastodon and mammoth skeletons along with bones from extinct species not previously thought to have been indigenous to the area, such as the giant long-horned bison and North American lion. A museum and interpretive center is being built to protect these finds.The lower MISR image, from May 20, 2001 (Terra orbit 7564), is a false-color view combining data from the instrument's 26-degree forward view (displayed as blue) with data from the 26-degree backward view

  18. Monitoring Subsidence in California with InSAR

    Science.gov (United States)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the

  19. Projected reformulated gasoline and AFV use in California

    International Nuclear Information System (INIS)

    Bemis, G.R.

    1995-01-01

    In the spring to summer of 1996, California will switch from conventional and oxygenated gasolines to reformulated gasoline. This gasoline will be a designer fuel, and generally not available from sources outside California, since California's fuel specifications then will be unique. Thus, it will be important for California refiners to be able to meet the California reformulated gasoline (Cal-RFG) demand. California refiners are investing over $4 billion to upgrade their facilities for Cal-RFG. This represents approximately 40% of the total cost of making Cal-RFG, and is expected to cost 5--15 cents/gallon more than conventional gasoline to produce. Starting in the year 2000, EPA will require use of a similar fuel in seven geographical areas outside of California. The discussion below focuses on the supply, demand and price projections for Cal-RFG

  20. Ground-Water Quality Data in the San Fernando-San Gabriel Study Unit, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 460 square mile San Fernando-San Gabriel study unit (SFSG) was investigated between May and July 2005 as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The San Fernando-San Gabriel study was designed to provide a spatially unbiased assessment of raw ground-water quality within SFSG, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 52 wells in Los Angeles County. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seventeen wells were selected to aid in the evaluation of specific water-quality issues or changes in water chemistry along a historic ground-water flow path (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane], naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately one-fifth (11 of 52) of the wells, and the results for these

  1. Current meter components and other data from FIXED PLATFORMS from Coastal Waters of California from 1988-04-27 to 1989-06-01 (NODC Accession 9000294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS in the Coastal Waters of California from 27 April 1988 to 01 June 1989. Data were collected by the...

  2. Tulelake, California: The last 3 million years

    Science.gov (United States)

    Adam, D.P.; Sarna-Wojcicki, A. M.; Rieck, Hugh J.; Bradbury, J.P.; Dean, W.E.; Forester, R.M.

    1989-01-01

    The Tulelake basin, formed by east-west extension and faulting during the past several million years, contains at least 550 m of lacustrine sediment. Interdisciplinary studies of a 334 m-long cored section from the town of Tulelake, California, near the center of the basin, document a 3-m.y. record of environmental changes. The core consists of a thick sequence of diatomaceous clayey, silty, and marly lacustrine sediments interbedded with numerous tephra layers. Paleomagnetic study puts the base of the core at about 3.0 Ma. Twelve widespread silicic tephra units provide correlations with other areas and complement age control provided by magnetostratigraphy; mafic and silicic tephra units erupted from local sources are also common in the core. Widespread tephra units include the Llao Rock pumice (=Tsoyawata, 7 ka), the Trego Hot Springs Bed (23 ka), and the Rockland (0.40 Ma), Lava Creek (0.62 Ma), and Rio Dell (1.5 Ma) ash beds, as well as several ash beds also found at Summer Lake, Oregon, and an ash bed originally recognized in DSDP hole 173 in the northeastern Pacific. Several tephra layers found in the core also occur in lacustrine beds exposed around the margins of the basin and elsewhere in the ancestral lacustrine system. Diatoms are present throughout the section. Pollen is present in most of the section, but some barren zones are found in the interval between 50 and 140 m; the greatest change in behavior of the pollen record takes place just above the top of the Olduvai Normal-Polarity Subchronozone. Ostracodes are present only in high-carbonate (>10% CaCO3) intervals. Evolutionary changes are found in the diatom and ostracode records. Bulk geochemical analyses show significant changes in elemental composition of the sediment through time. ?? 1989.

  3. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2011-03-01

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  4. Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California

    Directory of Open Access Journals (Sweden)

    David J. Cooper

    2015-03-01

    Full Text Available Study Region: We analyzed the effects of groundwater pumping on a mountain wetland complex, Yosemite National Park, California, USA. Study Focus: Groundwater pumping from mountain meadows is common in many regions of the world. However, few quantitative analyses exist of the hydrologic or ecological effects of pumping. New Hydrological Insights for the Region: Daily hydraulic head and water table variations at sampling locations within 100 m of the pumping well were strongly correlated with the timing and duration of pumping. The effect of pumping varied by distance from the pumping well, depth of the water table when the pumping started, and that water year's snow water equivalent (SWE. Pumping in years with below average SWE and/or early melting snow pack, resulted in a water table decline to the base of the fen peat body by mid summer. Pumping in years with higher SWE and later melting snowpack, resulted in much less water level drawdown from the same pumping schedule. Predictive modeling scenarios showed that, even in a dry water year like 2004, distinct increases in fen water table elevation can be achieved with reductions in pumping. A high water table during summers following low snowpack water years had a more significant influence on vegetation composition than depth of water table in wet years or peat thickness, highlighting the impact of water level drawdown on vegetation. Keywords: Fen, Groundwater pumping, Modeling, Mountain meadow, Water table, Wetlands

  5. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R. [and others

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides.

  6. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    International Nuclear Information System (INIS)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R.

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides

  7. A California Winery Wastewater Survey: Assessing the Salinity Challenge for Wastewater Reuse

    Science.gov (United States)

    The increasing scarcity of water and tighter regulations for discharge make onsite wastewater reuse an attractive prospect for the California wine industry. This study reports winery wastewater (WW) data from eighteen Northern California (Northern CA) wineries. The current study provides a baseline ...

  8. The geochemical record of the last 17,000 years in the Guaymas Basin, Gulf of California

    Science.gov (United States)

    Dean, W.E.

    2006-01-01

    Sediments deposited on the western slope of the Guaymas Basin in the central Gulf of California are composed predominantly of detrital clastic material and biogenic silica (biopal), with minor organic material (average of 2.8% organic carbon) and calcium carbonate. The CaCO3 is derived from calcareous plankton and is highly variable ranging from 0% to 16%. In general, the CaCO3 content of the sediments varies inversely with the biopal content, reflecting the relative abundance of calcareous and siliceous plankton in the photic zone. Siliceous plankton dominate when winds are predominantly out of the northwest producing strong upwelling. Calcareous plankton indicates weak southeasterly winds that bring warm, tropical Pacific surface water into the Gulf. Based mainly on relative abundances of biopal and CaCO3, the sediments deposited over the last 17,000 years in the western Guaymas Basin can be divided into five intervals. In general, the sediments in the intervals with high biopal and low CaCO3 are laminated, but this is not always true. Unlike most other continental margins of the world with well-developed oxygen minimum zones where highest concentrations of organic carbon and redox-sensitive trace metals occur in laminated sediments, the laminated sediments on the anoxic slope of the western Guaymas Basin do not always have the highest concentrations of organic carbon and trace metals such as Mo and Cd.

  9. Deep-water polychaetes (Annelida from the southeastern Gulf of California, Mexico

    Directory of Open Access Journals (Sweden)

    Nuria Méndez

    2006-09-01

    Full Text Available Polychaetes inhabiting deep-sea soft bottoms from the southeastern Gulf of California were collected during four oceanographic cruises during 2000 and 2001. Sampling of benthic organisms was performed with a benthic sledge to collect epifauna and a Karling dredge for epifauna and infauna, in a depth range from 732 to 2 250 m. A list of the polychaetes that were collected and their distribution are presented here. A total of 73 species (distributed among 33 families were identified. Moreover, 11 species were identified only to genus level and 20 species only to family level. With the exception of Ancistrosyllis hartmanae and Melinnampharete eoa, all identified species have been previously reported in soft bottoms of the Gulf of California or in adjacent areas. Additional previously unreported information is provided herein regarding depth ranges, geographical distribution, morphology and tubes inhabited by the organisms. The morphology of the ampharetids Amage sp. and Samytha sp. does not coincide with that of other species in these genera reported for the Gulf of California, which suggests that they are probably undescribed species. Rev. Biol. Trop. 54 (3: 773-785. Epub 2006 Sept. 29.Se recolectaron anélidos poliquetos de fondos profundos del SE del golfo de California durante cuatro campañas oceanográficas entre 2000 y 2001. El muestreo de organismos bentónicos se llevó a cabo mediante una draga de arrastre bentónica para recolectar epifauna y una draga tipo Karling para epifauna y endofauna, en un intervalo de profundidad de 732 a 2 250 m. Se presenta un listado de poliquetos con su distribución dentro del área de estudio. En total se identificaron 73 especies (distribuidas en 33 familias. Además, 11 especies fueron identificadas a nivel genérico y 20 a nivel de familia. Con excepción de Ancistrosyllis hartmanae y Melinnampharete eoa, todas las especies habían sido registradas en fondos blandos del golfo de California o zonas

  10. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  11. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  12. Groundwater quality in the Southern Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  13. Groundwater quality in the Central Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.

  14. California GAMA Program: A Contamination Vulnerability Assessment for the Bakersfield Area

    International Nuclear Information System (INIS)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MTBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey (USGS), the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the groundwater basin that underlies Bakersfield, in the southern San Joaquin Valley. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements help determine the recharge water

  15. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  16. Kelp distribution off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set delineates kelp beds (Nereocystis leutkeana and Macrocystis spp.) along the Pacific Coast of California. Multiple years of kelp mapping data for the...

  17. Pathways Into and Out of the 2012-2016 California-Nevada Drought—Lessons for Future Drought and Drought Termination

    Science.gov (United States)

    Dettinger, M. D.

    2017-12-01

    Droughts in California have historically been a function of prolonged deficits of precipitation from the largest storms (much more so than from medium to weak storms), and drought endings typically reflect the return of those same large storms and more. The recent 2012-2016 drought in California followed this pattern, being bracketed by the extremely wet 2011 and 2017 water years, both brought about by the arrival of multiple major atmospheric river storms, and was marked by one of the episodic multi-year periods when these storms are diverted from the State by anomalous atmospheric circulations over the northeastern Pacific Ocean. The 2012-2016 episode was also marked by conditions that have been much less "normal" for California droughts, with record warm temperatures adding significantly to the drought and its impacts. Except in the highest mountains, these temperatures contributed as much to the drought potential as did precipitation deficits. The temperatures also led to record snow droughts that focused most in the low to middle altitude snowfields. Together the persistent precipitation deficits and high temperatures of this drought are a prescient example of a major drought with precipitation deficits emphasized at higher altitudes and temperature effects at lower altitudes. This drought ended with the remarkably wet 2017 water year, due to the arrival of a record number of large atmospheric river storms and associated precipitation. But this termination of precipitation drought was marked by its own flirtation with record-breaking "warm" snow drought conditions in late 2016 as well as by an eventual springtime snowpack that was very large but nowhere near as large as in other historical years with correspondingly large precipitation totals, especially at low to middle altitudes. These patterns of temperature-accentuated drought emphasized at lower altitudes and precipitation-driven droughts and drought endings emphasized at higher altitudes, both delineated

  18. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  19. A 1200 Year Alkenone-based Reconstruction of Sea Surface Temperature and Marine Productivity in the Southern California Current System from the Medieval Climate Anomaly to Present

    Science.gov (United States)

    O'Mara, N. A.; Kelly, C. S.; Herbert, T.

    2017-12-01

    Laminated sediment cores taken from the San Lazaro Basin (SLB) (25.18N, 112.66W) located off the coast of Baja California in the subtropical eastern Pacific were geochemically analyzed for alkenone and sterol biomarkers to reconstruct sea surface temperature (SST) and marine productivity from 850-1980 CE. High sedimentation rates, low bottom water dissolved oxygen, and high marine productivity in combination with the San Lazaro Basin's location within the dynamic transition zone between the tropical and subtropical eastern Pacific, make it a prime location to study variability of tropical and subtropical modes of climate variability. This study focuses on the impacts and variability of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the subtropical eastern Pacific. SST and coccolithophore productivity (n=730) for 2 mm sections of sediment corresponding to 1 measurement every 1.8 years were reconstructed using the Uk'37 unsaturation index and C37 alkenone concentration. The high resolution of this record allowed for the analysis of variability of SST and productivity on decadal timescales. Brassicasterol concentrations were calculated for a limited number of samples (n=44) to assess diatom productivity. High spectral power was found at periods of 20-30 years in SST and productivity records indicating a strong influence of the PDO on the SLB, making this the first marine based record directly relevant to PDO reconstructions that continuously spans the last millennium. Cool and productive (warm and less productive) waters were observed in the southern California Current in the Medieval Climate Anomaly 900-1200 CE (Little Ice Age 1400-1800 CE) supporting previous reconstructions that warmer (cooler) SST are linked to both reduced (enhanced) phytoplankton productivity. Additionally, cool (warm) SST were also associated with dry (wet) conditions in the American Southwest indicating that changes in the PDO has had a significant impact on drought

  20. Groundwater quality in the Tahoe and Martis Basins, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  1. A 100-year average recurrence interval for the san andreas fault at wrightwood, california.

    Science.gov (United States)

    Fumal, T E; Schwartz, D P; Pezzopane, S K; Weldon, R J

    1993-01-08

    Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.

  2. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  3. Physical, chemical, and other data collected using moored bottle casts at the Coastal waters of California from 01 August 1999 to 01 October 1999 (NODC Accession 0000220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, physical, chemical, and other data were collected using moored bottle casts in the Coastal Waters of California from the SAMPSON from August...

  4. Wind energy in the State of California: 10 years after program start-up

    International Nuclear Information System (INIS)

    Ferrari, G.; Tampone, O.; ENEA, Rome

    1992-01-01

    This article traces the evolution of the commercialization of wind energy power plants in the State of California. The brief historical review focuses on the activities during the early 80's which witnessed a rapid increase in the number of installed wind power units, especially large sized wind turbines, followed by a sharp decline due to cut-backs in State sponsored financial incentives for wind power development, as well as, to the onset of equipment maintenance and reliability problems. Statistical data - production by major wind farms, efficiency of selected types of medium-sized turbines, turbine efficiency by manufacturer and operator, wind power production cost trends, and federal funding of R ampersand D programs, are used to describe the wind energy situation in this State, currently host to 80% of the world's total of installed wind power plants. Indications are given as to the key socio-economic factors influencing the further development of this renewable energy source in California and, based on the California experience, assessments are made of the future marketing prospects of wind energy in other American states

  5. The geological setting of Santa Monica and San Pedro Basins, California Continental Borderland

    Science.gov (United States)

    Gorsline, D. S.

    The California Continental Borderland's present configuration dates from about 4 to 5 × 10 6 years before present (BP) and is the most recent of several configuration of the southern California margin that have evolved after the North America plate over-rode the East Pacific Rise about 30 × 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the California Basin Study (CaBs), funded by the US Department of Energy. The Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depth and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall nepheloid plume transport have been the most common processes. The former process has been dominant in thecentral basin at water depths from 900-945m, where characteristic silt-clay is found with a typical mean particle diameter of about 0.0006mm ( φ standard deviation = 2; φ skewness near zero). Kurtosis is typically 2 (platykurtic); these values indicate broad, near-log normal particle size distributions. The calcium carbonate content averages about 10% and organic carbon about 4%. Surficial sediment bulk densities are 1.1-1.2 and accumulation rates range from 16-30mg cm -2Yr 1 in this central fine deposit. Bottom water oxygen contents are at or below 0.1 ml 1 -1 so that bioturbation is inhibited, thus preserving the primary sedimentary stratification. There appear to be annual varves, but the laminae couplets are not simple wet-dry season pairs

  6. Mapping Drought Impacts on Agricultural Production in California's Central Valley

    Science.gov (United States)

    Melton, F. S.; Guzman, A.; Johnson, L.; Rosevelt, C.; Verdin, J. P.; Dwyer, J. L.; Mueller, R.; Zakzeski, A.; Thenkabail, P. S.; Wallace, C.; Jones, J.; Windell, S.; Urness, J.; Teaby, A.; Hamblin, D.; Post, K. M.; Nemani, R. R.

    2014-12-01

    The ongoing drought in California has substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, and allocation of emergency funds to mitigate drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in idle acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 640 fields from March - September, 2014. We present the algorithm along with updated results from the accuracy assessment, and discuss potential applications to other regions.

  7. A twenty-first century California observing network for monitoring extreme weather events

    Science.gov (United States)

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.

    2013-01-01

    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  8. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  9. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  10. Resource and revenue potential of California residential load participation in ancillary services

    International Nuclear Information System (INIS)

    Mathieu, Johanna L.; Dyson, Mark E.H.; Callaway, Duncan S.

    2015-01-01

    Increasing penetrations of intermittent renewable energy resources will require additional power system services. California recently adopted an energy storage mandate to support its renewable portfolio standard, which requires 33% of delivered energy from renewables by 2020. The objective of this paper is to estimate the amount of energy storage that could be provided by residential thermostatically controlled loads, such as refrigerators and air conditioners, and the amount of revenue that could be earned by loads participating in ancillary services markets. We model load aggregations as virtual energy storage, and use simple dynamical system models and publicly available data to generate our resource and revenue estimates. We find that the resource potential is large: 10–40 GW/8–12 GWh, which is significantly more than that required by the mandate. We also find that regulation and spinning/non-spinning reserve revenues vary significantly depending upon type of load and, for heat pumps and air conditioners, climate zone. For example, mean regulation revenues for refrigerators are $11/year, for electric water heaters are $24/year, for air conditioners are $0-32/year, and for heat pumps are $22–56/year. Both consumer choices, such as appliance settings, and policy, such as the design of ancillary service compensation and appliance standards, could increase revenue potentials. - Highlights: • California's energy storage mandate requires 1.325 GW of energy storage by 2020. • Residential loads such as refrigerators have thermal energy storage. • California's residential loads could provide 10-40 GW/8-12 GWh of storage. • Loads participating in ancillary services markets could earn up to $56/load/year. • Consumer choices and policy mechanisms could increase revenue potentials

  11. Zooplankton and other data collected from net casts in Coastal Waters of California from T-441; 19 April 1967 to 13 September 1967 (NODC Accession 7101507)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected using net casts from T-441 in the Coastal Waters of California. Data were collected from 19 April 1967 to 13 September 1967...

  12. State Water Resources Control Board, California Agreement in Principle 1995 summary report

    International Nuclear Information System (INIS)

    Laudon, L.

    1996-03-01

    The Agreement in Principle (AIP) was established as part of the Secretary of Energy's Ten-Point Initiative which was announced in 1989. One of the Secretary's goals was to integrate the Department of Energy's (DOE) national security mission with their environmental restoration and compliance responsibilities. In an effort to accomplish this goal, DOE increased the role of the states in the oversight of DOE's monitoring programs through AIPs. The State of California and DOE negotiated the California AIP beginning in 1989 and signed the Agreement in September 1990. The AIP identified six DOE facilities to be evaluated under the program. The six facilities evaluated by the AIP program were: (1) Lawrence Livermore National Laboratory (LLNL) including LLNL's Site 300; (2) Sandia National Laboratories, California (SNL/CA); (3) Lawrence Berkeley Laboratory (LBL); (4) Stanford Linear Accelerator Center (SLAC); (5) Energy Technology Engineering Center (ETEC); and (6) Laboratory for Energy-Related Health Research (LEHR)

  13. State Water Resources Control Board, California Agreement in Principle 1995 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, L.

    1996-03-01

    The Agreement in Principle (AIP) was established as part of the Secretary of Energy`s Ten-Point Initiative which was announced in 1989. One of the Secretary`s goals was to integrate the Department of Energy`s (DOE) national security mission with their environmental restoration and compliance responsibilities. In an effort to accomplish this goal, DOE increased the role of the states in the oversight of DOE`s monitoring programs through AIPs. The State of California and DOE negotiated the California AIP beginning in 1989 and signed the Agreement in September 1990. The AIP identified six DOE facilities to be evaluated under the program. The six facilities evaluated by the AIP program were: (1) Lawrence Livermore National Laboratory (LLNL) including LLNL`s Site 300; (2) Sandia National Laboratories, California (SNL/CA); (3) Lawrence Berkeley Laboratory (LBL); (4) Stanford Linear Accelerator Center (SLAC); (5) Energy Technology Engineering Center (ETEC); and (6) Laboratory for Energy-Related Health Research (LEHR).

  14. Acidic deposition in California: findings from a program of monitoring and effects research

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, B.K.; Croes, B.E.; Brown, S.M.; Motallebi, N.; Westerdahl, F.D.; Margolis, H.G.; Cahill, B.T.; Mueller, M.D.; Holmes, J.R. [California Environmental Protection Agency, Sacramento, CA (United States). Research Division

    1995-12-01

    California`s 14-year, 25 million dollar acidic deposition program has studied the causes and effects of acidic air pollutants. In contrast to the eastern United States where sulfur-derived (S-derived) by-products from coal combustion dominate precipitation chemistry, nitrogen-derived (N-derived) acids predominate in wet and dry deposition in California. Adverse effects on the human lung have not been observed after short-term exposures to acidity, but extended exposures to ambient acidity may pose a chronic risk. No irreversible, adverse effects on surface waters in the Sierra Nevada mountain range or to the state`s forests have been found due to extent acidic inputs. The longer-term outlook for forests is less certain because the impacts observed elsewhere occurred after decades of S and N deposition, but at lower ambient ozone levels. Ozone is the major air pollutant stressor for forests, but atmospheric N has the potential to cause adverse changes in soil nutrient cycling. Impacts on man-made materials in southern California (e.g. galvanized steel) were found to be minor. While California does not have an ambient air quality standard for acidic air pollutants, emission of precursors have declined since the 1960s due to changes in industrial practices, improvements in technology and adoption of control measures for ozone. Lowering emission from motor vehicles will be emphasized to prevent future increases in N deposition. 67 refs., 4 figs., 2 tabs.

  15. A Brief History of California School Funding

    Science.gov (United States)

    Canfield, Jacquie

    2013-01-01

    In January 2013, the governor proposed a new funding model for California school districts called the Local Control Funding Formula. As the Legislature debates the proposed new funding model for schools, which is expected to start in the 2013-14 fiscal year, the author thought it would be a good time for a history lesson in California school…

  16. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  17. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  18. Mining residential water and electricity demand data in Southern California to inform demand management strategies

    Science.gov (United States)

    Cominola, A.; Spang, E. S.; Giuliani, M.; Castelletti, A.; Loge, F. J.; Lund, J. R.

    2016-12-01

    Demand side management strategies are key to meet future water and energy demands in urban contexts, promote water and energy efficiency in the residential sector, provide customized services and communications to consumers, and reduce utilities' costs. Smart metering technologies allow gathering high temporal and spatial resolution water and energy consumption data and support the development of data-driven models of consumers' behavior. Modelling and predicting resource consumption behavior is essential to inform demand management. Yet, analyzing big, smart metered, databases requires proper data mining and modelling techniques, in order to extract useful information supporting decision makers to spot end uses towards which water and energy efficiency or conservation efforts should be prioritized. In this study, we consider the following research questions: (i) how is it possible to extract representative consumers' personalities out of big smart metered water and energy data? (ii) are residential water and energy consumption profiles interconnected? (iii) Can we design customized water and energy demand management strategies based on the knowledge of water- energy demand profiles and other user-specific psychographic information? To address the above research questions, we contribute a data-driven approach to identify and model routines in water and energy consumers' behavior. We propose a novel customer segmentation procedure based on data-mining techniques. Our procedure consists of three steps: (i) extraction of typical water-energy consumption profiles for each household, (ii) profiles clustering based on their similarity, and (iii) evaluation of the influence of candidate explanatory variables on the identified clusters. The approach is tested onto a dataset of smart metered water and energy consumption data from over 1000 households in South California. Our methodology allows identifying heterogeneous groups of consumers from the studied sample, as well as

  19. SWFSC FED Mid Water Trawl Juvenile Rockfish Survey, CTD Data, 1987-2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC FED Mid Water Trawl Juvenile Rockfish Survey: CTD Data. Surveys have been conducted along the central California coast in May/June every year since 1983. In...

  20. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  1. Heat-related deaths among California residents, May-September, 2000-2009.

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains counts, rates, and confidence intervals of heat-related deaths among California residents for the years 2000-2009. These data are stratified by...

  2. Post-remedial-action survey report for Kinetic Experiment Water Boiler Reactor Facility, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.; Justus, A.L.

    1981-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous federally-funded contracted projects involving the use of radioactive materials. Among these was the Kinetics Experiment Water Boiler (KEWB) Reactor which was operated under the auspices of the US Atomic Energy Commission (AEC). The KEWB Reactor was last operated in 1966. The facility was subsequently declared excess and decontamination and decommissioning operations were conducted during the first half of calendar year 1975. The facility was completely dismantled and the site graded to blend with the surrounding terrain. During October 1981, a post-remedial-action (certification) survey of the KEWB site was conducted on the behalf of the US Department of Energy by the Radiological Survey Group (RSG) of the Occupational Health and Safety Division's Health Physics Section (OHS/HP) of Argonne National Laboratory (ANL). The survey confirmed that the site was free from contamination and could be released for unrestricted use

  3. Ground-Water Quality Data in the Upper Santa Ana Watershed Study Unit, November 2006-March 2007: Results from the California GAMA Program

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,000-square-mile Upper Santa Ana Watershed study unit (USAW) was investigated from November 2006 through March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Upper Santa Ana Watershed study was designed to provide a spatially unbiased assessment of raw ground-water quality within USAW, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Riverside and San Bernardino Counties. Ninety of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Nine wells were selected to provide additional understanding of specific water-quality issues identified within the basin (understanding wells). The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], 1,4-dioxane, and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) and dissolved noble gases also were measured to help identify sources and ages of the sampled ground water. Dissolved gases, and isotopes of nitrogen gas and of dissolved nitrate also were measured in order to investigate the sources and occurrence of

  4. Ecological studies of neritic phytoplankton of Southern California: seasonal variations, associations, and responses to temperature elevations

    International Nuclear Information System (INIS)

    Briand, F.J.P.

    1974-01-01

    The first part of this study investigates the seasonal variations and associations of the nearshore phytoplankton communities at Seal Beach, Orange County, California. A total of 90 species was recorded in samples taken weekly from June 1972 to May 1973. On a yearly basis, the two dominant algal groups were diatoms (46 species) and dinoflagellates (36 species), accounting respectively for 64.1 percent and 30.4 percent of the total cell number, and for 20.2 percent and 79.2 percent of the total cell volume. The species diversity index (H') remained relatively stable during the year, showing no distinct seasonal pattern. The major group, composed mainly of dinoflagellates, was correlated with warm water conditions at Seal Beach. At this location, two electric power plants use sea-water for cooling purposes at the rate of six million l/min, which subjects the planktonic organisms entrained in the condenser systems to appreciable temperature increases. This problem is general in southern California, where 14 coastal power plants draw presently no less than 20 billion l/day from the ocean. The large quantities of marine phytoplankton passing through the cooling systems of the two power plants studied were found greatly reduced in numbers (41.7 percent) and in volume (33.7 percent). There was no apparent reduction in phytoplankton stocks when the intake water was cooler than 15 0 C. Species diversity (H') in the effluent was consistently lower than in the influent. Temperature elevations up to 10 0 C increased the gross primary productivity by 37 percent when intake water temperatures were 19 0 C or cooler, and reduced productivity by 22 percent when ambient water temperatures were warmer than 21.5 0 C. Since heating was consistently less damaging when applied to relatively cold water, use by coastal power plants of deep sea-water for cooling is strongly advocated. (U.S.)

  5. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  6. Definition of Earth Resource Policy and Management Problems in California

    Science.gov (United States)

    Churchman, C. W.; Clark, I.

    1971-01-01

    Management planning for the California water survey considers the use of satellite and airplane remote sensing information on water-source, -center, and -sink geographies. A model is developed for estimating the social benefit of water resource information and to identify the most important types of resource information relevant to regulatory agencies and the private sector.

  7. Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case

    Science.gov (United States)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2014-12-01

    The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.

  8. The Class of 2014 Preserving Access to California Higher Education

    National Research Council Canada - National Science Library

    Park, George

    1998-01-01

    For over 35 years, California's policy of providing a college education to all citizens who could benefit from it has enabled California to lead the nation in making public higher education available...

  9. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  10. Sensitivity of California water supply to changes in runoff magnitude and timing: A bottom-up assessment of vulnerabilities and adaptation strategies

    Science.gov (United States)

    Fefer, M.; Dogan, M. S.; Herman, J. D.

    2017-12-01

    Long-term shifts in the timing and magnitude of reservoir inflows will potentially have significant impacts on water supply reliability in California, though projections remain uncertain. Here we assess the vulnerability of the statewide system to changes in total annual runoff (a function of precipitation) and the fraction of runoff occurring during the winter months (primarily a function of temperature). An ensemble of scenarios is sampled using a bottom-up approach and compared to the most recent available streamflow projections from the state's 4th Climate Assessment. We evaluate these scenarios using a new open-source version of the CALVIN model, a network flow optimization model encompassing roughly 90% of the urban and agricultural water demands in California, which is capable of running scenario ensembles on a high-performance computing cluster. The economic representation of water demand in the model yields several advantages for this type of analysis: optimized reservoir operating policies to minimize shortage cost and the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and regulatory constraints. Results indicate a shift in optimal reservoir operations and high marginal value of additional reservoir storage in the winter months. The collaborative management of reservoirs in CALVIN yields increased storage in downstream reservoirs to store the increased winter runoff. This study contributes an ensemble evaluation of a large-scale network model to investigate uncertain climate projections, and an approach to interpret the results of economic optimization through the lens of long-term adaptation strategies.

  11. California Bioregions

    Data.gov (United States)

    California Natural Resource Agency — California regions developed by the Inter-agency Natural Areas Coordinating Committee (INACC) were digitized from a 1:1,200,000 California Department of Fish and...

  12. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  13. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California.

    Science.gov (United States)

    Fram, Miranda S; Belitz, Kenneth

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells=61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity>0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. Published by Elsevier B.V.

  14. Measles outbreak--California, December 2014-February 2015.

    Science.gov (United States)

    Zipprich, Jennifer; Winter, Kathleen; Hacker, Jill; Xia, Dongxiang; Watt, James; Harriman, Kathleen

    2015-02-20

    On January 5, 2015, the California Department of Public Health (CDPH) was notified about a suspected measles case. The patient was a hospitalized, unvaccinated child, aged 11 years with rash onset on December 28. The only notable travel history during the exposure period was a visit to one of two adjacent Disney theme parks located in Orange County, California. On the same day, CDPH received reports of four additional suspected measles cases in California residents and two in Utah residents, all of whom reported visiting one or both Disney theme parks during December 17-20. By January 7,seven California measles cases had been confirmed, and CDPH issued a press release and an Epidemic Information Exchange (Epi-X) notification to other states regarding this outbreak. Measles transmission is ongoing.

  15. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  16. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  17. Carmel River Lagoon Enhancement Project: Water Quality and Aquatic Wildlife Monitoring, 2006-7

    OpenAIRE

    Perry, William; Watson, Fred; Casagrande, Joel; Hanley, Charles

    2007-01-01

    This is a report to the California Department of Parks and Recreation. It describes water quality and aquatic invertebrate monitoring after the construction of the Carmel River Lagoon Enhancement Project. Included are data that have been collected for two years and preliminary assessment of the enhanced ecosystem. This report marks the completion of 3-years of monitoring water quality and aquatic habitat. The report adopts the same format and certain background text from previous ...

  18. Eighty years of cooperative water science

    Science.gov (United States)

    Stone, Mandy L.

    2017-05-09

    The Equus Beds aquifer in south-central Kansas is a primary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current and future demands. The Equus Beds ASR project is a recent part of an 80-year cooperative water science effort with the city of Wichita. The U.S. Geological Survey (USGS) Kansas Water Science Center characterizes river and aquifer water-quality and quantity and evaluates changes that may or may not be related to ASR. The USGS data are used by the city of Wichita to make informed management decisions, satisfy regulatory requirements, and serve as a baseline to detect any subsequent changes that may be related to ASR.

  19. Examining depressive symptoms and use of counseling in the past year among Filipino and non-Hispanic white adolescents in California.

    Science.gov (United States)

    Javier, Joyce R; Lahiff, Maureen; Ferrer, Rizaldy R; Huffman, Lynne C

    2010-05-01

    We compared measures of depressive symptoms and use of counseling in the past year for Filipino versus non-Hispanic white adolescents in California. This cross-sectional study used data from 4421 adolescents who completed the 2003 and 2005 California Health Interview Survey. Bivariate analyses, linear regression, and logistic regression were performed. Compared to non-Hispanic white adolescents, Filipino adolescents had higher mean 8-item version of Center for Epidemiologic Studies Depression Scale scores (5.43 vs 3.94) and were more likely to report a clinically significant level of depressive symptoms (defined as 8-item version of Center for Epidemiologic Studies Depression Scale score > or = 7) (29.0 vs 17.9%). Filipino adolescents are just as likely as their non-Hispanic white counterparts to report low use of counseling in the past year (17.6 vs 28.4%). Multivariate analyses indicate that depressive symptoms were positively associated with Filipino ethnicity, female gender, living in a single parent household, lower parental education, and poverty. The effect that ethnicity had on use of counseling in the past year varied by gender, income level, and parental education level. Filipino male adolescents with family incomes > or = 300% federal poverty level and parents with more than a college degree were significantly less likely than their non-Hispanic white counterparts to report use of counseling in the past year (odds ratio, 0.01; confidence interval, 0.0004-0.44). Filipino female adolescents with family incomes Filipino adolescents.

  20. The California Hazards Institute

    Science.gov (United States)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    leaders, managers, stakeholders, policy makers, educators and the public to effectively and comprehensively combat the problems caused by the natural hazards that threaten California. During this first year of operation, UC faculty involved in the CHI will identify the science and technology research priorities of the Institute, followed by the solicitation of participation by other important stakeholders within California. The CHI is founded upon the idea that the hazards associated with events such as earthquakes and floods need not become great disasters such as the San Francisco earthquake of 1906 and 2005 Hurricane Katrina if these hazards can be anticipated proactively, before they must be dealt with reactively.

  1. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, Southern Coast Ranges, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  2. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  3. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  4. Water-resources activities, North Dakota District, fiscal year 1990

    Science.gov (United States)

    Martin, Cathy R.

    1991-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes waterresources activities of the Water Resources Division in North Dakota in fiscal year 1990. Information on each project includes objectives, approach, progress in fiscal year 1990, plans for fiscal year 1991, completed and planned report products, and the name of the project chief.

  5. Water- and air-quality and surficial bed-sediment monitoring of the Sweetwater Reservoir watershed, San Diego County, California, 2003-09

    Science.gov (United States)

    Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.

    2015-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to assess the overall health of the Sweetwater watershed in San Diego County, California. This study was designed to provide a data set that could be used to evaluate potential effects from the construction and operation of State Route 125 within the broader context of the water quality and air quality in the watershed. The study included regular sampling of water, air, and surficial bed sediment at Sweetwater Reservoir (SWR) for chemical constituents, including volatile organic compounds (VOCs), base-neutral and acid- extractable organic compounds (BNAs) that include polycyclic aromatic hydrocarbons (PAHs), pesticides, and metals. Additionally, water samples were collected for anthropogenic organic indicator compounds in and around SWR. Background water samples were collected at Loveland Reservoir for VOCs, BNAs, pesticides, and metals. Surficial bed-sediment samples were collected for PAHs, organochlorine pesticides, and metals at Sweetwater and Loveland Reservoirs.

  6. Ten years of Brazilian ballast water management

    Science.gov (United States)

    Castro, Maria Cecilia Trindade; Hall-Spencer, Jason M.; Poggian, Cecília Fonseca; Fileman, Timothy W.

    2018-03-01

    In 2005, Brazil addressed the environmental challenges posed by ballast water through a unilateral regulation, called the Maritime Standard N° 20 (NORMAM-20), applied to all shipping in her waters. This world-leading decision was the culmination of a process that started during the 1990‧s. Here, we summarize how these ballast water regulations were brought in and adopted and present the findings of 10 years of enforcement (2005-2015) in 39 ports along the Brazilian coast. We show that compliance with the Brazilian standard has increased significantly since the regulations were implemented (p < 0.001). After five years of implementation, non-compliance decreased probably reflecting an increase in awareness of the Brazilian Standard and a shift in the shipping industry commitment to minimize and control the spread of invasive species through ballast water. The Brazilian experience shows that very high levels (97%) of compliance with ballast water management regulations can be made to work in a region of global importance to the maritime industry. In the last decade, the rules governing ballast water in Brazil have evolved to address the demands from the maritime community and to provide updates such as imminent requirements for the use of ballast water management systems on board ships. These regulations are rarely cited when ballast water regulations are discussed internationally, yet there is much to learn from the proactive approach taken by Brazil such as what is feasible and enforceable.

  7. Biogenic sedimentation beneath the California Current system for the past 30 kyr and its paleoceanographic significance

    Science.gov (United States)

    Gardner, J.V.; Dean, W.E.; Dartnell, P.

    1997-01-01

    A north-south transect of 17 cores was constructed along the eastern boundary of the California Current system from 33?? to 42?? N to investigate the changes in biogenic sedimentation over the past 30 kyr. Percentages and mass accumulation rates of CaCO3, Corg, and biogenic opal were assembled at 500 to 1000 years/sample to provide relatively high resolution. Time-space maps reveal a complex pattern of changes that do not follow a simple glacial-interglacial two-mode model. Biogenic sedimentation shows responses that are sometimes time-transgressive and sometimes coeval, and most of the responses show more consistency within a limited geographic area than any temporal consistency. Reconstructed conditions during late oxygen isotope stage 3 were more like early Holocene conditions than any other time during the last 30 kyr. Coastal upwelling and productivity during oxygen isotope stage 3 were relatively strong along the central California margin but were weak along the northern California margin. Precipitation increased during the last glacial interval in the central California region, and the waters of the southern California margin had relatively low productivity. Productivity on the southern Oregon margin was relatively low at the beginning of the last glacial interval, but by about 20 ka, productivity in this area significantly increased. This change suggests that the center of the divergence of the West Wind Drift shifted south at this time. The end of the last glacial interval was characterized by increased productivity in the southern California margin and increased upwelling along the central California margin but upwelling remained weak along the northern California margin. A sudden (biosphere as the northern latitudes were reforested following retreat of the glaciers. The Holocene has been a period of relatively high productivity in the southern California margin, relatively strong coastal upwelling along the central California margin, relatively weak

  8. Viewpoint – The Washington Consensus, Chilean Water Monopolization and the Peruvian Draft Water Law of the 1990s

    Directory of Open Access Journals (Sweden)

    Miguel Solanes

    2013-06-01

    The managers of two public agencies in Peru were concerned about the impact that the Draft Law was to have on Peruvian public interests, such as agriculture, energy, and water supply and sanitation. They spearheaded a coalition, including United States universities (New Mexico, Colorado at Boulder, California at Davis the Water Directorate of Chile, the United Nations Economic Commission for Latin America and the Caribbean, agricultural water communities in Peru, and the technical offices dealing with water at the Inter-American Development Bank and the World Bank, to have a critical discussion of the Draft Law. The discussion took several years, at the end of which the Draft was rejected.

  9. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  10. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  11. Feasibility and potential effects of the proposed Amargosa Creek Recharge Project, Palmdale, California

    Science.gov (United States)

    Christensen, Allen H.; Siade, Adam J.; Martin, Peter; Langenheim, V.E.; Catchings, Rufus D.; Burgess, Matthew K.

    2015-09-17

    Historically, the city of Palmdale and vicinity have relied on groundwater as the primary source of water, owing, in large part, to the scarcity of surface water in the region. Despite recent importing of surface water, groundwater withdrawal for municipal, industrial, and agricultural use has resulted in groundwater-level declines near the city of Palmdale in excess of 200 feet since the early 1900s. To meet the growing water demand in the area, the city of Palmdale has proposed the Amargosa Creek Recharge Project (ACRP), which has a footprint of about 150 acres along the Amargosa Creek 2 miles west of Palmdale, California. The objective of this study was to evaluate the long-term feasibility of recharging the Antelope Valley aquifer system by using infiltration of imported surface water from the California State Water Project in percolation basins at the ACRP.

  12. Water-resources and land-surface deformation evaluation studies at Fort Irwin National Training Center, Mojave Desert, California

    Science.gov (United States)

    Densmore-Judy, Jill; Dishart, Justine E.; Miller, David; Buesch, David C.; Ball, Lyndsay B.; Bedrosian, Paul A.; Woolfenden, Linda R.; Cromwell, Geoffrey; Burgess, Matthew K.; Nawikas, Joseph; O'Leary, David; Kjos, Adam; Sneed, Michelle; Brandt, Justin

    2017-01-01

    The U.S. Army Fort Irwin National Training Center (NTC), in the Mojave Desert, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle) within the NTC boundaries (fig. 1; California Department of Water Resources, 2003). Because of increasing water demands at the NTC, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, completed several studies to evaluate water resources in the developed and undeveloped groundwater basins underlying the NTC. In all of the developed basins, groundwater withdrawals exceed natural recharge, resulting in water-level declines. However, artificial recharge of treated wastewater has had some success in offsetting water-level declines in Irwin Basin. Additionally, localized water-quality changes have occurred in some parts of Irwin Basin as a result of human activities (i.e., wastewater disposal practices, landscape irrigation, and/or leaking pipes). As part of the multi-faceted NTC-wide studies, traditional datacollection methods were used and include lithological and geophysical logging at newly drilled boreholes, hydrologic data collection (i.e. water-level, water-quality, aquifer tests, wellbore flow). Because these data cover a small portion of the 1,177 square-mile (mi2 ) NTC, regional mapping, including geologic, gravity, aeromagnetic, and InSAR, also were done. In addition, ground and airborne electromagnetic surveys were completed and analyzed to provide more detailed subsurface information on a regional, base-wide scale. The traditional and regional ground and airborne data are being analyzed and will be used to help develop preliminary hydrogeologic framework and groundwater-flow models in all basins. This report is intended to provide an overview of recent water-resources and land-surface deformation studies at the NTC.

  13. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion.

    Science.gov (United States)

    Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul

    2018-03-01

    The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and

  14. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  15. The Story of California = La Historia de California.

    Science.gov (United States)

    Bartel, Nick

    "The Story of California" is a history and geography of the state of California, intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The book is designed with the left page in English and the right page in Spanish to facilitate student transition into…

  16. Geohydrologic and water-quality data in the vicinity of the Rialto-Colton Fault, San Bernardino, California

    Science.gov (United States)

    Teague, Nicholas F.; Brown, Anthony A.; Woolfenden, Linda R.

    2014-01-01

    The Rialto-Colton Basin is in western San Bernardino County, about 60 miles east of Los Angeles, California. The basin is bounded by faults on the northeast and southwest sides and contains multiple barriers to groundwater flow. The structural geology of the basin leads to complex hydrology. Between 2001 and 2008, in an effort to better understand the complex hydrologic system of the Rialto-Colton Basin, seven multiple-well monitoring sites were constructed. Two to six observation wells were installed in the borehole at each site; a total of 32 observation wells were installed. This report presents geologic, hydrologic, and water-quality data collected from these seven multiple-well monitoring sites. Descriptions of the collected drill cuttings were compiled into lithologic logs for each monitoring site. The lithologic logs are summarized along with the geophysical logs, including gamma-ray, spontaneous potential, resistivity, and electromagnetic induction tool logs. At selected sites, sonic tool logs also were recorded. Periodic water-level measurements are reported, and water-level data are displayed on hydrographs. Water levels at multiple-well monitoring sites in the northern part of the study area differed between the shallow and deep observation wells; in the remaining multiple-well monitoring sites, water levels differed little with depth. Along the southern trace of the Rialto-Colton Fault, water levels are slightly higher east of the fault than west of the fault. Selected water-quality data for 21 of the observation wells show water from wells in the northern and central parts of the study area is calcium-carbonate water. In the southern part of the study area, water from wells screened above 400 feet below land surface is of mixed type or is calcium-carbonate water. Water from wells screened greater than 400 feet below land surface in the southern part of the study area is sodium-carbonate or sodium-mixed anion water. Water from most wells in the study

  17. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  18. Provenance variation in Eucalyptus camaldulensis Dehnh. in California

    Science.gov (United States)

    B.M. Emery; F. Thomas Ledig

    1987-01-01

    In California, the Lake Albacutya provenance of river red gum was clearly superior in volume growth to 22 other provenances collected throughout the range of the species in Australia. It had at least 2.5 times the volume of the plantation mean at 5.5 years, consistent with its performance in other countries with Mediterranean climates like California's. Other...

  19. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  20. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  1. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  2. Hydrologic conditions in New Hampshire and Vermont, water year 2011

    Science.gov (United States)

    Kiah, Richard G.; Jarvis, Jason D.; Hegemann, Robert F.; Hilgendorf, Gregory S.; Ward, Sanborn L.

    2013-01-01

    Record-high hydrologic conditions in New Hampshire and Vermont occurred during water year 2011, according to data from 125 streamgages and lake gaging stations, 27 creststage gages, and 41 groundwater wells. Annual runoff for the 2011 water year was the sixth highest on record for New Hampshire and the highest on record for Vermont on the basis of a 111-year reference period (water years 1901–2011). Groundwater levels for the 2011 water year were generally normal in New Hampshire and normal to above normal in Vermont. Record flooding occurred in April, May, and August of water year 2011. Peak-of-record streamflows were recorded at 38 streamgages, 25 of which had more than 10 years of record. Flooding in April 2011 was widespread in parts of northern New Hampshire and Vermont; peak-of-record streamflows were recorded at nine streamgages. Flash flooding in May 2011 was isolated to central and northeastern Vermont; peakof- record streamflows were recorded at five streamgages. Devastating flooding in August 2011 occurred throughout most of Vermont and in parts of New Hampshire as a result of the heavy rains associated with Tropical Storm Irene. Peak-ofrecord streamflows were recorded at 24 streamgages.

  3. Validity of dietary recall over 20 years among California Seventh-day Adventists.

    Science.gov (United States)

    Fraser, G E; Lindsted, K D; Knutsen, S F; Beeson, W L; Bennett, H; Shavlik, D J

    1998-10-15

    Past dietary habits are etiologically important to incident disease. Yet the validity of such measurements from the previous 10-20 years is poorly understood. In this study, the authors correlated food frequency results that were obtained in 1994-1995 but pertained to recalled diet in 1974 with the weighted mean of five random 24-hour dietary recalls obtained by telephone in 1974. The subjects studied were 72 Seventh-day Adventists who lived within 30 miles of Loma Linda, California; had participated in a 1974 validation study; were still alive; and were willing to participate again in 1994. A method was developed to allow correction for random error in the reference data when these data had differentially weighted components. The results showed partially corrected correlation coefficients of greater than 0.30 for coffee, whole milk, eggs, chips, beef, fish, chicken, fruit, and legumes. Higher correlations on average were obtained when the food frequencies were scored simply 1-9, reflecting the nine frequency categories. The 95% confidence intervals for 15 of the 28 correlations excluded zero. Incorporation of portion size information was unhelpful. The authors concluded that in this population, data recalled from 20 years ago should be treated with caution but, for a number of important foods, that the degree of validity achieved approached that obtained when assessing current dietary habits.

  4. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    Science.gov (United States)

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  5. Chemistry in California: How it Started and How it Grew

    Science.gov (United States)

    Norberg, Arthur L.

    1976-01-01

    Gives a brief history of chemistry in California during the last 100 years, including the foundation of chemical industries, the development of chemistry departments in universities and their respective specialities, and the role of California laboratories in World War II. (MLH)

  6. New records of non-resident pinnipeds from the Gulf of California, Mexico Registros nuevos de pinnípedos no-residentes en el golfo de California, México

    Directory of Open Access Journals (Sweden)

    Juan Pablo Gallo-Reynoso

    2010-04-01

    Full Text Available Although the California sea lion (Zalophus californianus is the only pinniped resident in the Gulf of California, there are occasional records of 3 additional species; here we report 4 recent records of the Guadalupe fur seal (Artocephalus townsendi, 6 of the northern elephant seal (Mirounga angustirostris and 2 of the harbor seal (Phoca vitulina. Harbor seals have been observed mostly during the winter-spring months of El Niño years, before water temperature warms in the summer. It is possible that juveniles and subadult and adult males of A. townsendi and M. angustirostris are using the Gulf as an alternative feeding area during the season of intensive feeding as individuals disperse more and more widely as their populations grow.Aunque en el golfo de California, el único pinnípedo residente es el lobo marino de California (Zalophus californianus, existen registros ocasionales de otras 3 especies; en la presente nota se proporcionan 4 registros recientes de lobo fino de Guadalupe (Arctocephalus townsendi, 6 de elefante marino del norte (Mirounga angustirostris y 2 de foca común (Phoca vitulina. La foca común se ha observado principalmente durante los meses de invierno-primavera en años de El Niño, antes del calentamiento anual del agua en verano. Es posible que los juveniles y los machos sub-adultos y adultos tanto de A. townsendi como de M. angustirostris hagan uso del golfo como un sitio alternativo durante la temporada de alimentación intensiva como de su expansión geográfica debido a su incremento poblacional.

  7. Feasibility of Mapping Riparian Habitats Under Natural Conditions in California

    Science.gov (United States)

    David R. Dawdy

    1989-01-01

    The California State Water Resources Control Board is conducting hearings to set quantity and quality standards for river flows into San Francisco Bay. Comparisons of present conditions with "natural conditions" prior to European settlement were introduced into the hearings. Consumptive use relations were developed for various riparian and water-related...

  8. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  9. Molecular epidemiology of Cryptosporidium spp. and Giardia spp. in mussels (Mytilus californianus) and California sea lions (Zalophus californianus) from Central California.

    Science.gov (United States)

    Adell, A D; Smith, W A; Shapiro, K; Melli, A; Conrad, P A

    2014-12-01

    Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  11. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  12. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  13. Rational reference levels for Pacific Coast radioactive pollution studies supplied by samples from northern Baja California

    International Nuclear Information System (INIS)

    Folsom, T.R.

    1974-01-01

    Background levels of radioactivity in the marine environment along the Pacific Coast are at present extremely low. However, these certainly will rise along with the growth of coastal populations and with the increased use of nuclear energy. It would be desirable to anticipate where and how fast concentrations of artificial radioactivities may reach unacceptable levels in coastal water. Successful prediction of this sort requires knowing how the ocean responds, in given regions, to specific inputs. Fortunately, some of the fate of a large class of radioactive pollutants that must be faced in the future may be inferred from careful studies during the past 20 years of the behavior of certain constituents of nuclear fallout that have entered the ocean along the coasts of California and Baja California. (CH)

  14. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  15. Lessons Learned From Developing a Sustainable Arsenic-Safe Water Program in West Bengal, India Over a Period of Eight Years

    Science.gov (United States)

    Smith, M. M.; Liaw, J.; Hira, A.; Guha, P.; Pal, S. S.; Hore, T.; Smith, A. H.

    2010-12-01

    Arsenic is a carcinogen, and causes many cancers and noncancer diseases. Recent findings have shown that exposure to arsenic in drinking water as a child or before birth can cause illness and death even as an adult. In the West Bengal region of India, more than six million people are drinking crystal clear but arsenic-contaminated water from tubewells. Project Well, a non-profit organization based in California, has provided safe drinking water to villages in West Bengal since 2001 through modern modified dugwells, currently numbering 163. Along the way, Project Well has faced the challenge of persuading people to stop consuming good-tasting, arsenic-laced water and instead drink chlorinated water, which is safe but may have the smell of chlorine. Additionally, West Bengal receives abundant annual rainfall, and hence it is difficult to convince people to pay for treated water. From its inception, the Project Well program was set up with a tracking system to assess the efficacy of the modern dugwells, which has helped identify where technical improvements were needed. Continuous interaction with community-based user groups has also helped overcome many constraints and make the program sustainable. Project Well monitoring records from August 2010 show that out of 163 modern dugwells, 48 percent were being used, providing water for 2948 villagers; 23 percent were closed; 6 percent were dry (11 districts of West Bengal were in a drought); 6 percent required maintenance; and 7 percent were not used. Arsenic concentrations in the modern dugwells were measured every year during peak season when the water table was low and the median arsenic concentration of operational dugwells over the eight years between 2002 and 2010 was 15 ppb (the permissible limit in India is 50 ppb). Each year, about 6 to 10 percent of the dugwells have arsenic levels above 50 ppb during the summer season, when the water level is low. Bacterial counts, i.e., total coliform and fecal coliform, are

  16. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  17. The California Multimedia Risk Assessment Protocol for Alternative Fuels

    Science.gov (United States)

    Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.

    2013-12-01

    Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment

  18. Occurrence and concentrations of pharmaceutical compounds in deep groundwater used for public drinking-water supply in California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.

  19. The California Fuel Tax Swap

    Science.gov (United States)

    2016-05-01

    In early 2010, California faced another of its seemingly routine budget crises, this time mostly the result of outstanding debt due on state general obligation (GO) highway and rail bonds.2 For several years, the Legislature had been diverting ...

  20. Addressing the Sustainability of Groundwater Extraction in California Using Hydrochronology

    Science.gov (United States)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.

    2017-12-01

    In urban and agricultural settings in California, intense pressure on water supplies has led to extensive managed aquifer recharge and extensive overdraft in these areas, respectively. The California Sustainable Groundwater Management Act (SGMA) includes criteria for pumping that maintains groundwater levels and basin storage, and avoids stream depletion and degradation of water quality. Most sustainability plans will likely use water level monitoring and water budget balancing based on integrated flow models as evidence of compliance. However, hydrochronology data are applicable to several of the criteria, and provide an independent method of addressing questions related to basin turnover time, recharge rate, surface water-groundwater interaction, and the age distribution at pumping wells. We have applied hydrochronology (mainly tritium-helium groundwater age dating and extrinsic tracers) in urban areas to delineate flowpaths of artificially recharged water, to identify stagnant zones bypassed by the engineered flow system, and to predict vulnerability of drinking water sources to contamination. In agricultural areas, we have applied multi-tracer hydrochronology to delineate groundwater stratigraphy, to identify paleowater, and to project future nitrate concentrations in long-screened wells. This presentation will describe examples in which groundwater dating and other tracer methods can be applied to directly address the SGMA criteria for sustainable groundwater pumping.

  1. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  2. BAROMETRIC PRESSURE and Other Data from NOAA Ship DAVID STARR JORDAN and Other Platforms From Coastal Waters of California from 1987-04-10 to 1994-05-23 (NODC Accession 9400150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity, Temperature and Depth (CTD) and other data were collected in Coastal Waters of California by NOAA Ship DAVID STARR JORDAN. Data were collected over a...

  3. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  4. Water-resources activities, North Dakota District, fiscal year 1994-95

    Science.gov (United States)

    Martin, Cathy R.

    1995-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1994. Information on each project includes objectives, approach, progress, plans for fiscal year 1995, and completed and planned report products.

  5. California Political Districts

    Data.gov (United States)

    California Natural Resource Agency — This is a series of district layers pertaining to California'spolitical districts, that are derived from the California State Senateand State Assembly information....

  6. The Changing California Coast: The Effect of a Variable Water Budget on Coastal Vegetation Succession

    Science.gov (United States)

    Hsu, Wei-Chen; Remar, Alex; McClure, Adam; Williams, Emily; Kannan, Soumya; Steers, Robert; Schmidt, Cindy; Skiles, Joseph W.; Hsu, Wei-Chen

    2011-01-01

    The land-ocean interface along the central coast of California is one of the most diverse biogeographic regions of the state. This area is composed of a species-rich mosaic of coastal grassland, shrubland, and forest vegetation types. An acceleration of conifer encroachment into shrublands and shrub encroachment into grasslands along the coast has been recently documented. These vegetation changes are believed to be driven primarily by fire suppression and changing grazing patterns. Climatic variables such as precipitation, fog, cloud cover, temperature, slope, and elevation also play an important role in vegetation succession. Our study area is located along the central California coast, which is characterized by a precipitation gradient from the relatively wetter and cooler north to the drier and warmer south. Some studies indicate changing fog patterns along this coast, which may greatly impact vegetation. A decrease in water availability could slow succession processes. The primary objective of this project is to determine if vegetation succession rates are changing for the study area and to identify climate and ecosystem variables which contribute to succession, specifically the transition among grassland, shrubland, and forest. To identify vegetation types and rates of succession, we classified two Landsat TM 5 scenes from 1985 to 2010 with a resulting overall accuracy of 82.4%. Vegetation succession was correlated to changes in maximum and minimum temperatures, precipitation, and elevation for each sub-region of the study area. Fog frequency was then compared between the northern and southern regions of the study area for determining the spatial relation between fog frequency and the percent of vegetation change.

  7. Groundwater Modeling in Support of Water Resources Management and Planning under Complex Climate, Regulatory, and Economic Stresses

    Directory of Open Access Journals (Sweden)

    Emin C. Dogrul

    2016-12-01

    Full Text Available Groundwater is an important resource that meets part or all of the water demand in many developed basins. Since it is an integral part of the hydrologic cycle, management of groundwater resources must consider not only the management of surface flows but also the variability in climate. In addition, agricultural and urban activities both affect the availability of water resources and are affected by it. Arguably, the Central Valley of the State of California, USA, can be considered a basin where all stresses that can possibly affect the management of groundwater resources seem to have come together: a vibrant economy that depends on water, a relatively dry climate, a disparity between water demand and availability both in time and space, heavily managed stream flows that are susceptible to water quality issues and sea level rise, degradation of aquifer conditions due to over-pumping, and degradation of the environment with multiple species becoming endangered. Over the past fifteen years, the California Department of Water Resources has developed and maintained the Integrated Water Flow Model (IWFM to aid in groundwater management and planning under complex, and often competing, requirements. This paper will describe features of IWFM as a generic modeling tool, and showcase several of its innovative applications within California.

  8. Modeling applications for precision agriculture in the California Central Valley

    Science.gov (United States)

    Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.

    2017-12-01

    Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield

  9. Mortality among California Seventh-Day Adventists for selected cancer sites.

    Science.gov (United States)

    Phillips, R L; Garfinkel, L; Kuzma, J W; Beeson, W L; Lotz, T; Brin, B

    1980-11-01

    In previous reports concerning cancer among Seventh-Day Adventists (SDA), comparisons were made only with the general population. This report compared California SDA to a sample of non-SDA who were demographically similar to SDA. The study consisted of 17 years of follow-up (1960--76) on 22,940 white California SDA and 13 years of follow-up (1960--72) on 112,725 white California non-SDA. Both groups completed the same base-line questionnaire in 1960. Deaths were ascertained by annual contacts with each study member and by computer-assisted record linkage with the California State death certificate file. Results indicated that, with the exception of colon-rectal cancer and smoking-related cancers, the difference in risk of fatal cancer between SDA and non-SDA was substantially reduced when SDA were compared with a more socioeconomically similar population. The persistence of the low risk for colon-rectal cancer can probably be attributed to some aspect of the diet or life-style of the SDA.

  10. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  11. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  12. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  13. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  14. Nature of uranium contamination in the agricultural drainage water evaporation ponds of the San Joaquin Valley, California, USA

    International Nuclear Information System (INIS)

    Duff, M.C.; Amrhein, C.; Bradford, G.

    1997-01-01

    Evaporation ponds used for agricultural subsurface drainage water disposal in the Tulare Lake Bed (TLB) of the San Joaquin Valley, California, USA have elevated levels of U. Waterfowl which inhabit and forage the ponds and surrounding areas are threatened by exposure to U. The ponds, which receive irrigation drainage waters and seasonal rain, are subject to wetting and drying periods. The periods result in the accumulation of decaying algae and other organic material in surface sediments. Sediment and waters in the ponds were sampled to determine what factors control U solubility and sediment U concentrations. Data from a 1990 study conducted by Chilcott et al. in 1989 on the TLB ponds were used to help identify what factors may control U solubility. Pond sediment U concentrations decreased abruptly with depth and surface sediment U concentrations were related to dissolved Ca:HCO 3 ratios. Pond algal U bioaccumulation was favored in waters with high Ca:HCO 3 ratios, which had lower pH values and carbonate alkalinities than waters with low CA:HCO 3 ratios. Ponds with high salinities and high carbonate alkalinities contained the highest aqueous U concentrations relative to other TLB ponds. Sediment total organic carbon (TOC) was correlated with sediment U concentrations, suggesting that U is bound to organic matter. The source of TOC is most likely from algae deposition. (author)

  15. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  16. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  17. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  18. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  19. Private Schools, California, 2009, California Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — California law (California Education Code Section 33190) requires private schools offering or conducting a full-time elementary or secondary level day school for...

  20. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  1. Opportunities for Automated Demand Response in California Agricultural Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  2. Water Resources Vulnerability Assessment Accounting for Human Influence

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.

    2014-12-01

    Reservoirs are one of the main infrastructures that provide resilience against extremes (e.g., floods and droughts) and they play a key role in water resources management. Based on International Commission of Large Dams (ICOLD 2003) records, the total volume of reservoirs is over 6200 km3, which is twice larger than the global annual water use estimated as 3000 km3. Just a simple comparison of the two numbers indicates the importance of reservoirs and their role in providing resilience for water security. On the other hand, man-made reservoirs change the water distribution throughout the year. Most climate change impact studies ignore the role of reservoirs in water availability studies. However, water availability cannot be properly assessed without a thorough assessment of reservoir conditions. By combining classical methods for climate variability assessment (top-down approach) and influence assessment (bottom-up approach), this study offers a hybrid framework that integrates different drivers of water storage vulnerability. Final index is termed as the Multivariate Standardized Reliability and Resilience Index (MSRRI). This index investigates the adaptive capacity of the reservoir and exposure of the system to variable conditions. MSRRI has been investigated over several major reservoirs in Australia and California, United States. This presentation reviews recent findings and discusses reservoir conditions in Australia and California using MSRRI under different climatic change scenarios.

  3. Fine-grained sediment dispersal along the California coast

    Science.gov (United States)

    Warrick, Jonathan A.; Storlazzi, Curt D.

    2013-01-01

    Fine-grained sediment (silt and clay) enters coastal waters from rivers, eroding coastal bluffs, resuspension of seabed sediment, and human activities such as dredging and beach nourishment. The amount of sediment in coastal waters is an important factor in ocean ecosystem health, but little information exists on both the natural and human-driven magnitudes of fine-grained sediment delivery to the coastal zone, its residence time there, and its transport out of the system—information upon which to base environmental assessments. To help fill these information gaps, the U.S. Geological Survey has partnered with Federal, State, and local agencies to monitor fine-grained sediment dispersal patterns and fate in the coastal regions of California. Results of these studies suggest that the waves and currents of many of the nearshore coastal settings of California are adequately energetic to transport fine-grained sediment quickly through coastal systems. These findings will help with the management and regulation of fine-grained sediment along the U.S. west coast.

  4. The Influence of Structural Conditions and Cultural Inertia on Water Usage and Landscape Decision-Making in a California Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Madhusudan Katti

    2017-09-01

    Full Text Available Urban development and planning are increasingly centered on matters of sustainability, balancing economic development with ecosystem services and biological diversity within urban environments. In addition to these institutional and structural factors, the decision-making process within individual households must be understood to address rising concerns about water use. Therefore, individual characteristics and preferences that influence the use of water also warrant examination. In response to a survey of occupants of single-family residences in the Fresno Clovis Metropolitan Area of California, contextual interviews and focus group interviews with a homeowner sub-sample, we find evidence of an interplay of social—structural, institutional, and cultural factors involved in influencing individual water use behaviors and landscape decision-making. The complexity of residential behaviors and decision-making poses some potential issues with regards to the interactions between individual households and institutional actors in matters of water usage and landscaping, as residents surveyed indicate relatively little confidence in institutions and groups to make wise water policy decisions. We conclude that the promotion and implementation of sustainable water use practices will require not only environmental education for the citizenry, but also a tailoring of information for environmental educational initiatives that address the particularities of individual neighborhoods and communities.

  5. Geophysical survey, Paso Robles Geothermal area, California: Part of the Resource Assessment of Low- and Moderate-Temperature Geothermal Resource Areas in California; Part of the Second year Report, 1979-80 of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Rodger H.; Chase, Gordon W.; Youngs, Les G.

    1980-11-10

    This report presents the details of new geophysical work for the Paso Robles geothermal area, California performed under terms of the second year contract, 1979-80 between the US Department of Energy (DOE) and the California Division of Mines and Geology (CDMG). The report contains two sections. The first section is to provide background for the reader and consists of a reprint from CDMG's first year report (1979-80) to DOE. It describes only the Paso Robles studies performed by CDMG in its first year effort. The second section provides new information developed by CDMG in its 1979-80 studies concerning the geophysical survey of the Paso Robles geothermal area. Included in the first section is some general background information concerning the geology and geothermal occurrences in the Southern Coast Ranges, as well as the more detailed information dealing with the Paso Robles area proper. The second section is concerned only with discussion and interpretation of results for two geophysical methods that have so far been used by CDMG in the area: the ground magnetic and gravity surveys. The CDMG studies of the Paso Robles area are not yet complete and additional studies using newly acquired resistivity equipment are planned for the near future, as are more complete surveys of existing wells and new studies of the geothermal aquifers present in the area. A final report to DOE on the Paso Robles area is planned following completion of those studies.

  6. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    Science.gov (United States)

    Addison, Jason A.; Barron, John A.; Finney, Bruce P.; Kusler, Jennifer E.; Bukry, David; Heusser, Linda E.; Alexander, Clark R.

    2018-01-01

    The Holocene upwelling history of the northern California continental slope is examined using the high-resolution record of TN062-O550 (40.9°N, 124.6°W, 550 m water depth). This 7-m-long marine sediment core spans the last ∼7500 years, and we use it to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with Holocene millennial-scale warm intervals. A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test this hypothesis. The record of biogenic accumulation in TN062-O550 shows considerable Holocene variability despite being located within 50 km of the mouth of the Eel River, which is one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at ∼2900 calibrated years before present (cal yr BP) indicates the onset of modern upwelling in the CCS, and this period also corresponds to the most intense period of upwelling in the last 7500 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification at TN062-O550 corresponds closely to that seen at nearby ODP Site 1019, as well as in the Santa Barbara Basin of southern California. Other CCS records with less refined age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we suggest that CCS warming may be conducive to upwelling intensification, though future changes are unclear as the mechanisms forcing SST variability may differ.

  7. Investigating the Impact of Climate Change on Hydroelectric Generation and Ancillary Services in California

    Science.gov (United States)

    Forrest, K.; Tarroja, B.; AghaKouchak, A.; Chiang, F.; Samuelsen, S.

    2017-12-01

    Spatial and temporal shifts in hydrological regimes predicted under climate change conditions have implications for the management of reservoirs and hydropower contributions to generation and ancillary services. California relies on large hydropower plants to provide flexible electricity generation, which will be increasingly important for supporting renewable resources. This study examines the impact of climate change on large hydropower generation in California. Four climate models for Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 are utilized to evaluate the impact of the climate change conditions on (1) the magnitude and profile of hydropower generation and (2) the ability of hydropower to provide spinning reserve. Under both RCP scenarios, impacts are regionally dependent, with precipitation projected to increase in northern California and decrease in southern California for the ten-year period investigated (2046-2055). The overall result is a net increase in inflow into large hydropower units as a majority of the hydropower plants studied are located in the northern part of the state. Increased inflow is primarily driven by increased runoff during the winter and does not necessarily result in increased generation, as extreme events yield greater overall spillage, up to 45% of total inflow. Increased winter hydropower generation paired with increased reservoir constraints in summer result in an 11 to 18% decrease in spinning reserve potential across the year. Under high inflow conditions there is a decreased flexibility for choosing generation versus spinning reserve as water needs to be released, regardless. During summer, hydropower units providing spinning reserve experienced decreased inflow and lower reservoir levels compared to the historical baseline, resulting in decreased spinning reserve bidding potential. Decreased bidding, especially during summer periods at peak electricity demand, can result in greater demand for other dispatchable

  8. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER — BASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  9. The carbon budget of California

    International Nuclear Information System (INIS)

    Potter, Christopher

    2010-01-01

    The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government's recent inventory, California's carbon budget is presently dominated by 115 MMTCE per year in fossil fuel emissions of CO 2 (>85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries (7%), livestock-based agriculture (5%), and waste treatment activities (2%). The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer, MODIS) was used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s (estimated by CASA at 120 MMTCE per year) was roughly equivalent to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of about 24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon estimated by CASA to be stored in forests, shrublands, and rangelands across the state, the importance of protection of the natural NPP capacity of California ecosystems cannot be overemphasized.

  10. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern California salt marsh.

    Science.gov (United States)

    Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J

    2017-01-15

    Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Economic opportunities from military remediation sites in California

    International Nuclear Information System (INIS)

    Wood, P.J.

    1994-01-01

    The number of base closures occurring nationwide has created an urgent need to develop new and innovative technologies for cleaning up toxic contamination. Traditional methods for characterizing and remediating contamination at military installations, and elsewhere, have not resulted in timely, efficient and cost-effective cleanups. Past industrial and waste management practices conducted at California bases have resulted in contamination of the soil and ground water by a variety of chemical contaminants. Cleaning solvents and fuel wastes are the most prevalent contamination found at military installations. However, other less common types of contamination may also be present in significant quantities at specific bases. Environmental contamination resulting from leaking underground fuel tanks is also prevalent at California military installations. Common fuels present at military bases include gasoline diesel, bunker fuel, and JP-4 and JP-5 jet fuels. The California Environmental Protection Agency (Cal/EPA) is actively involved in efforts to encourage the development of new environmental technologies, especially at closing military installations

  12. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  13. Is There Room for Biliteracy? Credentialing California's Future Bilingual Teachers

    Science.gov (United States)

    Olivos, Edward M.; Sarmiento, Lilia E.

    2006-01-01

    Despite the ethnic and linguistic diversity found in California's public schools, or because of it, in 1998 voters approved Proposition 227, a ballot initiative designed to dismantle bilingual education programs in the state. By the 2003-2004 school year, the California Department of Education reports that statewide 8,908 teachers were providing…

  14. Streamflow of 2016—Water year summary

    Science.gov (United States)

    Jian, Xiaodong; Wolock, David M.; Lins, Harry F.; Brady, Steven J.

    2017-09-26

    The maps and graphs in this summary describe national streamflow conditions for water year 2016 (October 1, 2015, to September 30, 2016) in the context of streamflow ranks relative to the 87-year period of 1930–2016, unless otherwise noted. The illustrations are based on observed data from the U.S. Geological Survey’s (USGS) National Streamflow Network. The period of 1930–2016 was used because the number of streamgages before 1930 was too small to provide representative data for computing statistics for most regions of the country.In the summary, reference is made to the term “runoff,” which is the depth to which a river basin, State, or other geographic area would be covered with water if all the streamflow within the area during a specified period was uniformly distributed on it. Runoff quantifies the magnitude of water flowing through the Nation’s rivers and streams in measurement units that can be compared from one area to another.In all the graphics, a rank of 1 indicates the highest flow of all years analyzed and 87 indicates the lowest flow of all years. Rankings of streamflow are grouped into much below normal, below normal, normal, above normal, and much above normal based on percentiles of flow (less than 10 percent, 10–24 percent, 25–75 percent, 76–90 percent, and greater than 90 percent, respectively). Some of the data used to produce the maps and graphs are provisional and subject to change.

  15. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  16. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  17. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  18. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  19. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  20. Temperature profile, current, pressure, physical, and other data from XBT casts, current meters, pressure gauges, and CTD casts from the VEGA I and other platforms from the Coastal Waters of California and other locations as part of the Central California Circulation Study from 1984-01-31 to 1985-07-01 (NODC Accession 8700197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, current, pressure, physical, and other data from the VEGA I and other platforms from the Coastal Waters of California and other locations from...

  1. Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California

    Directory of Open Access Journals (Sweden)

    Meredith D. A. Howard

    2017-07-01

    Full Text Available Toxin producing cyanobacterial blooms have increased globally in recent decades in both frequency and intensity. Despite the recognition of this growing risk, the extent and magnitude of cyanobacterial blooms and cyanotoxin prevalence is poorly characterized in the heavily populated region of southern California. Recent assessments of lentic waterbodies (depressional wetlands, lakes, reservoirs and coastal lagoons determined the prevalence of microcystins and, in some cases, additional cyanotoxins. Microcystins were present in all waterbody types surveyed although toxin concentrations were generally low across most habitats, as only a small number of sites exceeded California’s recreational health thresholds for acute toxicity. Results from passive samplers (Solid Phase Adsorption Toxin Tracking (SPATT indicated microcystins were prevalent throughout lentic waterbodies and that traditional discrete samples underestimated the presence of microcystins. Multiple cyanotoxins were detected simultaneously in some systems, indicating multiple stressors, the risk of which is uncertain since health thresholds are based on exposures to single toxins. Anatoxin-a was detected for the first time from lakes in southern California. The persistence of detectable microcystins across years and seasons indicates a low-level, chronic risk through both direct and indirect exposure. The influence of toxic cyanobacterial blooms is a more complex stressor than presently recognized and should be included in water quality monitoring programs.

  2. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    Science.gov (United States)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  3. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  4. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    Science.gov (United States)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  5. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2014-12-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the

  6. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  7. Investigation of a largescale common murre (Uria aalge) mortality event in California in 2015

    Science.gov (United States)

    Gibble, Corinne; Duerr, Rebecca; Bodenstein, Barbara; Lindquist, Kirsten; Lindsey, Jackie; Beck, Jessie; Henkel, Laird A.; Roletto, Jan; Harvey, Jim; Kudela, Raphael

    2018-01-01

    From August through December 2015, beachcast bird survey programs reported increased deposition of common murres (Uria aalge) on central and northern California beaches, but not on southern California beaches. Coastal wildlife rehabilitation centers received more than 1,000 live, stranded, and debilitated murres from Sonoma County to San Luis Obispo County during August–October. Approximately two-thirds of admitted birds were after-hatch-year birds in emaciated body condition and in various stages of molt, with extremely worn plumage. Necropsies were done on a sample (n=35) of birds to determine the probable cause of death of beachcast carcasses. Most birds examined during necropsy were emaciated, with starvation the most likely cause of death. Birds were also tested for underlying infectious diseases at the US Geological Survey National Wildlife Health Center (NWHC) and harmful algal bloom toxins at the University of California, Santa Cruz and the National Oceanographic and Atmospheric Administration's Northwest Fisheries Science Center. Twenty-four out of 29 tested birds had detectable levels of domoic acid, and no indication of infectious disease was found. Emaciation is thought to be the cause of death for these birds, with a large warm water anomaly and harmful algal bloom playing a secondary detrimental role.

  8. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  9. Accounting for the water impacts of ethanol production

    International Nuclear Information System (INIS)

    Fingerman, Kevin R; Torn, Margaret S; Kammen, Daniel M; O'Hare, Michael H

    2010-01-01

    Biofuels account for 1-2% of global transportation fuel and their share is projected to continue rising, with potentially serious consequences for water resources. However, current literature does not present sufficient spatial resolution to characterize this localized effect. We used a coupled agro-climatic and life cycle assessment model to estimate the water resource impacts of bioenergy expansion scenarios at a county-level resolution. The study focused on the case of California, with its range of agroecological conditions, water scarcity, and aggressive alternative fuel incentive policies. Life cycle water consumption for ethanol production in California is up to 1000 times that of gasoline due to a cultivation phase that consumes over 99% of life cycle water use for agricultural biofuels. This consumption varies by up to 60% among different feedstocks and by over 350% across regions in California. Rigorous policy analysis requires spatially resolved modeling of water resource impacts and careful consideration of the various metrics that might act to constrain technology and policy options.

  10. Chemical source characterization of residential wood combustion emissions in Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California

    International Nuclear Information System (INIS)

    Houck, J.E.; Goulet, J.M.; Chow, J.C.; Watson, J.G.

    1989-01-01

    The chemical composition of residential wood combustion particulate emissions was determined for fireplaces and woodstoves. Burn rates, burn patterns, wood burning appliances, and cordwood types characteristic of Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California, were used during sample collection. Samples were collected using a dilution/cooling system to ensure that condensible compounds were captured. Analyses for 44 chemical species were conducted. Source profiles for use in chemical mass balance (CMB) modeling were calculated from the analytical data. The principal chemical species comprising the profiles were organic compounds and elemental carbon. The minor chemical species were sulfur, chlorine, potassium, sodium, calcium, zinc, nitrate, and ammonium. Virtually all potassium was in a water-soluble form, and sulfur emissions between fireplaces and woodstoves were noted. Area-specific source profiles for fireplaces, woodstoves, and overall residential wood combustion are presented

  11. Longitudinal variation in suspended sediment and turbidity of two undisturbed streams in northwestern California in relation to the monitoring of water quality above and below a land disturbance

    Science.gov (United States)

    Steve G. Markman

    1990-01-01

    Abstract - In-stream water quality regulations of California state that silvicultural disturbances must not increase turbidity levels more than 20 percent above naturally occurring background levels. These regulations fail to take into account the natural variation of turbidity and suspended sediment concentration along a short stretch of an undisturbed stream. At...

  12. Monitoring breeding and migration of neotropical migratory birds at Point Loma, San Diego County, California, 5-year summary, 2011–15

    Science.gov (United States)

    Lynn, Suellen; Madden, Melanie C.; Kus, Barbara E.

    2017-04-27

    Executive SummaryWe operated a bird banding station on the Point Loma peninsula in western San Diego County, California, during spring and summer from 2011 to 2015. The station was established in 2010 as part of a long-term monitoring program for neotropical migratory birds during spring migration and for breeding birds as part of the Monitoring Avian Productivity and Survivorship (MAPS) program.During spring migration (April and May), 2011–15, we captured 1,760 individual birds of 54 species, 91 percent (1,595) of which were newly banded, fewer than 1 percent (3) of which were recaptures that were banded in previous years, and 9 percent (143 hummingbirds, 2 hawks, and 17 other birds) of which we released unbanded. We observed an additional 22 species that were not captured. Thirty-four individuals were captured more than once. Bird capture rate averaged 0.49 ± 0.07 captures per net-hour (range 0.41–0.56). Species richness per day averaged 6.87 ± 0.33. Cardellina pusilla (Wilson’s warbler) was the most abundant spring migrant captured, followed by Empidonax difficilis (Pacific-slope flycatcher), Vireo gilvus (warbling vireo), Zonotrichia leucophrys (white-crowned sparrow), and Selasphorus rufus (rufous hummingbird). Captures of white-crowned sparrow decreased, and captures of Pacific-slope flycatcher increased, over the 5 years of our study. Fifty-six percent of known-sex individuals were male and 44 percent were female. The peak number of new species arriving per day ranged from April 1 (2013-six species) to April 16 (2012-five species). A significant correlation was determined between the number of migrants captured each day per net-hour and the density of echoes on the Next-Generation Radar (NEXRAD) images across all 5 years, and in each year except 2014. NEXRAD radar imagery appears to be a useful tool for detecting pulses in migration.Our results indicate that Point Loma provides stopover habitat during migration for 76 migratory species, including 20

  13. Climate change and the northern elephant seal (Mirounga angustirostris population in Baja California, Mexico.

    Directory of Open Access Journals (Sweden)

    María C García-Aguilar

    Full Text Available The Earth's climate is warming, especially in the mid- and high latitudes of the Northern Hemisphere. The northern elephant seal (Mirounga angustirostris breeds and haul-outs on islands and the mainland of Baja California, Mexico, and California, U.S.A. At the beginning of the 21st century, numbers of elephant seals in California are increasing, but the status of Baja California populations is unknown, and some data suggest they may be decreasing. We hypothesize that the elephant seal population of Baja California is experiencing a decline because the animals are not migrating as far south due to warming sea and air temperatures. Here we assessed population trends of the Baja California population, and climate change in the region. The numbers of northern elephant seals in Baja California colonies have been decreasing since the 1990s, and both the surface waters off Baja California and the local air temperatures have warmed during the last three decades. We propose that declining population sizes may be attributable to decreased migration towards the southern portions of the range in response to the observed temperature increases. Further research is needed to confirm our hypothesis; however, if true, it would imply that elephant seal colonies of Baja California and California are not demographically isolated which would pose challenges to environmental and management policies between Mexico and the United States.

  14. Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    McNab, Walt W.; Singleton, Michael J.; Moran, Jean E.; Esser, Bradley K.

    2009-01-01

    Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California's San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water

  15. Managing the research university : Clark Kerr and the University of California

    NARCIS (Netherlands)

    Soo, M; Carson, C

    In the 1950s and 1960s, Clark Kerr led the University of California's Berkeley campus, and then the University of California as a whole. Throughout these years, he developed a system of managerial strategies. This paper shows how Kerr's administrative views drew upon his background in industrial

  16. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  17. Assessment of the use of dispersants on oil spills in California marine waters

    International Nuclear Information System (INIS)

    Trudel, K.; Ross, S.; Belore, R.; Buffington, S.; Ogawa, C.; Panzer, D.

    2002-01-01

    The technical issues regarding the use of dispersants to clean up oil spills from offshore production sources and transportation sources in California were assessed in this study which examined both operational and environmental issues. The operational issues included the dispersibility of produced and imported oils, along with the capabilities of California response resources to deal with typical spills and limiting environmental impacts to offshore environments. The environmental issues include the risks associated with typical spills and potential net environmental benefit of chemically dispersing oil spills. Most crude oils produced offshore California are heavy and border on the undispersable range, but the imported crudes are somewhat lighter. Modeling has shown that most produced oils and some imported oils emulsify quickly and weather more quickly to the point where they are no longer dispersible. There is a very narrow window of time for chemical dispersions to be used effectively. The net environmental benefit analysis demonstrates that the use of dispersants lessens the total environmental impact of spill scenarios. It was emphasized that it is necessary to act quickly if chemical dispersion is to be effective. Rapid response strategies are needed, including locally based vessel and helicopter spraying systems. 19 refs., 8 tabs., 1 fig

  18. Delineation of a hydrocarbon (weathered gasoline) plume in shallow deposits at the U.S. Naval Weapons Station, Seal Beach, California. Water Resources Investigation

    International Nuclear Information System (INIS)

    Schroeder, R.A.

    1991-01-01

    Gasoline from a leaking underground storage tank at the U.S. Naval Weapons Station in Seal Beach, California, was found to have spread almost radially through the shallow subsoil a distance of 150 to 300 feet from the source. Deposits in an area of 160,000 square feet in a zone 1 to 2 feet thick above the shallow water table are contaminated. Seasonal and tidal fluctuations in ground water have spread the gasoline vertically in the subsoil and thereby reduced gasoline concentration below residual saturation in nearly all the contaminated area. Total quantity of gasoline contained in gasoline-unsaturated subsoil is estimated to be 5,800 gallons. The quantity present in gasoline-saturated subsoils was not determined

  19. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    Science.gov (United States)

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  20. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  1. California Workforce: California Faces a Skills Gap

    Science.gov (United States)

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,…

  2. Coast of California Storm and Tidal Waves Study. Southern California Coastal Processes Data Summary,

    Science.gov (United States)

    1986-02-01

    1950-76 (from Brownlie and Taylor, 1981). -42- U r4 P4 V - (1 ,i UU~ll ,,It,,. * *** *i .o o9 o4V4 cc ",,,.I ,- %4 6P atar 4 P40.U0 41 u 1 ඄ 4 .1...Each of these summaries reviews hundreds of scientific papers dealing with California shelf marine geology, chemistry, biology , climatology and...wave action, rain, water, and wind processes, natural or induced landslides, and animal and human activity. Erosion related to animals consists primarily

  3. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    Science.gov (United States)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  4. An Independent Scientific Assessment of Well Stimulation in California Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jane C.S. [California Council on Science and Technology, Sacramento, CA (United States); Feinstein, Laura C. [California Council on Science and Technology, Sacramento, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heberger, Matthew [Pacific Inst., Oakland, CA (United States); Gautier, Donald L. [Dr. Donald Dautier, LLC., Palo Alto, CA (United States)

    2015-01-01

    In 2013, the California Legislature passed Senate Bill 4 (SB 4), setting the framework for regulation of well stimulation technologies in California, including hydraulic fracturing. SB 4 also requires the California Natural Resources Agency to conduct an independent scientific study of well stimulation technologies in California to assess current and potential future practices, including the likelihood that well stimulation technologies could enable extensive new petroleum production in the state, evaluate the impacts of well stimulation technologies and the gaps in data that preclude this understanding, identify risks associated with current practices, and identify alternative practices which might limit these risks. The study is issued in three volumes. This document, Volume I, provides the factual basis describing well stimulation technologies, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II discusses how well stimulation affects water, the atmosphere, seismic activity, wildlife and vegetation, traffic, light and noise levels; it will also explore human health hazards, and identify data gaps and alternative practices. Volume III presents case studies to assess environmental issues and qualitative

  5. Water quality improvement policies: lessons learned from the implementation of Proposition O in Los Angeles, California.

    Science.gov (United States)

    Park, Mi-Hyun; Stenstrom, Michael; Pincetl, Stephanie

    2009-03-01

    This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had insufficient revenues to deploy new projects in its budget. The bond initiative required a supermajority vote (two-thirds of the voters), hence the public had to be convinced that such funding both was necessary and would be effective. The bond act language included project solicitation from the public, as well as multiple benefit objectives. Accordingly, nonprofit organizations mobilized to present projects that included creating new parks, using schoolyards for flood control and groundwater recharge, and replacing parking lots with permeable surfaces, among others. Yet few, if any, of these projects were retained for funding, as the city itself also had a list of priorities and higher technical expertise in justifying them as delivering water quality improvements. Our case study of the implementation of Proposition O points to the potentially different priorities for the renovation of urban infrastructure that are held by nonprofit organizations and city agencies and the importance of structuring public processes clearly so that there are no misimpressions about funding and implementation responsibilities that can lead to disillusionment with government, especially under conditions of fiscal constraints.

  6. Water Quality Improvement Policies: Lessons Learned from the Implementation of Proposition O in Los Angeles, California

    Science.gov (United States)

    Park, Mi-Hyun; Stenstrom, Michael; Pincetl, Stephanie

    2009-03-01

    This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had insufficient revenues to deploy new projects in its budget. The bond initiative required a supermajority vote (two-thirds of the voters), hence the public had to be convinced that such funding both was necessary and would be effective. The bond act language included project solicitation from the public, as well as multiple benefit objectives. Accordingly, nonprofit organizations mobilized to present projects that included creating new parks, using schoolyards for flood control and groundwater recharge, and replacing parking lots with permeable surfaces, among others. Yet few, if any, of these projects were retained for funding, as the city itself also had a list of priorities and higher technical expertise in justifying them as delivering water quality improvements. Our case study of the implementation of Proposition O points to the potentially different priorities for the renovation of urban infrastructure that are held by nonprofit organizations and city agencies and the importance of structuring public processes clearly so that there are no misimpressions about funding and implementation responsibilities that can lead to disillusionment with government, especially under conditions of fiscal constraints.

  7. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  8. California's population geography: lessons for a fourth grade class.

    Science.gov (United States)

    Rushdoony, H A

    1978-11-01

    Purpose of this paper is to present a model for teaching fourth grade children some aspects of the population geography of California from a nontextual approach. The objective is to interest and instruct children in the mobility of the people, and on the reasons why so many families have moved to California from other states. Students should be alerted not only to internal migration problems, but to the excess of births over deaths. Materials necessary for the lessons are transparencies, overhead projector, marking pencils, chalk and chalkboard. After showing the students that California population has approximately doubled every 20 years, the students should be encouraged to find reasons explaining why people have moved to the state, should be able to categorize those reasons under the terms industrial/manufacturing, agricultural, urban or recreational, should learn how to plot population distribution on a California regional outline map, and should attempt to explain why certain parts of California are more popular than others. The teaching model described in this paper may be replicated with modfications for any grade level and area of study.

  9. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    Science.gov (United States)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  10. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  11. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    Science.gov (United States)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  12. Costs at Public Universities: How Does California Compare with Other States? Report 10-12

    Science.gov (United States)

    Fuller, Ryan

    2010-01-01

    The cost of attending the University of California (UC) and California State University (CSU) has increased in recent years as UC and CSU have raised fees in response to reduced state funding. Fees are generally lower than fees at public universities in other states, but with California's higher living costs, the overall cost of attendance at UC…

  13. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  14. Dr. Biswell's influence on the development of prescribed burning in California

    Science.gov (United States)

    Jan W.\\t van Wagtendonk

    1995-01-01

    Prescribed burning in California has evolved from the original practices of the Native Americans, through years of experimentation and controversy, to finally become an accepted ecosystem management activity. When Dr. Harold Biswell arrived in California, he began research on improving game range by using prescribed fires and on understory burning in ponderosa pine (...

  15. Water Management Policy in California

    DEFF Research Database (Denmark)

    Oh, Christina; Svendsen, Gert Tinggaard

    2015-01-01

    Using Olson’s 1965 logic of collective action and group theory, we argue that the “small group” of the “iron triangle” is able to collectively act to push for command-and-control regulations in Californian water policy. There are individual rent-seeking incentives in the small group because...... the politicians do not want to impose tax, and they would like to have short-term development and economic growth during their term in order to gain a positive reputation from the public or to get re-elected. The developers would like more work and prestige and the water bureaucrats have little incentive to limit...

  16. Water tight.

    Science.gov (United States)

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  17. 40 CFR 148.12 - Waste specific prohibitions-California list wastes.

    Science.gov (United States)

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.12...; (2) Liquid hazardous wastes, including free liquids associated with any solid or sludge, containing... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-California...

  18. Ten Years of Vegetation Change in Northern California Marshlands Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in perennial vegetation cover at marshland sites in Northern California reported to have undergone restoration between 1999 and 2009. Results showed extensive contiguous areas of restored marshland plant cover at 10 of the 14 sites selected. Gains in either woody shrub cover and/or from recovery of herbaceous cover that remains productive and evergreen on a year-round basis could be mapped out from the image results. However, LEDAPS may not be highly sensitive changes in wetlands that have been restored mainly with seasonal herbaceous cover (e.g., vernal pools), due to the ephemeral nature of the plant greenness signal. Based on this evaluation, the LEDAPS methodology would be capable of fulfilling a pressing need for consistent, continual, low-cost monitoring of changes in marshland ecosystems of the Pacific Flyway.

  19. The FIRO-2017 Field Campaign: Findings from a Unique Observing Period in the Russian River Watershed in Northern California during Jan - Mar 2017

    Science.gov (United States)

    Wilson, A. M.; Ralph, M.; Demirdjian, R.; Kawzenuk, B.; Cannon, F.; Cordeira, J. M.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed water management strategy that aims to improve water supply, maintain reduction in flood risk, and achieve ecosystem sustainability using data from state of the art watershed monitoring and weather and water forecasting. The first testbed for this strategy is Lake Mendocino, in the Russian River Watershed in northern California. In order to accomplish these goals, it is necessary to understand and better predict Atmospheric Rivers (ARs), which provide 50% of the annual precipitation, and cause most of the heavy rain and flood events in this watershed. To support this effort, a field campaign was held during January-March 2017 in the Russian River Watershed with the science objectives of understanding AR evolution as the AR makes landfall and interacts with terrain, assess reasons for additional variance in the relationship between storm total precipitation and bulk water vapor flux, and to form a unique database for model verification. Coastal and inland field sites equipped with multiple ground-based sensors as well as Vaisala radiosonde systems were deployed to support these objectives. The 2017 water year was among the wettest recorded in California. During the January-March 2017 period, the coastal/inland pair of radiosonde systems captured 13 storms with maximum integrated vapor transport (IVT) values nearing 1200 kg/m/s. This presentation will provide an overview of the water year and the field campaign observations. Results indicate that bulk upslope water vapor flux measured by the ARO, which is the measurement regularly available to forecasters and researchers, correlates extremely well with integrated vapor transport (IVT). The profiles of water vapor flux observed by the coastal and inland sites are very different both in maximum flux magnitude and height of the maximum flux.

  20. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  1. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    International Nuclear Information System (INIS)

    Myers, J. E.; Jackson, L. M.

    2001-01-01

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work

  2. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    Science.gov (United States)

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.

  3. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  4. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Jeff; Murphy, Sean

    2018-04-04

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which use private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV

  5. California Water Resources Development.

    Science.gov (United States)

    1977-01-01

    of disposing of waterborne wastes, includ- trol, navigation, salinity control, water supply, tidelands ing reclamation and reuse where appropriate...studies for Wilson and Wildwood Creeks streams in the South Coastal Basins have been com- Keys Canyon pleted: Moose Canyon Agua Hedionda Creek Otay...resulted from the De- cember 1966 flood. channel and conduit sections pass the reduced flows through Palm Springs and part of the Agua Caliente As a

  6. Economic and Environmental Impacts of Adoption of Genetically Modified Rice in California

    OpenAIRE

    Bond, Craig A.; Carter, Colin A.; Farzin, Y. Hossein

    2005-01-01

    Rice production in California is intensive in input usage. Weed resistance has led to growing chemical usage and has raised costs for many rice producers in California. In recent years, widespread adoption of genetically modified (GM) soybeans, corn, canola, and cotton has provided growers of those crops with new production alternatives that reduce chemical usage. But GM rice has not yet been approved for commercial production in California or elsewhere. One reason that GM rice production has...

  7. Climate and floods still govern California levee breaks

    Science.gov (United States)

    Florsheim, J.L.; Dettinger, M.D.

    2007-01-01

    Even in heavily engineered river systems, climate still governs flood variability and thus still drives many levee breaks and geomorphic changes. We assemble a 155-year record of levee breaks for a major California river system to find that breaks occurred in 25% of years during the 20th Century. A relation between levee breaks and river discharge is present that sets a discharge threshold above which most levee breaks occurred. That threshold corresponds to small floods with recurrence intervals of ???2-3 years. Statistical analysis illustrates that levee breaks and peak discharges cycle (broadly) on a 12-15 year time scale, in time with warm-wet storm patterns in California, but more slowly or more quickly than ENSO and PDO climate phenomena, respectively. Notably, these variations and thresholds persist through the 20th Century, suggesting that historical flood-control effects have not reduced the occurrence or frequency of levee breaks. Copyright 2007 by the American Geophysical Union.

  8. Researching Indigenous Indians in Southern California: Commentary, Bibliography, and Online Resources

    Science.gov (United States)

    Sutton, Imre

    2006-01-01

    This article seeks to present a continuing bibliography of research on Southern California Indians from the past 20 years, and sometimes beyond. The coverage reaches outside the variably defined bounds of Southern California so that it includes peripheral groups such as the Timbisha Shoshone of Death Valley and one or more groups in the Owens…

  9. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  10. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  11. Study of the rocky Intertidal communities of central and northern California: Years 3 and 4. Volume 3 of 5

    International Nuclear Information System (INIS)

    Hardin, D.

    1990-08-01

    The study objectives are to describe seasonal and successional variation in rocky Intertidal community structure; determine the response of rocky Intertidal communities to natural and human-induced disturbances and correlate these responses with successional, seasonal, and latitudinal variation; and correlate life history information and oil toxicity data with data from this and other relevant studies. The Year III and IV report is for the third (1987) and fourth (1988) years of a five-year field experimental study investigating two biological assemblages, the Mytilus assemblage and the Endocladia/Mastocarpus papillatus assemblage, that are being studied at six sites along the California coast. Experimental treatments include clearing three plots in spring 1985 and three plots in fall 1985. Data from the program will be correlated with oil toxicity data and other studies to provide indications of the long term effects of an oil spill on rocky Intertidal communities. The report is volume 3 of a 5 volume set

  12. A 30-year history of earthquake crisis communication in California and lessons for the future

    Science.gov (United States)

    Jones, L.

    2015-12-01

    The first statement from the US Geological Survey to the California Office of Emergency Services quantifying the probability of a possible future earthquake was made in October 1985 about the probability (approximately 5%) that a M4.7 earthquake located directly beneath the Coronado Bay Bridge in San Diego would be a foreshock to a larger earthquake. In the next 30 years, publication of aftershock advisories have become routine and formal statements about the probability of a larger event have been developed in collaboration with the California Earthquake Prediction Evaluation Council (CEPEC) and sent to CalOES more than a dozen times. Most of these were subsequently released to the public. These communications have spanned a variety of approaches, with and without quantification of the probabilities, and using different ways to express the spatial extent and the magnitude distribution of possible future events. The USGS is re-examining its approach to aftershock probability statements and to operational earthquake forecasting with the goal of creating pre-vetted automated statements that can be released quickly after significant earthquakes. All of the previous formal advisories were written during the earthquake crisis. The time to create and release a statement became shorter with experience from the first public advisory (to the 1988 Lake Elsman earthquake) that was released 18 hours after the triggering event, but was never completed in less than 2 hours. As was done for the Parkfield experiment, the process will be reviewed by CEPEC and NEPEC (National Earthquake Prediction Evaluation Council) so the statements can be sent to the public automatically. This talk will review the advisories, the variations in wording and the public response and compare this with social science research about successful crisis communication, to create recommendations for future advisories

  13. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity

  14. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  15. Global climate change and California

    International Nuclear Information System (INIS)

    Knox, J.B.; Scheuring, A.F.

    1991-01-01

    In the fall of 1988 the University of California organized a new public-service initiative on global climate change in response to inquiries and requests from members of Congress and the Department of Energy (DOE). This new systemwide initiative involved all of the University of California campuses and the University's three national laboratories at Berkeley, Los Alamos, and Livermore. The goal of this Greenhouse Initiative was to focus the multidisciplinary resources of the UC campuses and the team-oriented research capabilities of the laboratories on the prospect of global warming and its associated effects on the planet and its nations. In consultation with the DOE, the organizers proposed a series of workshops to focus University of California research resources on the issue of global warming, to contribute to the congressionally mandated DOE studies on options for the US to reduce carbon dioxide emissions by 20% by the year 2000, and to begin building a long-term research base contributing to an improved understanding of global change in all of its complexity and diverse discipline implications. This volume contains papers from the first of these workshops. Individual papers are processed separately for inclusion in the appropriate data bases

  16. Predictability of the California Current System

    Science.gov (United States)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and

  17. Heat-related inpatient hospitalizations and emergency room visits among California residents, May-September, 2000-2010.

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains case counts, rates, and confidence intervals of heat-related inpatient hospitalizations and ED visits among California residents for the years...

  18. Trends in heavy oil production and refining in California

    International Nuclear Information System (INIS)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10 degrees to 20 degrees API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources

  19. Microsatellite analysis of medfly bioinfestations in California.

    Science.gov (United States)

    Bonizzoni, M; Zheng, L; Guglielmino, C R; Haymer, D S; Gasperi, G; Gomulski, L M; Malacrida, A R

    2001-10-01

    The Mediterranean fruit fly, Ceratitis capitata, is a destructive agricultural pest with a long history of invasion success. This pest has been affecting different regions of the United States for the past 30 years, but a number of studies of medfly bioinfestations has focused on the situation in California. Although some progress has been made in terms of establishing the origin of infestations, the overall status of this pest in this area remains controversial. Specifically, do flies captured over the years represent independent infestations or the persistence of a resident population? We present an effort to answer this question based on the use of multilocus genotyping. Ten microsatellite loci were used to analyse 109 medflies captured in several infestations within California between 1992 and 1998. Using these same markers, 242 medflies from regions of the world having 'established' populations of this pest including Hawaii, Guatemala, El Salvador, Ecuador, Brazil, Argentina and Peru, were also analysed. Although phylogenetic analysis, amova analysis, the IMMANC assignment test and geneclass exclusion test analysis suggest that some of the medflies captured in California are derived from independent invasion events, analysis of specimens from the Los Angeles basin provides support for the hypothesis that an endemic population, probably derived from Guatemala, has been established.

  20. Evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California; Phase 3

    Science.gov (United States)

    Hamlin, S.N.

    1987-01-01

    Infiltration tests were used to evaluate the potential of basin spreading surface water as a means of artificially recharging the aquifer system in eastern San Joaquin County, California. Two infiltration sites near Lockeford and Linden were selected on the basis of information collected during the first two phases of the study. Data from the infiltration tests indicate that the two sites are acceptable for recharge by the basin-spreading method. Infiltration rates ranged between 6.7 and 10.5 ft/day near Lockeford and between 2.6 and 11.2 ft/day near Linden. Interpretation of these data is limited by lack of information on the response of the saturated zone during testing and by the inherent difficulty in extrapolating the results of small-scale tests to larger long-term operations. Lithology is a major factor that controls infiltration rates at the test sites. The unsaturated zone is characterized by heterogeneous layers of coarse- and fine- grained materials. Clay layers of low hydraulic conductivity commonly form discontinuous lenses that may cause a transient perched water table to develop during recharge. Water level measurements from wells screened in the unsaturated zone indicate that the perched water table could reach the land surface after 2 and 5 months of recharge near Lockeford and Linden, respectively. These figures probably represent the minimum time necessary for saturation of the land. Another major factor that affects infiltration rates is the quality of the recharge water, particularly the suspended sediment content. The clogging action of suspended sediment may be minimized by: (1) pretreatment of recharge water in a settling pond, (2) adherence to a routine program of monitoring and maintenance, and (3) proper design of the recharge facility. Other factors that affect infiltration rates include basin excavation technique, basin shape, and maintenance procedures. Efficient operation of the recharge facility requires careful attention to the