WorldWideScience

Sample records for california current system

  1. Dynamics of the southern California current system

    Science.gov (United States)

    di Lorenzo, Emanuele

    The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local

  2. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  3. Patterns and processes in the California Current System

    Science.gov (United States)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  4. Biogeochemical properties of eddies in the California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  5. Remote forcing of subsurface currents and temperatures near the northern limit of the California Current System

    Science.gov (United States)

    Engida, Zelalem; Monahan, Adam; Ianson, Debby; Thomson, Richard E.

    2016-10-01

    Local and remote wind forcing of upwelling along continental shelves of coastal upwelling regions play key roles in driving biogeochemical fluxes, including vertical net fluxes of carbon and nutrients. These fluxes are responsible for high primary productivity, which in turn supports a lucrative fishery in these regions. However, the relative contributions of local versus remote wind forcing are not well quantified or understood. We present results of coherence analyses between currents at a single mooring site (48.5°N, 126°W) in the northern portion of the California Current System (CalCS) from 1989 to 2008 and coincident time series of North America Regional Reanalysis (NARR) 10 m wind stress within the CalCS (36-54°N, 120-132°W). The two-decade-long current records from the three shallowest depths (35, 100, and 175 m) show a remote response to winds from south as far as 36°N. In contrast, only temperatures at the deepest depth (400 m) show strong coherences with remote winds. Weaker local wind influence is observed in both the currents and 400 m temperatures but is mostly due to the large spatial coherence within the wind field itself. Lack of coherence between distal winds and the 400 m currents suggests that the temperature variations at that depth are driven by vertical motion resulting from poleward travelling coastal trapped waves (CTWs). Understanding the effects of remote forcing in coastal upwelling regions is necessary for determining the occurrence and timing of extreme conditions in coastal oceans, and their subsequent impact on marine ecosystems.

  6. Effects of Climate Change on Sardine Productivity in the California Current System

    Science.gov (United States)

    Baumgartner, T. R.; Auad, G.; Miller, A. J.

    2007-05-01

    The Pacific sardine (Sardinops sagax caeruleus) is one of several coastal pelagic, planktivorous species of fish that provide important trophic links within the ecosystems of the major eastern and western boundary currents. Significant and persistent change in sardine productivity has occurred in the California Current over interdecadal periods in response to reorganization of basin-wide, ocean-atmosphere circulation. Less extreme, but still significant changes in sardine productivity are associated with interannual to decadal-scale climate variability. A precipitous decline of the sardine population began in the mid-1940s with a shift in climate leading to cooling of the California Current system. While the decline, and ultimately the collapse of the population, was exacerbated by intensive fishing, the sardine also suffered a severe reduction in productivity with the southward contraction of favorable thermal habitat that led to restriction of the population to the waters off Southern California and Baja California. This southward displacement resulted in geographic separation of the population from the region off central and northern California that is characterized by significantly higher concentrations of zooplankton that supported the previous levels of success in spawning and larval development. The climate shift in 1976-77 led to the recovery of the population and extension of its range of distribution northwards into the waters off British Columbia. The relation of reproductive success of the sardine population to interannual and decadal climate change was examined for the period 1982-2005 using a suite of seasonal indices representing climate processes and habitat conditions (including zooplankton food levels) occurring through the different stages in the sardine life cycle. We used both stepwise regression and EOF analyses to determine the association between levels of recruitment success and seasonal indices of the Pacific Decadal Oscillation, Ekman

  7. Climatic modulation of recent trends in ocean acidification in the California Current System

    Science.gov (United States)

    Turi, G.; Lachkar, Z.; Gruber, N.; Münnich, M.

    2016-01-01

    We reconstruct the evolution of ocean acidification in the California Current System (CalCS) from 1979 through 2012 using hindcast simulations with an eddy-resolving ocean biogeochemical model forced with observation-based variations of wind and fluxes of heat and freshwater. We find that domain-wide pH and {{{Ω }}}{arag} in the top 60 m of the water column decreased significantly over these three decades by about -0.02 decade-1 and -0.12 decade-1, respectively. In the nearshore areas of northern California and Oregon, ocean acidification is reconstructed to have progressed much more rapidly, with rates up to 30% higher than the domain-wide trends. Furthermore, ocean acidification penetrated substantially into the thermocline, causing a significant domain-wide shoaling of the aragonite saturation depth of on average -33 m decade-1 and up to -50 m decade-1 in the nearshore area of northern California. This resulted in a coast-wide increase in nearly undersaturated waters and the appearance of waters with {{{Ω }}}{arag}\\lt 1, leading to a substantial reduction of habitat suitability. Averaged over the whole domain, the main driver of these trends is the oceanic uptake of anthropogenic CO2 from the atmosphere. However, recent changes in the climatic forcing have substantially modulated these trends regionally. This is particularly evident in the nearshore regions, where the total trends in pH are up to 50% larger and trends in {{{Ω }}}{arag} and in the aragonite saturation depth are even twice to three times larger than the purely atmospheric CO2-driven trends. This modulation in the nearshore regions is a result of the recent marked increase in alongshore wind stress, which brought elevated levels of dissolved inorganic carbon to the surface via upwelling. Our results demonstrate that changes in the climatic forcing need to be taken into consideration in future projections of the progression of ocean acidification in coastal upwelling regions.

  8. Partial decoupling of primary productivity from upwelling in the California Current system

    Science.gov (United States)

    Renault, Lionel; Deutsch, Curtis; McWilliams, James C.; Frenzel, Hartmut; Liang, Jun-Hong; Colas, François

    2016-07-01

    Coastal winds and upwelling of deep nutrient-rich water along subtropical eastern boundaries yield some of the ocean's most productive ecosystems. Simple indices of coastal wind strength have been extensively used to estimate the timing and magnitude of biological productivity on seasonal and interannual timescales and underlie the prediction that anthropogenic climate warming will increase the productivity by making coastal winds stronger. The effect of wind patterns on regional net primary productivity is not captured by such indices and is poorly understood. Here we present evidence, using a realistic model of the California Current system and satellite measurements, that the observed slackening of the winds near the coast has little effect on near-shore phytoplankton productivity despite a large reduction in upwelling velocity. On the regional scale the wind drop-off leads to substantially higher production even when the total upwelling rate remains the same. This partial decoupling of productivity from upwelling results from the impact of wind patterns on alongshore currents and the eddies they generate. Our results imply that productivity in eastern boundary upwelling systems will be better predicted from indices of the coastal wind that account for its offshore structure.

  9. Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current System

    Science.gov (United States)

    Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.

    2013-10-01

    From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.

  10. Cetacean distributions relative to ocean processes in the northern California Current System

    Science.gov (United States)

    Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.

    2005-01-01

    Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a

  11. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System

    Directory of Open Access Journals (Sweden)

    C. Hauri

    2012-08-01

    Full Text Available Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS have a naturally low pH and aragonite saturation state (Ωarag, making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS to conduct preindustrial and transient (1995–2050 simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 as projected by the NCAR CSM 1.4 model run under either the IPCC SRES A2 or B1 scenarios. Using ROMS, we investigate the timing of transition decades during which pH and Ωarag depart from their modeled preindustrial (1750 and present-day (2011 variability envelopes. We report these transition decades by noting the midpoint of the ten-year transition periods. In addition, we also analyze the timing of near permanent aragonite undersaturation in the upper 100 m of the water column. Our results show that an interplay of physical and biogeochemical processes create large seasonal variability in pH (∼ 0.14 and Ωarag (∼ 0.2. Despite this large variability, we find that present-day pH and Ωarag have already moved out of their preindustrial variability envelopes due to the rapidly increasing concentrations of atmospheric CO2. The simulations following the A2 emissions scenario suggest that nearshore surface pH of the northern and central CCS will move out of their present-day variability envelopes by 2045 and 2037, respectively. However, surface Ωarag of the northern and central CCS subregions are projected to depart from their present-day variability envelopes sooner, by 2030 and 2035, respectively. By 2025, the aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m for the duration of the annual cycle, causing near permanent undersaturation in subsurface waters. Overall, our

  12. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System

    Directory of Open Access Journals (Sweden)

    C. Hauri

    2013-01-01

    Full Text Available Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS have a naturally low pH and aragonite saturation state (Ωarag, making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS to conduct preindustrial and transient (1995–2050 simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ~ 0.14 and Ωarag (~ 0.2 for the nearshore areas (50 km from shore. This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and Ωarag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation due to the rapidly increasing concentrations of atmospheric CO2. The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface Ωarag, which is projected to depart from its present-day variability envelope by the early- to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of Ωarag, this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of

  13. California Current Monitoring Using the NPS Ocean Acoustic Observatory

    Science.gov (United States)

    2016-06-07

    California Current Monitoring Using The NPS Ocean Acoustic Observatory Ching-Sang Chiu Curtis A. Collins Department of Oceanography Naval...frequency sound traveling initially downslope from a seamount, through the California Current Front over deep water, and then upslope through inshore...monitor the California Current System. APPROACH The approach is to implement a tomographic observing system consisting of the decommissioned Pt Sur, San

  14. Air-sea exchange of CO2 at a Northern California coastal site along the California Current upwelling system

    Directory of Open Access Journals (Sweden)

    W. C. Oechel

    2012-12-01

    Full Text Available Uncertainty in the air-sea CO2 exchange (CO2 flux in coastal upwelling zones is attributed to high temporal variability, which is caused by changes in ocean currents. Upwelling transports heterotrophic, CO2 enriched water to the surface and releases CO2 to the atmosphere, whereas the presence of nutrient-rich water at the surface supports high primary production and atmospheric CO2 uptake. To quantify the effects of upwelling on CO2 fluxes, we measured CO2 flux at a coastal upwelling site off of Bodega Bay, California, during the summer of 2007 and the fall of 2008 using the eddy covariance technique and the bulk method with pCO2 measurements from November 2010 to July 2011. Variations in sea surface temperatures (SST and alongshore wind speeds suggest that the measurement period in 2007 coincided with a typical early-summer upwelling period and the measurement period in 2008 was during a typical fall relaxation period. A strong source of CO2 (~1.5 ± 7 SD (standard deviation g C m−2 day−1 from the ocean to the atmosphere during the upwelling period was concurrent with high salinity, low SST, and low chlorophyll density. In contrast, a weak source of CO2 flux (~0.2 ± 3 SD g C m−2 day−1 was observed with low salinity, high SST and high chlorophyll density during the relaxation period. Similarly, the sink and source balance of CO2flux was highly related to salinity and SST during the pCO2 measurement periods; high salinity and low SST corresponded to high pCO2, and vice versa. We estimated that the coastal area off Bodega Bay was likely a source of CO2 to the atmosphere based on the following conclusions: (1 the overall CO2 flux estimated from both eddy covariance and pCO2 measurements showed a source of CO2; (2 although the relaxation period during the 2008 measurements were favorable to CO2 uptake, CO2 flux during this period was still a slight source, (3 salinity and SST were found to be good predictors of the CO2 flux for both eddy

  15. Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure

    Science.gov (United States)

    Pallã S-Sanz, E.; Johnston, T. M. S.; Rudnick, D. L.

    2010-12-01

    The three-dimensional dynamics in a shallow front are examined using density and current data from two surveys 100 km offshore of Monterey Bay, California. Survey 1 is forced by down-front winds, and both surveys have considerable cross-front density gradients and flow curvature. The maximum Rossby numbers on the dense side reached maxima of +0.60 in survey 1 and +0.45 in survey 2. Downwelling occurs in regions of confluence (frontogenesis) associated with potential vorticity (PV) change and thermal wind imbalance. Streamers of particulate matter and PV are advected southeastward by the frontal jet and downward. Nonlinear Ekman currents advect dense water over light water in the presence of down-front winds, which leads to upwelling along the front and downwelling on the light side of the front. At sites of active ageostrophic secondary circulation (ASC), induced by frontogenesis or Ekman effects, the observed cross-front ageostrophic velocity is consistent with the diagnosed vertical velocity. Furthermore, in survey 2, ageostrophic divergence may play an important role at the curved front, presumably counteracting quasi-geostrophic frontogenesis due to isopycnal confluence. Downward frictional vertical PV flux below the surface extracts PV from the pycnocline and reinforces the frontogenetic vertical PV flux. PV destruction at the surface is inferred from a low PV anomaly below the mixed layer in survey 2. Since the magnitude of the frontogenetic ASC is only twice the magnitude of Ekman suction, external forcing may have a considerable impact on the vertical heat and PV fluxes.

  16. Impact of boundary regions on the interior circulation of the California Current System in a regional modeling framework

    Science.gov (United States)

    Veneziani, M.; Edwards, C.; Moore, A.

    2008-12-01

    We use the Regional Ocean Modeling System (ROMS) to model the circulation of the California Current System (CCS) using ECCO-GODAE products to force the model at the open boundaries of the domain. We investigate the impact that lateral boundary forcing (and the boundary region in general) has on particular metrics of the interior circulation by adopting both an adjoint model and a traditional sensitivity approach. Adjoint methods are naturally suited to sensitivity studies as they provide the direct dependencies of circulation metrics on uncertainties of the model initial conditions, surface and lateral external forcing, and model parameters, but their results are only valid within the time scale during which the linearity assumption underlying adjoint models can be considered to hold. More traditional sensitivity studies must be conducted to investigate longer time scales. We describe the adjoint model results for two metrics that represent the upwelling processes of the Central California region and the mean sea level field of the coastal circulation, respectively. The spatial distribution of the adjoint sensitivity fields allows us to quantify the contribution of the boundary regions over a biweekly time scale. We investigate longer time scales by adopting two methods: 1) apply different ECCO products at the open boundaries and evaluate mean stratification changes in the CalCOFI coastal region; 2) release passive tracers at the boundaries and calculate ventilation time scales and pathways from the boundary areas to the CCS interior.

  17. The influence of Pacific Equatorial Water on fish diversity in the southern California Current System

    Science.gov (United States)

    McClatchie, Sam; Thompson, Andrew R.; Alin, Simone R.; Siedlecki, Samantha; Watson, William; Bograd, Steven J.

    2016-08-01

    The California Undercurrent transports Pacific Equatorial Water (PEW) into the Southern California Bight from the eastern tropical Pacific Ocean. PEW is characterized by higher temperatures and salinities, with lower pH, representing a source of potentially corrosive (aragonite,Ωfish diversity. We use hydrographic data to characterize the interannual and seasonal variability of estimated pH and aragonite saturation with depth. Although there is substantial variability in PEW presence as measured by spice on the 26.25-26.75 isopycnal layer, as well as in pH and aragonite saturation, we found fish diversity to be stable over the decades 1985-1996 and 1999-2011. We detected significant difference in species structure during the 1998 La Niña period, due to reduced species evenness. Species richness due to rare species was higher during the 1997/1998 El Niño compared to the La Niña but the effect on species structure was undetectable. Lack of difference in the species abundance structure in the decade before and after the 1997/1999 ENSO event showed that the assemblage reverted to its former structure following the ENSO perturbation, indicating resilience. While the interdecadal species structure remained stable, the long tail of the distributions shows that species richness increased between the decades consistent with intrusion of warm water with more diverse assemblages into the southern California region.

  18. Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California

    Science.gov (United States)

    Heimsund, S.; Xu, J.; Nemec, W.

    2007-12-01

    The method of computational fluid dynamics (CFD) has been used, in the form of a 3D numerical model (Flow- 3D®), to perform a full-scale simulation of turbidity currents measured in December 2002 by three moorings in the Soquel and Monterey canyons. The model was verified by simulation of laboratory flows, and was upscaled to the Monterey Canyon system on the basis of high-resolution bathymetric data and flow measurements. The measured velocity profiles were sufficient to assess the flow thickness, initial velocity and duration in the canyon head zone. A computational grid with a highest feasible resolution was used, and both bathymetry and hydrostatic pressure were accounted for. The volumetric sediment concentration and exact grain- size composition of the flows were unknown, and thus a range of values for the initial concentration and bed roughness were assumed and assessed on a trial-and-error basis. The simulations reveal the behavior of a turbidity current along its descent path, including its local hydraulic characteristics (the 3D field of velocity, sediment concentration, shear stress, strain rate, and dynamic viscosity, as well as the magnitude of velocity and turbulent shear). The results confirm that the velocity structure of turbidity current is highly sensitive to variation in seafloor topography. The December 17th flow in the Soquel Canyon appears to have lost capacity by dilution over a relatively short distance and shown significant velocity fluctuations, which is attributed to the rugged topography of the canyon floor. A major loss of momentum occurred when the flow plunged at high angle into the Monterey Canyon, crashing against its bend's southern wall. The December 20th flow in the Monterey Canyon, in contrast, developed a considerably longer body and strongly accelerated towards the canyon's sharp second bend before crashing against its western wall. The mooring data show a down-canyon decline of velocity and suggest gradual waning, but the

  19. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    Science.gov (United States)

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-06-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

  20. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System.

    Science.gov (United States)

    Jacox, Michael G; Hazen, Elliott L; Bograd, Steven J

    2016-06-09

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

  1. Alongcoast structure and interannual variability of seasonal midshelf water properties and velocity in the Northern California Current System

    Science.gov (United States)

    Hickey, B.; Geier, S.; Kachel, N.; Ramp, S.; Kosro, P. M.; Connolly, T.

    2016-10-01

    Moored sensors were maintained for ˜5 years on the northern California Current System (CCS) midshelf. The alongcoast sensor array spanned the area of influence of the plume from the Columbia River, several submarine canyons, as well as a coastal promontory where the equatorward coastal jet frequently separates from the shelf. Upwelling-favorable wind stress magnitude decreases poleward by more than a factor of three over the latitudinal range and shelf width varies by a factor of two. In spite of the alongcoast structure in setting, both seasonal and interannual patterns in subsurface layer water properties were remarkably similar at all sites. Higher in the water column, freshwater forcing was substantial. Because of the near surface freshwater input, seasonal sea surface and subsurface temperatures were almost perfectly out of phase in the northernmost CCS, with a mid water column inversion in winter. Year to year differences in subsurface layer wintertime water properties were similar to spatial and temporal patterns of wind stress variability: little alongcoast structure except in salinity, but pronounced interannual differences strongly related to local wind stress. Summertime wind and subsurface property patterns were the opposite of those in winter: pronounced alongcoast wind stress structure, but little or no alongcoast or interannual variability in water properties, and only a weak relationship to local wind stress. Summertime interannual water property variability, including source waters, was shown to be more consistent with "remote forcing" via larger scale wind stress rather than with local wind stress, particularly in the northernmost CCS.

  2. The California Current System: A Multiscale Overview and the Development of a Feature-Oriented Regional Modeling System (FORMS)

    Science.gov (United States)

    2010-01-01

    for their help and support in procuring the datasets from various sources. We appreciate the editorial assistance provided by Mr. Frank Smith and...Current System. Part II: Frontal Processes. J. Phys. Oceanogr., 38, 44–64. Castelao, R.M., E.J.D. Campos and J.L. Miller, 2004. A Modelling Study of

  3. Variability and trends of ocean acidification in the Southern California Current System: A time series from Santa Monica Bay

    Science.gov (United States)

    Leinweber, A.; Gruber, N.

    2013-07-01

    We investigate the temporal variability and trends of pH and of the aragonite saturation state, Ωarag, in the southern California Current System on the basis of a 6 year time series from Santa Monica Bay, using biweekly observations of dissolved inorganic carbon and combined calculated and measured alkalinity. Median values of pH and Ωarag in the upper 20 m are comparable to observations from the subtropical gyres, but the temporal variability is at least a factor of 5 larger, primarily driven by short-term upwelling events and mesoscale processes. Ωarag and pH decrease rapidly with depth, such that the saturation horizon is reached already at 130 m, on average, but it occasionally shoals to as low as 30 m. No statistically significant linear trends emerge in the upper 100 m, but Ωarag and pH decrease, on average, at rates of -0.009±0.006 yr-1 and -0.004±0.003 yr-1 in the 100-250 m depth range. These are somewhat larger, but not statistically different from the expected trends based on the recent increase in atmospheric CO2. About half of the variability in the deseasonalized data can be explained by the El Niño Southern Oscillation, with warm phases (El Niño) being associated with above normal pH and Ωarag. The observed variability and trend in Ωarag and pH is well captured by a multiple linear regression model on the basis of a small number of readily observable independent variables. This permits the estimation of these variables for related sites in the region.

  4. Sensitivity of carbon paleoproductivity in the Southern California Current System on different time scales for the last 2 ka

    Science.gov (United States)

    Abella-Gutiérrez, Jose; Herguera, Juan Carlos

    2016-07-01

    The San Lázaro Basin (SLB) sediment record is highly sensitive to the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) due to its location vertically underlying the dynamic boundary between the northern, cooler and fresher waters of the California Current System (CCS) and the southern, warmer and saltier surface waters from the subtropics and tropics. Warm sea surface temperatures (SSTs) and the ensuing stratified surface water column favor carbonate productivity, mostly dominated by the export of coccolithophorids as observed during El Niño events, while cool SSTs and a less stratified water column favor a relatively higher export of organic carbon. Here we show how during the last two millennia, the mechanisms that drive the organic carbon and carbonate export depend on the time scale considered. The organic carbon and carbonate records show opposite trends for the past 2000 years. On multicentennial periodicities, their variability is probably a result of precessional forcing and associated decreasing Northern Hemisphere insolation, which has been shown to affect the migration of the Intertropical Convergence Zone and the polar jet stream. On shorter time scales, interannual to centennial, the SLB records exhibit an ENSO-like variability; similarly, decadal to multidecadal variability is correlated with instrumental and reconstructed PDO records. We further show how interannual variance seems to have increased during the Little Ice Age, most likely related to large ENSO events, in contrast with an apparent reduction in this type of variability between 400 and 1350 Common Era, suggesting a changing sensitivity of the ENSO teleconnection in the southern CCS for the past two millennia.

  5. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pilemounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all humanuse of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see http://dx.doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  6. Data for calculating population, collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily; Felis, Jonathan J.; Pereksta, David M.

    2016-01-01

    The U.S. Geological Survey, Western Ecological Research Center (USGS-WERC) was requested by the Bureau of Ocean Energy Management (BOEM) to create a database for marine birds of the California Current System (CCS) that would allow quantification and species ranking regarding vulnerability to offshore wind energy infrastructure (OWEI). This was needed so that resource managers could evaluate potential impacts associated with siting and construction of OWEI within the California Current System section of the Pacific Offshore Continental Shelf, including California, Oregon, and Washington. Along with its accompanying Open File Report (OFR), this comprehensive database can be used (and modified or updated) to quantify marine bird vulnerability to OWEIs in the CCS at the population level. For 81 marine bird species present in the CCS, we generated numeric scores to represent three vulnerability indices associated with potential OWEI: population vulnerability, collision vulnerability, and displacement vulnerability. The metrics used to produce these scores includes global population size, proportion of the population in the CCS, threat status, adult survival, breeding score, annual occurrence in the CCS, nocturnal and diurnal flight activity, macro-avoidance behavior, flight height, and habitat flexibility; values for these metrics can be updated and adjusted as new data become available. The scoring methodology was peer-reviewed to evaluate if the metrics identified and the values generated were appropriate for each species considered. The numeric vulnerability scores in this database can readily be applied to areas in the CCS with known species distributions and where offshore renewable energy development is being considered. We hope that this information can be used to assist meaningful planning decisions that will impact seabird conservation. These data support the following publication: Adams, J., Kelsey, E.C., Felis J.J., and Pereksta, D.M., 2016

  7. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  8. GLOBEC NEP Northern California Current Bird Data NH0005, 0007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) Northern California Current Bird Data from R/V New Horizon cruises NH0005 and 0007. As a part of...

  9. An historical analysis of the California Current circulation using ROMS 4D-Var: System configuration and diagnostics

    Science.gov (United States)

    Neveu, Emilie; Moore, Andrew M.; Edwards, Christopher A.; Fiechter, Jérôme; Drake, Patrick; Crawford, William J.; Jacox, Michael G.; Nuss, Emma

    2016-03-01

    The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation tool has been used to compute two sequences of circulation analyses for the U.S. west coast. One sequence of analyses spans the period 1980-2010 and is subject to surface forcing derived from relatively low resolution atmospheric products from the Cross-Calibrated Multi-Platform wind product (CCMP) and the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis project. The second sequence spans the shorter period 1999-2012 and is subject to forcing derived from a high resolution product from the Naval Research Laboratory Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). The two analysis periods are divided into eight day windows, and all available satellite observations of sea surface temperature and sea surface height, as well as in situhydrographic profiles are assimilated into ROMS using 4D-Var. The performance of the system is monitored in terms of the cost function and the statistics of the innovations, and the impact of data assimilated on the circulation is assessed by comparing the posterior circulation estimates with the prior circulation and the circulation from a run of the model without data assimilation, with particular emphasis on eddy kinetic energy. This is part I of a two part series, and the circulation variability of the 4D-Var analyses will be documented in part II.

  10. Experiments with Seasonal Forecasts of ocean conditions for the Northern region of the California Current upwelling system

    Science.gov (United States)

    Siedlecki, Samantha A.; Kaplan, Isaac C.; Hermann, Albert J.; Nguyen, Thanh Tam; Bond, Nicholas A.; Newton, Jan A.; Williams, Gregory D.; Peterson, William T.; Alin, Simone R.; Feely, Richard A.

    2016-06-01

    Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA’s Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.

  11. Data assimilation of physical and chlorophyll a observations in the California Current System using two biogeochemical models

    Science.gov (United States)

    Mattern, Jann Paul; Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2017-01-01

    Biogeochemical numerical models coupled to physical ocean circulation models are commonly combined with data assimilation in order to improve the models' state or parameter estimates. Yet much still needs to be learned about important aspects of biogeochemical data assimilation, such as the effect of model complexity and the importance of more realistic model formulations on assimilation results. In this study, 4D-Var-based state estimation is applied to two biogeochemical ocean models: a simple NPZD model with 4 biogeochemical variables (including 1 phytoplankton, 1 zooplankton) and the more complex NEMURO model, containing 11 biogeochemical variables (including 2 phytoplankton, 3 zooplankton). Both models are coupled to a 3-dimensional physical ocean circulation model of the U.S. west coast based on the Regional Ocean Modelling System (ROMS). Chlorophyll satellite observations and physical observations are assimilated into the model, yielding substantial improvements in state estimates for the observed physical and biogeochemical variables in both model formulations. In comparison to the simpler NPZD model, NEMURO shows a better overall fit to the observations. The assimilation also results in small improvements for simulated nitrate concentrations in both models and no apparent degradation of the output for other unobserved variables. The forecasting skill of the biogeochemical models is strongly linked to model performance without data assimilation: for both models, the improved fit obtained through assimilation degrades at similar relative rates, but drops to different absolute levels. Despite the better performance of NEMURO in our experiments, the choice of model and desired level of complexity should depend on the model application and the data available for assimilation.

  12. Current California Drought: Impact on Citrus Trees and Potential Mitigation

    Science.gov (United States)

    California is in another cycle of extended drought. The article reviews and discusses likely impact of the current drought on citrus growers and potential mitigation techniques. Citrus physiological responses to water stress is briefly reviewed. The direct impact of drought on citrus is reduced frui...

  13. Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    Directory of Open Access Journals (Sweden)

    G. Turi

    2013-08-01

    Full Text Available We quantify the CO2 source/sink nature of the California Current System (CalCS and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2 in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-ecosystem-biogeochemical ocean model on the basis of the Regional Oceanic Modeling System (ROMS. The model-simulated pCO2 agrees very well with in situ observations over the entire domain with virtually no bias, but the model overestimates pCO2 in the nearshore 100 km, and underestimates the observed temporal variability. In the annual mean, the entire CalCS within 800 km of the coast and from ~ 33° N to 46° N is essentially neutral with regard to atmospheric CO2. The model simulates an integrated uptake flux of −0.9 Tg C yr–1, corresponding to a very small average flux density of −0.05 mol C m–2 yr–1, with an uncertainty of the order of ±0.20 mol C m–2 yr–1. This near zero flux is a consequence of an almost complete regional compensation between the strong outgassing in the nearshore region (first 100 km, with flux densities of more than 3 mol C m–2 yr–1 and a weaker, but more widespread uptake flux in the offshore region with an average flux density of −0.17 mol C m–2 yr–1. This pattern is primarily a result of the interaction between upwelling in the nearshore that brings waters with high concentrations of dissolved inorganic carbon (DIC to the surface, and an intense biological drawdown of this DIC, driven by the nutrients that are upwelled together with the DIC. The biological drawdown occurs too slowly to prevent the escape of a substantial amount of CO2 into the atmosphere, but this is compensated by the biological generation of undersaturated conditions offshore of 100 km, permitting the CalCS to take up most of the escaped CO2. Thus, the biological pump over the entire CalCS is essentially 100

  14. Collapse of the California Current during glacial maxima linked to climate change on land.

    Science.gov (United States)

    Herbert, T D; Schuffert, J D; Andreasen, D; Heusser, L; Lyle, M; Mix, A; Ravelo, A C; Stott, L D; Herguera, J C

    2001-07-06

    Time series of alkenone unsaturation indices gathered along the California margin reveal large (4 degrees to 8 degrees C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages.

  15. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  16. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  17. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  18. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  19. Data Assimilation and Model Simulations in the California Current

    Science.gov (United States)

    2016-06-07

    regions in order to improve our scientific understanding of the structure and dynamics of such regions. OBJECTIVES The broad objective of this research...analysis, and to apply the method to several quasi-synoptic hydrographic data sets from the California Current and the Alboran Sea. WORK COMPLETED During...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School,Department of Meteorology (MR/Hy),589 Dyer Rd

  20. Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3-Assimilation in a realistic context using satellite and in situ observations

    Science.gov (United States)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    A fully coupled physical and biogeochemical ocean data assimilation system is tested in a realistic configuration of the California Current System using the Regional Ocean Modeling System. In situ measurements for sea surface temperature and salinity as well as satellite observations for temperature, sea level and chlorophyll are used for the year 2000. Initial conditions of the combined physical and biogeochemical state are adjusted at the start of each 3-day assimilation cycle. Data assimilation results in substantial reduction of root-mean-square error (RMSE) over unconstrained model output. RMSE for physical variables is slightly lower when assimilating only physical variables than when assimilating both physical variables and surface chlorophyll. Surface chlorophyll RMSE is lowest when assimilating both physical variables and surface chlorophyll. Estimates of subsurface, nitrate and chlorophyll show modest improvements over the unconstrained model run relative to independent, unassimilated in situ data. Assimilation adjustments to the biogeochemical initial conditions are investigated within different regions of the California Current System. The incremental, lognormal 4-dimensional data assimilation method tested here represents a viable approach to coupled physical biogeochemical state estimation at practical computational cost.

  1. Anthropogenic currents and shoreline water quality in Avalon Bay, California.

    Science.gov (United States)

    Ho, Lin C; Litton, Rachel M; Grant, Stanley B

    2011-03-15

    Shoreline concentrations of fecal indicator bacteria (FIB) and fecal indicator viruses (FIV) in Avalon Bay (Catalina Island, California) display a marked diurnal pattern (higher at night and lower during the day) previously attributed to the tidal flux of sewage-contaminated groundwater and the tidal washing of contaminated sediments, coupled with light and dark die-off of FIB and FIV (Boehm, et al., Environ. Sci. Technol. 2009, 43, 8046-8052). In this paper we document the existence of strong (peak velocities between 20 to 40 cm/s) transient currents in the nearshore waters of Avalon Bay that occur between 07:00 and 20:00 each day. These currents, which have a significant onshore component, are generated by anthropogenic activities in the Bay, including prop wash from local boat traffic and the docking practices of large passenger ferries. A budget analysis carried out on simultaneous measurements of FIB at two cross-shore locations indicates that anthropogenic currents contribute to the diurnal cycling of FIB concentrations along the shoreline, by transporting relatively unpolluted water from offshore toward the beach. The data and analysis presented in this paper support the idea that anthropogenic currents represent a significant, and previously overlooked, source of variability in shoreline water quality.

  2. Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 1-Model formulation and biological data assimilation twin experiments

    Science.gov (United States)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    A quadratic formulation for an incremental lognormal 4-dimensional variational assimilation method (incremental L4DVar) is introduced for assimilation of biogeochemical observations into a 3-dimensional ocean circulation model. L4DVar assumes that errors in the model state are lognormally rather than Gaussian distributed, and implicitly ensures that state estimates are positive definite, making this approach attractive for biogeochemical variables. The method is made practical for a realistic implementation having a large state vector through linear assumptions that render the cost function quadratic and allow application of existing minimization techniques. A simple nutrient-phytoplankton-zooplankton-detritus (NPZD) model is coupled to the Regional Ocean Modeling System (ROMS) and configured for the California Current System. Quadratic incremental L4DVar is evaluated in a twin model framework in which biological fields only are in error and compared to G4DVar which assumes Gaussian distributed errors. Five-day assimilation cycles are used and statistics from four years of model integration analyzed. The quadratic incremental L4DVar results in smaller root-mean-squared errors and better statistical agreement with reference states than G4DVar while maintaining a positive state vector. The additional computational cost and implementation effort are trivial compared to the G4DVar system, making quadratic incremental L4DVar a practical and beneficial option for realistic biogeochemical state estimation in the ocean.

  3. Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 2-Joint physical and biological data assimilation twin experiments

    Science.gov (United States)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    Coupled physical and biological data assimilation is performed within the California Current System using model twin experiments. The initial condition of physical and biological variables is estimated using the four-dimensional variational (4DVar) method under the Gaussian and lognormal error distributions assumption, respectively. Errors are assumed to be independent, yet variables are coupled by assimilation through model dynamics. Using a nutrient-phytoplankton-zooplankton-detritus (NPZD) model coupled to an ocean circulation model (the Regional Ocean Modeling System, ROMS), the coupled data assimilation procedure is evaluated by comparing results to experiments with no assimilation and with assimilation of physical data and biological data separately. Independent assimilation of physical (biological) data reduces the root-mean-squared error (RMSE) of physical (biological) state variables by more than 56% (43%). However, the improvement in biological (physical) state variables is less than 7% (13%). In contrast, coupled data assimilation improves both physical and biological components by 57% and 49%, respectively. Coupled data assimilation shows robust performance with varied observational errors, resulting in significantly smaller RMSEs compared to the free run. It still produces the estimation of observed variables better than that from the free run even with the physical and biological model error, but leads to higher RMSEs for unobserved variables. A series of twin experiments illustrates that coupled physical and biological 4DVar assimilation is computationally efficient and practical, capable of providing the reliable estimation of the coupled system with the same and ready to be examined in a realistic configuration.

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  5. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  6. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  7. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  12. Through the stomach of a predator: Regional patterns of forage in the diet of albacore tuna in the California Current System and metrics needed for ecosystem-based management

    Science.gov (United States)

    Glaser, Sarah M.; Waechter, Katrina E.; Bransome, Nicole C.

    2015-06-01

    Foraging habits of predators can reveal patterns in prey ecology and guide ecosystem-based management by informing species interactions. This study describes the diet habits of albacore tuna in three regions (north, central, south) of the California Current System (CCS) and estimates the total predation mortality imposed on twenty prey taxa. The northern CCS was defined by predation on decapods, euphausiids, anchovy and hake. The central CCS was defined by predation on squid, hake and Pacific saury. The southern CCS was defined by predation on anchovy. We estimate North Pacific albacore consumed each year, on average, 54,000 mt of decapods and euphausiids, 43,000 mt of cephalopods, 84,000 mt of juvenile hake, 1600 mt of myctophids, 21,000 mt of juvenile sardine, 10,000 mt of juvenile rockfishes, almost 43,000 mt of Pacific saury, and over 107,000 mt of juvenile anchovy. While variability in predation certainly exists, this and prior studies show that diet habits of albacore are fairly stable through time. The northern CCS appears to be a more significant source of energy for albacore. When designing ecosystem-based approaches to the management of CCS-based fisheries, we recommend that the forage contribution of saury, hake and anchovy to the albacore population be considered.

  13. Material properties of zooplankton and nekton from the California current

    Science.gov (United States)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density

  14. GLOBEC NEP Northern California Current Cetacean Survey Data, NH0005, 0007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) Northern California Current Cetacean Survey Data from R/V New Horizon cruises NH0005 and 0007....

  15. Physical oceanography - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  16. Atlantis model outputs - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  17. Hybrid energy system cost analysis: San Nicolas Island, California

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  18. Corrosion investigations, Tracy Red Bluff, California, and Boulder City, Nevada, ehv direct current tests

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, T.E.

    1965-01-01

    Evaluation of corrosion on buried metalwork, by the introduction of large direct currents into the ground, was studied during ehv dc transmission investigations in the Tracy-Red Bluff, California and the Boulder City, Nevada areas. Tests made on two types of electrodes showed that ehv dc ground return at test current levels would: (1) promote serious corrosion of buried metalwork within approximately 1/2-mile radius of the electrode with a ground mat electrode and mild corrosion with a deep-well electrode; (2) promote negligible-to-serious corrosion of buried pipelines within 1/2 to 3 mile radius of either a ground mat or deep-well electrode, depending on (a) distance of the pipelines from the electrode, (b) geometry of the two electrode-pipeline systems, and (c) horizontal extent of the pipelines; (3) impress negligible-to-mild corrosion of buried pipelines beyond a 3-mile radius of the electrode depending upon geometry of the electrode-pipeline system. Results show normal corrosion prevention techniques will be adequate to prevent corrosion of buried metalwork, if electrode is properly located. Use of ground return for only 8 to 24 hours per year on the ehv intertie, although with currents 2 to 3 times higher than test currents, will cause stray current damage of only a fraction of that expected with continuous operations.

  19. Underway Doppler current profiles in the Gulf of California

    Science.gov (United States)

    Badan-Dangon, Antoine; Lavin, Miguel F.; Hendershott, Myrl C.

    The circulation of the Gulf of California has long been of scientific interest. The first hydrographic expedition there was in 1889 [Roden and Groves, 1959], followed half a century later by Sverdrup's cruise on the R/V E.W. Scripps [Suerdrup, 1941] in February and March of 1939. Since then, the Gulfs circulation has been the subject of active research [Alvarez-Boirego, 1983]. During the 1980s, scientists at CICESE and at the Scripps Institution of Oceanography designed a cooperative effort, the Pichicuco project, to investigate some of the notable physical oceanographic features of the Gulf.The Gulf of California is a marginal sea close to 1500 km long and about 200 km wide, oriented northwest to southeast, between the peninsula of Baja California and western continental Mexico. It consists of a succession of basins that shoal progressively from about 3500 m at the mouth, where the Gulf connects with the Pacific Ocean, to just over 2000 m in the central Guaymas Basin. In contrast, the far northern Gulf is a continental shelf sea whose depth exceeds 200 m only in a few small basins. The Gulf's circulation is profoundly influenced by processes taking place at the narrows that connect Guaymas Basin to the northern Gulf between 28°N and 29°N (see Figure 1). These are a sequence of channels, each about 15 km wide, between San Lorenzo, San Esteban, and Tiburón islands, which reduce the effective cross section of the Gulf to about 2.25×106m2. The westernmost connection, close to Baja California, is the Ballenas-Salsipuedes (hereafter Ballenas) channel, whose depth exceeds 1600 m in its central part. It is bounded partially to the north by a lateral constriction with a maximum depth of 600 m, near the northern extreme of Angel de la Guarda island, and to the east by a ridge from which rise Angel de la Guarda, San Lorenzo, and other smaller islands. This ridge extends underwater about 20 km to the southeast from San Lorenzo into Guaymas Basin, where it forms the

  20. Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.

    Science.gov (United States)

    Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

    2003-01-01

    This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

  1. HLS bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  2. Current meter data from moored current meter casts in the Coastal Waters of California from 12 April 1981 - 01 April 1983 (NODC Accession 8400159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Coastal Waters of California from April 12, 1981 to April 1, 1983. Data were submitted by...

  3. The water footprint of California's energy system, 1990-2012.

    Science.gov (United States)

    Fulton, Julian; Cooley, Heather

    2015-03-17

    California's energy and water systems are interconnected and have evolved in recent decades in response to changing conditions and policy goals. For this analysis, we use a water footprint methodology to examine water requirements of energy products consumed in California between 1990 and 2012. We combine energy production, trade, and consumption data with estimates of the blue and green water footprints of energy products. We find that while California's total annual energy consumption increased by just 2.6% during the analysis period, the amount of water required to produce that energy grew by 260%. Nearly all of the increase in California's energy-related water footprint was associated with water use in locations outside of California, where energy products that the state consumes were, and continue to be, produced. We discuss these trends and the implications for California's future energy system as it relates to climate change and expected water management challenges inside and outside the state. Our analysis shows that while California's energy policies have supported climate mitigation efforts, they have increased vulnerability to climate impacts, especially greater hydrologic uncertainty. More integrated analysis and planning are needed to ensure that climate adaptation and mitigation strategies do not work at cross purposes.

  4. Habitat use of calling baleen whales in the southern California Current Ecosystem

    OpenAIRE

    2015-01-01

    The extent to which temporal, spatial, environmental, and physiological factors influence baleen whale acoustic occurrence was investigated in the southern California Current Ecosystem, a highly productive, upwelling-driven ecosystem that hosts a large abundance of top predators. By combining data sets from ten years of passive acoustic monitoring and concurrent environmental sampling, thisdissertation presents detailed intra-annual and mesoscale spatial patterns previously unknown. Analyses ...

  5. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  6. A Comparison between Value-Added School Estimates and Currently Used Metrics of School Accountability in California

    Science.gov (United States)

    Fagioli, Loris P.

    2014-01-01

    This study compared a value-added approach to school accountability to the currently used metrics of accountability in California of Adequate Yearly Progress (AYP) and Academic Performance Index (API). Five-year student panel data (N?=?53,733) from 29 elementary schools in a large California school district were used to address the research…

  7. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    Science.gov (United States)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  8. Evaluation of Integrated Planning Systems in California Community Colleges

    Science.gov (United States)

    Buckley, Jerry L.; Piland, William E.

    2012-01-01

    California community colleges are experiencing unprecedented levels of sanctions from their accrediting agency. A survey of planners in these colleges reveals a wide gap between current practice and perceived importance of integrated planning practices, as well as misalignment in budgeting methods. Statistically significant gaps were identified…

  9. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  10. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  11. Swept away by a turbidity current in Mendocino submarine canyon, California

    Science.gov (United States)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  12. Funding California Schools: The Revenue Limit System. Technical Appendices

    Science.gov (United States)

    Weston, Margaret

    2010-01-01

    This document presents the technical appendices accompanying the report, "Funding California Schools: The Revenue Limit System." Included are: (1) Revenue Limit Calculation and Decomposition; (2) Data and Methods; and (3) Base Funding Alternative Simulation Results. (Contains 5 tables and 26 footnotes.) [For the main report, "Funding California…

  13. Current Trends in Psychological and Educational Approaches for Training and Teaching Students with Autism in California

    Directory of Open Access Journals (Sweden)

    Trisha SUGITA

    2016-12-01

    Full Text Available Within the United States, Autism Spectrum Disorder (ASD has seen a dramatic increase over the past twenty years. As the prevalence rate of ASD increases, an increased need for expertise in the field of education has become apparent. Psychological and educational practices for training and teaching students with ASD continue to evolve in California however, a significant gap between theory and practice remains. This article provides a historical perspective of ASD and its prevalence rates. In addition, this article examines the current shifts in teacher training and provides an overview of evidence-based strategies to support students with ASD.

  14. Incentive Pass-through for Residential Solar Systems in California

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C. G. [Univ. of Texas, Austin, TX (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2014-10-01

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, among the largest and longest-running incentives have been those established in California. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed through from installers to consumers? This report helps address this question by carefully examining the residential PV market in California (excluding a certain class of third-party-owned PV systems) and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, though with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar (considering not only direct state subsidies, but also utility electric bill savings and federal tax incentives).

  15. Exploring local adaptation and the ocean acidification seascape – studies in the California Current Large Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    G. E. Hofmann

    2013-07-01

    Full Text Available The California Current Large Marine Ecosystem (CCLME, a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium – the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS – has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1 the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2 initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3 an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  16. Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: Implications for trophic transfer and conservation

    Science.gov (United States)

    Santora, Jarrod A.; Sydeman, William J.; Schroeder, Isaac D.; Wells, Brian K.; Field, John C.

    2011-12-01

    Krill (crustaceans of the family Euphausiacea) comprise an important prey field for vast array of fish, birds, and marine mammals in the California Current and other large marine ecosystems globally. In this study, we test the hypothesis that mesoscale spatial organization of krill is related to oceanographic conditions associated with coastal upwelling. To test this, we compiled a climatology of krill distributions based on hydroacoustic surveys off California in May-June each year between 2000 and 2009 (missing 2007). Approximately 53,000 km of ocean habitat was sampled, resulting in a comprehensive geo-spatial data set from the Southern California Bight to Cape Mendocino. We determined the location and characteristics of eight definite and two probable krill “hotspots” of abundance. Directional-dependence analysis revealed that krill hotspots were oriented in a northwest-southeast (135°) direction, corresponding to the anisotropy of the 200-2000 m isobath. Krill hotspots were disassociated (inversely correlated) with three upwelling centers, Point Arena, Point Sur, and Point Conception, suggesting that krill may avoid locations of strong offshore transport or aggregate downstream from these locations. While current fisheries management considers the entire coast out to the 2000 m isobath critical habitat for krill in this ecosystem, we establish here smaller scale structuring of this critical mid-trophic level prey resource. Identifying mesoscale krill hotspots and their oceanographic determinants is significant as these smaller ecosystem divisions may warrant protection to ensure key ecosystem functions (i.e., trophic transfer) and resilience. Furthermore, delineating and quantifying krill hotspots may be important for conservation of krill-predators in this system.

  17. Net primary productivity, upwelling and coastal currents in the Gulf of Ulloa, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    E. González-Rodríguez

    2011-09-01

    Full Text Available The Gulf of Ulloa, a highly productive area off the western coast of Baja California Peninsula, is examined for five successive years (2003–2007 by using satellite data and seasonal net primary productivity estimates obtained by a vertical generalized production model. The results clearly identify a seasonal signal of coastal upwelling in productivity estimates. Highest values occur from May to June and sometimes July. We also find influence of an equatorward coastal current able of transporting water from neighboring north upwelling areas to the Gulf of Ulloa in winter–spring. This flow contributes to increase the seasonal net primary productivity. The opposite occurs in summer, when a warm poleward current of tropical characteristics arrives to the region. Our findings reveal that such warm coastal current suppressed the productivity in the whole.

  18. Spatial ecology of krill, micronekton and top predators in the central California Current: Implications for defining ecologically important areas

    Science.gov (United States)

    Santora, Jarrod A.; Field, John C.; Schroeder, Isaac D.; Sakuma, Keith M.; Wells, Brian K.; Sydeman, William J.

    2012-11-01

    Marine spatial planning and ecosystem models that aim to predict and protect fisheries and wildlife benefit greatly from syntheses of empirical information on physical and biological partitioning of marine ecosystems. Here, we develop spatially-explicit oceanographic and ecological descriptions of the central California Current region. To partition this region, we integrate data from 20 years of shipboard surveys with satellite remote-sensing to characterize local seascapes of ecological significance, focusing on krill, other micronekton taxa, and top predators (seabirds and marine mammals). Specifically, we investigate if micronekton and predator assemblages co-vary spatially with mesoscale oceanographic conditions. The first principal component of environmental and micronekton seascapes indicates significant coupling between physics, primary productivity, and secondary and tertiary marine consumers. Subsequent principal components indicate latitudinal variability in niche-community space due to varying habitat characteristics between Monterey Bay (deep submarine canyon system) and the Gulf of the Farallones (extensive continental shelf), even though both of these sub-regions are located downstream from upwelling centers. Overall, we identified five ecologically important areas based on spatial integration of environmental and biotic features. These areas, characterized by proximity to upwelling centers, shallow pycnoclines, and high chlorophyll-a and krill concentrations, are potential areas of elevated trophic focusing for specific epipelagic and mesopelagic communities. This synthesis will benefit ecosystem-based management approaches for the central California Current, a region long-impacted by anthropogenic factors.

  19. California air transportation study: A transportation system for the California Corridor of the year 2010

    Science.gov (United States)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  20. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.

    1978-01-01

    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  1. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    Science.gov (United States)

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  2. Electrical load management for the California water system

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, B.; Lasater, I.; Blumstein, C.

    1977-07-01

    To meet its water needs California has developed an extensive system for transporting water from areas with high water runoff to areas with high water demand. This system annually consumes more than 6 billion kilowatt hours (kWh) of electricity for pumping water and produces more than 12 billion kWh/year of hydroelectric power. From the point of view of energy conservation, the optimum operation of the California water supply system would require that pumping be done at night and generation be done during the day. Night pumping would reduce electric power peak load demand and permit the pumps to be supplied with electricity from ''base load'' generating plants. Daytime hydro power generation would augment peak load power generation by fossil-fuel power plants and save fuel. The technical and institutional aspects of this type of electric power load management for water projects are examined for the purpose of explaining some of the actions which might be pursued and to develop recommendations for the California Energy Resources Conservation and Development Commission (ERCDC). The California water supply system is described. A brief description is given of various energy conservation methods, other than load management, that can be used in the management of water resources. An analysis of load management is presented. Three actions for the ERCDC are recommended: the Commission should monitor upcoming power contract negotiations between the utilities and the water projects; it should determine the applicability of the power-pooling provisions of the proposed National Energy Act to water systems; and it should encourage and support detailed studies of load management methods for specific water projects.

  3. 78 FR 77447 - California Wind Energy Association, First Solar, Inc. v. California Independent System Operator...

    Science.gov (United States)

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Wind Energy Association, First Solar, Inc. v. California... Practice and Procedure, 18 CFR 385.206 (2013), California Wind Energy Association and First Solar,...

  4. Shearwaters as ecosystem indicators: Towards fishery-independent metrics of fish abundance in the California Current

    Science.gov (United States)

    Lyday, Shannon E.; Ballance, Lisa T.; Field, David B.; David Hyrenbach, K.

    2015-06-01

    Shearwaters are ideal for monitoring ocean conditions in the California Current because these predators are abundant, conspicuous, and responsive to oceanographic variability. Herein we evaluated black-vented (Puffinus opisthomelas), Buller's (P. bulleri), flesh-footed (P. carneipes), pink-footed (P. creatopus), short-tailed (P. tenuirostris), and sooty (P. griseus) shearwaters as fishery-independent indicators of predatory or prey fish availability. We analyzed four years (1996, 2001, 2005, 2008) of monthly (August-November) National Oceanic and Atmospheric Administration seabird surveys, and United States Geological Survey Pacific Coast Fisheries Database catch, from the California coast to 200 nm offshore. An ordination of shearwater abundance and fish catch revealed that the shearwaters and 11 fish/squid species were significantly correlated with one or more of three principal components, which explained 86% of the variation and revealed distinct species assemblages. We evaluated multiple linear regression models for 19 fisheries using five shearwater metrics: density, aggregation, and behavior (traveling, stationary, feeding), three oceanographic indices, and latitude. Eight of these models had a shearwater metric as the primary predictor. In particular, feeding black-vented shearwater abundance explained 75% of dolphinfish (Coryphaena hippurus) longline catch. This research illustrates the utility of shearwaters as ecosystem indicators, with direct application for predicting fishery catch of commercial importance.

  5. Accumulation of current-use and organochlorine pesticides in crab embryos from Northern California, USA

    Science.gov (United States)

    Smalling, Kelly L.; Morgan, Steven; Kuivila, Kathryn K.

    2010-01-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log KOW of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays.

  6. Declining abundance of beaked whales (family Ziphiidae) in the California Current large marine ecosystem.

    Science.gov (United States)

    Moore, Jeffrey E; Barlow, Jay P

    2013-01-01

    Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA) conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species) on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris) during 1991-2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51) and ≈7550 (CV = 0.55), respectively. The probability of decline for Mesoplodon spp. (pooled across species) was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46) and 811 (CV = 0.65). The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii), for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3). Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch) can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar) and ecosystem change are plausible hypotheses that merit investigation.

  7. Declining abundance of beaked whales (family Ziphiidae in the California Current large marine ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeffrey E Moore

    Full Text Available Beaked whales are among the most diverse yet least understood groups of marine mammals. A diverse set of mostly anthropogenic threats necessitates improvement in our ability to assess population status for this cryptic group. The Southwest Fisheries Science Center (NOAA conducted six ship line-transect cetacean abundance surveys in the California Current off the contiguous western United States between 1991 and 2008. We used a Bayesian hidden-process modeling approach to estimate abundance and population trends of beaked whales using sightings data from these surveys. We also compiled records of beaked whale stranding events (3 genera, at least 8 species on adjacent beaches from 1900 to 2012, to help assess population status of beaked whales in the northern part of the California Current. Bayesian posterior summaries for trend parameters provide strong evidence of declining beaked whale abundance in the study area. The probability of negative trend for Cuvier's beaked whale (Ziphius cavirostris during 1991-2008 was 0.84, with 1991 and 2008 estimates of 10771 (CV = 0.51 and ≈7550 (CV = 0.55, respectively. The probability of decline for Mesoplodon spp. (pooled across species was 0.96, with 1991 and 2008 estimates of 2206 (CV = 0.46 and 811 (CV = 0.65. The mean posterior estimates for average rate of decline were 2.9% and 7.0% per year. There was no evidence of abundance trend for Baird's beaked whale (Berardius bairdii, for which annual abundance estimates in the survey area ranged from ≈900 to 1300 (CV≈1.3. Stranding data were consistent with the survey results. Causes of apparent declines are unknown. Direct impacts of fisheries (bycatch can be ruled out, but impacts of anthropogenic sound (e.g., naval active sonar and ecosystem change are plausible hypotheses that merit investigation.

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 1.0 m: ocean currents projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 0.0 m: ocean currents projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 0.5 m: ocean currents projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 2.0 m: ocean currents projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  12. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 1.5 m: ocean currents projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The...

  13. Climate change effects on high-elevation hydropower system in California

    Science.gov (United States)

    Madani Larijani, Kaveh

    The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC), supplies 74 percent of in-state hydropower. The system has modest reservoir capacities and has been designed to take advantage of snowpack. The expected shift of runoff peak from spring to winter as a result of climate warming, resulting in snowpack reduction and earlier snowmelt, might have important effects on hydropower operations. Estimation of climate warming effects on such a large system by conventional simulation or optimization methods would be tedious and expensive. This dissertation presents a novel approach for modeling large hydropower systems. Conservation of energy and energy flows are used as the basis for modeling high-elevation high-head hydropower systems in California. The unusual energy basis for reservoir modeling allows for development of hydropower operations models to estimate large-scale system behavior without the expense and time needed to develop traditional streamflow and reservoir volume-based models in absence of storage and release capacity, penstock head, and efficiency information. An Energy-Based Hydropower Optimization Model (EBHOM) is developed to facilitate a practical climate change study based on the historical generation data high-elevation hydropower plants in California. Employing recent historical hourly energy prices, energy generation in California is explored for three climate warming scenarios (dry warming, wet warming, and warming-only) over 14 years, representing a range of hydrologic conditions. Currently, the high-elevation hydropower plants in California have to renew their FERC licenses. A method based on cooperative game theory is developed to explore FERC relicensing process, in which dam owners negotiate over the available instream water with other interest groups downstream. It is discussed how the lack of incentive for cooperation results in long

  14. Spring-time distributions of migratory marine birds in the southern California Current: Oceanic eddy associations and coastal habitat hotspots over 17 years

    Science.gov (United States)

    Yen, P. P. W.; Sydeman, W. J.; Bograd, S. J.; Hyrenbach, K. D.

    2006-02-01

    We used a 17-year time series of shipboard observations to address the hypothesis that marine birds associate with persistent hydrographic features in the southern California Current System (CCS). Overall, approximately 27,000 km of ocean habitat were surveyed, averaging 1600 km per cruise. We identified mesoscale features (eddy centers and the core of the California Current), based on dynamic height anomalies, and considered habitat associations for seven migratory seabird species: black-footed albatross ( Phoebastria nigripes), Cook's petrel ( Pterodroma cookii), Leach's storm-petrel ( Oceanodroma leucorhoa), dark shearwaters (mainly sooty shearwater Puffinus griseus, with a few short-tailed shearwaters Puffinus tenuirostris), northern fulmar ( Fulmarus glacialis), red phalarope ( Phalaropus fulicaria), and red-necked phalarope ( Phalaropus lobatus). We explored associations (presence/absence and density relationships) of marine birds with mesoscale features (eddies, current jet) and metrics of primary productivity (chlorophyll a and nitrate concentrations). Mesoscale eddies were consistently identified in the study region, but were spatially and temporally variable. The resolved eddies were large-scale features associated with meanders of the equatorward-flowing California Current. Cook's petrel was found offshore with no specific habitat affinities. Black-footed albatross, red phalarope, and Leach's storm petrel were found in association with offshore eddies and/or the core of the California Current, but the functional relationship for these species varied, possibly reflecting differences in flight capabilities. The more coastal species, including the shearwaters, fulmar, and red-necked phalarope, were positively associated with proxies of primary productivity. Of the hydrographic habitats considered, the upwelling region of Point Conception appears to be an important "hotspot" of sustained primary production and marine bird concentrations. Point Conception and

  15. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem

    Science.gov (United States)

    Taylor, Andrew G.; Landry, Michael R.; Selph, Karen E.; Wokuluk, John J.

    2015-02-01

    As part of the California Current Ecosystem Long Term Ecological Research (CCE-LTER) Program, samples for epifluorescence microscopy and flow cytometry (FCM) were collected at ten 'cardinal' stations on the California Cooperative Oceanic Fisheries Investigations (CalCOFI) grid during 25 quarterly cruises from 2004 to 2010 to investigate the biomass, composition and size-structure of microbial communities within the southern CCE. Based on our results, we divided the region into offshore, and inshore northern and southern zones. Mixed-layer phytoplankton communities in the offshore had lower biomass (16±2 μg C L-1; all errors represent the 95% confidence interval), smaller size-class cells and biomass was more stable over seasonal cycles. Offshore phytoplankton biomass peaked during the winter months. Mixed-layer phytoplankton communities in the northern and southern inshore zones had higher biomass (78±22 and 32±9 μg C L-1, respectively), larger size-class cells and stronger seasonal biomass patterns. Inshore communities were often dominated by micro-size (20-200 μm) diatoms; however, autotrophic dinoflagellates dominated during late 2005 to early 2006, corresponding to a year of delayed upwelling in the northern CCE. Biomass trends in mid and deep euphotic zone samples were similar to those seen in the mixed-layer, but with declining biomass with depth, especially for larger size classes in the inshore regions. Mixed-layer ratios of autotrophic carbon to chlorophyll a (AC:Chl a) had a mean value of 51.5±5.3. Variability of nitracline depth, bin-averaged AC:Chl a in the mixed-layer ranged from 40 to 80 and from 22 to 35 for the deep euphotic zone, both with significant positive relationships to nitracline depth. Total living microbial carbon, including auto- and heterotrophs, consistently comprised about half of particulate organic carbon (POC).

  16. The Relationship of Size to Current Expense of Education in California Single-College Public Junior College Districts.

    Science.gov (United States)

    Ostrom, William Albert

    This study was an investigation of unit costs during the 1966-67 school year for single-college, California public junior college districts. The relationships between institutional size and total current expense of education, expenditures in seven major budget classifications, and expenditures in certain combinations of budgetary classes were…

  17. Current Status of Western Yellow-Billed Cuckoo along the Sacramento and Feather Rivers, California.

    Science.gov (United States)

    Dettling, Mark D; Seavy, Nathaniel E; Howell, Christine A; Gardali, Thomas

    2015-01-01

    To evaluate the current status of the western population of the Yellow-billed Cuckoo (Coccyzus americanus) along the Sacramento and Feather rivers in California's Sacramento Valley, we conducted extensive call playback surveys in 2012 and 2013. We also quantified the amount and distribution of potential habitat. Our survey transects were randomly located and spatially balanced to sample representative areas of the potential habitat. We estimated that the total area of potential habitat was 8,134 ha along the Sacramento River and 2,052 ha along the Feather River, for a total of 10,186 ha. Large-scale restoration efforts have created potential habitat along both of these rivers. Despite this increase in the amount of habitat, the number of cuckoos we detected was extremely low. There were 8 detection occasions in 2012 and 10 occasions in 2013 on the Sacramento River, in both restored and remnant habitat. We had no detections on the Feather River in either year. We compared our results to 10 historic studies from as far back as 1972 and found that the Yellow-billed Cuckoo had unprecedentedly low numbers in 2010, 2012, and 2013. The current limiting factor for the Yellow-billed Cuckoo in the Sacramento Valley is likely not the amount of appropriate vegetation, as restoration has created more habitat over the last 30 years. Reasons for the cuckoo decline on the Sacramento and Feather rivers are unclear.

  18. California community water systems annual indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains annual measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  19. California community water systems quarterly indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains quarterly measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  20. Changes in composition of summer hyperiid amphipods from a subtropical region of the California current during 2002-2008

    Science.gov (United States)

    Lavaniegos, Bertha E.

    2017-01-01

    Interannual changes in the assemblages of hyperiid amphipods during the period 2002 to 2008 are analyzed for the first time in the coastal Pacific area comprised between Ensenada (32°N) and Punta Baja (30°N), Baja California, Mexico. The study period witnessed diverse climatic events, such as a subarctic water intrusion in 2002, three El Niño events (in 2002-2003, 2004-2005, and 2006-2007) and one La Niña event in 2007-2008. Multivariate analysis of summer hyperiid amphipods based on the Bray-Curtis similarity index indicated that July 2005 contrasted with the rest of the summer seasons, showing a low abundance of amphipods, characterized particularly by the scarcity of Lestrigonus schizogeneios. The second most different summer was July 2002, characterized by the increased abundance of Primno brevidens and the presence of the subarctic species Themisto pacifica. Despite the marked decrease of L. schizogeneios in 2005, this species showed a pronounced recovery in 2006. Therefore, physical conditions under the influence of El Niño did not appear to be a direct factor in changing the abundances of L. schizogeneios, and the collapse of its populations during July 2005 could be the result of strong predation on small Lestrigonus juveniles by euphausiids, which were extremely abundant in spring and summer 2005. With the exception of 2005, the dominant species were relatively constant. Similarity analysis revealed a core contribution of the characteristic subtropical species in the California Current System (L. schizogeneios, P. brevidens, Vibilia armata, and Eupronoe minuta), indicating a resilience of these key species to climatic events.

  1. Material properties of Pacific hake, Humboldt squid, and two species of myctophids in the California Current.

    Science.gov (United States)

    Becker, Kaylyn N; Warren, Joseph D

    2015-05-01

    Material properties of the flesh from three fish species (Merluccius productus, Symbolophorus californiensis, and Diaphus theta), and several body parts of the Humboldt squid (Dosidicus gigas) collected from the California Current ecosystem were measured. The density contrast relative to seawater varied within and among taxa for fish flesh (0.9919-1.036), squid soft body parts (mantle, arms, tentacle, braincase, eyes; 1.009-1.057), and squid hard body parts (beak and pen; 1.085-1.459). Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast relative to seawater varied within and among taxa for fish flesh (0.986-1.027) and Humboldt squid mantle and braincase (0.937-1.028). Material properties in this study are similar to values from previous studies on species with similar life histories. In general, the sound speed and density of soft body parts of fish and squid were 1%-3% and 1%-6%, respectively, greater than the surrounding seawater. Hard parts of the squid were significantly more dense (6%-46%) than seawater. The material properties reported here can be used to improve target strength estimates from acoustic scattering models, which could increase the accuracy of biomass estimates from acoustic surveys for these nekton.

  2. An individual-based model of the krill Euphausia pacifica in the California Current

    Science.gov (United States)

    Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.

    2015-11-01

    Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.

  3. Evaluation of Satellite Retrievals of Ocean Chlorophyll-a in the California Current

    Directory of Open Access Journals (Sweden)

    Mati Kahru

    2014-09-01

    Full Text Available Retrievals of ocean surface chlorophyll-a concentration (Chla by multiple ocean color satellite sensors (SeaWiFS, MODIS-Terra, MODIS-Aqua, MERIS, VIIRS using standard algorithms were evaluated in the California Current using a large archive of in situ measurements. Over the full range of in situ Chla, all sensors produced a coefficient of determination (R2 between 0.79 and 0.88 and a median absolute percent error (MdAPE between 21% and 27%. However, at in situ Chla > 1 mg m−3, only products from MERIS (both the ESA produced algal_1 and NASA produced chlor_a maintained reasonable accuracy (R2 from 0.74 to 0.52 and MdAPE from 23% to 31%, respectively, while the other sensors had R2 below 0.5 and MdAPE higher than 36%. We show that the low accuracy at medium and high Chla is caused by the poor retrieval of remote sensing reflectance.

  4. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current.

    Science.gov (United States)

    Barth, John A; Menge, Bruce A; Lubchenco, Jane; Chan, Francis; Bane, John M; Kirincich, Anthony R; McManus, Margaret A; Nielsen, Karina J; Pierce, Stephen D; Washburn, Libe

    2007-03-06

    Wind-driven coastal ocean upwelling supplies nutrients to the euphotic zone near the coast. Nutrients fuel the growth of phytoplankton, the base of a very productive coastal marine ecosystem [Pauly D, Christensen V (1995) Nature 374:255-257]. Because nutrient supply and phytoplankton biomass in shelf waters are highly sensitive to variation in upwelling-driven circulation, shifts in the timing and strength of upwelling may alter basic nutrient and carbon fluxes through marine food webs. We show how a 1-month delay in the 2005 spring transition to upwelling-favorable wind stress in the northern California Current Large Marine Ecosystem resulted in numerous anomalies: warm water, low nutrient levels, low primary productivity, and an unprecedented low recruitment of rocky intertidal organisms. The delay was associated with 20- to 40-day wind oscillations accompanying a southward shift of the jet stream. Early in the upwelling season (May-July) off Oregon, the cumulative upwelling-favorable wind stress was the lowest in 20 years, nearshore surface waters averaged 2 degrees C warmer than normal, surf-zone chlorophyll-a and nutrients were 50% and 30% less than normal, respectively, and densities of recruits of mussels and barnacles were reduced by 83% and 66%, respectively. Delayed early-season upwelling and stronger late-season upwelling are consistent with predictions of the influence of global warming on coastal upwelling regions.

  5. Kaiser Permanente Northern California: current experiences with internet, mobile, and video technologies.

    Science.gov (United States)

    Pearl, Robert

    2014-02-01

    The US health care system has been slow to adopt Internet, mobile, and video technologies, which have the capability to engage patients in their own care, increase patients' access to providers, and possibly improve the quality of care while reducing costs. Nevertheless, there are some pockets of progress, including Kaiser Permanente Northern California (KPNC). In 2008 KPNC implemented an inpatient and ambulatory care electronic health record system for its 3.4 million members and developed a suite of patient-friendly Internet, mobile, and video tools. KPNC has achieved many successes. For example, the number of virtual "visits" grew from 4.1 million in 2008 to an estimated 10.5 million in 2013. This article describes KPNC's experience with Internet, mobile, and video technologies and the obstacles faced by other health care providers interested in embracing them. The obstacles include the predominant fee-for-service payment model, which does not reimburse for virtual visits; the considerable investment needed to deploy these technologies; and physician buy-in.

  6. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    Science.gov (United States)

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.

  7. Distribution, growth, and condition of salmonids in the central California Current Ecosystem.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fisheries Ecology Division of NOAA’s SWFSC conducts annual surveys of salmon and their ocean habitat in the coastal waters of northern California and southern...

  8. Generalized File Management Systems: Their Implication for a California Junior College Data Base System.

    Science.gov (United States)

    Fedrick, Robert John

    Criteria to use in evaluating data processing efficiency, factors of file and record definitions, convenience of use for non-programmers, report generating capabilities, and customer support for generalized file management systems for use by the California junior colleges are indicated by the author. The purchase of such a system at the state…

  9. Nephrogenic systemic fibrosis: Current concepts

    Directory of Open Access Journals (Sweden)

    Prasanta Basak

    2011-01-01

    Full Text Available Nephrogenic systemic fibrosis (NSF was first described in 2000 as a scleromyxedema-like illness in patients on chronic hemodialysis. The relationship between NSF and gadolinium contrast during magnetic resonance imaging was postulated in 2006, and subsequently, virtually all published cases of NSF have had documented prior exposure to gadolinium-containing contrast agents. NSF has been reported in patients from a variety of ethnic backgrounds from America, Europe, Asia and Australia. Skin lesions may evolve into poorly demarcated thickened plaques that range from erythematous to hyperpigmented. With time, the skin becomes markedly indurated and tethered to the underlying fascia. Extracutaneous manifestations also occur. The diagnosis of NSF is based on the presence of characteristic clinical features in the setting of chronic kidney disease, and substantiated by skin histology. Differential diagnosis is with scleroderma, scleredema, scleromyxedema, graft-versus-host disease, etc. NSF has a relentlessly progressive course. While there is no consistently successful treatment for NSF, improving renal function seems to slow or arrest the progression of this condition. Because essentially all cases of NSF have developed following exposure to a gadolinium-containing contrast agent, prevention of this devastating condition involves the careful avoidance of administering these agents to individuals at risk.

  10. Collision vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Four metrics were used to determine Collision Vulnerability: Diurnal and nocturnal flight activity, flight-height (defined as time spent in rotor sweep zone), and...

  11. Displacement vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two metrics were used to determine Collision Vulnerability: Macro-avoidance and habitat flexibility. Macro-avoidance (MA)—The macro-avoidance values for species...

  12. Wind Forcing Experiments in the California Current System.

    Science.gov (United States)

    boundary on which either free-slip or zero-slip boundary conditions are imposed. Time-invariant winds, either with or without a component of wind stress curl...deeper and wider than the observed jet. Finally, the inclusion of wind stress curl and the zero-slip boundary condition are demonstrated to be important elements in model simulations of the coastal jet.

  13. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 storm-hazard projections

    Science.gov (United States)

    Barnard, Patrick; Erikson, Li; O'Neill, Andrea; Foxgrover, Amy; Herdman, Liv

    2017-01-01

    The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future SLR scenarios, as well as long-term shoreline change and cliff retreat.  Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Several versions of CoSMoS have been implemented for areas of the California coast, including Southern California, Central California, and San Francisco Bay, and further versions will be incorporated as additional regions and improvements are developed.

  14. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  15. Current and Future Flight Operating Systems

    Science.gov (United States)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  16. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  17. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  18. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  19. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  20. Historic, Current, and Future Availability of Surface Water for Agricultural Groundwater Banking in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2015-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California. A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands for recharging groundwater. Understanding the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flows) is fundamental to assessing the feasibility of local-scale implementation of ag-GB. In this study, we estimate the current availability and forecast the future availability of winter (Nov to Apr) flood flows based on current and historic daily streamflow records for 200 stream gauges on tributaries to and streams within the Central Valley, California. For each gauge, we consider flows above a stationary 90th percentile as ideal for ag-GB because reservoir operations mitigate flood risk by releasing early winter flood flows. Results based on 70 years of data show that for 25% of the gauges there are significantly decreasing flow volumes above the 90th percentile and a decreasing number of days with flows above the 90th percentile. These flows, on average, make up 20% of the total annual winter flows. The majority of gauges further show, over the past 70 years, a decrease in total annual streamflow magnitude, a decrease in the magnitude of extreme flood events, and an increase in the frequency of flood events. Variations in winter flood flows due to climate change and climate variability are a challenge to water management in California. To aid the long-term forecast of streamflow conditions in California, we present a new water year type index for the Central Valley, which considers the variation in flow percentiles over time. Together, our results suggest that flexible, coordinated efforts for the local diversion of flood flows are needed to better utilize the increasingly rare winter flood

  1. Moored current meter and wind recorder measurement near Point Conception, California: The 1983 OPUS Observations, from 01 April 1983 to 29 July 1983 (NODC Accession 8600041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The OPUS (Organization of Persistent Upwelling Structures) program deployed two current meter (VMCM) moorings near Point Conception, California, during April - July...

  2. West Coast fish, mammal, bird life history and abunance parameters - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  3. West Coast fish, mammal, and bird species diets - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  4. Multiple Currents in the Gulf Stream System

    OpenAIRE

    Fuglister, F. C.

    2011-01-01

    A new interpretation of the accumulated temperature and salinity data from the Gulf Stream Area indicates that the System is made up of a series of overlapping currents. These currents are separated by relatively weak countercurrents. Data from a recent survey are presented as supporting this hypothesis.DOI: 10.1111/j.2153-3490.1951.tb00804.x

  5. Thermal currents in highly correlated systems

    OpenAIRE

    MORENO, J; Coleman, P.

    1996-01-01

    Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.

  6. Current frontiers in systemic sclerosis pathogenesis

    NARCIS (Netherlands)

    Ciechomska, Marzena; van Laar, Jacob; O'Reilly, Steven

    2015-01-01

    Systemic sclerosis is an autoimmune disease characterised by vascular dysfunction, impaired angiogenesis, inflammation and fibrosis. There is no currently accepted disease-modifying treatment with only autologous stem cell transplant showing clinically meaningful benefit. The lack of treatment optio

  7. Preliminary evaluation of the hydrogeologic system in Owens Valley, California

    Science.gov (United States)

    Danskin, W.R.

    1988-01-01

    A preliminary, two-layer, steady-state, groundwater flow model was used to evaluate present data and hydrologic concepts of Owens Valley, California. Simulations of the groundwater system indicate that areas where water levels are most affected by changes in recharge and discharge are near toes of alluvial fans and along the edge of permeable volcanic deposits. Sensitivity analysis for each model parameter shows that steady state simulations are most sensitive to uncertainties in evapotranspiration rates. Tungsten Hills, Poverty Hills, and Alabama Hills were found to act as virtually impermeable barriers to groundwater flow. Accurate simulation of the groundwater system between Bishop and Lone Pine appears to be possible without simulating the groundwater system in Round Valley, near Owens Lake, or in aquifer materials more than 1,000 ft below land surface. Although vast amounts of geologic and hydrologic data have been collected for Owens Valley, many parts of the hydrogeologic system have not been defined with sufficient detail to answer present water management questions. Location and extent of geologic materials that impede the vertical movement of water are poorly documented. The likely range of aquifer characteristics, except vertical hydraulic conductivity, is well known, but spatial distribution of these characteristics is not well documented. A set of consistent water budgets is needed, including one for surface water, groundwater, and the entire valley. The largest component of previous water budgets (evapotranspiration) is largely unverified. More definitive estimates of local gains and losses for Owens River are needed. Although groundwater pumpage from each well is measured, the quantity of withdrawal from different zones of permeable material has not been defined. (USGS)

  8. 76 FR 22091 - California Independent System, Operator Corporation; Supplemental Notice of Agenda and Discussion...

    Science.gov (United States)

    2011-04-20

    ... California Independent System Operator Corporation's (CAISO) Capacity Procurement Mechanism (CPM... interested parties an opportunity to discuss the CPM compensation methodology and exceptional dispatch..., 2011. Kimberly D. Bose, Secretary. Agenda for the CAISO CPM Compensation Methodology and...

  9. Carbon and Nitrogen Isotopes from Top Predator Amino Acids Reveal Rapidly Shifting Ocean Biochemistry in the Outer California Current

    Science.gov (United States)

    Ruiz-Cooley, Rocio I.; Koch, Paul L.; Fiedler, Paul C.; McCarthy, Matthew D.

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  10. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Beasley, Ryan A.

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  11. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    Science.gov (United States)

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  12. Pathways for School Finance in California. Technical Appendix

    Science.gov (United States)

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    This is a technical appendix for the report, "Pathways for School Finance in California" (ED515651). "Pathways for School Finance in California" simulates alternatives to California's current school finance system. This appendix provides more information about the revenues used in those simulations. The first section describes the districts and…

  13. Pathways for School Finance in California. Technical Appendix

    Science.gov (United States)

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    This is a technical appendix for the report, "Pathways for School Finance in California" (ED515651). "Pathways for School Finance in California" simulates alternatives to California's current school finance system. This appendix provides more information about the revenues used in those simulations. The first section describes…

  14. Hospital Prices Increase in California, Especially Among Hospitals in the Largest Multi-hospital Systems

    Directory of Open Access Journals (Sweden)

    Glenn A. Melnick PhD

    2016-06-01

    Full Text Available A surge in hospital consolidation is fueling formation of ever larger multi-hospital systems throughout the United States. This article examines hospital prices in California over time with a focus on hospitals in the largest multi-hospital systems. Our data show that hospital prices in California grew substantially (+76% per hospital admission across all hospitals and all services between 2004 and 2013 and that prices at hospitals that are members of the largest, multi-hospital systems grew substantially more (113% than prices paid to all other California hospitals (70%. Prices were similar in both groups at the start of the period (approximately $9200 per admission. By the end of the period, prices at hospitals in the largest systems exceeded prices at other California hospitals by almost $4000 per patient admission. Our study findings are potentially useful to policy makers across the country for several reasons. Our data measure actual prices for a large sample of hospitals over a long period of time in California. California experienced its wave of consolidation much earlier than the rest of the country and as such our findings may provide some insights into what may happen across the United States from hospital consolidation including growth of large, multi-hospital systems now forming in the rest of the rest of the country.

  15. Design issues for the active control system of the California Extremely Large Telescope (CELT)

    Science.gov (United States)

    Chanan, Gary A.; Nelson, Jerry E.; Ohara, Catherine M.; Sirko, Edwin

    2000-08-01

    We explore the issues in the control and alignment of the primary mirror of the proposed 30 meter California Extremely Large Telescope and other very large telescopes with segmented primaries (consisting of 1000 or more segments). We show that as the number of segments increases, the noise in the telescope active control system (ACS) increases, roughly as (root)n. This likely means that, for a thousand segment telescope like CELT, Keck-style capacitive sensors will not be able to adequately monitor the lowest spatial frequency degrees of freedom of the primary mirror, and will therefore have to be supplemented by a Shack-Hartmann-type wavefront sensor. However, in the case of segment phasing, which is governed by a `control matrix' similar to that of the ACS, the corresponding noise is virtually independent of n. It follows that reasonably straightforward extensions of current techniques should be adequate to phase the extremely large telescopes of the future.

  16. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  17. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    Science.gov (United States)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source

  18. Net primary productivity, upwelling and coastal currents in the Gulf of Ulloa, Baja California, México

    Directory of Open Access Journals (Sweden)

    E. González-Rodríguez

    2012-08-01

    Full Text Available The Gulf of Ulloa, a highly productive area off the western coast of the Baja California Peninsula, is examined for five successive years (2003–2007 by using satellite data and seasonal net primary productivity (NPP estimates obtained from a vertical generalised production model. The results identify that northwestern winds blow parallel to the coast throughout the year. However, highest NPP occurs from March to June. During this period, an equatorward coastal current transports water from neighbouring upwelling areas to the northern Gulf of Ulloa and in combination with local upwelling, which injects nutrients into the euphotic zone, produce the observed increase in NPP. The opposite situation occurs in late summer when a warm poleward current of tropical characteristics arrives and inhibits the productivity in the whole region and generates the yearly lowest NPP levels. Our findings reveal the importance of lateral advection in the modulation of the primary productivity in this subtropical upwelling region.

  19. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. R. Tajane et al.

    2012-01-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  20. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  1. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  2. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems

    Directory of Open Access Journals (Sweden)

    W. E. Arntz

    2006-01-01

    zones, bringing a variety of (subtropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere, higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of El Niño influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to El Niño seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984 vs. 1997/1998. The relation of the "Benguela Niño" to ENSO seems unclear although many Pacific-Atlantic ocean and atmosphere teleconnections have been described. Warm, low-oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another

  3. Review of Current Nuclear Vacuum System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  4. Marine organism concentrations, carbonate chemistry variables, and nutrient concentrations from Atlantis ecosystem model simulation output in the California Current from 2013-01-01 to 2053-12-31 to understand vulnerability of California current food webs and economics to ocean acidification (NCEI Accession 0131198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the model output of a study to evaluate likely economic and ecological outcomes of ocean acidification in the California Current....

  5. Temperature profile, current, pressure, physical, and other data from XBT casts, current meters, pressure gauges, and CTD casts from the VEGA I and other platforms from the Coastal Waters of California and other locations as part of the Central California Circulation Study from 1984-01-31 to 1985-07-01 (NCEI Accession 8700197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, current, pressure, physical, and other data from the VEGA I and other platforms from the Coastal Waters of California and other locations from...

  6. Current frontiers in systemic sclerosis pathogenesis.

    Science.gov (United States)

    Ciechomska, Marzena; van Laar, Jacob; O'Reilly, Steven

    2015-06-01

    Systemic sclerosis is an autoimmune disease characterised by vascular dysfunction, impaired angiogenesis, inflammation and fibrosis. There is no currently accepted disease-modifying treatment with only autologous stem cell transplant showing clinically meaningful benefit. The lack of treatment options reflects our lack of understanding of the precise molecular mechanisms occurring in the disease. Recent investigations have begun to decipher the molecular pathways underpinning the different aspects of the disease and may provide a rational clinical target(s). Uncovering the molecular mechanisms of the disease is important in understanding systemic sclerosis treatment. The aim of this review was to examine the current thinking in SSc pathogenesis and will offer novel areas for research which may yield novel therapeutics.

  7. Geologic applications of an MWD communications system in a development drilling project, Point Pedernales unit, California

    Energy Technology Data Exchange (ETDEWEB)

    Krase, S.J.; Wagnon, J.P. (Teleco Oilfield Services, Broussard, LA (USA)); Lothringer, C. (Unocal, Bakersfield, CA (USA))

    1990-05-01

    A low-cost communication system for measurement while drilling has been developed. This system has been used effectively on a major development project offshore California. The Point Pedemales unit is currently being developed from platform Irene with Unocal serving as the operator. The user end (remote) of the system is designed to reside on any IBM-compatible personal computer. For the Point Pedernales project, the software was installed on a Unocal system and used the existing microwave voice phone communications. The availability of real-time data in the operator's office results in the elimination of unnecessary trips to the rig site. The flexible plotting capabilities allow true stratigraphic thickness logs to be generated. In high-angle, long-reach wells, these plots allow for more accurate correlation not typically achievable with measured depth and true vertical depth logs. This capability allows for casing point selection to be made accurately. The cost savings associated with accurate casing point selection can be significant. The ability to transmit MWD data from the drilling rig to the office allows all personnel involved in a project to take advantage of the real-time benefits of MWD. The systems lends itself to installation on any drilling Project where voice phone communications, including cellular networks, are available.

  8. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from time series profile and discrete observations using CTD, Niskin bottle, and other instruments from R/V New Horizon and R/V Robert Gordon Sproul in the U.S. West Coast for calibration and validation of California Current Ecosystem (CCE) Moorings from 2009-12-15 to 2015-04-29 (NCEI Accession 0146024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — California Current Ecosystem moorings (CCE1 and CCE2) are surface buoys equipped with interdisciplinary scientific sensors including NOAA PMEL pCO2 system,...

  9. Currents at the sills bounding Delfin Basin in the northern Gulf of California

    Science.gov (United States)

    Lopez, M.; Candela, J.

    2013-05-01

    One-year-long currents at the two sills bounding Delfin basin (maximum depth ˜900 m), are analyzed. The Delfin (DEL) sill (˜400 m depth) has the largest mean velocities near the bottom in an overflow that discharges water into the Delfin Basin (roughly towards the head of the gulf), whereas the Ballenas Channel (BC) sill (˜600 m depth) has the largest mean velocities close to the surface which also flow towards the head of the gulf. The energy of the subinertial current fluctuations is also quite different. Most of the energy at the DEL sill is concentrated in the lowest frequencies (periods > 15 days). In the case of the BC sill, the spectra are not red and much of the energy is concentrated at periods ≤ 15 days except close to the surface, where most the energy is also concentrated in the lowest frequencies associated with the current fluctuations of the mean near-surface current towards the head of the gulf. Near-bottom current fluctuations towards the head of the gulf at the overflow of the DEL sill are well correlated with intermediate and deeper currents towards the mouth of the gulf, as well as with surface currents towards the head of the gulf at the BC sill for periods ≥ 20 days. Transport of the overflow also has the largest coherences with near-surface currents at the BC sill for periods ≥ 20 days, but there is also significant coherence with deeper currents at the same low frequencies. The relationship between the overflow and the exchange at the BC sill is also clearly borne out by the first empirical mode of currents at both locations. This is interpreted as part of the exchange of the northern gulf by which fluctuations of the near-bottom flow into the deepest basins are compensated by fluctuations of the near-surface flow out of the same basins. In addition, near-bottom transport and currents at the DEL sill are coherent with deep currents at the CB sill at the shorter periods of 10 and 3.2 days. At these periods, there is also good

  10. Brown v. Plata: prison overcrowding in California.

    Science.gov (United States)

    Newman, William J; Scott, Charles L

    2012-01-01

    California's prisons are currently designed to house approximately 85,000 inmates. At the time of the U.S. Supreme Court's 2011 decision in Brown v. Plata, the California prison system housed nearly twice that many (approximately 156,000 inmates). The Supreme Court held that California's prison system violated inmates' Eighth Amendment rights. The Court upheld a three-judge panel's order to decrease the population of California's prisons by an estimated 46,000 inmates. They determined that overcrowding was the primary cause of the inmates' inadequate medical and mental health care. As a result, the California Department of Corrections and Rehabilitation (CDCR) has been working to redistribute inmates and parolees safely and decrease the overall population to the mandated levels. These large-scale adjustments to California's penal system create potential opportunities to study the long-term effects on affected inmates.

  11. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations

  12. Enterprise Resource Planning Systems: Assessment of Risk Factors by California Community College Leaders

    Science.gov (United States)

    Valente, Mario Manuel

    2011-01-01

    Most California Community Colleges have chosen to purchase and implement a Management Information Systems software solution also known as an Enterprise Resource Planning (ERP) system in order to monitor, control, and automate their administrative tasks. ERP implementations are complex, expensive, high profile, and therefore high risk. To reduce…

  13. A Case for Staff Development in the California Community College System.

    Science.gov (United States)

    Lavrakas, Lefteris

    Using Kurt Lewin's concept of "a dynamic balance of forces", the direction and strength of change tendencies related to staff development in California community colleges were identified through force-analysis. The forces of heritage/tradition, awareness, money, organizational climate, time, reward system, and formal system were examined for their…

  14. Effect of coastal-trapped waves and wind on currents and transport in the Gulf of California

    Science.gov (United States)

    Gutiérrez, Manuel O.; López, Manuel; Candela, Julio; Castro, Rubén.; Mascarenhas, Affonso; Collins, Curtis A.

    2014-08-01

    Subsurface pressure (SsP) observations from stations inside and outside of the Gulf of California (GC) are used to analyze the relationship between low-frequency currents, temperature, and transport inside the GC and intraseasonal coastal-trapped waves (CTWs), which propagate poleward along the coast toward the GC. Correlation functions and coherences of SsP stations were consistent with intraseasonal CTWs splitting in two at the mouth of the gulf: one part enters the gulf, propagates around the gulf, and eventually, toward the mouth, and another part that appears to "jump" the mouth of the gulf and travels poleward along the west coast of the peninsula. The correlation and coherence estimates of SsP at Manzanillo with currents showed that downwelling CTWs generated along-gulf current anomalies toward the head of the gulf at the mainland shelf of the mouth, whereas at Ballenas Channel sill (San Lorenzo sill) these waves generated current anomalies toward the mouth near the surface (bottom). At the San Lorenzo (SL) sill, downwelling CTWs increased the near-bottom (˜400 m) temperature and reduced the bottom transport of deep, fresher, and colder water that flows toward the head of the gulf. Cross-Calibrated Multiplatform winds were used to investigate their relationship with currents. The first empirical orthogonal function of the along-gulf wind stress showed that wind blowing toward the head of the gulf generated a reduction of bottom transport toward the head of the gulf through the SL sill, and intensified surface geostrophic current fluctuations toward the head of the gulf. There was also significant correlation between inflow bottom transport and outflow surface geostrophic velocities averaged across the gulf, consistent with the exchange pattern for the Northern Gulf.

  15. The impact of electric vehicles on the Southern California Edison System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.

    1992-07-01

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the Air Quality Impacts of Energy Efficiency'' Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers' view has been studied with special emphasis on the role of marketable permit systems. The utilities' view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility's average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  16. The impact of electric vehicles on the Southern California Edison System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.

    1992-07-01

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the ``Air Quality Impacts of Energy Efficiency`` Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers` view has been studied with special emphasis on the role of marketable permit systems. The utilities` view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility`s average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  17. Alongshore Sub-Thermocline Current Variability in the Central California Current System

    Science.gov (United States)

    1992-12-01

    34 magnetic tape and tape reader to store and retrieve data. Also, the RCM 5 used a Savonius type rotor instead of the shrouded paddlewheel used on the...RCM 8. The shrouded paddlewheel was designed to eliminate the unwanted effect of pumping the Savonius rotor through vertical heave in the mooring

  18. Physical Effects of Distributed PV Generation on California's Distribution System

    CERN Document Server

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  19. Traction electrification system planning for California high-speed train project

    Energy Technology Data Exchange (ETDEWEB)

    Schmedes, Richard [Parsons Brinckerhoff, Inc., San Francisco, CA (United States). Transit and Railway Div.

    2011-04-15

    The California High-Speed Train Project will be a $ 43 Billion dedicated 1 300 km (800 miles) system and will connect California's major metropolitan centers with completely new dedicated tracks and infrastructure which will support train operations at up to 400 km/h (250 mph). It will be electrified with a 2 AC 25 kV autotransformer configuration with 50 km (30 miles) spacing between utility connections. The planning of 115 kV and 230 kV connections involves coordination with four utility companies and completion of five-year permitting and planning processes by 2016. (orig.)

  20. 75 FR 49928 - California Independent System Operator Corporation; Green Energy Express LLC; 21st Century...

    Science.gov (United States)

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Green Energy Express LLC... July 26, 2010, in Docket No. ER10-1401-000, the Federal ] Energy Regulatory Commission...

  1. 78 FR 25740 - Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing

    Science.gov (United States)

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing Take notice that on April 24, 2013, Meridian Energy USA, Inc....

  2. 77 FR 24192 - SIG Energy, LLLP v. California Independent System Operator Corporation; Notice of Complaint

    Science.gov (United States)

    2012-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SIG Energy, LLLP v. California Independent System Operator Corporation; Notice of Complaint Take notice that on April 4, 2012, pursuant to section 206 of the Federal...

  3. Initial skill assessment of the California Harmful Algae Risk Mapping (C-HARM) system.

    Science.gov (United States)

    Anderson, Clarissa R; Kudela, Raphael M; Kahru, Mati; Chao, Yi; Rosenfeld, Leslie K; Bahr, Frederick L; Anderson, David M; Norris, Tenaya A

    2016-11-01

    Toxic algal events are an annual burden on aquaculture and coastal ecosystems of California. The threat of domoic acid (DA) toxicity to human and wildlife health is the dominant harmful algal bloom (HAB) concern for the region, leading to a strong focus on prediction and mitigation of these blooms and their toxic effects. This paper describes the initial development of the California Harmful Algae Risk Mapping (C-HARM) system that predicts the spatial likelihood of blooms and dangerous levels of DA using a unique blend of numerical models, ecological forecast models of the target group, Pseudo-nitzschia, and satellite ocean color imagery. Data interpolating empirical orthogonal functions (DINEOF) are applied to ocean color imagery to fill in missing data and then used in a multivariate mode with other modeled variables to forecast biogeochemical parameters. Daily predictions (nowcast and forecast maps) are run routinely at the Central and Northern California Ocean Observing System (CeNCOOS) and posted on its public website. Skill assessment of model output for the nowcast data is restricted to nearshore pixels that overlap with routine pier monitoring of HABs in California from 2014 to 2015. Model lead times are best correlated with DA measured with solid phase adsorption toxin tracking (SPATT) and marine mammal strandings from DA toxicosis, suggesting long-term benefits of the HAB predictions to decision-making. Over the next three years, the C-HARM application system will be incorporated into the NOAA operational HAB forecasting system and HAB Bulletin.

  4. Current-potential characteristics of electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, V.S.

    1993-07-01

    This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

  5. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  6. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  7. Current and future plans for wind energy development on San Clemente Island, California

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F. [RLA Consulting, Inc., Bothell, WA (United States); Cable, S.B. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States)

    1996-12-31

    The Navy is considering possible ways to maximize the use of wind energy technology for power supply to their auxiliary landing field and other facilities on San Clemente Island. A summary of their past analysis and future considerations is presented. An analysis was performed regarding the technical and economic feasibility of installing and operating a sea-water pumped hydro/wind energy system to provide for all of the island`s electric power needs. Follow-on work to the feasibility study include wind resource monitoring as well as procurement and preliminary design activities for a first-phase wind-diesel installation. Future plans include the consideration of alternative siting arrangements and the introduction of on-island fresh water production. 3 refs., 4 figs.

  8. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    Science.gov (United States)

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  9. Biogeochemical cycling of Si in a California rice cropping system

    Science.gov (United States)

    Seyfferth, A.; Kocar, B. D.; Lee, J.; Fendorf, S.

    2012-12-01

    Silicon is the second most abundant element in the earth's crust, but the number of studies on the biogeochemical cycling of Si does not reflect its environmental ubiquity. While not an "essential" plant nutrient, Si is important for many plants, particularly monocots, for structural integrity and protection against disease and environmental stress. For rice, Si fertilization with N and P increases yield significantly more than N and P alone. While total Si in soil is high, much of this Si is tied up in the crystal lattice of primary and secondary minerals and is only slowly released through chemical weathering. Thus, plant-available Si may be limited particularly in highly weathered soils in humid environments where long-term chemical weathering has lead to desilicification of the soils (e.g., in Southeast Asia where most rice is grown). In such Si-depleted environments, the biocycling of Si through decaying plant litter (i.e., phytoliths) and subsequent plant uptake has proven an important component of the terrestrial biogeochemical cycling of Si. Here, we investigate the dynamics of Si cycling over a two-year period in a rice paddy in Northern California where soil incorporation of harvested rice straw has impacted the terrestrial biogeochemical cycling of Si. We use Ge/Si ratios in pore-waters to infer the contribution of chemical weathering vs. dissolution of plant phytoliths on the plant-available Si pool. We found that the Ge/Si ratios change over the growing and fallow seasons reflecting different rates of Si release through phytolith dissolution and plant uptake.

  10. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  11. Estimates of the Direct Effect of Seawater pH on the Survival Rate of Species Groups in the California Current Ecosystem

    Science.gov (United States)

    Busch, D. Shallin; McElhany, Paul

    2016-01-01

    Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to

  12. Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system

    Science.gov (United States)

    Penven, Pierrick; Debreu, Laurent; Marchesiello, Patrick; McWilliams, James C.

    What most clearly distinguishes near-shore and off-shore currents is their dominant spatial scale, O (1-30) km near-shore and O (30-1000) km off-shore. In practice, these phenomena are usually both measured and modeled with separate methods. In particular, it is infeasible for any regular computational grid to be large enough to simultaneously resolve well both types of currents. In order to obtain local solutions at high resolution while preserving the regional-scale circulation at an affordable computational cost, a 1-way grid embedding capability has been integrated into the Regional Oceanic Modeling System (ROMS). It takes advantage of the AGRIF (Adaptive Grid Refinement in Fortran) Fortran 90 package based on the use of pointers. After a first evaluation in a baroclinic vortex test case, the embedding procedure has been applied to a domain that covers the central upwelling region off California, around Monterey Bay, embedded in a domain that spans the continental U.S. Pacific Coast. Long-term simulations (10 years) have been conducted to obtain mean-seasonal statistical equilibria. The final solution shows few discontinuities at the parent-child domain boundary and a valid representation of the local upwelling structure, at a CPU cost only slightly greater than for the inner region alone. The solution is assessed by comparison with solutions for the whole US Pacific Coast at both low and high resolutions and to solutions for only the inner region at high resolution with mean-seasonal boundary conditions.

  13. Superconducting Current Leads for Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...

  14. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    Science.gov (United States)

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  15. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA

    Science.gov (United States)

    Svensen, Henrik; Karlsen, Dag A.; Sturz, Anne; Backer-Owe, Kristian; Banks, David A.; Planke, Sverre

    2007-01-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in Southern California. Seeps in the Davis-Schrimpf seep field (˜14,000 m2) show considerable variations in water temperature, pH, density, and solute content. Water-rich springs have low densities (98 vol%). Halogen geochemistry of the waters indicates that mixing of deep and shallow waters occurs and that near-surface dissolution of halite may overprint the original fluid compositions. Carbon isotopic analyses suggest that hydrocarbon seep gases have a thermogenic origin. This hypothesis is supported by the presence of petroleum in a water-dominated spring, composed of 53% saturated compounds, 35% aromatics, and 12% polar compounds. The abundance of polyaromatic hydrocarbons and immature biomarkers suggests a hydrothermal formation of the petroleum, making the SSGS a relevant analogue to less accessible hydrothermal seep systems, e.g., the Guaymas Basin in the Gulf of California.

  16. Geodatabase of the datasets used to represent the two subunits of the Central Valley aquifer system, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase includes spatial datasets that represent the Central Valley aquifer system in the State of California. Included are: (1) polygon extents; datasets...

  17. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  18. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods to...

  19. DAQ System of Current Based on MNSR

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The flux or power should be acquired using the detector in the operation of MNSR. As usual, the signal of detector is current, and it is very width range with 10-11-10-6 A. It is hard to satisfy the linearity to amplify this signal by using fix gain

  20. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-05-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  1. Solar space-heating system--Yosemite National Park, California

    Science.gov (United States)

    1981-01-01

    A 12 months performance of Visitors Center installation suffered from low insolation, high energy dissipation, and equipment breakdown. System has 980 square feet of liquid flat-plate collectors, water energy storage, 4-mode control, heat exchangers, pumps, and plumbing. Design expected system to supply over 50 percent of annual heating demand, but only 109 million Btu were conserved.

  2. A weather analysis system for the Baja California peninsula: tropical cyclone season of 2007

    Science.gov (United States)

    Farfan, L. M.; Cosio, M. A.

    2008-05-01

    General characteristics of tropical weather systems were documented on a real-time basis. The geographical area of interest is the Baja California peninsula, located in northwestern Mexico. This study covers the warm season of 2007, from May through October, and includes observations derived from radar and satellite imagery as well as reports from a network of rain gauges. A set of graphical products were generated and they were available to the public through the internet. The analysis system has been in operation since the summer of 2005 and it is focused to document the development of tropical cyclones in eastern Pacific Ocean. During the season of 2007, this basin had a total of 11 tropical storms and four of them were within 800 km from the west coast of Mexico (Dalila, Ivo, Juliette and Kiko). Only one system made landfall in the area of interest: Hurricane Henriette which moved across Baja California, the Gulf of California and a portion of the state of Sonora. This presentation provides an overview of the graphical products along with lessons learned from the season studied, collaborations with local emergency managers and plans for the upcoming season of 2008.

  3. Information Systems: Current Developments and Future Expansion.

    Science.gov (United States)

    1970

    On May 20, 1970, a one-day seminar was held for Congressional members and staff. The papers given at this seminar and included in the proceedings are: (1) "Understanding Information Systems" by J. D. Aron, (2) "Computer Applications in Political Science" by Kenneth Janda, (3) "Who's the Master of Your Information System?" by Marvin Kornbluh, (4)…

  4. A Report Card on Latina/o Leadership in California's Public Universities: A Trend Analysis of Faculty, Students, and Executives in the CSU and UC Systems

    Science.gov (United States)

    Santos, Jose L.; Acevedo-Gil, Nancy

    2013-01-01

    The article examines the status of leadership in two California public higher education systems: California State University (CSU) and the University of California (UC) from 2001 to 2009. Findings reveal that the representation of Latina/o faculty and administrators does not reflect the density in the Latina/o undergraduate student and general…

  5. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2014-11-01

    Full Text Available Coastal California is a dynamic upwelling region where nitrogen (N and iron (Fe can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13-30 M in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.

  6. Analysis of Sqp current systems by using corrected geomagneticcoordinates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Spq equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field-aligned current. Spq is unsymmetrical in both polar regions. In this paper, the Spq current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the Spq current indifferent systems are compared. Then the causes of Spq asymmetry in the GM coordinates are discussed; the effects of each component in Spq are determined.

  7. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  8. Sandia National Laboratories, California sewer system management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  9. The impact of evolving current rheology on multi-scale heterogeneity in submarine lobe strata: an example from the Upper Cretaceous Point Loma Formation, San Diego, California

    Science.gov (United States)

    McGlown, A.; Mohrig, D. C.; Perillo, M. M.

    2014-12-01

    Increasing recognition of transitional flow deposits in submarine fans has shown that the evolution of flow rheology in sediment-gravity currents can have a significant impact on the heterogeneity of deepwater sediment accumulations. Sea-cliff exposure of the Cretaceous Point Loma Formation in San Diego, California, provides a unique opportunity to document the internal variability and spatial distribution of thin, fine-grained event beds. Upper portions of beds which commonly appear as featureless mud in exposures of typical quality are revealed as thin, clast-rich debrites in areas where sea cliffs are polished by waves. The ubiquity of these deposits in distal lobe strata suggests complex rheological evolution for nearly all currents that were able to run out to lobe margins. Here we supplement qualitative outcrop characterization with statistical analysis to quantify relationships between deposit thickness, grain size, and the spatial distribution of sedimentary facies. Intervals dominated by transitional flow deposits are shown to occur vertically near the base of coarsening-upward successions and laterally toward lobe margins, reflecting a combination of dynamic processes during individual events and the spatial distribution of consecutive deposits. We show that the ability to distinguish patterns of bed-scale variability reflecting flow evolution from patterns associated with larger-scale processes, such as distributary channel avulsion and compensational stacking, is critical if one is to accurately model heterogeneity within submarine fan systems. Furthermore, the observation that thin, fine-grained debrites can be nearly impossible to distinguish from featureless mud intervals unless exceptionally well-exposed may cast doubt on existing interpretations where outcrop quality is less than remarkable.

  10. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  11. Southern California Edison (SCE) 220 kWe Pressurized SOFC Power System

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Shailesh D. [Siemens Westinghouse Power Corporation Science and Technology Center, 1310 Beulah Road, Pittsburgh, PA 15235 (United States)

    2000-07-01

    Siemens Westinghouse has designed, built, and factory tested a 220 kWe integrated power generation system consisting of a pressurized solid oxide fuel cell (PSOFC) module and a micro-turbine generator (MTG). This proof-of concept project is the world's first hybrid PSOFC/MTG power system. The system completed its Factory Acceptance Test (FAT) on April 7, 2000 at the Siemens Westinghouse facility in Pittsburgh, Pennsylvania. The system will be installed at the National Fuel Cell Research Center at the University of California, Irvine. This proof-of-concept test is scheduled to begin in May, 2000. This system is sponsored by Edison International and the California Energy Commission. The MTG was fabricated by Ingersoll-Rand Energy Systems, Portsmouth, New Hampshire. Development of the tubular solid oxide fuel cell technology by the Siemens Westinghouse Power Corporation is sponsored by the U.S. Department of Energy, National Energy Technology Laboratory. In this paper the attributes of this system are described as well as the results of the FAT, and the path to commercialization of Siemens Westinghouse SOFC power systems. (author)

  12. Current trends on knowledge-based systems

    CERN Document Server

    Valencia-García, Rafael

    2017-01-01

    This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used...

  13. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  14. Seawater temperature and salinity observed from the CORC1 and CORC2 moorings in the southern California Current (NE Pacific) from 2008-09-20 to 2012-11-14 (NCEI Accession 0137858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity observations from instruments on the CORC1 and CORC2 moorings in the southern California Current, part of the CORC project (Consortium on...

  15. CTD, current meter, pressure gauge, and wave spectra data from fixed platforms and other platforms from the Coastal Waters of California as part of the Santa Barbara Channel project from 27 April 1983 to 04 January 1985 (NODC Accession 8500177)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, current meter, pressure gauge, and wave spectra data were collected from fixed platforms and other platforms from the Coastal Waters of California from 27 April...

  16. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change

    Directory of Open Access Journals (Sweden)

    Tucker James R

    2009-06-01

    Full Text Available Abstract Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948 and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources

  17. Current status of dentin adhesive systems.

    Science.gov (United States)

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  18. Information Management System for the California State Water Resources Control Board (SWRCB)

    Science.gov (United States)

    Heald, T. C.; Redmann, G. H.

    1973-01-01

    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included.

  19. Monitoring the hydrothermal system in Long Valley caldera, California

    Science.gov (United States)

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  20. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system

    Science.gov (United States)

    Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.

    2010-01-01

    Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.

  1. Oxygen isotope systematics in an evolving geothermal system: Coso Hot Springs, California

    Science.gov (United States)

    Etzel, Thomas M.; Bowman, John R.; Moore, Joseph N.; Valley, John W.; Spicuzza, Michael J.; McCulloch, Jesse M.

    2017-01-01

    Oxygen isotope and clay mineralogy studies have been made on whole rock samples and feldspar separates from three wells along the high temperature West Flank of the Coso geothermal system, California. The reservoir rocks have experienced variable 18O/16O depletion, with δ18O values ranging from primary values of + 7.5‰ down to - 4.6‰. Spatial patterns of clay mineral distributions in the three wells are not closely correlated with the distributions expected from measured, pre-production temperature profiles, but do correlate with spatial patterns of 18O/16O depletion, indicating that the stability of clay minerals in the three wells is a function of fluid-rock interaction in addition to temperature. Detailed δ18O measurements in the three wells identify a limited number of localized intervals of extensive 18O/16O depletion. These intervals document localized zones of higher permeability in the geothermal system that have experienced significant fluid infiltration, water-rock interaction and oxygen isotopic exchange with the geothermal fluids. The local zones of maximum 18O/16O depletion in each well correspond closely with current hot water production zones. Most feldspar separates have measured δ18O values too high to have completely attained oxygen isotope exchange equilibrium with the reservoir fluid at pre-production temperatures. In general, the lower the δ18O value of the feldspar, the closer the feldspar approaches exchange equilibrium with the geothermal fluid. This correlation suggests that fracture-induced increases in permeability increase both fluid infiltration and the surface area of the host rock exposed to geothermal fluid, promoting fluid-rock interaction and oxygen isotope exchange. The two most 18O/16O-depleted feldspar samples have δ18O values too low to be in exchange equilibrium with the pre-production reservoir fluid at pre-production temperatures. These discrepancies suggest that the reservoir fluid in the West Flank of the Coso

  2. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  3. Virtual smile design systems: a current review.

    Science.gov (United States)

    Zimmermann, Moritz; Mehl, Albert

    2015-01-01

    In the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. Thanks to new technological advances in the computer- assisted design and computer-assisted manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using the backward planning approach appears useful and feasible. Today, a virtual smile design can be used as the basis for creating an esthetic virtual setup of the desired final result. The virtual setup, in turn, is used to plan further treatment steps in an interdisciplinary team approach, and communicate the results to the patient. The smile design concept and the esthetic analyses required for it are described in this article. We include not only a step-by-step description of the virtual smile design workflow, but also describe and compare the several available smile design options and systems. Subsequently, a brief discussion of the advantages and limitations of virtual smile design is followed by a section on different ways to integrate a two-dimensional (2D) smile design into the digital three-dimensional (3D) workflow. New technological developments are also described, such as the integration of smile designs in digital face scans, and 3D diagnostic follow-up using intraoral scanners.

  4. Design of BEPC Ⅱ bunch current monitor system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MA Hui-Zhou; YUE Jun-Hui; LEI Ge; CAO Jian-She; MA Li

    2008-01-01

    BEPC Ⅱ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM)system is built on BEPC Ⅱ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC Ⅱ timing system can also use the bunch current database to decide which bucket needs to refill to implement "top-off" injection.

  5. Review of current Southern California edison load management programs and proposal for a new market-driven, mass-market, demand-response program

    Energy Technology Data Exchange (ETDEWEB)

    Weller, G.H.

    2002-01-01

    Utility load management programs, including direct load control and interruptible load programs, constitute a large installed base of controllable loads that are employed by utilities as system reliability resources. In response to energy supply shortfalls expected during the summer of 2001, the California Public Utilities Commission in spring 2001 authorized new utility load management programs as well as revisions to existing programs. This report provides an independent review of the designs of these new programs for a large utility (Southern California Edison) and suggests possible improvements to enhance the price responsiveness of the customer actions influenced by these programs. The report also proposes a new program to elicit a mass-market demand response to utility price signals.

  6. Tectonoestratigraphic and Thermal Models of the Tiburon and Wagner Basins, northern Gulf of California Rift System

    Science.gov (United States)

    Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.

    2014-12-01

    The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic suc­cessions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wag­ner basin in the north. The models are constrained by two-dimensional seis­mic lines and by two deep boreholes drilled by PEMEX­-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.

  7. California Cooperative Oceanic Fisheries Investigations: Reports. Volume 36, January 1 to December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1995-10-01

    California Cooperative Oceanic Fisheries Investigations (CalCOFI) performs research in the area of sampling physical, chemical, and biological variables in the California Current. The information received is stored in databases and gives a better understanding of the physics and chemistry of the California Current. Their effect on the food chain make it possible to view current oceanographic and biological conditions in the context of the long term. Measurements taken during 1994 and early 1995 on CalCOFI cruises have indicated a return to normal conditions after anomalous conditions that dominated the two preceding years. The data have permitted an increasingly prompt assessment of the state of the California Current system off southern California. This report also contains papers presented at the CalCOFI conference in 1994 regarding the 1991--92 El Nino and its impact on fisheries. In addition, individual scientific contributions are included which provide an additional understanding of the processes involved in the California Current.

  8. Recurrence of seismic migrations along the central California segment of the San Andreas fault system

    Science.gov (United States)

    Wood, M.D.; Allen, S.S.

    1973-01-01

    VERIFICATIONS of tectonic concepts1 concerning seafloor spreading are emerging in a manner that has direct bearing on earthquake prediction. Although the gross pattern of worldwide seismicity contributed to the formulation of the plate tectonic hypothesis, it is the space-time characteristics of this seismicity that may contribute more toward understanding the kinematics and dynamics of the driving mechanism long speculated to originate in the mantle. If the lithosphere is composed of plates that move essentially as rigid bodies, then there should be seismic edge effects associated with this movement. It is these interplate effects, especially seismic migration patterns, that we discuss here. The unidirectional propagation at constant velocity (80 km yr-1 east to west) for earthquakes (M???7.2) on the Antblian fault for the period 1939 to 1956 (ref. 2) is one of the earliest observations of such a phenomenon. Similar studies3,4 of the Alaska Aleutian seismic zone and certain regions of the west coast of South America suggest unidirectional and recurring migrations of earthquakes (M???7.7) occur in these areas. Between these two regions along the great transform faults of the west coast of North America, there is some evidence 5 for unidirectional, constant velocity and recurrent migration of great earthquakes. The small population of earthquakes (M>7.2) in Savage's investigation5 indicates a large spatial gap along the San Andreas system in central California from 1830 to 1970. Previous work on the seismicity of this gap in central California indicates that the recurrence curves remain relatively constant, independent of large earthquakes, for periods up to a century6. Recurrence intervals for earthquakes along the San Andreas Fault have been calculated empirically by Wallace7 on the basis of geological evidence, surface measurements and assumptions restricted to the surficial seismic layer. Here we examine the evidence for recurrence of seismic migrations along

  9. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    Science.gov (United States)

    1980-01-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  10. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  11. A microcomputer based system for current-meter data acquisition

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.

    1979-01-01

    The U.S. Geological Survey is conducting current measurements as part of an interdisciplinary study of the San Francisco Bay estuarine system. The current meters used in the study record current speed, direction, temperature, and conductivity in digital codes on magnetic tape cartridges. Upon recovery of the current meters, the data tapes are translated by a tape reader into computer codes for further analyses. Quite often the importance of the data processing phase of a current-measurement program is underestimated and downplayed. In this paper a data-processing system which performs the complete data processing and analyses is described. The system, which is configured around an LSI-11 microcomputer, has been assembled to provide the capabilities of data translation, reduction, and tabulation and graphical display immediately following recovery of current meters. The flexibility inherent in a microcomputer has made it available to perform many other research functions which would normally be done on an institutional computer.

  12. Duct leakage impacts on VAV system performance in California large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Matson, Nance E.

    2003-10-01

    The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct

  13. Water use in California

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle; Rogers, Laurel Lynn; Metzger, Loren F.; Rewis, Diane; House, Sally F.

    2014-01-01

    As part of the USGS National Water Use Compilation, the California Water Science Center works in cooperation with local, State, and Federal agencies as well as academic and private organizations to collect and report total water withdrawals for California. The 2010 California water use data are aggregated here, in this website, for the first time. The California Water Science Center released these data ahead of the online USGS National Water Use Compilation circular report, in response to increased interest associated with current drought conditions. The national report is expected to be released late in 2014. The data on this website represents the most current California water use data available in the USGS National Water Use Compilation. It contains a section on water use in California for 2010. Water-use estimates are compiled by withdrawal source type, use category, and county. Withdrawal source types include groundwater, both fresh and saline,

  14. Photovoltaic DER System Could Save USPS $25,000 per Year in Marina del Rey, California

    Energy Technology Data Exchange (ETDEWEB)

    2002-11-01

    In numerous projects, government agencies are demonstrating the economic and environmental value of using distributed energy resources (DER) to provide reliable electricity for Federal facilities. These projects also show how renewable DER systems such as photovoltaics (PV) can be effectively integrated into utility power grids to provide added power during peak demand periods in populous regions and states. This four-page case study describes a recent project in which the United States Postal Service (USPS) worked with the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), a national laboratory, the local utility, and a private company to install a PV DER system at the USPS Marina Processing and Distribution Center in Inglewood, California. This system is expected to shave 10% off the facility's 1.2-megawatt peak power demand and save more $25,000 per year in utility costs.

  15. Coefficient of Variation Estimates for the Plate Boundary Fault System of California

    Science.gov (United States)

    Biasi, G. P.; Scharer, K. M.

    2015-12-01

    The number of high-quality paleoseismic records on major strike-slip faults of California has increased in recent years to the point that patterns in earthquake recurrence are emerging. The degree of predictability in time intervals between ground-rupturing earthquakes can be measured by the CoV (coefficient of variation). The CoV approximately normalizes for mean recurrence, and is thus useful to isolate the temporal variability of earthquake records. CoV estimates are themselves uncertain because input dates are actually probability distributions and because paleoseismic records are short and not necessarily representative samples from the underlying recurrence distribution. Radiocarbon dating uncertainty can be incorporated by sampling from event PDFs and compiling sample CoV estimates. Uncertainty due to the brevity of the site event record is larger, and neglect of it can lead to improbable estimates. Long records are now available on the San Andreas and San Jacinto faults in Southern California, and the San Andreas and Hayward faults in northern California. These faults accommodate most of the Pacific-North American relative plate motion in their respective regions. CoV estimates from sites with 8 or more events cluster around 0.63, but are as low as 0.4 for the southern Hayward fault. Sites with fewer events give similar estimates, though with lower resolution. The one prominent outlier, Burro Flats, with a CoV near 1.0, is in a region of severe fault complexity and rapid fault-normal compression. Quasi-periodic recurrence is emerging as a general property for these plate boundary faults. Some individual site records allow that, at low probabilities, recurrence could be random in time. When the ensemble is considered together, however, it is improbable that we would see the observed degree of agreement among boundary fault paleoseismic records; the more likely explanation is that quasi-periodic recurrence is a real property of the boundary fault system.

  16. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  17. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    Science.gov (United States)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  18. Diffusion current in a system of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Rahmonov, I. R.

    2012-08-01

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  19. Diffusion current in a system of coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)

    2012-08-15

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  20. Analysis of the Inshore California Current System Off Central California Using Naval Oceanographic Office Survey Data from 1997 to 2002

    Science.gov (United States)

    2012-09-01

    xvii ACKNOWLEDGMENTS I would like to acknowledge Mr. Paul Taylor and Mr. Gordon Wilkes from the Naval Oceanographic Office. These two men were...inshore cyclonic gyre which is marked by both Ekman pumping and coastal upwelling. Observations analyzed by Lynn and Simpson began in 1949, using a

  1. West Coast Observing System (WCOS) ADCP Currents Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  2. HyspIRI Measurements of Agricultural Systems in California: 2013-2015

    Science.gov (United States)

    Townsend, P. A.; Kruger, E. L.; Singh, A.; Jablonski, A. D.; Kochaver, S.; Serbin, S.

    2015-12-01

    During 2013-2015, NASA collected high-altitude AVIRIS hyperspectral and MASTER thermal infrared imagery across large swaths of California in support of the HyspIRI planning and prototyping activities. During these campaigns, we made extensive measurements of photosynthetic capacity—Vcmax and Jmax—and their temperature sensitivities across a range of sites, crop types and environmental conditions. Our objectives were to characterize the physiological diversity of agricultural vegetation in California and develop generalizable algorithms to map these physiological parameters across several image acquisitions, regardless of crop type and canopy temperatures. We employed AVIRIS imagery to scale and estimate the vegetation parameters and MASTER surface temperature to provide context, since physiology responds exponentially to leaf temperature. We demonstrate a segmentation approach to disentangling leaf and background soil temperature, and then illustrate our retrievals of Vcmax and Jmax during overflight conditions across a large number of the 2013-2015 HyspIRI acquisitions. Our results show >80% repeatability (R2) across split sample jack-knifing, with RMSEs within 15% of the range of our data. The approach was robust across crop types (e.g., grape, almond, pistachio, avocado, pomegranate, oats, peppers, citrus, date palm, alfalfa, melons, beets) and leaf temperatures. A global imaging spectroscopy system such as HyspIRI will offer unprecedented ability to monitor agricultural crop performance under widely varying surface conditions.

  3. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    Science.gov (United States)

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  4. California Tiger Salamander Range - CWHR [ds588

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  5. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California.

    Science.gov (United States)

    Bi, Jian L; Toscano, Nick C

    2007-08-01

    Since 1998, the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), has emerged as a major insect pest of many horticultural crops in coastal California. Control of this pest has been heavily dependent upon chemical insecticides. Objectives of this study were to determine the status of the greenhouse whitefly susceptibility to neonicotinoid and conventional insecticides on strawberries in Oxnard/Ventura, a year-round intensive horticultural production area of southern California. For bioassay tests, adult whiteflies were collected from commercial strawberry crops, and immatures were directly developed from eggs laid by these adults. LD(50) values of soil-applied imidacloprid, thiamethoxam and dinotefuran were respectively 8.7, 3.2 and 4.9 times higher for the adults, 1.8, 1.2 and 1.5 times higher for the first-instar nymphs and 89.4, 390 and 10.4 times higher for the third-instar nymphs than their top label rates. LC(50) values of foliar-applied imidacloprid, thiamethoxam and acetamiprid were respectively 6.1, 6.0 and 1.7 times higher for the adults and 3.8, 8.7 and 4.4 times higher for the second-instar nymphs than their top label rates. For the adults, LC(90) values of endosulfan, malathion, methomyl, bifenthrin and fenpropathrin were 2.2, 1.2, 1.9, 2.3 and 4.9 times lower than their respective top label rates. Chlorpyrifos was not very effective against the adults, as indicated by its LC(90) being 120% higher than its top label rate. The present results strongly emphasize the need to develop resistance management strategies in the region.

  6. The Impact of Retail Rate Structures on the Economics ofCommercial Photovoltaic Systems in California

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-07-03

    To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer's underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems. Key conclusions for policymakers that emerge from our analysis are as follows: {sm_bullet} Rate design is fundamental to the economics of commercial PV. The rate-reduction value of PV for our sample of commercial customers, considering all available retail tariffs, ranges from $0.05/kWh to $0.24/kWh, reflecting differences in rate structures, the revenue requirements of the various utilities, the size of the PV system relative to building load, and customer load shapes. For the average customer in our sample, differences in rate structure, alone, alter the value of PV by 25% to 75%, depending on the size of the PV system relative to building load. {sm_bullet} TOU-based energy-focused rates can provide substantial value to many PV customers. Retail rates that wrap all or most utility cost recovery needs into time-of-use (TOU)-based volumetric energy rates, and which exclude or limit demand-based charges, provide the most value to PV systems across a wide variety of circumstances. Expanding the availability of such rates will increase the value of many commercial PV systems. {sm_bullet} Offering commercial customers a variety of rate options would be of value to PV. Despite the advantages of energy-focused rates for PV

  7. California Bioregions

    Data.gov (United States)

    California Department of Resources — California regions developed by the Inter-agency Natural Areas Coordinating Committee (INACC) were digitized from a 1:1,200,000 California Department of Fish and...

  8. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  9. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.

    Science.gov (United States)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.

    2015-12-01

    We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major

  10. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  11. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  12. Modeling and strain gauging of eddy current repulsion deicing systems

    Science.gov (United States)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  13. 77 FR 45596 - Shell Energy North America (US), L.P. v. California Independent System Operator Corporation...

    Science.gov (United States)

    2012-08-01

    ... Doc No: 2012-18774] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-88 -000] Shell Energy North America (US), L.P. v. California Independent System Operator Corporation; Notice of Complaint Take notice that on July 25, 2012, pursuant to Rule 206 of the Federal Energy...

  14. The Impact of the College Assistance Migrant Program on Migrant Student Academic Achievement in the California State University System

    Science.gov (United States)

    Ramirez, Adrian D.

    2012-01-01

    The 7-year longitudinal study examined the College Assistance Migrant Program (CAMP) impact on migrant student achievement in the California State University system. Participants included migrant students, Latinos, and general student populations from 2002-2009. The analysis of variance and chi-square test of independence were used to explore…

  15. The Impact of the College Assistance Migrant Program on Migrant Student Achievement in the California State University System

    Science.gov (United States)

    Ramirez, Adrian Dee

    2010-01-01

    The purpose of the 7-year longitudinal study was to examine the College Assistance Migrant Program (CAMP), a student services intervention, to determine its impact on migrant student achievement in the California State University (CSU) system. Participants included 336 migrant students who were enrolled as first-time, full-time freshmen in fall…

  16. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James [Professor

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  17. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds

  18. ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION

    Institute of Scientific and Technical Information of China (English)

    Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie

    2005-01-01

    A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.

  19. Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California

    Energy Technology Data Exchange (ETDEWEB)

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    2001-12-31

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

  20. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  1. Output Current Ripple Reduction Algorithms for Home Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Park

    2013-10-01

    Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.

  2. Growth of a Large Composite Magma System: the EJB Pluton, Eastern California.

    Science.gov (United States)

    Matty, D. J.; Vervoort, J.; Dufrane, A.; Hart, G.; Student, J.; Morgan, S.

    2008-12-01

    the BCG, but taken as absolute, the ages tantalizingly decrease from NW to SE within the exposed area of the BCG. No such pattern is suggested within the JFQM. Collectively, these new LA-ICP-MS zircon age data support the observed field relationships and suggest that the EJB magma system was periodically active for as long as 10-12 million years. This time scale agrees well with current models of incremental growth of plutons and has important implications for strain accumulation in mid-crustal arc environments.

  3. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  4. Systemic implementation strategies to improve hypertension: the Kaiser Permanente Southern California experience.

    Science.gov (United States)

    Sim, John J; Handler, Joel; Jacobsen, Steven J; Kanter, Michael H

    2014-05-01

    The past decade has seen hypertension improving in the United States where control is approximately 50%. Kaiser Permanente has mirrored and exceeded these national advances in control. Integrated models of care such as Kaiser Permanente and the Veterans Administration health systems have demonstrated the greatest hypertension outcomes. We detail the story of Kaiser Permanente Southern California (KPSC) to illustrate the success that can be achieved with an integrated health system model that uses implementation, dissemination, and performance feedback approaches to chronic disease care. KPSC, with a large ethnically diverse population of more than 3.6 million, has used a stepwise approach to achieve control rates greater than 85% in those recognized with hypertension. This was accomplished through systemic implementations of specific strategies: (1) capturing hypertensive members into a hypertension registry; (2) standardization of blood pressure measurements; (3) drafting and disseminating an internal treatment algorithm that is evidence-based and is advocating of combination therapy; and (4) a multidisciplinary approach using medical assistants, nurses, and pharmacists as key stakeholders. The infrastructure, support, and involvement across all levels of the health system with rapid and continuous performance feedback have been pivotal in ensuring the follow-through and maintenance of these strategies. The KPSC hypertension program is continually evolving in these areas. With these high control rates and established infrastructure, they are positioned to take on different innovations and study models. Such potential projects are drafting strategies on resistant hypertension or addressing the concerns about overtreatment of hypertension.

  5. Alternating Current All-electrical Gun Control System in Tanks

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-07-01

    Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.

  6. Current fluctuations in stochastic systems with long-range memory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R J; Touchette, H [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)], E-mail: rosemary.harris@qmul.ac.uk, E-mail: h.touchette@qmul.ac.uk

    2009-08-28

    We propose a method to calculate the large deviations of current fluctuations in a class of stochastic particle systems with history-dependent rates. Long-range temporal correlations are seen to alter the speed of the large deviation function in analogy with long-range spatial correlations in equilibrium systems. We give some illuminating examples and discuss the applicability of the Gallavotti-Cohen fluctuation theorem. (fast track communication)

  7. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  8. Current Strategic Business Plan for the Implementation of Digital Systems.

    Science.gov (United States)

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…

  9. LLNL current meter array--concept and system description

    Energy Technology Data Exchange (ETDEWEB)

    Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  10. Systemic mycosis in a California sea lion (Zalophus californianus) with detection of cystofilobasidiales DNA.

    Science.gov (United States)

    Field, Cara L; Tuttle, Allison D; Sidor, Inga F; Nyaoke, Akinyi; Deering, Kathleen M; Gilbert-Marcheterre, Kelly; Risatti, Guillermo; Spoon, Tracey; Meegan, Jenny; Romano, Tracy A; Frasca, Salvatore; Dunn, J Lawrence

    2012-03-01

    A 6-yr-old, intact male California sea lion (Zalophus californianus) with a systemic mycosis died after 5 wk of antifungal drug therapy. Antemortem clinical findings included hind flipper swelling, ring-lesions on skin of the flippers, and dermal nodules that increased in size and number spreading from the hind flippers and ventral abdomen to the foreflippers and muzzle. Lesions were accompanied by severe lymphadenopathy and development of systemic clinical signs despite therapy using itraconazole and later voriconazole. Histopathologic evaluation of biopsies revealed granulomatous dermatitis due to infection by fungus-producing yeast cells in tissue. Isolation attempts, using biopsied skin and tissue samples collected at necropsy, failed to yield growth of a fungus producing yeast cells like those in histologic section. Consensus polymerase chain reaction (PCR) tests of biopsied skin for fungal DNA produced an amplicon having significant sequence identity with a Cystofilobasidiales, a fungus belonging to a subclade that includes several Cryptococcus spp. Histopathologic evaluation of necropsy tissues revealed a systemic mycosis with yeast cells disseminated throughout subcutis, lymph nodes, and viscera. Hepatic necrosis was identified associated with acute liver failure, possibly from the voriconazole administration. This is the first report documenting the clinical presentation, treatment, and pathologic findings of infection associated with Cystofilobasidiales in a marine mammal and serves to expand the understanding of mycoses in pinnipeds.

  11. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico

    Science.gov (United States)

    Bennett, Richard A.; Rodi, William; Reilinger, Robert E.

    1996-10-01

    We use Global Positioning System (GPS) estimates of horizontal site velocity to constrain slip rates on faults comprising the Pacific-North America plate boundary in southern California and northern Mexico. We enlist a simple elastic block model to parameterize the distribution and sum of deformation within and across the plate boundary. We estimate a Pacific-North America relative plate motion rate of 49 ± 3 mm/yr (one standard deviation), consistent with NUVEL-1A estimates. We are able to resolve robust slip rate estimates for the southernmost San Andreas, San Jacinto, and Elsinore faults (26 ± 2, 9 ± 2, and 6 ± 2 mm/yr, respectively) and for the Imperial and Cerro Prieto faults (35 ± 2 and 42 ± 1 mm/yr, respectively), accounting for about 86% of the total plate motion. The remaining 14% appears to be accommodated to the west of these fault systems, probably via slip along the San Clemente fault and/or the San Miguel, Vallecitos, Rose Canyon, and Newport-Inglewood fault systems. These results are highly consistent with paleoseismic estimates for slip rates implying that off-fault strain accumulation within the deforming zone of the plate boundary is largely elastic. We estimate that the seismically quiescent, southernmost San Andreas fault has incurred about 8.2 m of slip deficit over the last few hundred years, presumably to be recovered during a future large earthquake.

  12. A decision support system for adaptive real-time management ofseasonal wetlands in California

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark

    2001-10-16

    This paper describes the development of a comprehensive flow and salinity monitoring system and application of a decision support system (DSS) to improve management of seasonal wetlands in the San Joaquin Valley of California. The Environmental Protection Agency regulates salinity discharges from non-point sources to the San Joaquin River using a procedure known as the Total Maximum Daily Load (TMDL) to allocate the assimilative capacity of the River for salt among watershed sources. Management of wetland sources of salt load will require the development of monitoring systems, more integrative management strategies and coordination with other entities. To obtain local cooperation the Grassland Water District, whose primary function is to supply surface water to private duck clubs and managed wetlands, needs to communicate to local landowners the likely impacts of salinity regulation on the long term health and function of wildfowl habitat. The project described in this paper will also provide this information. The models that form the backbone of the DSS develop salinity balances at both a regional and local scale. The regional scale concentrates on deliveries to and exports from the Grasland Water District while the local scale focuses on an individual wetland unit where more intensive monitoring is being conducted. The design of the DSS is constrained to meet the needs of busy wetland managers and is being designed from the bottom up utilizing tools and procedures familiar to these individuals.

  13. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  14. Self-Organizing Maps-based ocean currents forecasting system

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  15. Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California

    Science.gov (United States)

    Sousa, Francis J.; Farley, Kenneth A.; Saleeby, Jason; Clark, Marin

    2016-04-01

    Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the Kings River canyon, California we rediscover a west-down normal fault on the western slope of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) which we call the Western Sierra Fault System. Integrating field observations with apatite (U-Th)/He data, we infer a single fault trace 30 km long, and constrain the vertical offset across this fault to be roughly a kilometer. Thermal modeling of apatite 4He/3He data documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the fault activity. In the context of published data from the subsurface of the Sacramento and San Joaquin Valleys, our data from the Western Sierra Fault System suggests an Eocene tectonic regime dominated by low-to-moderate magnitude extension, surface uplift, and internal structural deformation of the southern Sierra Nevada and proximal Great Valley forearc.

  16. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays.

    Science.gov (United States)

    Ostojić, Ljerka; Legg, Edward W; Brecht, Katharina F; Lange, Florian; Deininger, Chantal; Mendl, Michael; Clayton, Nicola S

    2017-01-23

    Many corvid species accurately remember the locations where they have seen others cache food, allowing them to pilfer these caches efficiently once the cachers have left the scene [1]. To protect their caches, corvids employ a suite of different cache-protection strategies that limit the observers' visual or acoustic access to the cache site [2,3]. In cases where an observer's sensory access cannot be reduced it has been suggested that cachers might be able to minimise the risk of pilfering if they avoid caching food the observer is most motivated to pilfer [4]. In the wild, corvids have been reported to pilfer others' caches as soon as possible after the caching event [5], such that the cacher might benefit from adjusting its caching behaviour according to the observer's current desire. In the current study, observers pilfered according to their current desire: they preferentially pilfered food that they were not sated on. Cachers adjusted their caching behaviour accordingly: they protected their caches by selectively caching food that observers were not motivated to pilfer. The same cache-protection behaviour was found when cachers could not see on which food the observers were sated. Thus, the cachers' ability to respond to the observer's desire might have been driven by the observer's behaviour at the time of caching.

  18. Application of three fault growth criteria to the Puente Hills thrust system, Los Angeles, California, USA

    Science.gov (United States)

    Olson, Erik L.; Cooke, Michele L.

    2005-10-01

    Three-dimensional mechanical models are used to evaluate the performance of different fault growth criteria in predicting successive growth of three échelon thrust faults similar to the segments of the Puente Hills thrust system of the Los Angeles basin, California. Four sequential Boundary Element Method models explore the growth of successive échelon faults within the system by simulating snapshots of deformation at different stages of development. These models use three criteria, (1) energy release rate, (2) strain energy density, and (3) Navier-Coulomb stress, to characterize the lateral growth of the fault system. We simulate the growth of an échelon thrust fault system to evaluate the suitability of each of these criteria for assessing fault growth. Each of these three factors predicts a portion of the incipient fault geometry (i.e. location or orientation); however, each provides different information. In each model, energy release rate along the westernmost (leading) tip of the Puente Hills thrust drops with growth of the next neighboring fault; this result supports the overall lateral development of successive échelon segments. Within each model, regions of high strain energy density and Navier-Coulomb stress envelope at least a portion of the next fault to develop, although the strain energy density has stronger correlation than Navier-Coulomb stress to the location of incipient faulting. In each model, one of the two predicted planes of maximum Navier-Coulomb stress ahead of the leading fault tip matches the strike but not the dip of the incipient fault plane recreating part of the fault orientation. The incipient fault dip is best predicted by the orientation of the strain energy density envelopes around the leading fault tip. Furthermore, the energy release rate and pattern of strain energy density can be used to characterize potential soft linkage (overlap) or hard linkage (connection) of échelon faults within the system.

  19. Current Trends in Health Insurance Systems: OECD Countries vs. Japan

    Science.gov (United States)

    SASAKI, Toshiyuki; IZAWA, Masahiro; OKADA, Yoshikazu

    2015-01-01

    Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients’ visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing. PMID:25797778

  20. A microbeam slit system for high beam currents

    Science.gov (United States)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  1. Exact temporal eddy current compensation in magnetic resonance imaging systems.

    Science.gov (United States)

    Morich, M A; Lampman, D A; Dannels, W R; Goldie, F D

    1988-01-01

    A step-response method has been developed to extract the properties (amplitudes and decay time constants) of intrinsic-eddy-current-sourced magnetic fields generated in whole-body magnetic resonance imaging systems when pulsed field gradients are applied. Exact compensation for the eddy-current effect is achieved through a polynomial rooting procedure and matrix inversion once the 2 N properties of the N-term decay process are known. The output of the inversion procedure yields the required characteristics of the filter for spectrum magnitude and phase equalization. The method is described for the general case along with experimental results for one-, two-, and three-term inversions. The method's usefulness is demonstrated for the usually difficult case of long-term (200-1000-ms) eddy-current compensation. Field-gradient spectral flatness measurements over 30 mHz-100 Hz are given to validate the method.

  2. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  3. Behavior of Flotsam in the California Current System Utilizing Surface Drift of RAFOS Floats

    Science.gov (United States)

    2012-09-01

    Timothy L. Campbell, Paul J. Martin, Pamela G. Posey, and Robert C. Rhodes of NRL and model output was made available to us by Ms. Lucy F. Smedstad of...used to adjust the angle an object travels in relation to the wind. Ekman theory predicts that objects floating on the ocean surface flow at an

  4. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    Science.gov (United States)

    2011-09-30

    absorption , scatter, and backscatter coefficients) effects. However, once an accurate value of the scalar irradiance Eo(z,λ) has been computed to... photosynthesis . It is possible to compute PAR to the bottom of the euphotic zone in a fraction of a second of computer time, with errors of no more than a few

  5. Environmental Sensitivity Index (ESI) Atlas: Southern California, maps and geographic information systems data (NODC Accession 0013225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps for the shoreline of southern California. ESI data characterize coastal environments and...

  6. Proposed hybrid superconducting fault current limiter for distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)

    2009-11-15

    In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)

  7. Symmetry and the thermodynamics of currents in open quantum systems

    Science.gov (United States)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  8. Analysis of the California energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Ruderman, H.; Sextro, R.; Benenson, P.; Kunin, L.; Chan, P.; Kooser, J.; Ben Dov, Y.; Green, B.; Clear, R.

    1977-01-01

    The energy-supply system for California is an integral part of the state's economy, both in terms of energy as a commodity and in the economic effects of expanding requirements for new capital and man-power in the energy sector. It is this notion of an expanding energy system that forms one of the motivations for many of the energy policy discussions and formulations currently taking place. Some of the questions to be addressed are (1) if the energy system is to expand, by how much, and in what particular areas of supply; (2) what are the policy ramifications of certain changes as opposed to others; and (3) what are the major economic effects of changes in energy supply system plans. The purpose of this study is to: (a) describe quantitatively the California energy industry and its relationship to the California and U.S. economies; (b) provide the analytic capability for determining the direct and indirect employment and income impacts resulting from a given energy future for California, and (c) demonstrate and test the methodology with scenarios that embody varying combinations of conventional energy technologies, new energy technologies and energy conservation measures. The methodology developed is generally applicable to any set of specified changes. In this report three alternative energy futures for California are selected in order to quantify their resulting economic impacts.

  9. Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle

    Science.gov (United States)

    Bodineau, T.; Derrida, B.

    2004-05-01

    We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.

  10. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  11. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  12. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  13. Research on Low Power Marine Current Power Generation System

    Directory of Open Access Journals (Sweden)

    Dongkai Peng

    2013-09-01

    Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.

  14. Fast isolation of faults in transmission systems using current transients

    Energy Technology Data Exchange (ETDEWEB)

    Perera, N.; Rajapakse, A.D. [University of Manitoba, Department of Electrical and Computer Engineering, Engineering Building, 15 Gillson Street, Winnipeg, Manitoba (Canada)

    2008-09-15

    This paper presents a protection scheme that is capable of very fast isolation of faults in high voltage transmission systems. Proposed scheme comprises set of relays connected through a telecommunication network, located at different nodes of the system. Relays use wavelet coefficients of current signals to identify the fault directions relative to their location. Fault directions identified at different locations in the system can be combined to determine the faulted line (or busbar) and isolate it. A robust single ended traveling wave based fault distance estimation approach is proposed as a backup in case of communication failure. Investigations were carried out using time domain simulations in PSCAD/EMTDC for a high voltage transmission system. (author)

  15. Regional tectonic deformation in Southern California, inferred from terrestrial geodesy and the global positioning system

    Science.gov (United States)

    Shen, Zhengkang

    Tectonic deformation in two regions in Southern California, the Southern Coast Ranges and the Los Angeles Basin, was studied. Results show that in the Southern Coast Ranges, regional deformation is predominantly controlled by deep strike slip motion along the San Andreas Fault, at a rate of 32 plus or minus 2 mm/yr. The deep slip along the San Gregorio-Hosgri Fault is about 1-3 mm/yr, assuming a locked fault depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast ranges is not significantly different from zero. About 5 mm/yr convergence is detected from the Santa Maria Basin. In the Los Angeles Basin area, this study demonstrates about 10 mm/yr relative motion trending northwest from San Pedro Hill to the San Gabriel Mountains. The direction of motion closely parallels to the trend of the frontal fault system at the southern margin of the San Gabriel Mountains. The basin suffers from north-south convergence and east-west extension, at a rate of about 0.07 mu rad/yr for either components. The convergence rate normal to the San Andreas across the basin is 4 plus or minus 3 mm/yr, implying smaller compression than previous estimates (e.g., Cline et al. 1984).

  16. Near-conservative behavior of 129Iodine in the Orange County Aquifer System, California

    Energy Technology Data Exchange (ETDEWEB)

    Schwer, K A; Santschi, P H; Moran, J E; Elmore, D

    2005-01-21

    Iodine is a biophilic element, with one stable isotope, {sup 127}I, and one long-lived radioisotope, {sup 129}I, which originates in the surface environment almost entirely from anthropogenic activities such as nuclear fuel reprocessing. Very few studies have evaluated the geochemical behavior of iodine isotopes in the subsurface. The concentrations of {sup 129}I and {sup 127}I were measured in wells fed by a series of artificial recharge ponds in the Forebay Area of the Orange County groundwater basin (California, USA) to evaluate their potential use as hydrological tracers. To substantiate interpretation of {sup 129}I and {sup 127}I concentration data, the aquifer system was evaluated using literature values of aquifer water mass age based on {sup 3}H/{sup 3}He, Xenon and {delta}{sup 18}O tracer data, as well as time-series data of Santa Ana River flow rates over the past decade. The aquifer data demonstrate the nearly conservative behavior of {sup 129}I, with {sup 129}I/{sup 127}I ratios likely reflecting variations in source functions as well as climatic conditions, and with inferred particle-water partition coefficients (K{sub d}) of 0.1 cm{sup 3} g{sup -1} or less.

  17. Imaging the magmatic system of Mono Basin, California with magnetotellurics in three--dimensions

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Ponce, David A.

    2015-01-01

    A three–dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid–filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km3 near-vertical conductive bodies (3–10 Ω·m) that underlie the southeast and north-eastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal–melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east–dipping structures appear to connect each magma source region to the surface. A conductive arc–like structure (model of the magmatic system beneath Mono Craters to a depth of 30 km.

  18. Bolsa Bay, California, Proposed Ocean Entrance System Study. Report 2. Comprehensive Shoreline Response Computer Simulation, Bolsa Bay, California

    Science.gov (United States)

    1990-04-01

    1980). 27. The success of the inlet channel at Agua Hedionda indicates that a stable non-navigable entrance at Bolsa Chica could be feasible provided a...dual jetty system similar to Agua Hedionda is incorporated into the design. However, structures that penetrate into the active surf zone are expected...and from the south in the summer months. i. The surfbreak rarely closes out. j. Surfing is best in the morning before the sea breeze becomes strong. 13

  19. The current situation of treatment systems for alcoholism in Korea.

    Science.gov (United States)

    Kim, Jee Wook; Lee, Boung Chul; Kang, Tae-Cheon; Choi, Ihn-Geun

    2013-02-01

    Alcoholism is becoming one of the most serious issues in Korea. The purpose of this review article was to understand the present status of the treatment system for alcoholism in Korea compared to the United States and to suggest its developmental direction in Korea. Current modalities of alcoholism treatment in Korea including withdrawal treatment, pharmacotherapy, and psychosocial treatment are available according to Korean evidence-based treatment guidelines. Benzodiazepines and supportive care including vitamin and nutritional support are mainly used to treat alcohol withdrawal in Korea. Naltrexone and acamprosate are the drugs of first choice to treat chronic alcoholism. Psychosocial treatment methods such as individual psychotherapy, group psychotherapy, family therapy, cognitive behavior therapy, cue exposure therapy, 12-step facilitation therapy, self-help group therapy, and community-based treatment have been carried out to treat chronic alcoholism in Korea. However, current alcohol treatment system in Korea is not integrative compared to that in the United States. To establish the treatment system, it is important to set up an independent governmental administration on alcohol abuse, to secure experts on alcoholism, and to conduct outpatient alcoholism treatment programs and facilities in an open system including some form of continuing care.

  20. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    Energy Technology Data Exchange (ETDEWEB)

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  1. The Current State and Perspectives of Systems Biology

    Institute of Scientific and Technical Information of China (English)

    Tielui Shi; Yixue Li

    2006-01-01

    Emerging as a new field in biology recently, Systems Biology provides a branch new way to study the biological activities in organisms. In order to decode the complexity of life systematically,systems biology integrates the "-omics" and uses the high throughput methods from transcriptomics,protomics and metabonomics to detect the dynamic activities in cell; and then, it incorporates bioinformatics methods to integrate and analyze those data, and simulate the biological processes based on the model built from those integrated data. In this paper, the current state, the research field and the methods for the Systems Biology are introduced briefly, and then, several ideas about future development in this field are also proposed.

  2. Riverbed clogging associated with a California riverbank filtration system: An assessment of mechanisms and monitoring approaches

    Science.gov (United States)

    Ulrich, Craig; Hubbard, Susan S.; Florsheim, Joan; Rosenberry, Donald O.; Borglin, Sharon; Trotta, Marcus; Seymour, Donald

    2015-01-01

    An experimental field study was performed to investigate riverbed clogging processes and associated monitoring approaches near a dam-controlled riverbank filtration facility in Northern California. Motivated by previous studies at the site that indicated riverbed clogging plays an important role in the performance of the riverbank filtration system, we investigated the spatiotemporal variability and nature of the clogging. In particular, we investigated whether the clogging was due to abiotic or biotic mechanisms. A secondary aspect of the study was the testing of different methods to monitor riverbed clogging and related processes, such as seepage. Monitoring was conducted using both point-based approaches and spatially extensive geophysical approaches, including: grain-size analysis, temperature sensing, electrical resistivity tomography, seepage meters, microbial analysis, and cryocoring, along two transects. The point monitoring measurements suggested a substantial increase in riverbed biomass (2 orders of magnitude) after the dam was raised compared to the small increase (∼2%) in fine-grained sediment. These changes were concomitant with decreased seepage. The decreased seepage eventually led to the development of an unsaturated zone beneath the riverbed, which further decreased infiltration capacity. Comparison of our time-lapse grain-size and biomass datasets suggested that biotic processes played a greater role in clogging than did abiotic processes. Cryocoring and autonomous temperature loggers were most useful for locally monitoring clogging agents, while electrical resistivity data were useful for interpreting the spatial extent of a pumping-induced unsaturated zone that developed beneath the riverbed after riverbed clogging was initiated. The improved understanding of spatiotemporally variable riverbed clogging and monitoring approaches is expected to be useful for optimizing the riverbank filtration system operations.

  3. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  4. Comparing current cluster, massively parallel, and accelerated systems

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Kevin J [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Hoisie, Adolfy [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  5. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  6. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming

  7. Fuzzy Controller based Neutral Current Harmonic Suppression in Distribution System

    Directory of Open Access Journals (Sweden)

    T.Guna Sekar

    2013-10-01

    Full Text Available Recent surveys of three-phase four-wire electric systems, buildings and industrial plants with computers and non-linear loads shows the excessive currents in the neutral conductor. This is mainly due to unbalancing system and non-linear loads. Third order harmonics are much dominant in the neutral conductor due to the presence of zero sequence components. In response to this concern, this paper presents a concept of series active filter scheme to suppress the neutral current harmonics to reduce the burden of the secondary of the distribution transformer. In this scheme, the series active filteris connected in series with the neutral conductor to eliminate the zero sequence components in the neutral conductor. In this paper, Fuzzy based controller is used to extract the harmonic component in the neutral conductor. The proposed method improves the overall performance of the system and eliminates the burden of the neutral conductor. To validate the proposed simulation results, a scale-down prototype experimental model is developed.

  8. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2017-02-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  9. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2016-11-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  10. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  11. Direct participation of electrical loads in the California independent system operator markets during the Summer of 2000

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Hamachi, Kristina S.; Khavkin, Mark; Siddiqui, Afzal S.

    2001-04-01

    California's restructured electricity markets opened on 1 April 1998. The former investor-owned utilities were functionally divided into generation, transmission, and distribution activities, all of their gas-fired generating capacity was divested, and the retail market was opened to competition. To ensure that small customers shared in the expected benefit of lower prices, the enabling legislation mandated a 10% rate cut for all customers, which was implemented in a simplistic way that fossilized 1996 tariff structures. Rising fuel and environmental compliance costs, together with a reduced ability to import electricity, numerous plant outages, and exercise of market power by generators drove up wholesale electricity prices steeply in 2000, while retail tariffs remained unchanged. One of the distribution/supply companies entered bankruptcy in April 2001, and another was insolvent. During this period, two sets of interruptible load programs were in place, longstanding ones organized as special tariffs by the distribution/supply companies and hastily established ones run directly by the California Independent System Operator (CAISO). The distribution/supply company programs were effective at reducing load during the summer of 2000, but because of the high frequency of outages required by a system on the brink of failure, customer response declined and many left the tariff. The CAISO programs failed to attract enough participation to make a significant difference to the California supply demand imbalance. The poor performance of direct load participation in California's markets reinforces the argument for accurate pricing of electricity as a stimulus to energy efficiency investment and as a constraint on market volatility.

  12. Current approach for urinary system stone disease in pregnant women

    Directory of Open Access Journals (Sweden)

    Orcun Celik

    2016-01-01

    Full Text Available Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  13. Current approach for urinary system stone disease in pregnant women.

    Science.gov (United States)

    Celik, Orcun; Türk, Hakan; Cakmak, Ozgur; Budak, Salih; Ekin, Rahmi Gokhan; Keskin, Mehmet Zeynel; Yildiz, Guner; Ilbey, Yusuf Ozlem

    2016-01-14

    Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  14. Reference springs in California for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in California that were used for the regional ground-water potential map...

  15. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    Science.gov (United States)

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  16. Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts

    Directory of Open Access Journals (Sweden)

    Raphael Hernando Parrado

    2015-01-01

    Full Text Available Introduction. Gastric antral vascular ectasia (GAVE is a rare entity with unique endoscopic appearance described as “watermelon stomach.” It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were “Gastric antral vascular ectasia,” “Watermelon Stomach,” “GAVE,” “Scleroderma,” and “Systemic Sclerosis.” Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.

  17. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  18. The California Integrated Seismic Network

    Science.gov (United States)

    Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.

    2007-05-01

    statewide earthquake processing systems at both real-time EMCs, the CISN is currently adopting and enhancing the database-centric, earthquake processing and analysis software originally developed for the Caltech/USGS Pasadena TriNet project. Earthquake data and waveforms are made available to researchers and to the public in near real-time through the CISN's Northern and Southern California Eathquake Data Centers (NCEDC and SCEDC) and through the USGS Earthquake Notification System (ENS). The CISN partners have developed procedures to automatically exchange strong motion data, both waveforms and peak parameters, for use in ShakeMap and in the rapid engineering reports which are available near real-time through the strong motion EDC.

  19. Spin-current Seebeck effect in quantum dot systems.

    Science.gov (United States)

    Yang, Zhi-Cheng; Sun, Qing-Feng; Xie, X C

    2014-01-29

    We first bring up the concept of the spin-current Seebeck effect based on a recent experiment (Vera-Marun et al 2012 Nature Phys. 8 313), and investigate the spin-current Seebeck effect in quantum dot (QD) systems. Our results show that the spin-current Seebeck coefficient S is sensitive to different polarization states of the QD, and therefore can be used to detect the polarization state of the QD and monitor the transitions between different polarization states of the QD. The intradot Coulomb interaction can greatly enhance S due to the stronger polarization of the QD. By using the parameters for a typical QD whose intradot Coulomb interaction U is one order of magnitude larger than the linewidth Γ, we demonstrate that the maximum value of S can be enhanced by a factor of 80. On the other hand, for a QD whose Coulomb interaction is negligible, we show that one can still obtain a large S by applying an external magnetic field.

  20. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  1. A compact analytical formalism for current transients in electrochemical systems

    CERN Document Server

    Nair, Pradeep R

    2011-01-01

    Micro and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecule detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained to the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the response of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detai...

  2. Water and gas seepage at the Salton Sea Geothermal System (California, USA)

    Science.gov (United States)

    Mazzini, A.; Svensen, H.; Polteau, S.; Planke, S.

    2009-04-01

    The Davis-Schrimpf seep field (Salton Sea, California) represents an ideal site for investigating the activity of hydrothermal systems. At this site, dozens of seeps (gryphons-pools) constantly expel water, mud, gas, and petroleum-fluids. We have conducted a long term monitoring on water and gas geochemistry of fluids erupted as well as annual temperature records. The fluids geochemistry and the temperature vary significantly at closely spaced locations and the water content present in the seeps acts as a key factor. The water salinity varies between fresh (1-3 g/L) in the gryphons, to hypersaline brine (145 g/L) in the pools. The gas emitted by the main vents revealed a composition averagely dominated by C02 (up to 99%) with smaller contributions of CH4. The seep waters represent meteoric waters modified by surface evaporation, with little or no evidence for a deep hydrothermal component. Seep gases, on the other hand, have a deep metamorphic/mantle origin. Temperature monitoring shows that gryphons are dominated by hydrothermal input and the pools by diurnal variations in air temperature. More recently we have conducted a broad investigation of the flux of CO2 and CH4 on a 20x20m meters grid covering a surface of over 20,000 square meters. The survey area extends over the main focussed vents and the results show that a considerable amount of CO2 and is constantly seeping through microseepage. Locally CH4 also exhibits areas with strong microseepage mainly where higher temperatures and surface minerals precipitations occur. These data reveal how important is the effect of microseepage when calculating global budgets of CO2 emissions in hydrothermal fields.

  3. An alkaline spring system within the Del Puerto ophiolite (California USA): A Mars analog site

    Energy Technology Data Exchange (ETDEWEB)

    Blank, J.G.; Green, S.; Blake, D.; Valley, J.; Kita, N.; Treiman, A.; Dobson, P.F.

    2008-10-01

    Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg-OH and Ca-OH waters with pH values up to {approx}12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rockhosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg-Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.

  4. 75 FR 3223 - California Independent System Operator Corporation; Midwest Independent Transmission System...

    Science.gov (United States)

    2010-01-20

    ... a subsequent notice. \\1\\ Wholesale Competition in Regions with Organized Electric Market, Order No... the responsiveness of regional transmission organizations (RTOs) and independent system operators... lead to decisions that do not adequately consider the price of electricity to residential consumers....

  5. [Magnetoreception systems in birds: a review of current research].

    Science.gov (United States)

    Kishkinev, D A; Chernetsov, N S

    2014-01-01

    Currently at least two independent systems of magnetoreception are believed to exist in birds, based on different biophysical principles, located in different parts of their bodies, and having different innervation. One magnetoreceptory system is located in the retina and may be based on photo-induced biradical chemical reactions on the basis of cryptochrome. Information from these receptors is processed in a specialized part of visual Wulst, the so-called Cluster N. There are good reasons to believe that this visual magnetoreceptor processes compass magnetic information which is necessary for migratory orientation. The second magnetoreceptory system is probably iron-based (biogenic magnetite), is located somewhere in the upper beak (its exact location and ultrastructure of receptors remain unknown), and is innervated by the ophthalmic branch of trigeminal nerve. It cannot be ruled out that this system participates in spatial representation and helps forming either a kind of map or more primitive signposts, based on regular spatial variation of the geomagnetic field. The magnetic map probably governs navigation of migrating birds across hundreds and thousands of kilometers. Apart from these two systems whose existence may be considered to be convincingly shown (even if their details are not yet fully clear), there are data on the existence of magnetoreceptors based on the vestibular system. It cannot be ruled out that iron-based magnetoreception takes place in lagena (a structure homologous to cochlea of marsupials and eutherians), and the information perceived is processes in vestibular nuclei. The very existence of this magnetoreception system needs verification, and its function remains completely open.

  6. Probing other solar systems with current and future adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  7. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  8. Current Utility Screening Practices, Technical Tools, Impact Studies, and Mitigation Strategies for Interconnecting PV on the Electric Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-12-19

    This report summarizes common best practices of photovoltaic system interconnection procedures based on interviews held with 19 electric utilities located in the state of California and in the southwestern, central, and northeastern regions of the United States.

  9. Joint NOAA/NWS/USGS prototype debris flow warning system for recently burned areas in Southern California

    Science.gov (United States)

    Restrepo, P.; Jorgensen, D.P.; Cannon, S.H.; Costa, J.; Laber, J.; Major, J.; Martner, B.; Purpura, J.; Werner, K.

    2008-01-01

    Debris flows, also known as mudslides, are composed gravity-driven mixtures of sediment and water that travel through steep channels, over open hillslopes, and the like. Addressing this issue, US Geological Survey (USGS) and NOAA have established a debris-flow warning system that has the ability to monitor and forecast precipitation and issue timely weather hazard warning. In 2005, this joint NOAA-USGS prototype debris-flow warning system was issued in Southern California and as a result, it has provided valuable information to emergency managers in affected communities.

  10. Geophysical evidence for Quaternary deformation within the offshore San Andreas Fault System, Point Reyes Peninsula, California

    Science.gov (United States)

    Stozek, B.

    2010-12-01

    Our previous work studying the rate and style of uplift of marine terraces on the Point Reyes Peninsula indicates the peninsula has been undergoing differential uplift due to interacting fault geometries in the offshore zone. To better understand offshore fault interactions, recently collected mini-sparker seismic reflection data acquired by the USGS and multi-beam bathymetric data acquired by California State University at Monterey Bay within the 3-mile (5 km) limit offshore of the Point Reyes Peninsula, are being used to reinterpret the tectono-stratigraphic framework of the San Andreas fault (SAF) system. Eight offshore Shell exploratory well logs that provide seismic velocity and paleontologic data are being used in conjunction with industry multichannel (deep-penetration) seismic reflection profiles to provide age control and extend the analyses beyond 3 mile limit of the high-resolution data. Isopach and structure maps of key stratigraphic intervals were generated to show how the stratigraphic units are influenced by fault interactions. These datasets allow for new interpretations of the offshore Neogene stratigraphy and the evolution of the Point Reyes fault, an offshore component of the SAF system. Observations of Quaternary sedimentary sequences in the high-resolution mini-sparker dataset provide evidence of localized areas of subsidence and uplift within the offshore SAF system. For example, the most recent angular unconformity above the Point Reyes fault deepens to the north where the fault bends from an east-west to a more northerly orientation. Stratigraphic horizons in the offshore zone are correlated with the same geologic units exposed on the Point Reyes Peninsula. Both unconformity-bounded sedimentary sequences mapped on reflection profiles in the offshore and marine terraces that have been uplifted on the peninsula are tied to sea-level fluctuations. Our new interpretation of the Point Reyes fault zone will be incorporated into a kinematic fault

  11. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    Science.gov (United States)

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

  12. Proposed Closure of Los Angeles Air Force Base, California and Relocation of Space Systems Division

    Science.gov (United States)

    1990-07-01

    californica), black sage ( Salvia mellifera), purple sage ( Salvia leucophylla), deerweed (Lotus scoparius), and poison oak (Toxicodendron diversilobum...Masticophis lateralis var. lateralis), western terrestrial garter snake (Thamnophis elegans var. terrestris) and possibly the western skink (Eumeces...tern Sterna elegans (2)Swainson’s Hawk Buted swainsoni (2) California Yellow-Billed Cuckoo Coccyzus americanus occidentalis (2) U Reptiles Western

  13. UCERF3: A new earthquake forecast for California's complex fault system

    Science.gov (United States)

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  14. 75 FR 81264 - Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc...

    Science.gov (United States)

    2010-12-27

    ... Energy Regulatory Commission Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent... (Commission), 18 CFR 385.206 (2010) and sections 206 and 306 of the Federal Power Act, 16 U.S.C. 824e and 825e (2006), Critical Path Transmission, LLC and Clear Power LLC (Complainants) filed a complaint...

  15. Taxonomic distinctness of demersal fishes of the California current: moving beyond simple measures of diversity for marine ecosystem-based management.

    Directory of Open Access Journals (Sweden)

    Nick Tolimieri

    Full Text Available BACKGROUND: Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32-48 degrees N and depth (ca. 50-1220 m for demersal fishes on the continental shelf and slope of the US Pacific coast. METHODOLOGY/PRINCIPAL FINDINGS: Both average taxonomic distinctness (AvTD and variation in taxonomic distinctness (VarTD changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50-150 m but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50-150 m, VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. CONCLUSIONS/SIGNIFICANCE: These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current.

  16. Review on the current trends in tongue diagnosis systems

    Directory of Open Access Journals (Sweden)

    Chang Jin Jung

    2012-12-01

    Full Text Available Tongue diagnosis is an essential process to noninvasively assess the condition of a patient's internal organs in traditional medicine. To obtain quantitative and objective diagnostic results, image acquisition and analysis devices called tongue diagnosis systems (TDSs are required. These systems consist of hardware including cameras, light sources, and a ColorChecker, and software for color correction, segmentation of tongue region, and tongue classification. To improve the performance of TDSs, various types TDSs have been developed. Hyperspectral imaging TDSs have been suggested to acquire more information than a two-dimensional (2D image with visible light waves, as it allows collection of data from multiple bands. Three-dimensional (3D imaging TDSs have been suggested to provide 3D geometry. In the near future, mobile devices like the smart phone will offer applications for assessment of health condition using tongue images. Various technologies for the TDS have respective unique advantages and specificities according to the application and diagnostic environment, but this variation may cause inconsistent diagnoses in practical clinical applications. In this manuscript, we reviewed the current trends in TDSs for the standardization of systems. In conclusion, the standardization of TDSs can supply the general public and oriental medical doctors with convenient, prompt, and accurate information with diagnostic results for assessing the health condition.

  17. Systemic Sclerosis and Malignancy: A Review of Current Data

    Science.gov (United States)

    Zeineddine, Nabil; Khoury, Lara El; Mosak, Joseph

    2016-01-01

    Systemic sclerosis (SSc) is associated with increased risk of malignancy. The organ systems most commonly affected are the lungs, the breasts and the hematological system. Risk factors predisposing a SSc patient for development of malignancy are not well defined, and the pathogenic basis of the association is yet to be explained. The incidence of malignancies in SSc patients is variable from one report to another, but most importantly, questions regarding the role of immunosuppressive therapies and the effect of autoantibodies have weak or sometimes contradictory answers in most of the currently available literature and physicians have no available guidelines to screen their SSc patients for malignancies. The lack of a concretely defined high-risk profile and the absence of malignancy screening guidelines tailored for SSc patients raise the importance of the need for more studies on the association of SSc and cancer and should incite rheumatology colleges to develop specific recommendations for the clinician to follow while approaching patients with SSc. PMID:27540435

  18. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  19. Current Source Converter Based Wind Energy Conversion Systems

    Institute of Scientific and Technical Information of China (English)

    Samir Kouro; Jing-ya DAI; Bin WU

    2011-01-01

    The increase in the installed capacity of wind energy conversion systems (WECS) has triggered the development of more demanding grid codes and additional requirements on performance.In order to meet these requirements the industry trend has shifted to full-scale power converter interfaces in modern multi-megawatt WECS.As consequence,a wide variety of new power converter topologies and WECS configurations have been introduced in recent years.Among them,current source converter(CSC) based configurations have attracted attention due to a series of advantages like:simple structure,grid friendly waveforms,controllable power factor,and reliable grid short-circuit protection.This paper presents the latest developments in CSC interfaces for WECS and related technologies such as modulation methods,control schemes and grid code compatibility.

  20. California Red-Legged Frog Range - CWHR [ds587

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  1. Proceedings on Expert Systems Workshop Held in Pacific Grove, California on 16-18 April 1986

    Science.gov (United States)

    1986-04-01

    pushes the current definition and the knowledge base is modified. on the editor stack, as it does by pointing at it in other displays). The editor stack...Results to-’"pert System Tecnology A’alTeq Ba~ed on Triangular Norms, biternationalh,.tco he Rsuls :Exp m h ogyJournal of General Systems, Vol. 8, 1...TRICERO/ELINT and AIRTRAC problems. knowledge sources’ modularity of forming or altering While generally similar, each problem is expected to push

  2. The Study of the Geomagnetic Variation for Sq current System

    Science.gov (United States)

    Zhao, X.; Du, A.

    2012-04-01

    The solar quiet variation (Sq) with a period of 24 hrs is a typical one of the quiet variations. Sq is generally caused by atmospheric tide-dynamo in ionosphere and it is controlled by the electric field, electric conductivity in ionosphere and neutral wind in middle-high altitude atmosphere. In our work, the geomagnetic field data observed by 90 ground-based observatories is used to analyze the local time variation of Sq. Sq is derived from five quiet-day geomagnetic data in every month by the FFT method. According to the pattern of geomagnetic X component in Sq, there is a prenoon-postnoon (before noon and after noon) asymmetry. This asymmetry is obvious in spring, summer and winter. The X component at 12:00-13:00 LT is about 5 nT larger than it at 11:00-12:00 LT. The ratio between the X component of daily variable amplitude and Y component of daily variable amplitude in middle and low (high) latitude regions in summer is greater (smaller) than that in winter. Used the sphere harmonic analysis method, the Sq equivalent current system is obtained. From the pattern of Sq current system, the prenoon-postnoon asymmetry may be caused by the electric field in the high latitude region. This electric field has two effects: the one is that the electric field from high latitude maps to the low latitude region; the other is this electric field penetrate to the middle latitude region directly. The combined action of these two effects makes the prenoon-postnoon asymmetry of Sq. The asymmetry also has an obvious seasonal effect. It may relate to the polar Sq and DP2 in the high latitude region.

  3. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    Science.gov (United States)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2

  4. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    Science.gov (United States)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant

  5. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    CERN Document Server

    Yamaguchi, T; Nakamura, K; Yamaguchi, S; Hasegawa, Y

    2002-01-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/pi time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  6. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takayuki; Ohtaki, Naohiro; Nakamura, Keiji; Yamaguchi, Satarou [Chubu Univ., Kasugai, Aichi (Japan); Hasegawa, Yasuhiro [Saitama Univ., Saitama (Japan)

    2002-09-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/{pi} time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  7. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  8. Scientific Insights for Managing Droughts in California

    Science.gov (United States)

    Lund, J. R.; Medellin-Azuara, J.; Howitt, R. E.; MacEwan, D.; Sumner, D. A.

    2015-12-01

    Droughts stress water systems and provide important opportunities to learn about vulnerabilities and motivate improvements in water systems. Current and past droughts in California show that this highly-engineered system is highly robust and resilient to droughts, as agriculture and urban water needs are mostly fulfilled and recover quickly following drought. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper reviews the impacts of California's ongoing 4-year drought and its importance for better understanding its ecological and water supply systems, as well as motivating improvements in water management and scientific work.

  9. Distributed Plate Boundary Deformation Across the San Andreas Fault System, Central California

    Science.gov (United States)

    Dyson, M.; Titus, S. J.; Demets, C.; Tikoff, B.

    2007-12-01

    Plate boundaries are now recognized as broad zones of complex deformation as opposed to narrow zones with discrete offsets. When assessing how plate boundary deformation is accommodated, both spatially and temporally, it is therefore crucial to understand the relative contribution of the discrete and distributed components of deformation. The creeping segment of the San Andreas fault is an ideal location to study the distribution of plate boundary deformation for several reasons. First, the geometry of the fault system in central California is relatively simple. Plate motion is dominated by slip along the relatively linear strike-slip San Andreas fault, but also includes lesser slip along the adjacent and parallel Hosgri-San Gregorio and Rinconada faults, as well as within the borderlands between the three fault strands. Second, the aseismic character of the San Andreas fault in this region allows for the application of modern geodetic techniques to assess creep rates along the fault and across the region. Third, geologic structures within the borderlands are relatively well-preserved allowing comparison between modern and ancient rates and styles of deformation. Continuous GPS stations, alignment arrays surveys, and other geodetic methods demonstrate that approximately 5 mm/yr of distributed slip is accumulated (on top of the fault slip rate) across a 70-100 km wide region centered on the San Andreas fault. New campaign GPS data also suggest 2-5 mm/yr of deformation in the borderlands. These rates depend on the magnitude of the coseismic and postseismic corrections that must be made to our GPS time series to compensate for the 2003 San Simeon and 2004 Parkfield earthquakes, which rupture faults outside, but near the edges of our GPS network. The off-fault deformation pattern can be compared to the style of permanent deformation recorded in the geologic record. Fold and thrust belts in the borderlands are better developed in the Tertiary sedimentary rocks west of

  10. A combined radio- and stable-isotopic study of a California coastal aquifer system

    Science.gov (United States)

    Swarzenski, Peter W.; Baskaran, Mark; Rosenbauer, Robert J.; Edwards, Brian D.; Land, Michael

    2013-01-01

    Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl−, SO42−), silica, alkalinity, select trace elements (Ba, B, Sr), dissolved oxygen, stable isotopes of hydrogen (δD), oxygen (δ18O), dissolved inorganic carbon (δ13CDIC), and radioactive isotopes (3H, 222Rn and 223,224,226,228Ra). In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl− concentrations attained seawater-like values and in conjunction with isotopically heavier δ18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU) was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc), groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ13CDIC in the absence of SO42− imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/238U (activity ratios ~1) in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights into aquifer

  11. A Combined Radio- and Stable-Isotopic Study of a California Coastal Aquifer System

    Directory of Open Access Journals (Sweden)

    Michael Land

    2013-04-01

    Full Text Available Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na+, K+, Mg2+, Ca2+ and anions (Cl−, SO42−, silica, alkalinity, select trace elements (Ba, B, Sr, dissolved oxygen, stable isotopes of hydrogen (δD, oxygen (δ18O, dissolved inorganic carbon (δ13CDIC, and radioactive isotopes (3H, 222Rn and 223,224,226,228Ra. In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl− concentrations attained seawater-like values and in conjunction with isotopically heavier δ18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc, groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ13CDIC in the absence of SO42− imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/238U (activity ratios ~1 in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights

  12. A compact analytical formalism for current transients in electrochemical systems.

    Science.gov (United States)

    Nair, Pradeep R; Alam, Muhammad A

    2013-01-21

    Micro- and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecular detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed-form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained into the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the responses of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detailed numerical simulations and experimental data from the literature, have broad implications in the design and optimization of nanostructured electrodes for healthcare and energy storage applications.

  13. Current systemic treatment of hepatocellular carcinoma: Areview of the literature

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth mostcommon form of human cancer worldwide and the thirdmost common cause of cancer-related deaths. Thestrategies of various treatments for HCC depend onthe stage of tumor, the status of patient's performanceand the reserved hepatic function. The Barcelona ClinicLiver Cancer (BCLC) staging system is currently usedmost for patients with HCC. For example, for patientswith BCLC stage 0 (very early stage) and stage A (earlystage) HCC, the curable treatment modalities, includingresection, transplantation and radiofrequency ablation,are taken into consideration. If the patients are in BCLCstage B (intermediate stage) and stage C (advancedstage) HCC, they may need the palliative transarterialchemoembolization and even the target medicationof sorafenib. In addition, symptomatic treatment isalways recommended for patients with BCLC stage D(end stage) HCC. In this review, we will attempt tosummarize the historical perspective and the currentdevelopments of systemic therapies in BCLC stage Band C in HCC.

  14. Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)

    Science.gov (United States)

    Mazzini, Adriano; Svensen, Henrik; Etiope, Giuseppe; Onderdonk, Nathan; Banks, David

    2011-08-01

    The Salton Sea Geothermal System (California) is an easily accessible setting for investigating the interactions of biotic and abiogenic geochemical processes in sediment-hosted hydrothermal systems. We present new temperature data and the molecular and isotopic composition of fluids seeping at the Davis-Schrimpf seep field during 2003-2008. Additionally, we show the first flux data for CO 2 and CH 4 released throughout the field from focused vents and diffuse soil degassing. The emitted gases are dominated by CO 2 (~ 98%) and CH 4 (~ 1.5%). By combining δ 13C CO2 (as low as - 5.4‰) and δ 13C CH4 (- 32‰ to - 17.6‰) with 3He/ 4He (R/Ra > 6) and δD CH4 values (- 216‰ to - 150‰), we suggest, in contrast to previous studies, that CO 2 may have a significant Sub-Continental Mantle source, with minimal crustal contamination, and CH 4 seems to be a mixture of high temperature pyrolitic (thermogenic) and abiogenic gas. Water seeps show that δD and δ 18O increase proportionally with salinity (Total Dissolved Solids in g/L) ranging from 1-3 g/L (gryphons) to 145 g/L (hypersaline pools). In agreement with elemental analyses, the isotopic composition of the waters indicate a meteoric origin, modified by surface evaporation, with little or no evidence of deep fossil or magmatic components. Very high Cl/Br (> 3,000) measured at many seeping waters suggests that increased salinities result from dissolution of halite crusts near the seep sites. Gas flux measurements from 91 vents (pools and gryphons) give a conservative estimate of ~ 2,100 kg of CO 2 and 11.5 kg of CH 4 emitted per day. In addition soil degassing measured at 81 stations (20x20 m grid over 51,000 m 2) revealed that 7,310 kg/d CO 2 and 33 kg/d CH 4 are pervasively released to the atmosphere. These results emphasise that diffuse gas emission from soil can be dominant (~ 75%) even in hydrothermal systems with large and vigorous gas venting. Sediment-hosted hydrothermal systems may represent an

  15. Dual-system Tectonics of the San Luis Range and Vicinity, Coastal Central California

    Science.gov (United States)

    Hamilton, D. H.

    2010-12-01

    The M 6.5 "San Simeon" earthquake of December 22, 2003, occurred beneath the Santa Lucia Range in coastal central California, and resulted in around $250,000,000 property damage and two deaths from collapse of an historic building in the town of Paso Robles, located 40 km from the epicenter. The earthquake and more than 10,000 aftershocks were well recorded by nearby seismographs, which permitted detailed analysis of the event (eg: McLaren et al., 2008). This analysis facilitated evaluation of the hazard of the occurrence of a similar event in the nearby San Luis Range, located along the coast west of the city of San Luis Obispo some 55 km south of the San Simeon epicenter. The future occurrence of earthquakes analogous to the 2003 event in this area had been proposed in the late 1960’s (eg: Benioff and Smith, 1967; Richter, 1969) but the apparent hazard of such occurrences came to be overshadowed by the discovery of the “Hosgri” strike slip fault passing close to the area in the offshore. However data accumulated since the early 1970’s clearly demonstrate the hazard as being partitioned between nearby earthquakes of strike slip origin, and underlying earthquakes of thrust origin analogous to that of the 2003 San Simeon earthquake. And for the onshore San Luis Range area, an underlying actively seismogenic thrust wedge appears to provide the maximum potential seismic ground motion; exceeding that potentially resulting from large events on nearby strike slip faults of the San Simeon-Hosgri system, for onshore sites. Understanding and documentation of the geology, geomorphology, tectonics and seismogenesis of the San Luis Range and vicinity has recently experienced a quantum improvement as both new and accumulated data have been analysed. An integrated interpretation of all available data now clearly shows that a dual “side by side” system of active tectonics exists in the region. Essentially the most obvious evidence for this is seen simply in the

  16. The Optimal Interest Rates and the Current Interest Rate System

    Directory of Open Access Journals (Sweden)

    Ioannis N. Kallianiotis

    2014-12-01

    Full Text Available The paper discusses the current target interest rate, which is closed to zero with the new experiment of quantitative easing since 2009 and has reduced the rate of return and the income and has made the real savings rate negative. This target rate has not reduced unemployment and has not improved growth (it is not optimal, but has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. People were borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit cards. The current monetary system needs to be changed and an interest rate floor on deposits (savings and an interest rate ceiling on individuals‟ loans (borrowings is necessary to improve social welfare, fairness, and justice in our society and not to support only disintermediation (financial markets. The middle class cannot work only to pay taxes and interest on its debt (redistribution of their wealth to government and banks or worse to be in chronic unemployment. Many home owners defaulted on their loans payments and their homes are foreclosed. They will end up without property (real assets. The unconcern towards the middle class will affect negatively the entire socio-economic structure of the nation and after losing its productive power, it will start declining, as history has shown to us with so many empires that do not exist anymore. We hope the leaders (the democratic governments to improve public policies, to regulate the financial market and institutions, and to satisfy their policy ultimate objective, which is citizens‟ perfection and the nation‟s highest point of prosperity.

  17. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  18. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  19. The San Andreas Transform System and the Tectonics of California: An Alternative Approach

    Science.gov (United States)

    Platt, J. P.; Kaus, B.; Becker, T. W.

    2006-12-01

    Pacific - North America displacement in California is distributed over a zone of intracontinental deformation 400 km wide, and incorporates large regions of transtensional and transpressional deformation. This pattern of deformation is not easily explicable in terms of brittle Coulomb failure, which should localize deformation on to a single fault. There is no consensus at present on what controls the width of this zone or the distribution of strain within it. We model the transform as a weak ductile shear zone, terminating at either end in an effectively stress-free boundary. The shear zone exerts a shear-stress boundary condition on the stronger but deformable continental lithosphere either side. Stress and strain-rate decrease away from the shear zone because of its limited length in relation to the scale of the plates. Force balance in a sheet of deformable material with free upper and lower surfaces requires lateral gradients in horizontal shear-strain rate to be balanced by longitudinal gradients in horizontal stretching rate. Analytical estimates and 3D numerical modeling demonstrate that these gradients will create zones of lithospheric thickening and thinning distributed anti-symmetrically about the shear zone. Lithospheric thickening in the Transverse Ranges and the Klamath Mountains, and thinning in the Eastern California shear zone and the San Francisco Bay area, correspond reasonably well to these predictions. This provides a test for the length- scales concept, and a powerful predictive tool for understanding the tectonics of California and other intracontinental transforms.

  20. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Balderston, F.; Blatman, P.; Bradshaw, T.; Brown, P.; Carroll, O.; Christensen, M.; Craig, P.; Finnegan, S.; Glassey, R.; Greene, B.; Groth, A.; Gruener, G.; Holdren, J.; Horovitz, M.; Hoos, I.; Kahn, E.; Kanin, J.; Klein, W.; LaPorte, T.; Lucarelli, B.; McGuire, B.; Mintzer, I.; Moyer, G.; Nader, L.; Nathans, R.; Palacio, J.; Pollock, P.; Rich, C.; Rochlin, G.; Rosow, G.; Rubin, B.; Schutz, H.; Simmons, M.; Smith, P.; Tourinho, O.; Twiss, R.; Vine, E.; Wilson, N.

    1977-09-01

    environmental impacts of some major conventional and nonconventional energy options for California. Although the emphasis in this study is on the latter, the most sensible yardstick to give meaning to the results is provided by the former. The objective is to permit at least some partial and preliminary conclusions about this aspect of the 'soft' energy options, and to identify those areas where additional knowledge is most badly needed. In this analysis sociopolitical impacts are mentioned from time to time for completeness, but the emphasis is on impacts on physical resources and on the physical environment; impacts on institutions and social systems per se are treated more thoroughly in other papers in this project.

  1. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  2. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  3. Neuropsychiatric involvement in systemic lupus erythematosus: current therapeutic approach.

    Science.gov (United States)

    Sanna, Giovanni; Bertolaccini, Maria Laura; Khamashta, Munther A

    2008-01-01

    The involvement of the central nervous system (CNS) is one of the major causes of morbidity and mortality in systemic lupus erythematosus (SLE) patients and the less understood aspect of the disease. Its recognition and treatment continue to represent a major diagnostic and therapeutic challenge. Due to the lack of controlled randomized trials, current therapeutic approach is still empirical and based on clinical experience. The therapeutic choice depends on accurate diagnosis, identification of underlying pathogenic mechanism, severity of the presenting neuropsychiatric symptoms, and on prompt identification and management of contributing causes of CNS disease. Mild neuropsychiatric manifestations may need symptomatic treatment only. In more severe CNS disease it is important to distinguish between thrombotic and non-thrombotic mechanisms. Focal CNS manifestations, particularly TIA and stroke, are associated with the presence of antiphospholipid antibodies (aPL). Anticoagulation is warranted in patients with thrombotic disease, particularly in those with the antiphospholipid (Hughes) syndrome (APS). Other CNS manifestations, such as demyelinating syndrome, transverse myelitis, chorea, seizures, migraine and/or cognitive dysfunction, when associated with persistent positivity for aPL, may also benefit from anticoagulation in selected patients. Severe diffuse CNS manifestations, such as acute confusional state, generalised seizures, mood disorders and psychosis, generally require corticosteroids in the first instance. Pulse intravenous cyclophosphamide therapy may help when more severe manifestations are refractory to corticosteroids and other immunosuppressive agents, generally when response is not seen in 3-5 days. Plasmapheresis may also be added in severe cases of symptoms refractory to conventional treatment. Intravenous immunoglobulins, mycophenolate mofetil, rituximab, intratecal methotrexate and dexametasone deserve further studies to confirm their

  4. Monitoring tidal currents with a towed ADCP system

    Science.gov (United States)

    Sentchev, Alexei; Yaremchuk, Max

    2016-01-01

    The tidal circulation in the semi-enclosed Boulogne harbour (eastern English Channel) is measured during the various stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler (ADCP) system for the first time. The system is equipped with an interpolation algorithm which allows reconstructing space-time evolution of the velocity field for surveys whose duration is comparable or larger than the typical time of tidal variation (1-2 h). The method employs space-time velocity covariances derived from a numerical simulation of the surveyed area by a high-resolution relocatable model "Model for Applications on Regional Scale" (MARS). The covariances are utilized by the optimal interpolation algorithm to obtain the most likely evolution of the velocity field under the constraints provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evolution of the velocity field in the surveyed area which is then corrected by the data in a statistically consistent manner as it explicitly takes into the account both observational and modeling errors. The quality of the velocity reconstruction was validated against independent bottom-mounted ADCP data, the background model evolution, and against the results of spatial interpolation by Kriging technique. All tests demonstrated significant (30 to 60 %) reduction of the model-data misfit for the velocity field obtained as a result of space-time optimal interpolation. Although the method was applied to recover surface circulation, it can be extended for assessment of the full 4D tidal flow dynamics using the data recorded throughout the entire water column.

  5. Current operators in relativistic few-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Coester, F.; Klink, W.H.; Polyzou, W.N.

    1995-08-01

    The interpretation of experiments that explore hadron structure with electromagnetic probes requires both a nonperturbative representation of the hadron states and a compatible representation of the current-density operator. Intuitive interpretations depend strongly on the {open_quotes}impulse approximation{close_quotes}, that is, the use of one-body currents. One-body currents, however, cannot satisfy essentially the constraints imposed by the dynamics. In nonrelativistic quantum mechanics the problem of constructing dynamically required interaction currents is well understood and has been solved. Since Galilei transformations are kinematic, only time-translation covariance and current conservation impose dynamical constraints on current operators. These constraints can be satisfied by the well-known construction of so-called {open_quotes}minimal{close_quotes} or {open_quotes}model-independent{close_quotes} currents. Descriptions of hadron structure and of nuclear effects probed at high energies require a relativistic description. In relativistic few-body dynamics, one-body currents are covariant only under the kinematic subgroup of the Poincare group. Full Poincare covariance and current conservation implies dynamically determined interaction currents. The separation of the current operator into impulse current and interaction current depends on the {open_quotes}form of dynamics{close_quotes}, that is on the choice of the kinematic subgroup. The choice of the light-front kinematics has unique advantages not available with other forms of dynamics: (1) a relevant subgroup of the translations is kinematic, (2) initial and final states are related by kinematic Lorentz transformations, (3) the contributions of the individual constituents are related kinematically to the total current. These features were exploited successfully in calculations of deuteron form factors and quark-model form factors of hadrons.

  6. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  7. A geomagnetically induced current warning system: model development and validation

    Science.gov (United States)

    McKay, A.; Clarke, E.; Reay, S.; Thomson, A.

    Geomagnetically Induced Currents (GIC), which can flow in technological systems at the Earth's surface, are a consequence of magnetic storms and Space Weather. A well-documented practical problem for the power transmission industry is that GIC can affect the lifetime and performance of transformers within the power grid. Operational mitigation is widely considered to be one of the best strategies to manage the Space Weather and GIC risk. Therefore in the UK a magnetic storm warning and GIC monitoring and analysis programme has been under development by the British Geological Survey and Scottish Power plc (the power grid operator for Central Scotland) since 1999. Under the auspices of the European Space Agency's service development activities BGS is developing the capability to meet two key user needs that have been identified. These needs are, firstly, the development of a near real-time solar wind shock/ geomagnetic storm warning, based on L1 solar wind data and, secondly, the development of an integrated surface geo-electric field and power grid network model that should allow prediction of GIC throughout the power grid in near real time. While the final goal is a `seamless package', the components of the package utilise diverse scientific techniques. We review progress to date with particular regard to the validation of the individual components of the package. The Scottish power grid response to the October 2003 magnetic storms is also discussed and model and validation data are presented.

  8. Measurements of nitrite production and nitrite-producing organisms in and around the primary nitrite maximum in the central California Current

    Directory of Open Access Journals (Sweden)

    A. E. Santoro

    2013-03-01

    Full Text Available Nitrite (NO2– is a substrate for both oxidative and reductive microbial metabolism. NO2– accumulates at the base of the euphotic zone in oxygenated, stratified open ocean water columns, forming a feature known as the primary nitrite maximum (PNM. Potential pathways of NO2– production include the oxidation of ammonia (NH3 by ammonia-oxidizing bacteria or archaea and assimilatory nitrate (NO3– reduction by phytoplankton or heterotrophic bacteria. Measurements of NH3 oxidation and NO3– reduction to NO2– were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2– production in the PNM. Sensitive (−1, high-resolution measurements of [NH4+] and [NO2–] indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 μmol L−1. Within and just below the PNM, NH3 oxidation was the dominant NO2– producing process with rates of NH3 oxidation of up to 50 nmol L−1 d−1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2– production from NO3– was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, Synechococcus, and Prochlorococcus were present at the depth of the PNM. Rates of NO2– production from NO3– were highest within the upper mixed layer (4.6 nmol L−1 d−1 but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2– profiles supported direct rate measurements of a net biological sink for NO2– just below the PNM. Residence time estimates of NO2– within the PNM were similar at the mesotrophic and oligotrophic stations and ranged from 150–205 d. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation.

  9. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  10. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Balderston, F.; Blatman, P.; Bradshaw, T.; Brown, P.; Carroll, O.; Christensen, M.; Craig, P.; Finnegan, S.; Glassey, R.; Greene, B.; Groth, A.; Gruener, G.; Holdren, J.; Horovitz, M.; Hoos, I.; Kahn, E.; Kanin, J.; Klein, W.; LaPorte, T.; Lucarelli, B.; McGuire, B.; Mintzer, I.; Moyer, G.; Nader, L.; Nathans, R.; Palacio, J.; Pollock, P.; Rich, C.; Rochlin, G.; Rosow, G.; Rubin, B.; Schutz, H.; Simmons, M.; Smith, P.; Tourinho, O.; Twiss, R.; Vine, E.; Wilson, N.

    1977-09-01

    The construction and use of energy technologies produce environmental and social consequences that are neither desired nor, for the most part, incorporated in the economic costs charged for the energy supplied. Although it is now essentially universally recognized that these 'externalities' or (broadly defined) 'social costs' must somehow be taken into account in the processes by which society chooses among alternative energy options, it is less widely appreciated that these costs - not resource limits or narrow economics - actually define the energy dilemma in the long term. It is important to try to make clear at the outset why this is so. The energy problem resides fundamentally in the fact that the relation between energy and well-being is two-sided. The application of energy as a productive input to the economy, yielding desired goods and services, contributes to well-being; the environmental and social costs of getting and using energy subtract from it. At some level of energy use, and for a given mix of technologies of energy supply, further increases in energy supply will produce incremental social and environmental costs greater than the incremental economic benefits - that is, growth begins to do more harm than good (Holdren, 1977; Committee on Nuclear and Alternative Energy Systems, 1977). This level can be said to define a rational 'limit to growth', as distinct from a strictly physical one. That such a level, beyond which energy growth no longer pays, exists in principle for any mix of technologies of supply and end-use is easily shown from basic economics and physical science; predicting its magnitude exactly is much harder, the more so because social costs even less quantifiable than environmental ones may dominate. Lovins (1976, 1977) evidently believes that the United States is already near or beyond the point, given the 'hard' energy technologies on which it relies, where further growth hurts more than it

  11. Hydrostructural maps of the Death Valley regional flow system, Nevada and California

    Science.gov (United States)

    Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.

    2002-01-01

    The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system (DVRFS), which covers 80,000 square km in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics may serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities. The faults shown on maps A and B are largely from Workman and others (in press), and fit one or more of the following criteria: (1) faults that are more than 10 km in map length; (2) faults with more than 500 m of displacement; and (3) faults in sets that define a significant structural fabric that characterizes a particular domain of the DVRFS. The following fault types are shown: Neogene normal, Neogene strike-slip, Neogene low-angle normal, pre-Tertiary thrust, and structural boundaries of Miocene calderas. We have highlighted faults that have late Pleistocene to Holocene displacement (Piety, 1996). Areas of thick

  12. Teale California Office of Emergency Services

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  13. Teale Urband and rural areas of California

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state...

  14. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    Science.gov (United States)

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  15. Deep crustal heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation

    Science.gov (United States)

    Nishigami, Kin'ya

    2000-04-01

    The three-dimensional distribution of scatterers in the crust along and around the San Andreas fault system in central California is estimated using an inversion analysis of coda envelopes from local earthquakes. I analyzed 3801 wave traces from 157 events recorded at 140 stations of the Northern California Seismic Network. The resulting scatterer distribution shows a correlation with the San Gregorio, San Andreas, Hayward, and Calaveras faults. These faults seem to be almost vertical from the surface to ˜15 km depth. Some of the other scatterers are estimated to be at shallow depths, 0-5 km, below the Diablo Range, and these may be interpreted as being generated by topographic roughness. The depth distribution of scatterers shows relatively stronger scattering in the lower crust, at ˜15-25 km depth, especially between the San Andreas fault and the Hayward-Calaveras faults. This suggests a subhorizontal detachment structure connecting these two faults in the lower crust. Several clusters of scatterers are located along the San Andreas fault at intervals of ˜20-30 km from south of San Francisco to the intersection with the Calaveras fault. This part of the San Andreas fault appears to consist of partially locked segments, also ˜20-30 km long, which rupture during M6-7 events, and segment boundaries characterized by stronger scattering and stationary microseismicity. The segment boundaries delineated by the present analysis correspond with those estimated from the slip distribution of the great 1906 San Francisco earthquake, and from the fault geometry as reported by the Working Group on California Earthquake Probabilities [1990], although the segment boundaries along the San Andreas fault in and around the San Francisco Bay area are still uncertain.

  16. Model for the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1981-01-01

    Earlier studies at Cerro Prieto led to the development of a qualitative model for fluid flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modeling of heat and mass transfer in the system in this undisturbed state. This one-dimensional model assumes that the heat source was a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compilation of various information of the physical properties of the reservoir, the enthalpy contained in two 1 cm thick sections across the reservoir orthogonal to each other was calculated. Various shapes, sizes and depths for the intrusion were considered as initial conditions and boundary conditions for the calculations of heat transfer. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4 km wide emplaced at a depth of 5 km some 30,000 to 50,000 years ago, providing heat to the geothermal system.

  17. Model of the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1982-08-10

    Earlier studies at Cerro Prieto by UCR have led to the development of a qualitative model for field flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modelling of heat and mass transfer in the system in this undisturbed state. A two-dimensional model assumes that the heat sources were a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compiling various information on the physical properties of the reservoir, the enthalpy contained in two 1cm thick section across the reservoir orthogonal to each other was calculated. Next various shapes, sizes and depths for the intrusion as initial conditions and boundary conditions for the calculation of heat transfer were considered. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4km wide emplaced at a depth of 5km some 30,000 to 50,000 years ago, providing heat to the geothermal system. Numerical modelling is still in progress. Although none of the models so far computed may be a perfect match for the thermal history of the reservoir, they all indicate that the intrusive heat source is young, close and large.

  18. Real time Aanderaa current meter data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    in laboratory. In this paper a method is described to read the real time current meter data and display/print/store on cartridge. For this, binary coded electrical signal available at the top end plate of the current meter is connectEd. by underwater cable...

  19. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  20. Users' guide to system dynamics model describing Coho salmon survival in Olema Creek, Point Reyes National Seashore, Marin County, California

    Science.gov (United States)

    Woodward, Andrea; Torregrosa, Alicia; Madej, Mary Ann; Reichmuth, Michael; Fong, Darren

    2014-01-01

    The system dynamics model described in this report is the result of a collaboration between U.S. Geological Survey (USGS) scientists and National Park Service (NPS) San Francisco Bay Area Network (SFAN) staff, whose goal was to develop a methodology to integrate inventory and monitoring data to better understand ecosystem dynamics and trends using salmon in Olema Creek, Marin County, California, as an example case. The SFAN began monitoring multiple life stages of coho salmon (Oncorhynchus kisutch) in Olema Creek during 2003 (Carlisle and others, 2013), building on previous monitoring of spawning fish and redds. They initiated water-quality and habitat monitoring, and had access to flow and weather data from other sources. This system dynamics model of the freshwater portion of the coho salmon life cycle in Olema Creek integrated 8 years of existing monitoring data, literature values, and expert opinion to investigate potential factors limiting survival and production, identify data gaps, and improve monitoring and restoration prescriptions. A system dynamics model is particularly effective when (1) data are insufficient in time series length and/or measured parameters for a statistical or mechanistic model, and (2) the model must be easily accessible by users who are not modelers. These characteristics helped us meet the following overarching goals for this model: Summarize and synthesize NPS monitoring data with data and information from other sources to describe factors and processes affecting freshwater survival of coho salmon in Olema Creek. Provide a model that can be easily manipulated to experiment with alternative values of model parameters and novel scenarios of environmental drivers. Although the model describes the ecological dynamics of Olema Creek, these dynamics are structurally similar to numerous other coastal streams along the California coast that also contain anadromous fish populations. The model developed for Olema can be used, at least as a

  1. Re-establishing marshes can return carbon sink functions to a current carbon source in the Sacramento-San Joaquin Delta of California, USA

    Science.gov (United States)

    Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.

    2011-01-01

    The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production

  2. A Sanctuary for Science: The Hastings Natural History Reservation and the Origins of the University of California's Natural Reserve System.

    Science.gov (United States)

    Alagona, Peter S

    2012-01-01

    In 1937 Joseph Grinnell founded the University of California's (U.C.) first biological field station, the Hastings Natural History Reservation. Hastings became a center for field biology on the West Coast, and by 1960 it was serving as a model for the creation of additional U.C. reserves. Today, the U.C. Natural Reserve System (NRS) is the largest and most diverse network of university-based biological field stations in the world, with 36 sites covering more than 135,000 acres. This essay examines the founding of the Hastings Reservation, and asks how it managed to grow and develop, in the 1940s and 1950s, during a time of declining support for natural history research. It shows how faculty and staff courted the support of key institutional allies, presented themselves as the guardians of a venerable tradition in nature study, and emphasized the station's capacity to document ecological change and inform environmental policy and management. In the years since, Hastings and other U.C. reserves have played crucial roles in California environmental politics. Biological field stations in the post-war era deserve more attention not only from historians of biology, but also from environmental historians and other scholars interested in the role of science in society.

  3. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, J. R.; Mangan, M. T.; McPhee, D.; Wannamaker, P. E.

    2016-08-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2-5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5-10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5-10% basaltic partial melt.

  4. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  5. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  6. Staggering successes amid controversy in California water management

    Science.gov (United States)

    Lund, J. R.

    2012-12-01

    Water in California has always been important and controversial, and it probably always will be. California has a large, growing economy and population in a semi-arid climate. But California's aridity, hydrologic variability, and water controversies have not precluded considerable economic successes. The successes of California's water system have stemmed from the decentralization of water management with historically punctuated periods of more centralized strategic decision-making. Decentralized management has allowed California's water users to efficiently explore incremental solutions to water problems, ranging from early local development of water systems (such as Hetch Hetchy, Owens Valley, and numerous local irrigation projects) to more contemporary efforts at water conservation, water markets, wastewater reuse, and conjunctive use of surface and groundwater. In the cacophony of local and stakeholder interests, strategic decisions have been more difficult, and consequently occur less frequently. California state water projects and Sacramento Valley flood control are examples where decades of effort, crises, floods and droughts were needed to mobilize local interests to agree to major strategic decisions. Currently, the state is faced with making strategic environmental and water management decisions regarding its deteriorating Sacramento-San Joaquin Delta. Not surprisingly, human uncertainties and physical and fiscal non-stationarities dominate this process.

  7. Higher Education in California: New Goals for the Master Plan

    Science.gov (United States)

    Johnson, Hans

    2010-01-01

    Fifty years ago, state policymakers and higher education officials adopted California's Master Plan for Higher Education. This plan still largely defines policies concerning the state's public higher education systems: the California community colleges (CCC), the California State University (CSU) system, and the University of California (UC)…

  8. Carrier currents systems and home integrated systems; Les courants porteurs vont-ils epanouir la domotique

    Energy Technology Data Exchange (ETDEWEB)

    Remond, C.

    1996-12-31

    Energy savings in buildings can be performed by remote control applications. Current carrier equipment interfaces use buildings integrated power network to perform data transmission through an entire building, or even to a remote building. The case of industrial buildings lighting systems is sketched out, but these interfaces apply as well to electric heating (space or water heating). (D.L.)

  9. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current

    Science.gov (United States)

    Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera

    2015-11-01

    We describe and document an end-to-end model of anchovy and sardine population dynamics in the California Current as a proof of principle that such coupled models can be developed and implemented. The end-to-end model is 3-dimensional, time-varying, and multispecies, and consists of four coupled submodels: hydrodynamics, Eulerian nutrient-phytoplankton-zooplankton (NPZ), an individual-based full life cycle anchovy and sardine submodel, and an agent-based fishing fleet submodel. A predator roughly mimicking albacore was included as individuals that consumed anchovy and sardine. All submodels were coded within the ROMS open-source community model, and used the same resolution spatial grid and were all solved simultaneously to allow for possible feedbacks among the submodels. We used a super-individual approach and solved the coupled models on a distributed memory parallel computer, both of which created challenging but resolvable bookkeeping challenges. The anchovy and sardine growth, mortality, reproduction, and movement, and the fishing fleet submodel, were each calibrated using simplified grids before being inserted into the full end-to-end model. An historical simulation of 1959-2008 was performed, and the latter 45 years analyzed. Sea surface height (SSH) and sea surface temperature (SST) for the historical simulation showed strong horizontal gradients and multi-year scale temporal oscillations related to various climate indices (PDO, NPGO), and both showed responses to ENSO variability. Simulated total phytoplankton was lower during strong El Nino events and higher for the strong 1999 La Nina event. The three zooplankton groups generally corresponded to the spatial and temporal variation in simulated total phytoplankton. Simulated biomasses of anchovy and sardine were within the historical range of observed biomasses but predicted biomasses showed much less inter-annual variation. Anomalies of annual biomasses of anchovy and sardine showed a switch in the mid

  10. Solar energy system economic evaluation for Elcam-Tempe, Tempe, Arizona and Elcam-San Diego, San Diego, California

    Science.gov (United States)

    1980-01-01

    The long term economic performance of the solar energy system at its installation site is analyzed and four additional locations selected to demonstrate the viability of the design over a broad range of environmental and economic conditions. The economic analysis of the solar energy systems that were installed at Tempe, Arizona and San Diego, California, is developed for these and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life: life cycle savings; year of positive savings; and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainites in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the sites for which the analysis was conducted.

  11. Wave Observations from Central California: SeaSonde Systems and In Situ Wave Buoys

    Directory of Open Access Journals (Sweden)

    Regan M. Long

    2011-01-01

    Full Text Available Wave data from five 12-13 MHz SeaSondes radars along the central California coast were analyzed to evaluate the utility of operational wave parameters, including significant wave height, period, and direction. Data from four in situ wave buoys served to verify SeaSonde data and independently corroborate wave variability. Hourly averaged measurements spanned distance is 150 km alongshore × 45 km offshore. Individual SeaSondes showed statistically insignificant variation over 27 km in range. Wave height inter-comparisons between regional buoys exhibit strong correlations, approximately 0.93, and RMS differences less than 50 cm over the region. SeaSonde-derived wave data were compared to nearby buoys over timescales from 15 to 26 months, and revealed wave height correlations =0.85−0.91 and mean RMS difference of 53 cm. Results showed that height RMS differences are a percentage of significant wave height, rather than being constant independent of sea state. Period and directions compared favorably among radars, buoys, and the CDIP model. Results presented here suggest that SeaSondes are a reliable source of wave information. Supported by buoy data, they also reveal minimal spatial variation in significant wave height, period, and direction in coastal waters from ~45 km × ~150 km in this region of the central California coast. Small differences are explained by sheltering from coastal promontories, and cutoff boundaries in the case of the radars.

  12. Development of a Peltier Current Lead for the 200-m-Class Superconducting Direct Current Transmission and Distribution System

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2013-07-01

    Reducing cryogenic heat leaks is critical for superconducting applications. Reduction of heat leak at the terminals is essential for uses with short-length applications, where cryogenic losses at the terminals dominate. We are developing a 200-m-class superconducting direct current (DC) transmission and distribution system (CASER-2), and have used a Peltier current lead (PCL) for heat insulation at the terminals. The PCL consists of thermoelectric elements and copper leads, which enhance the performance of superconducting systems. As DC flows through the current lead, thermoelectric elements on opposite terminations of a superconducting line can be used to decrease the heat ingress to the cryogenic environment ( n-type on one end, p-type on the opposite end). During the current feeding and cooling test, a large temperature difference was observed across thermoelectric elements in the PCL. This demonstrates that we have successfully insulated the heat leak at the current lead. During the fourth cooling test, we established a new PCL design with p-type elements at terminal B, and then compared the performance of the terminals. Several improvements were implemented, including balancing the resistances of the PCL to enhance the stability of the superconducting systems.

  13. Overview of the Equatorial Electrojet and Related Ionospheric Current Systems

    Science.gov (United States)

    2007-11-02

    movement of the EEJ. 39 100 ABz 1000 0 1000 26000 DIP DISTANCE (kin) Figure 3-11. Latitudinal Profiles of the Daily Ranges of Northward Magnetic Field ABx...times larger than that of the EEJ. ISO -INTENSITY CONTOURS OF HORIZONTAL CURRENT DENSITY C.. , I, . I -" -- UNIT: KTFA/m= 180- 70- (j V vI 160 i (. % Eý

  14. Current systems of coronal loops in 3D MHD simulations

    CERN Document Server

    Warnecke, Jörn; Bingert, Sven; Peter, Hardi

    2016-01-01

    We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...

  15. Fundraising Practices of the University of California, the California State University, and California Private Universities

    Science.gov (United States)

    Karsevar, Kent J.

    2012-01-01

    Factors such as a declining tax revenues and an underperforming economy have been justifying the need for additional external private funding to meet the increasing needs of a growing California higher education system and ethnically diverse student body. The purpose of this study was to examine ways in which California private higher education…

  16. Environmental Assessment for the Maintenance, Upgrade, and Construction of the Jet Fuel Distribution System, Edwards Air Force Base, California

    Science.gov (United States)

    2009-01-01

    Continued) CDFG California Department of Fish and Game CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CESA ...resources on military reservations throughout the United States. The California Endangered Species Act ( CESA ) (California Department of Fish and Game...CDFG] Code, Section 2050, et seq.) generally parallels the main provisions of the federal ESA and is administered by the CDFG. Under the CESA , the

  17. The Effect of Mandatory Furloughs on Self-Determination, Financial Strain, and Decision to Leave the California State University System in Social Work Faculty

    Science.gov (United States)

    Hohman, Melinda; Packard, Thomas; Finnegan, Daniel; Jones, Loring

    2013-01-01

    In uncertain economic times, universities have taken steps to address financial problems by including the use of business models. In 2009, the California State University (CSU) system implemented furloughs of a 10% pay reduction and 18 days removed from the academic calendar. Faculty in 16 CSU schools of social work participated in a Web-based…

  18. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study.

    NARCIS (Netherlands)

    Patard, J.J.; Kim, H.L.; Lam, J.; Dorey, F.J.; Pantuck, A.J.; Zisman, A.; Ficarra, V.; Han, K.R.; Cindolo, L.; Taille, A. De La; Tostain, J.; Artibani, W.; Dinney, C.P.; Wood, C.G.; Swanson, D.A.; Abbou, C.C.; Lobel, B.; Mulders, P.F.A.; Chopin, D.K.; Figlin, R.A.; Belldegrun, A.S.

    2004-01-01

    PURPOSE: To evaluate ability of the University of California Los Angeles Integrated Staging System (UISS) to stratify patients with localized and metastatic renal cell carcinoma (RCC) into risk groups in an international multicenter study. PATIENTS AND METHODS: 4,202 patients from eight internationa

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF MICROBIOLOGICAL & PARTICULATE CONTAMINANTS IN DRINKING WATER: US FILTER 3M10C MICROFILTRATION MEMBRANE SYSTEM AT CHULA VISTA, CALIFORNIA

    Science.gov (United States)

    Verification testing of the US Filter 3M10C membrane system was conducted over a 44-day test period at the Aqua 2000 Research Center in Chula Vista, California. The test period extended from July 24, 2002 to September 5, 2002. The source water was a blend of Colorado River and ...

  20. The Experiences of Low-Income Latino/a Students in the California Community College System at a Time of Education Budget Cuts

    Science.gov (United States)

    Chacon, Justin Akers

    2013-01-01

    Budget cuts have reduced courses and student services within California community colleges. This coincides with the growth of low-income Latino male (Latinos) and Latina female (Latinas) student enrollment. Budget cuts have been implemented throughout the system, including in the Extended Opportunity Programs and Services (EOPS), which…

  1. Colloidal drug delivery systems: current status and future directions.

    Science.gov (United States)

    Garg, Tarun; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    In this paper, we provide an overview an extensive range of colloidal drug delivery systems with special focus on vesicular and particulates systems that are being used in research or might be potentially useful as carriers systems for drug or active biomolecules or as cell carriers with application in the therapeutic field. We present some important examples of commercially available drug delivery systems with applications in research or in clinical fields. This class of systems is widely used due to excellent drug targeting, sustained and controlled release behavior, higher entrapment efficiency of drug molecules, prevention of drug hydrolysis or enzymatic degradation, and improvement of therapeutic efficacy. These characteristics help in the selection of suitable carrier systems for drug, cell, and gene delivery in different fields.

  2. Hybrid system of generating electricity, solar eolic diesel San Juanico, Baja California Sur, Mexico; Sistema hibrido de generacion electrica, eolico solar diesel San Juanico, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, Javier [Comision Federal de Electricidad, La Paz, Baja California Sur (Mexico); Johnston, Peter [Technology Development, Arizona (United States); Napikoski, Chester [Generation Engineering, Arizona (United States); Escutia, Ricardo [Comision Federal de Electricidad, Baja California Sur (Mexico)

    2000-07-01

    The Comision Federal de Electricidad (CFE), and the northamerican electric company Arizona Public Service (APS), made an agreement of collaboration to develop a project of generating electricity with the use of renewable resources. The premises that where agreed on are the following: 1. Focus the project a rural community. 2. The cost of the whole project should be lower than compared to the interconnection to a conventional system. 3. Acceptance of the community, and the governmental authorities. 4. Sustentability of the operation of the system. Several technical and economical analysis where done, such as the evaluation of the solar and eolic resources, study of the environmental impact, negotiation agreements so it would be possible to obtain de economical resources from Niagara Mohawk (NIMO), and the USAID, all of this thru the supervising of the Sandia National Laboratories. After the anemometric and solar radiation measures where made, it was considered that the community of San Juanico, en Baja California Sur, Mexico, was the most feasible one, it was necessary also to consider the aspects of logistics, socials, size of the community and as a detonator for the economic activities of tourism and fishing. The APS formulated the executive project in accordance with the recommendations of the different areas of CFE. The project consists basically in the installation of 10 wind generators of 10 Kw, a battery bank for 432 KWh, plus a diesel generator for emergencies of 80 Kw. Besides the civil and electromechanical installation. It was necessary to involve the community in the knowledge and followup of the project form it's, considering that this factor would be essential, so it could be successful. Lamps of low consumption where installed on the houses and street lightning, to optimize the system. The patronato that is a civil association of the community, is in charge of the administration of the system, it receives support from personnel of CFE. The income

  3. 270 Volt Direct Current Generating System Design, Development and Test

    Science.gov (United States)

    1991-08-01

    is greatly influenced by the load (provides bias to the undervoltage detection circuit) the specific system generator carries. Therefore, when the...1 in the following positions. SI, S2 - Position I S3, S4 - Position 2 GCSv - "ONO Connect the system ( Generator . GCU, CS #1 V #2, LC and BTC) as

  4. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  5. Moving toward a Coherent School Finance System

    Science.gov (United States)

    Rose, Heather

    2013-01-01

    California's current school finance system is a tangled web of funding programs, restrictions, inequities and confusion. Building a stronger finance system to benefit from resources is an important step in strengthening California's K-12 education system and better meeting the needs of its students. Gov. Brown has recently proposed the Local…

  6. A Real-Time Nearshore Wave and Current Prediction System

    Science.gov (United States)

    2008-01-01

    The MRFA04 Trial provided an opportunity to test (DIAS), developed by the Argonne National Laboratory, and evaluate a beach environmental...this component of the The Dclfl3D system, developed by Delft Hydraulics nearshorc modeling system was tailored specifically tbr ( htp :,’www.wldelft.nl...and 0.96. study, we performed three hindcasts using the following Scatter indices for all three test cases were consistently meteorological

  7. The current medical education system in the world.

    Science.gov (United States)

    Nara, Nobuo; Suzuki, Toshiya; Tohda, Shuji

    2011-07-04

    To contribute to the innovation of the medical education system in Japan, we visited 35 medical schools and 5 institutes in 12 countries of North America, Europe, Australia and Asia in 2008-2010 and observed the education system. We met the deans, medical education committee and administration affairs and discussed about the desirable education system. We also observed the facilities of medical schools.Medical education system shows marked diversity in the world. There are three types of education course; non-graduate-entry program(non-GEP), graduate-entry program(GEP) and mixed program of non-GEP and GEP. Even in the same country, several types of medical schools coexist. Although the education methods are also various among medical schools, most of the medical schools have introduced tutorial system based on PBL or TBL and simulation-based learning to create excellent medical physicians. The medical education system is variable among countries depending on the social environment. Although the change in education program may not be necessary in Japan, we have to innovate education methods; clinical training by clinical clerkship must be made more developed to foster the training of the excellent clinical physicians, and tutorial education by PBL or TBL and simulation-based learning should be introduced more actively.

  8. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    Science.gov (United States)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  9. Ecosystem Services are Social-ecological Services in a Traditional Pastoral System: the Case of California's Mediterranean Rangelands

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2014-03-01

    Full Text Available When attempting to value ecosystem services and support their production, two critical aspects may be neglected. The term "ecosystem services" implies that they are a function of natural processes; yet, human interaction with the environment may be key to the production of many. This can contribute to a misconception that ecosystem service production depends on, or is enhanced by, the coercion or removal of human industry. Second, in programs designed to encourage ecosystem service production and maintenance, too often the inter-relationship of such services with social and ecological processes and drivers at multiple scales is ignored. Thinking of such services as "social-ecological services" can reinforce the importance of human culture, perspectives, and economies to the production of ecosystem services. Using a social-ecological systems perspective, we explore the integral role of human activity and decisions at pasture, ranch, and landscape scales. Just as it does for understanding ecosystems, a hierarchical, multiscaled framework facilitates exploring the complexity of social-ecological systems as producers of ecosystem services, to develop approaches for the conservation of such services. Using California's Mediterranean rangelands as a study area, we suggest that using a multiscaled approach that considers the importance of the differing drivers and processes at each scale and the interactions among scales, and that incorporates social-ecological systems concepts, may help avoid mistakes caused by narrow assumptions about "natural" systems, and a lack of understanding of the need for integrated, multiscaled conservation programs.

  10. A New High Resolution Wave Modeling System for Renewable Energy Applications in California and the Mediterranean Sea

    Science.gov (United States)

    Galanis, G. N.; Kafatos, M.; Chu, P. C.; Hatzopoulos, N.; Emmanouil, G.; Kallos, G. B.

    2014-12-01

    The use of integrated high accuracy wave systems is of critical importance today for applications on renewable energy assessment and monitoring, especially over offshore areas where the availability of credible, quality controlled corresponding observations is limited. In this work a new wave modeling system developed by the Hellenic Naval Academy and the University of Athens, Greece, the Center of Excellence in Earth Systems Modeling & Observations of Schmid College of Science in Chapman University, USA and the Naval Ocean and Analysis Laboratory of the US-Naval Postgraduate School, is presented. The new wave system has been based on WAM (ECMWF parallel version) model and focuses on parameters that directly or not affect the estimation of wave power potential in offshore and near shore areas. The results obtained are utilized for monitoring the wave energy potential over the California and Eastern Mediterranean coastline. A detailed statistical analysis based on classical and non-conventional measures provides a solid framework for the quantification of the results. Extreme values-cases posing potential threats for renewable energy parks and platforms are particularly analyzed.

  11. Ionospheric current system accompanied by auroral vortex streets

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    High resolution optical measurements have revealed that a sudden brightening of aurora and its deformation from an arc-like to a vortex street structure appear just at the onset of substorm. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been studied by means of magnetohydrodynamic simulations in order to comprehend the formation of auroral vortex streets. Our previous work reported that an initially placed arc intensifies, splits, and deforms into a vortex street during a couple of minutes, and the prime key is an enhancement of the convection electric field. This study elaborated physics of the ionospheric horizontal currents related to the vortex street in the context of so-called Cowling polarization. One component is due to the perturbed electric field by Alfv$\\acute{\\rm e}$n waves, and the other is due to the perturbed electron density (or polarization) in the ionosphere. It was found that, when a vortex street develops, upward/downward pair currents in its leading/trail...

  12. Alternating current electrospinning for preparation of fibrous drug delivery systems.

    Science.gov (United States)

    Balogh, Attila; Cselkó, Richárd; Démuth, Balázs; Verreck, Geert; Mensch, Jürgen; Marosi, György; Nagy, Zsombor Kristóf

    2015-11-10

    Alternating current electrospinning (ACES) was compared to direct current electrospinning (DCES) for the preparation of drug-loaded nanofibrous mats. It is generally considered that DCES is the solely technique to produce nanofibers using the electrostatic force from polymer solutions, however, less studied and also capable ACES provides further advantages such as increased specific productivities. A poorly water-soluble drug (carvedilol) was incorporated into the fibers based on three different polymeric matrices (an acid-soluble terpolymer (Eudragit(®) E), a base-soluble copolymer (Eudragit(®) L 100-55) and a nonionic homopolymer (polyvinylpyrrolidone K90)) to improve the dissolution of the weak base drug under different pH conditions. Morphology and fiber diameter evaluation showed similar electrospun fibers regardless the type of the high voltage and the major differences in feeding rates. The amorphous ACES and DCES fibers provided fast and total drug dissolutions in all cases. The presented results show that ACES can be a more feasible novel alternative to formulate fibers for drug delivery purposes.

  13. Can the Adoption of Desalination Technology Lead to Aquifer Preservation? A Case Study of a Sociotechnical Water System in Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Jamie McEvoy

    2015-09-01

    Full Text Available There is growing concern about the sustainability of groundwater supplies worldwide. In many regions, desalination—the conversion of saline water to freshwater—is viewed as a way to increase water supplies and reduce pressure on overdrawn aquifers. Using data from reports, articles, interviews, a survey, and a focus group, this paper examines if, and how, the adoption of desalination technology can lead to aquifer preservation in Baja California Sur (BCS, Mexico. The paper outlines existing institutional arrangements (i.e., laws, rules, norms, or organizations surrounding desalination in BCS and concludes that there are currently no effective mechanisms to ensure aquifer preservation. Four mechanisms that could be implemented to improve groundwater management are identified, including: 1 integrated water-and land-use planning; 2 creation of an institute responsible for coordinated and consistent planning; 3 improved groundwater monitoring; and 4 implementation of water conservation measures prior to the adoption of desalination technology. This paper concludes that viewing water technologies, including desalination, as sociotechnical systems—i.e., a set of technological components that are embedded in complex social, political, and economic contexts—has the potential to create a more sustainable human–environment–technology relationship. By assessing desalination technology as a sociotechnical system, this study highlights the need to focus on institutional development and capacity building, especially within local water utilities and urban planning agencies.

  14. Progress on the heating and current drive systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA, Cadarache, France; Beaumont, Bertrand [ITER Joint Work Site, Cadarache; Bora, D. [ITER Joint Work Site, Cadarache; Campbell, D. [ITER Joint Work Site, Cadarache; Darbos, Caroline [ITER Joint Work Site, Cadarache; Decamps, H. [ITER Organization, Saint Paul Lez Durance, France; Graceffa, J. [ITER Joint Work Site, Cadarache; Gassmann, T. [ITER Joint Work Site, Cadarache; Hemsworth, R. [ITER Joint Work Site, Cadarache; Henderson, Mark [ITER Joint Work Site, Cadarache; Kobayashi, N. [ITER Joint Work Site, Cadarache; Lamalle, Philippe [ITER Joint Work Site, Cadarache; Schunke, B. [ITER Joint Work Site, Cadarache; Tanaka, M. [ITER Joint Work Site, Cadarache; Tanga, A. [ITER Joint Work Site, Cadarache; Albajar, F. [Fusion for Energy (F4E), Barcelona, Spain; Bonicelli, T. [Fusion for Energy (F4E), Barcelona, Spain; Saibene, G. [Fusion for Energy (F4E), Barcelona, Spain; Sartori, R. [Fusion for Energy (F4E), Barcelona, Spain; Becoulet, A. [CEA, Cadarache, France; Hoang, G. T. [CEA, Cadarache, France; Inoue, T. [Japan Atomic Energy Agency (JAEA), Naka; Sakamoto, K. [Japan Atomic Energy Agency (JAEA), Naka; Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka; Watanabe, K. [Japan Atomic Energy Agency (JAEA), Naka; Goulding, Richard Howell [ORNL; Rasmussen, David A [ORNL; Swain, David W [ORNL; Chakraborty, A. [ITER India - Bhat, Gandhinagar, Gujarat; Mukherjee, A. [ITER India - Bhat, Gandhinagar, Gujarat; Rao, S. L. [ITER India - Bhat, Gandhinagar, Gujarat; Denisov, G. [Russian Academy of Science, Novgorod, Russia; Nightingale, M. [EURATOM / UKAEA, Abingdon, UK; Sonato, P. [EURATOM / ENEA, Italy

    2009-06-01

    The electron cyclotron (EC), ion cyclotron (IC), heating-neutral beam (H-NB) and, although not in the day 1 baseline, lower hybrid (LH) systems intended for ITER have been reviewed in 2007/2008 in light of progress of physics and technology in the field. Although the overall specifications are unchanged, notable changes have been approved. Firstly, it has been emphasized that the H&CD systems are vital for the ITER programme. Consequently, the full 73 MW should be commissioned and available on a routine basis before the D/T phase. Secondly, significant changes have been approved at system level, most notably: the possibility to operate the heating beams at full power during the hydrogen phase requiring new shine through protection; the possibility to operate IC with 2 antennas with increased robustness (no moving parts); the possible increase to 2 MW of key components of the EC transmission systems in order to provide an easier upgrading of the EC power as may be required by the project; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognised. The review describes these changes and their rationale.

  15. Direct Current Hopping Conductivity in One-Dimensional Nanometre Systems

    Institute of Scientific and Technical Information of China (English)

    宋祎璞; 徐慧; 罗峰

    2003-01-01

    A one-dimensional random nanocrystalline chain model is established. A dc electron-phonon-field conductance model of electron tunnelling transfer is set up, and a new dc conductance formula in one-dimensional nanometre systems is derived. By calculating the dc conductivity, the relationship among the electric field, temperature and conductivity is analysed, and the effect of the crystalline grain size and the distortion of interfacial atoms on the dc conductance is discussed. The result shows that the nanometre system appears the characteristic of negative differential dependence of resistance and temperature at low temperature. The dc conductivity of nanometre systems varies with the change of electric field and trends to rise as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.

  16. Public health system - current status and world experience

    Directory of Open Access Journals (Sweden)

    Andreyeva І.А.

    2016-09-01

    Full Text Available In the review, the evolution of Public Health and global development tendencies of Public Health system have been discussed. Stages of formation of the updated concept, principles of Public Health organization and the role of various organizations have been shown in the connection with development of the global concept of "Health for All". A well-functioning public health system is primarily the result of multisectoral cooperation. The aim of modern Public Health is to provide conditions of access to appropriate and cost-effective health care for all population groups, including health promotion and disease prevention.

  17. LOCAL ANAESTHETIC SYSTEMIC TOXICITY: CURRENT CONCEPTS AND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2014-03-01

    Full Text Available Local anesthetics are one of the most commonly used drugs in the field of medicine. Local anesthetics are widely used to induce anesthesia and analgesia for surgical procedures and pain management. Local an aesthetic systemic toxicity (LAST is a rare but potentially fatal complication of regional anesthesia and has been recognized and reported since the late1800s. This narrative review summarizes the pharmacology of local anesthetics, clinical manifestations of systemic toxicity associated with these agents, necessary preventive measures and recent treatment strategies

  18. Latin American income tax systems and current double taxation agreements

    Directory of Open Access Journals (Sweden)

    Jorge Espinosa Sepúlveda

    2014-07-01

    Full Text Available Tax systems in Latin America have played a very important role as the main, and in some cases the only, means of obtaining revenue to finance the major public expenditure that is necessary for the work of the states through time. Below is a short review of the main aspects of tax systems in the región, with emphasis on the impact of taxes on income in force in the majorLatin American countries, as well as a brief explanation of the network of agreements to avoid double taxation that are in force in each of them.

  19. BAYER COUNTER CURRENT SYSTEMS IN COMPARISON WITH CONVENTIONAL CO—CURRENT SYSTEM IN THE FIELD OF WATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Mitschker.A; RauchfuB.K

    1994-01-01

    From an economical point of view both the quality of the ion exchange resins and the technology used in the field of industrial water treatment are important for a successful performance.In general,two different technologies have been established on the market:The main differneces between the CO-and counter current technologes will be discussed and data concerning the requirement of chemicals for regeneration and the quality of the deionized water will be opposed.In addition several different varieties of the modern counter current technologies,developed and patented by Bayer AG,will be described and the advantages,depending on the application and the demand on the quality of the deionized water,pointed out .In view of stronger regulations concerning the consumption of regeneration chemicals,and waste water,and also because of the superior quality of the produced water,the market share of counter current technologies will continue to increase world-wide.

  20. Experience with current multiaxial diagnostic systems: a critical review.

    Science.gov (United States)

    Kastrup, Marianne

    2002-01-01

    It is difficult to capture the complexity of the psychiatric condition with a single diagnostic category, and a multiaxial approach provides a more comprehensive picture of the current disorder. The WPA section on classification has developed a multiaxial schema based on the ICD-10 family of classifications. Four axes are proposed. Axis I: on clinical disorders; axis II: on disabilities; axis III: on contextual factors, and axis IV: on quality of life. Even though the multiaxial approach has been widely taught and surveys report on its international acceptability, daily use by clinicians of the 'non-diagnostic' axes have till now been limited, despite expressed interest by the very same clinicians. The multiaxial formulation is still developing and transcultural experiences need to be gained.

  1. CRISPR technologies for bacterial systems: Current achievements and future directions

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Lee, Sang Yup

    2016-01-01

    Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolution......Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now...... revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial...... microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR...

  2. Can we solve current problems with nursing information systems?

    NARCIS (Netherlands)

    Goossen, WTF; Epping, PJMM; Dassen, TWN; Hasman, A; vandenHeuvel, WJA

    1997-01-01

    Dutch nurses are confronted with health care information systems quite often. However, they do not take full advantage of electronic support for their care activities and professional development. The nursing process is often considered the core of nursing care delivery and guides the documentation

  3. Morphology of the Somali Current System during the Southwest Monsoon,

    Science.gov (United States)

    wind stress curl. The two-gyre system collapse is highly correlated with a decrease in the westerly component of the equatorial wind stress . The...circulation patterns are strongly influenced by the gradient of the wind stress curl, as well as by the curl itself. The transition from southwest to

  4. Modeling studies of the coastal/littoral current system off Southern Australia

    OpenAIRE

    Miller, Henry A.

    2006-01-01

    Both theoretical and numerical modeling studies of the current system off western and southern Australia are conducted to characterize the features of the current system, their temporal variability, and their impact on the sound speed structure. The theoretical study examines why boundary current separation occurs off Cape Leeuwin creating an area of enhanced eddy generation. It is shown that the beta effect, vortex stretching, and streamline curvature all act to decelerate the current a...

  5. CURRENT VIEW ON SYSTEMIC GLUCOCORTICOSTEROID THERAPY IN JUVENILE RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    N N Kuzmina

    2000-01-01

    Full Text Available Aim: To present modern approaches to the systemic therapy by glucocorticosteroids (GCS basing on own experience and literature data. Methods and material: Long-term observation of 350 patients with juvenile rheumatoid arthritis (JRA taking peroral GCS in different dosage. Results: Good therapeutical efficacy and sufficient tolerability of low starting doses (lower than 0.5 mg/ kg a day of GCS allow to inhibit inflammatory activity in the majority of patients. Alternative method (doses alternation is recommended in the period of long-term supporting GCS-therapv of JR.4. Conclusion: Basic strategy of treatment of systemic and polyarticular JRA j'orms is rational GCS application in combination with basic drugs which ensures control of pathologic process and modifies the disease.

  6. Current rules of the deposit guarantee system in Poland

    Directory of Open Access Journals (Sweden)

    Patrycja Zawadzka

    2011-06-01

    Full Text Available The article considers the matter of the deposit guarantee system in Poland, which is coordinated by the Bank Guarantee Fund (BFG. Presented in the first part are the organization of the BFG and its tasks, such as guaranteeing, aiding, controlling and analyzing the banking sector. Discussed in the publication are changes in Polish law, especially in the reaction to the global crisis on the financial market in the late 2000s. Finally, the future outlook for EU regulation is presented, along with a number of conclusions on the potential legislative changes in the Act on the BFG. The main goal of the article is to characterize details of the Polish implementation of Directives 94/19/EC and 2009/14/EC, as well as the actual form of the deposit guarantee system, and to answer the question of whether the Act on the BFG corresponds to the EU directives.

  7. Response of hydrothermal system to stress transients at Lassen Volcanic Center, California, inferred from seismic interferometry with ambient noise

    Science.gov (United States)

    Taira, Taka'aki; Brenguier, Florent

    2016-10-01

    Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, Northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1 % velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrological load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity[Figure not available: see fulltext.

  8. Nonablative lasers and nonlaser systems in dermatology: Current status

    Directory of Open Access Journals (Sweden)

    Mukta Sachdev

    2011-01-01

    Full Text Available Nonablative lasers and nonlaser systems are newer systems used for skin rejuvenation, tightening, body sculpting, and scar remodeling. Devices: Different technologies such as lasers, Intense Pulsed Light (IPL, and radiofrequency have been introduced. Most nonablative laser systems emit light within the infrared portion of the electromagnetic spectrum (1000-1500nm. At these wavelengths, absorption by superficial water containing tissue is relatively weak, thereby effecting deeper tissue penetration. A detailed understanding of the device being used is recommended. Indications: Nonablative technology have been used for several indications such as skin tightening, periorbital tissue tightening, treatment of nasolabial lines and jowl, body sculpting/remodeling, cellulite reduction, scar revision and remodeling and for the treatment of photodamaged skin. Facility: Nonablative laser and light modalities can be carried out in a physician treatment room or hospital setting or a nursing home with a small operation theater. Preoperative counseling and informed consent: The dermatologic consultation should include detailed assessment of the patient′s skin condition and skin type. An informed consent is mandatory to protect the rights of the patient as well as the practitioner. All patients must have carefully taken preoperative and postoperative pictures. Choice of the device and parameters: Depends on the indication, the area to be treated, the acceptable downtime for the desired correction, and to an extent the skin color. Anesthesia: These lasers are mostly pain-free and tolerated well by patients but may require topical anesthesia. In most cases, topical cooling and numbing using icepacks is sufficient, even in an apprehensive patient. Postoperative care: The nonablative lasers, light sources and radiofrequency systems are safe, even in darker skin types, and postoperative care is minimal. Proper postoperative care is important in avoiding

  9. Current approach for urinary system stone disease in pregnant women

    OpenAIRE

    2016-01-01

    Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithia...

  10. Advanced metal alloy systems for massive high-current photocathodes

    Science.gov (United States)

    Tkachenko, V. G.; Kondrashev, A. I.; Maksimchuk, I. N.

    2010-03-01

    The physical principles of precise alloying are formulated with the aim of increasing the low quantum efficiency (QE) of suitable simple metals (Mg, Al, Cu) as well as of decreasing their electron work function ( e φ) in the UV spectral range. The new approach provides valuable information for elucidating the origin of photoemission enhancement in bulk metal-based alloy systems. Bulk in-situ nanoclustering promises to be the most effective way of producing a much higher QE and a lower e φ in simple metals. In this article we show that the quantum efficiency of the metal-based alloys Mg-Ba, Al-Li, and Cu-BaO is considerably higher than the simple metals Mg, Al, and Cu, respectively. The spectral characteristics of the Mg-Ba, Al-Li and Cu-BaO systems obey the well-known Fowler square law for a near-free-electron model. The advanced metal alloys systems are promising photocathode materials usable for generation of high brightness electron beams.

  11. Aquifer-System Characterization by Integrating Data from the Subsurface and from Space, San Joaquin Valley, California, USA

    Science.gov (United States)

    Sneed, M.; Brandt, J. T.

    2014-12-01

    Extensive groundwater pumping from the aquifer system in the San Joaquin Valley, California, between 1926 and 1970 caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 m. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of subsidence in some areas. Recently, land-use changes and reductions in surface-water availability have caused pumping to increase, water levels to decline, and subsidence to recur. Reduced freeboard and flow capacity of several Federal, State, and local canals have resulted from this subsidence. Vertical land-surface changes during 2005-14 in the San Joaquin Valley were determined by using space-based [Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS)] and subsurface (extensometer) data; groundwater-level and lithologic data were used to understand and estimate properties that partly control the stress/strain response of the aquifer system. Results of the InSAR analysis indicate that two areas covering about 7,200 km2 subsided 20-540 mm during 2008-10; GPS data indicate that these rates continued through 2014. Groundwater levels (stress) and vertical land-surface changes (strain) were used to estimate preconsolidation head and aquifer system storage coefficients. Integrating lithology into the analysis indicates that in some parts of the valley, the compaction occurred primarily within quickly-equilibrating fine-grained deposits in deeper parts of the aquifer system. In other parts of the valley, anomalously fine-grained alluvial-fan deposits underlie one of the most rapidly subsiding areas, indicating the shallow sediments may also contribute to total subsidence. This information helps improve hydrologic and aquifer-system compaction models, which in turn can be used to consider land subsidence as a constraint in evaluating water-resource management options.

  12. Twisted Savonius turbine based marine current energy conversion system

    Science.gov (United States)

    Hassan, Md. Imtiaj

    The Ocean Network Seafloor Instrumentation (ONSFI) Project is a multidisciplinary research and development project that aims to design, fabricate and validate a proof-of-concept seafloor array of wireless marine sensors for use in monitoring seabed processes. The sensor pods, known as Seaformatics, will be powered by ocean bottom currents and will be able to communicate with each other and to the Internet through surface master units to facilitate observation of the ocean floor from the shore. This thesis explores the use of the twisted Savonius turbine as a means of converting the kinetic energy of the free flowing water into electrical energy for the pods. This will eliminate the need for battery replacement. A physical model of the turbine was constructed and tested in the Water Flume at the Marine Institute of Memorial University and in the Wind Tunnel in the Engineering Building at Memorial University. A mathematical model of the turbine was constructed in SolidWorks. This was tested in the Computational Fluid Dynamics or CFD software FLOW-3D. Experimental results were compared with CFD results and the agreement was reasonable. A twisted Savonius turbine emulator was developed to test a dc-dc boost converter. A low cost microcontroller based MPPT algorithm was developed to obtain maximum power from the turbine. Overall the thesis shows that the twisted Savonius turbine can provide the power needed by the sensor pods. It also shows that CFD is a viable way to study the performance of the Savonius type of turbine.

  13. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  14. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system

    Science.gov (United States)

    Ganguli, P.M.; Conaway, C.H.; Swarzenski, P.W.; Izbicki, J.A.; Flegal, A.R.

    2012-01-01

    We measured total mercury (Hg T) and monomethylmercury (MMHg) concentrations in coastal groundwater and seawater over a range of tidal conditions near Malibu Lagoon, California, and used 222Rn-derived estimates of submarine groundwater discharge (SGD) to assess the flux of mercury species to nearshore seawater. We infer a groundwater-seawater mixing scenario based on salinity and temperature trends and suggest that increased groundwater discharge to the ocean during low tide transported mercury offshore. Unfiltered Hg T (U-Hg T) concentrations in groundwater (2.2-5.9 pM) and seawater (3.3-5.2 pM) decreased during a falling tide, with groundwater U-Hg T concentrations typically lower than seawater concentrations. Despite the low Hg T in groundwater, bioaccumulative MMHg was produced in onshore sediment as evidenced by elevated MMHg concentrations in groundwater (0.2-1 pM) relative to seawater (???0.1 pM) throughout most of the tidal cycle. During low tide, groundwater appeared to transport MMHg to the coast, resulting in a 5-fold increase in seawater MMHg (from 0.1 to 0.5 pM). Similarly, filtered Hg T (F-Hg T) concentrations in seawater increased approximately 7-fold during low tide (from 0.5 to 3.6 pM). These elevated seawater F-Hg T concentrations exceeded those in filtered and unfiltered groundwater during low tide, but were similar to seawater U-Hg T concentrations, suggesting that enhanced SGD altered mercury partitioning and/or solubilization dynamics in coastal waters. Finally, we estimate that the SGD Hg T and MMHg fluxes to seawater were 0.41 and 0.15 nmol m -2 d -1, respectively - comparable in magnitude to atmospheric and benthic fluxes in similar environments. ?? 2012 American Chemical Society.

  15. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  16. AFSC/NMML/CCEP: Natality rates of California sea lions at San Miguel Island, California during 1987-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratories' California Current Ecosystem Program (AFSC/NOAA) initiated a long-term marking program of California sea lions (Zalophus...

  17. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  18. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability.

    Science.gov (United States)

    Bocci, Tommaso; Marceglia, Sara; Vergari, Maurizio; Cognetto, Valeria; Cogiamanian, Filippo; Sartucci, Ferdinando; Priori, Alberto

    2015-07-01

    This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.

  19. Tangata whaiora/consumers perspectives on current psychiatric classification systems

    Directory of Open Access Journals (Sweden)

    Wells Debra

    2008-06-01

    Full Text Available Abstract Background A number of studies have been undertaken with the aim of considering the utility of mental health classification systems from the perspective of a variety of stakeholders. There is a lack of research on how useful consumers/tangata whaiora think these are in assisting them in their recovery. Methods Seventy service users were involved in seven focus groups in order to consider this question. Results and discussion While for clinicians diagnosing someone might be a discrete event and easily forgotten as a moment in a busy schedule, most people in this study remembered the occasion and aftermath very clearly. The overall consensus was that whether being 'diagnosed' was helpful or not, in large part, depended on how the process happened and what resulted from being 'labeled' in the person's life. Conclusion Overall, people thought that in terms of their recovery, the classification systems were tools and their utility depended on how they were used. They suggested that whatever tool was used it needed to help them make sense of their distress and provide them with a variety of supports, not just medication, to assist them to live lives that were meaningful to them.

  20. Geosciences Student Recruitment Strategies at California State University, Long Beach (CSULB): Earth System Science/Community-Research Based Education Partnerships

    Science.gov (United States)

    Ambos, E. L.; Behl, R.; Whitney, D.; Rodrigue, C.; Wechsler, S.; Holk, G.; Lee, C.; Francis, R. D.; Larson, D.

    2005-12-01

    Collaborations among geoscience-oriented departments at California State University, Long Beach (Geological Sciences, as well as portions of the Geography and Anthropology departments and a new, fast-growing Environmental Sciences and Policy (ES&P) program) are characterized by attention to three important elements: (1) community-based partnerships and research, (2) outreach and continuity within educational pipeline transitions from high school, to community college, to university, and, (3) sharing of resources and expertise. Three specific collaborations, (1) creation of the ES&P, (2) the NSF-funded Geoscience Diversity Enhancement Program (GDEP), and, (3) the Institute for Interdisciplinary Research on Materials, Environment, and Societies (IIRMES), are powerful illustrations of how these collaborations can work to foster geoscience student recruitment and academic development, particularly at urban, highly diverse institutions with limited resources. Through a combination of student surveys, focus groups, and institutional research supported by the GDEP program, we know (e.g., Whitney et al., 2005) that non-Caucasian students often express less affinity for the geosciences as a focus of study than Caucasians. Early exposure to positive field and laboratory experiences, better understanding of geoscience career possibilities, and better advising at high school and college levels are all excellent strategies for heightening student interest and recruitment in the geosciences, yet appear to be lacking for many of the students in the greater Long Beach, California area. GDEP, ES&P, and IIRMES all challenge these lacunae by emphasizing hands-on learning, research on relevant community-based problems, and one-on-one or small group research, advising and mentoring. Our current challenge is to help our high-school and community-college colleagues adopt their own model of these active-learning strategies, thereby priming the pump and patching the pipe(line) for student

  1. Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle

    Science.gov (United States)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  2. Entanglement in continuous variable systems: Recent advances and current perspectives

    CERN Document Server

    Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio

    2007-01-01

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization, and the scaling o...

  3. Modeling and Control of Impressed Current Cathodic Protection (ICCP System

    Directory of Open Access Journals (Sweden)

    Marwah S.Hashim

    2012-12-01

    Full Text Available The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP.CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID controller and the second are intelligent controllers (fuzzy and neural controllers.The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.

  4. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were <1,732 m from the true location. Argos's new location class zero processing provided many more locations than normal processing, but mean location error was much higher than locations estimated normally. Locations were biased when animals were at elevations other than those used in Argos's calculations.Long-term and short-term indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  5. Integrated Hydrosystem Modeling of the California Basin

    Science.gov (United States)

    Davison, J. H.; Hwang, H. T.; Sudicky, E. A.; Mallia, D.; Lin, J. C.

    2015-12-01

    The Western United States is facing one of the worst droughts on record. Climate change projections predict warmer temperatures, higher evapotranspiration rates, and no foreseeable increase in precipitation. California, in particular, has supplemented their decreased surface water supplies by mining deep groundwater. However, this supply of groundwater is limited, especially with reduced recharge. These combined factors place California's water-demanding society at dire risk. In an effort to quantify California's risks, we present a fully integrated water cycle model that captures the dynamics of the subsurface, land surface, and atmospheric domains over the entire California basin. Our water cycle model combines HydroGeoSphere (HGS), a 3-D control-volume finite element model that accommodates variably-saturated subsurface and surface water flow with evapotranspiration processes to the Weather Research and Forecasting (WRF) model, a 3-D finite difference nonhydrostatic mesoscale atmospheric simulator. The two-way coupling within our model, referred to as HGS-WRF, tightly integrates the water cycling processes by passing precipitation and potential evapotranspiration data from WRF to HGS, while exchanging actual evapotranspiration and soil saturation data from HGS to WRF. Furthermore, HGS-WRF implements a flexible coupling method that allows each model to use a unique mesh while maintaining mass conservation within and between domains. Our simulation replicated field measured evapotranspiration fluxes and showed a strong correlation between the soil saturation (depth to groundwater table) and latent heat fluxes. Altogether, the HGS-WRF California basin model is currently the most complete water resource simulation framework as it combines groundwater, surface water, the unsaturated zone, and the atmosphere into one coupled system.

  6. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  7. Speleothems in the desert: Glimpses of the Pleistocene history of the Death Valley Regional Groundwater Flow System, Nevada and California

    Science.gov (United States)

    Spötl, Christoph; Dublyansky, Yuri; Moseley, Gina; Wendt, Kathleen; Edwards, Larry; Scholger, Robert; Woodhead, Jon

    2016-04-01

    Death Valley in eastern California holds North Americás record for the deepest, hottest and driest place. Despite these unfavourable boundary conditions speleothems are present in this hyperarid depression and the surrounding deserts and provide unique insights into long-term regional climate change and landscape evolution of this tectonically and geomorphologically highly active region. Most of the speleothems are inactive and exposed due to tectonic uplift and erosion. They differ from common speleothems, because the majority formed under phreatic conditions as part of a regional groundwater flow system that is still active today. Data from three sites will be discussed illustrating the spectrum of speleothem deposits and their modes of formation. At Devils Hole, the thermal aquifer and the associated subaqueous and water-table speleothems can be directly accessed and provide a record reaching back about 1 million years. At Travertine Point, close to modern discharge points of this large groundwater flow system, phreatic speleothems form near-vertical veins up to about 2 m wide showing evidence of high flow rates along these fractures, which are connected to fossil spring tufa deposits. Finally, outcrops along Titus Canyon expose several generations of speleothems documenting the progressive lowering of the regional groundwater table. The youngest calcite generation records the transition towards vadose conditions 500-400 ka ago.

  8. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Directory of Open Access Journals (Sweden)

    Richard J. Blakely

    2013-04-01

    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  9. Some Features on Current Pension System Reform in Latin America Some Features on Current Pension System Reform in Latin America

    OpenAIRE

    Andras Uthoff Botka

    1994-01-01

    The heterogenous nature of their population is an important feature of Latin American and Caribbean countries. Overall demographic transition is late and lagged within countries in some population groups: aging is taking place at a relatively fast pace, with yet a large share of the labour force in informal sector with no social security coverage and also growing at high rates. The challenge to pension systems is to improve their performance within societies with a large incidence of poverty,...

  10. Feasibility Implementation of Voltage-Current Waveform Telemetry System in Power Delivery System

    Science.gov (United States)

    Furukawa, Tatsuya; Akagi, Keita; Fukumoto, Hisao; Itoh, Hideaki; Wakuya, Hiroshi; Hirata, Kenji; Ohchi, Masashi

    The electric power is indispensable for modern life. However, there is a problem of harmonic disturbance when the harmonic power runs into electronic devices. To overcome the problem and realize a stable supply of the electric power is an important issue. In this study, we have developed a voltage-current waveform telemetry system for the remote measurement of the harmonics in the power delivery lines. The system consists of sensors, preamplifiers, a single board computer, and power collectors. Improvements are made on all of these components except the sensors. The power collector is a coil that can be placed around the same power line that we measure. We have designed the power collector by a finite element method(FEM) so that it can provide enough electricity for the computer to work properly. Thus, no other power source such as a battery except the secondary rechargeable battery for the recovery is necessary at the measurement place. The preamplifier in the new system is a single-supply differential amplifier circuit, and the single board computer has an inexpensive SH-3 CPU. Through experiments, we have confirmed that the power collector can provide sufficient electricity and that the new system can successfully measure the waveforms and the harmonics in power delivery systems.

  11. Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system

    OpenAIRE

    2006-01-01

    What most clearly distinguishes near-shore and off shore currents is their dominant spatial scale, O (1-30) km near-shore and O (30-1000) km off shore. In practice, these phenomena are usually both measured and modeled with separate methods. In particular, it is infeasible for any regular computational grid to be large enough to simultaneously resolve well both types of currents. In order to obtain local solutions at high resolution while preserving the regional-scale circulation at an afford...

  12. Effect of Electric Field on Spin Polarized Current in Ferromagnetic/ Organic Semiconductor Systems

    Institute of Scientific and Technical Information of China (English)

    MA Yan-Ni; REN Jun-Feng; ZHANG Yu-Bin; LIU De-Sheng; XIE Shi-Jie

    2007-01-01

    Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization.

  13. Co-creating Understanding in Water Use & Agricultural Resilience in a Multi-scale Natural-human System: Sacramento River Valley--California's Water Heartland in Transition

    Science.gov (United States)

    Fairbanks, D. H.; Brimlowe, J.; Chaudry, A.; Gray, K.; Greene, T.; Guzley, R.; Hatfield, C.; Houk, E.; Le Page, C.

    2012-12-01

    The Sacramento River Valley (SRV), valued for its $2.5 billion agricultural production and its biodiversity, is the main supplier of California's water, servicing 25 million people. . Despite rapid changes to the region, little is known about the collective motivations and consequences of land and water use decisions, or the social and environmental vulnerability and resilience of the SRV. The overarching research goal is to examine whether the SRV can continue to supply clean water for California and accommodate agricultural production and biodiversity while coping with climate change and population growth. Without understanding these issues, the resources of the SRV face an uncertain future. The defining goal is to construct a framework that integrates cross-disciplinary and diverse stakeholder perspectives in order to develop a comprehensive understanding of how SRV stakeholders make land and water use decisions. Traditional approaches for modeling have failed to take into consideration multi-scale stakeholder input. Currently there is no effective method to facilitate producers and government agencies in developing a shared representation to address the issues that face the region. To address this gap, researchers and stakeholders are working together to collect and consolidate disconnected knowledge held by stakeholder groups (agencies, irrigation districts, and producers) into a holistic conceptual model of how stakeholders view and make decisions with land and water use under various management systems. Our approach integrates a top-down approach (agency stakeholders) for larger scale management decisions with a conceptual co-creation and data gathering bottom-up approach with local agricultural producer stakeholders for input water and landuse decisions. Land use change models that combine a top-down approach with a bottom-up stakeholder approach are rare and yet essential to understanding how the social process of land use change and ecosystem function are

  14. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  15. An improved current control scheme for grid-connected DG unit based distribution system harmonic compensation

    DEFF Research Database (Denmark)

    He, Jinwei; Wei Li, Yun; Wang, Xiongfei;

    2013-01-01

    In order to utilize DG unit interfacing converters to actively compensate distribution system harmonics, this paper proposes an enhanced current control approach. It seamlessly integrates system harmonic mitigation capabilities with the primary DG power generation function. As the proposed curren...

  16. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  17. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  18. Environmental Sensitivity Index (ESI) Atlas: Central California (Including Monterey Bay Sanctuary), maps and geographic information systems data (NODC Accession 0013176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Environmental Sensitivity Index (ESI) maps have been developed for the coastal areas of Central California from Point Conception to Point Reyes National Seashore....

  19. Design of the power supply system for the plasma current modulation on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.

    2016-10-15

    Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.

  20. Conserving the Greater Sage-grouse: A social-ecological systems case study from the California-Nevada region

    Science.gov (United States)

    Duvall, Alison L; Metcalf, Alexander L.; Coates, Peter S.

    2016-01-01

    The Endangered Species Act (ESA) continues to serve as one of the most powerful and contested federal legislative mandates for conservation. In the midst of heated debates, researchers, policy makers, and conservation practitioners champion the importance of cooperative conservation and social-ecological systems approaches, which forge partnerships at multiple levels and scales to address complex ecosystem challenges. However, few real-world examples exist to demonstrate how multifaceted collaborations among stakeholders who share a common goal of conserving at-risk species may be nested within a systems framework to achieve social and ecological goals. Here, we present a case study of Greater Sage-grouse (Centrocercus urophasianus) conservation efforts in the “Bi-State” region of California and Nevada, United States. Using key-informant interviews, we explored dimensions and drivers of this landscape-scale conservation effort. Three themes emerged from the interviews, including 1) ESA action was transformed into opportunity for system-wide conservation; 2) a diverse, locally based partnership anchored collaboration and engagement across multiple levels and scales; and 3) best-available science combined with local knowledge led to “certainty of effectiveness and implementation”—the criteria used by the US Fish and Wildlife Service to evaluate conservation efforts when making listing decisions. Ultimately, collaborative conservation through multistakeholder engagement at various levels and scales led to proactive planning and implementation of conservation measures and precluded the need for an ESA listing of the Bi-State population of Greater Sage-grouse. This article presents a potent example of how a systems approach integrating policy, management, and learning can be used to successfully overcome the conflict-laden and “wicked” challenges that surround at-risk species conservation.

  1. Odd-parity currents induced by dynamic deformations in graphene-like systems

    Science.gov (United States)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-11-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation.

  2. Some Features on Current Pension System Reform in Latin America Some Features on Current Pension System Reform in Latin America

    Directory of Open Access Journals (Sweden)

    Andras Uthoff Botka

    1994-03-01

    Full Text Available The heterogenous nature of their population is an important feature of Latin American and Caribbean countries. Overall demographic transition is late and lagged within countries in some population groups: aging is taking place at a relatively fast pace, with yet a large share of the labour force in informal sector with no social security coverage and also growing at high rates. The challenge to pension systems is to improve their performance within societies with a large incidence of poverty, emerging (and some times incipient capital markets, and increasing demands for benefits. Reform alternatives in Chile. Argentina and Colombia show that their profiles differ as the result of decisions about the adequate weighting of costs and gains in the transition from a pay-as-you go scheme to a full funded one. The heterogenous nature of their population is an important feature of Latin American and Caribbean countries. Overall demographic transition is late and lagged within countries in some population groups: aging is taking place at a relatively fast pace, with yet a large share of the labour force in informal sector with no social security coverage and also growing at high rates. The challenge to pension systems is to improve their performance within societies with a large incidence of poverty, emerging (and some times incipient capital markets, and increasing demands for benefits. Reform alternatives in Chile. Argentina and Colombia show that their profiles differ as the result of decisions about the adequate weighting of costs and gains in the transition from a pay-as-you go scheme to a full funded one.

  3. Answering the Knock of Opportunity: Addressing the Data Needs for California's English Learners. Policy Brief

    Science.gov (United States)

    Perez, Maria; Shambaugh, Larisa S.; Parrish, Tom

    2008-01-01

    California currently faces an opportunity to develop an effective data system that can assist in improving the state's future understanding of the educational progress of English learners (ELs). This policy brief outlines the needs for good data on ELs and makes recommendations for creating an effective longitudinal data system for ELs. It…

  4. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...

  5. 75 FR 22630 - Nautilus, Inc., Currently Known as Med-Fit Systems Incorporated, Commercial Division, Including...

    Science.gov (United States)

    2010-04-29

    ..., Virginia. The notice was published in the Federal Register on February 16th, 2010 (75 FR 7032). At the... Employment and Training Administration Nautilus, Inc., Currently Known as Med-Fit Systems Incorporated.... was sold in September 2009 and is currently known as Med-Fit Systems, Incorporated. Some...

  6. Sclerochronological studies in the humboldt current system, a highly variable ecosystem

    OpenAIRE

    Gosselin, M; Lazareth, Claire E.; Ortlieb, Luc

    2013-01-01

    The Humboldt Current that bathes the west coast of South America is affected by different influences at daily to decadal periodicities. Environmental influences such as upwelling or coastal trapped waves as well as climate influences such as El Nino southern oscillation and Pacific decadal oscillation events interact and modify the thermonutricline depth of this Humboldt Current System. The position of this thermonutricline plays a key role in Humboldt Current System functioning by driving se...

  7. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    Science.gov (United States)

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  8. Current-mode subthreshold MOS circuits for analog VLSI neural systems.

    Science.gov (United States)

    Andreou, A G; Boahen, K A; Pouliquen, P O; Pavasovic, A; Jenkins, R E; Strohbehn, K

    1991-01-01

    An overview of the current-mode approach for designing analog VLSI neural systems in subthreshold CMOS technology is presented. Emphasis is given to design techniques at the device level using the current-controlled current conveyor and the translinear principle. Circuits for associative memory and silicon retina systems are used as examples. The design methodology and how it relates to actual biological microcircuits are discussed.

  9. Current-mode subthreshold MOS circuits for analog VLSI neural systems

    Science.gov (United States)

    Andreou, Andreas G.; Boahen, Kwabena A.; Pouliquen, Philippe O.; Pavasovic, Aleksandra; Jenkins, Robert E.

    1991-03-01

    An overview of the current-mode approach for designing analog VLSI neural systems in subthreshold CMOS technology is presented. Emphasis is given to design techniques at the device level using the current-controlled current conveyor and the translinear principle. Circuits for associative memory and silicon retina systems are used as examples. The design methodology and how it relates to actual biological microcircuits are discussed.

  10. Projecting Cumulative Benefits of Multiple River Restoration Projects: An Example from the Sacramento-San Joaquin River System in California

    Science.gov (United States)

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve; Reed, Denise J.; Spies, Robert; Twiss, Robert

    2008-12-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  11. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    Science.gov (United States)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  12. Environmental Assessment: Combat Information Transport System Upgrade Vandenberg Air Force Base, California

    Science.gov (United States)

    2016-06-07

    disturb an area greater than one acre, a National Pollutant Discharge Elimination System (NPDES) permit would be required to protect water resources. The...NPDES Permit requires the development and implementation of a Storm Water Pollution Prevention Plan that includes preventative maintenance measures...State Water Regional Control Board Space Transportation System Storm Water Pollution Prevention Plan Trichloroethylene Total petroleum hydrocarbons

  13. The Practical Relevance of Accountability Systems for School Improvement: A Descriptive Analysis of California Schools

    Science.gov (United States)

    Mintrop, Heinrich; Trujillo, Tina

    2007-01-01

    In search for the practical relevance of accountability systems for school improvement, the authors ask whether practitioners traveling between the worlds of system-designated high- and low-performing schools would detect tangible differences in educational quality and organizational effectiveness. In comparing nine exceptionally high and low…

  14. Projected evolution of California's San Francisco bay-delta-river system in a century of climate change

    Science.gov (United States)

    Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; van der Wegen, M.; Wagner, R.W.; Jassby, A.D.

    2011-01-01

    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  15. Projected evolution of California's San Francisco Bay-Delta-River System in a century of continuing climate change

    Science.gov (United States)

    Cloern, James E.; Knowles, Noah; Brown, Larry R.; Cayan, Daniel; Dettinger, Michael D.; Morgan, Tara L.; Schoellhamer, David H.; Stacey, Mark T.; van der Wegen, Mick; Wagner, R. Wayne; Jassby, Alan D.

    2011-01-01

    Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  16. Projected evolution of California's San Francisco Bay-Delta-river system in a century of climate change.

    Directory of Open Access Journals (Sweden)

    James E Cloern

    Full Text Available BACKGROUND: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. METHODOLOGY/PRINCIPAL FINDINGS: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. CONCLUSIONS/SIGNIFICANCE: Most of these environmental indicators change substantially over the 21(st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1 an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2 varying sensitivity among environmental indicators to the uncertainty of future climates; (3 inevitability of

  17. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  18. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  19. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  20. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  1. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    Science.gov (United States)

    1980-01-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  2. Multicultural Graduation Requirements among California's Community Colleges

    Science.gov (United States)

    Hess, Shelly L.; Uerling, Donald F.; Piland, William E.

    2012-01-01

    This examination of the current status of multicultural education among California community colleges emerged from a perspective that the inclusion of multicultural education has become a major goal of California's leaders within the past five years. The literature revealed minority students tend to have lower retention rates because they become…

  3. California Political Districts

    Data.gov (United States)

    California Department of Resources — This is a series of district layers pertaining to California'spolitical districts, that are derived from the California State Senateand State Assembly information....

  4. Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems

    Directory of Open Access Journals (Sweden)

    Syed Sabir Hussain Bukhari

    2016-02-01

    Full Text Available Critical load applications always rely on UPS systems to uphold continuous power during abnormal grid conditions. In case of any power disruption, an offline UPS system starts powering the load to avoid blackout. However, this process can root the momentous inrush current for the transformer installed before the load. The consequences of inrush current can be the reduction of output voltage and tripping of protective devices of the UPS system. Furthermore, it can also damage the sensitive load and decrease the transformer’s lifetime. To prevent the inrush current, and to avoid its disruptive effects, this research suggests an offline UPS system based on a current regulated inverter that eliminates the inrush current while powering the transformer coupled loads. A detailed comparative analysis of the conventional and proposed topologies is presented and the experiment was performed by using a small prototype to validate the performance, and operation of the proposed topology.

  5. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    Science.gov (United States)

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  6. Economics of Residential Photovoltaic and Wind Systems in Arizona and California

    Science.gov (United States)

    An, Wen

    Renewable energy has been a very hot topic in recent years due to the traditional energy crisis. Incentives that encourage the renewables have been established all over the world. Ordinary homeowners are also seeking ways to exploit renewable energy. In this thesis, residential PV system, wind turbine system and a hybrid wind/solar system are all investigated. The solar energy received by the PV panels varies with many factors. The most essential one is the irradiance. As the PV panel been installed towards different orientations, the incident insolation received by the panel also will be different. The differing insolation corresponds to the different angles between the irradiance and the panel throughout the day. The result shows that for PV panels in the northern hemisphere, the ones facing south obtain the highest level insolation and thus generate the most electricity. However, with the two different electricity rate plans, flat rate plan and TOU (time of use) plan, the value of electricity that PV generates is different. For wind energy, the wind speed is the most significant variable to determine the generation of a wind turbine. Unlike solar energy, wind energy is much more regionally dependent. Wind resources vary between very close locations. As expected, the result shows that, larger wind speed leads to more electricity generation and thus shorter payback period. For the PV/wind hybrid system, two real cases are analyzed for Altamont and Midhill, CA. In this part, the impact of incentives, system cost and system size are considered. With a hybrid system, homeowners may choose different size combinations between PV and wind turbines. It turns out that for these two locations, the system with larger PV output always achieve a shorter payback period due to the lower cost. Even though, for a longer term, the system with a larger wind turbine in locations with excellent wind resources may lead to higher return on investment. Meanwhile, impacts of both wind

  7. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    Science.gov (United States)

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  8. Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring and time series analysis

    Science.gov (United States)

    Svensen, Henrik; Hammer, Ã.˜Yvind; Mazzini, Adriano; Onderdonk, Nathan; Polteau, Stephane; Planke, Sverre; Podladchikov, Yuri Y.

    2009-09-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in southern California. Carbon dioxide is the main component behind the seeps in the Davis-Schrimpf seep field (˜20,000 m2). In order to understand the mechanisms driving the system, we have investigated the seep dynamics of the field by monitoring the temperature of two pools and two gryphons for 2180 h (90.8 days) in the period from December 2006 to March 2007, with a total of 32,700 measurements per station. The time series have been analyzed by statistical methods using cross correlation, autocorrelation and spectral analysis, and autoregressive modeling. The water-rich pools never exceed 34.0°C and are characterized by low-amplitude temperature variations controlled by the diurnal cycles in air temperature. The long-term validity of these results is evident from a second period of temperature monitoring of one of the pools from December 2007 to April 2008 (120 days). In contrast to the pools, the mud-rich gryphons have a strikingly different behavior. The gryphons are hotter (maximum 69.7°C) and have large amplitude variations (standard deviation of 6.4) that overprint any signal from external diurnal forcing. Autoregressive modeling shows the presence of distinct hot and cold pulses in the gryphon temperature time series, with amplitudes up to 3°C. These pulses likely reflect a combination of hydrothermal flux variations from the SSGS and the local temporal changes in bubbling activity within the gryphons.

  9. Gas and Water Geochemistry of Seeps from the Salton Sea Geothermal System (California, USA) and the Implications for Seep Processes

    Science.gov (United States)

    Mazzini, A.; Svensen, H.; Hammer, O.; Onderdonk, N.; Polteau, S.; Planke, S.

    2008-12-01

    Water, mud, gas, and petroleum-bearing seeps are part of the Salton Sea Geothermal System in Southern California. Seeps in the Davis-Schrimpf seep field (~120x120 m) show considerable variations in both temperature and water geochemistry. Here we have investigated the spatial variation in carbon isotope composition of the two main seep gases, CO2 and CH4. In addition, seep water isotope composition has been analyzed to determine the source of the water, and temperature monitoring has been done during a 90 day period from mid December 2006. Gas analyses results show a 10 variation in the ^13C of methane and a 2 variation in the ^13C of carbon dioxide. The water salinity varies between fresh (1-3 g/L) in the gryphons, to hypersaline brine (145 g/L) in the pools. In situ evaporation can explain the salinity variations, supported by ^18O and ^D data, where most water samples are enriched in ^18O and define an evaporation trend in the ^D-^18O space. We conclude that the seep waters represent meteoric waters modified by surface evaporation, with little or no evidence for a deep hydrothermal component. Seep gases, on the other hand, have a deep hydrothermal/metamorphic origin. Time series analyses of the temperature monitoring data shown fundamental differences between the gryphons and pools, where the former are dominated by hydrothermal input and the latter by diurnal variations in air temperature. Our results highlight the complex dynamics of the seep field, and demonstrate the importance of detailed studies, both in space and time, to understand even well constrained seep systems.

  10. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  11. Influence of the diffusion current on the hysteretic behavior in the system of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Rahmonov, I. R.

    2010-09-01

    The detailed investigation of the phase dynamics and the I-V curves in the system of coupled Josephson junctions have been carried out. The superconducting, quasiparticle, diffusion, and displacement currents have been calculated as functions of the total current through the system. The role of the diffusion current in the formation of the I-V curves has been studied and the influence of this quantity on the I-V curve branching and the magnitude of the return current has been revealed. The calculation results agree qualitatively with the experimental data.

  12. California's digital divide: clinical information systems for the haves and have-nots.

    Science.gov (United States)

    Miller, Robert H; D'Amato, Katherine; Oliva, Nancy; West, Christopher E; Adelson, Joel W

    2009-01-01

    Strong barriers prevent the financing of clinical information systems (CIS) in health care delivery system organizations in market segments serving disadvantaged patients. These segments include community health centers, public hospitals, unaffiliated rural hospitals, and some Medicaid-oriented solo and small-group medical practices. Policy interventions such as loans, grants, pay-for-performance and other reimbursement changes, and support services assistance will help lower these barriers. Without intervention, progress will be slow and worsen health care disparities between the advantaged and disadvantaged populations.

  13. Eddy Surface properties and propagation at Southern Hemisphere western boundary current systems

    Directory of Open Access Journals (Sweden)

    G. S. Pilo

    2015-02-01

    Full Text Available Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC, the Brazil Current (BC and the East Australian Current (EAC Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.

  14. Natural Language Processing Systems Evaluation Workshop Held in Berkely, California on 18 June 1991

    Science.gov (United States)

    1991-12-01

    superfast type. looped tht it A31l be built with taste by peo. writer ought to be possible in the monolingual case pie who understand languages and...34 in Nirenburg, S. .bhnaon, R, King, M., wid des Tombe, L. (1985) (ed.) Maichine Trenulation: 7heretieel endl "Eutaw& A Multilingual System under

  15. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2017-03-01

    Full Text Available The use of the eddy current technique (ECT for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM. The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  16. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    Energy Technology Data Exchange (ETDEWEB)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-06-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.

  17. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  18. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    Science.gov (United States)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  19. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable.

  20. 75 FR 20383 - Delphi Thermal Systems Currently Known as General Motors Components Holdings LLC, Lockport...

    Science.gov (United States)

    2010-04-19

    ... Employment and Training Administration Delphi Thermal Systems Currently Known as General Motors Components... workers of Delphi Thermal Systems, Lockport Operations, Lockport, New York. The notice was published in... that following a bankruptcy agreement, Delphi Thermal Systems was taken over by General Motors and...

  1. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  2. First experimental results with the Current Limit Avoidance System at the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Galeani, S. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Jachmich, S. [Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels (Belgium); Joffrin, E. [IRFM-CEA, Centre de Cadarache, 13108 Saint-paul-lez-Durance (France); Lennholm, M. [EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); European Commission, B-1049 Brussels (Belgium); Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A.C. [Associazione EURATOM-IST, Instituto de Plasmas e Fusao Nuclear, IST, 1049-001 Lisboa (Portugal); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Sips, A.C.C. [European Commission, B-1049 Brussels (Belgium); Varano, G.; Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Zaccarian, L. [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Universitè de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-06-15

    The Current Limit Avoidance System (CLA) has been recently deployed at the JET tokamak to avoid current saturations in the poloidal field (PF) coils when the eXtreme Shape Controller is used to control the plasma shape. In order to cope with the current saturation limits, the CLA exploits the redundancy of the PF coils system to automatically obtain almost the same plasma shape using a different combination of currents in the PF coils. In the presence of disturbances it tries to avoid the current saturations by relaxing the constraints on the plasma shape control. The CLA system has been successfully implemented on the JET tokamak and fully commissioned in 2011. This paper presents the first experimental results achieved in 2011–2012 during the restart and the ITER-like wall campaigns at JET.

  3. Does California's Master Plan Still Work?

    Science.gov (United States)

    Burdman, Pamela

    2009-01-01

    For nearly 50 years, California's higher education system has been shaped by the tripartite division of the vaunted Master Plan. The 1960 document's bold vision of access and quality safeguarded a system of selective research universities (the University of California) and provided baccalaureate education through less-selective campuses (the…

  4. An Identification Method of Magnetizing Inrush Current Phenomena in Distribution System

    Science.gov (United States)

    Dou, Naoki; Toyama, Atushi; Satoh, Kohki; Naitoh, Tadashi; Masaki, Kazuyuki

    In high voltage distribution systems, there are many power quality troubles due to voltage dips. Otherwise, a magnetizing inrush current causes the voltage dip. To suppress voltage dips, it is necessary to identify the magnetizing inrush current phenomena. In this paper, the authors propose a new identification method. The principles are that the saturation start/end flux is equal and the inrush current pattern exists. And to avoid a interfere with saturation area overlap; the rectangular coordinate method is adopted.

  5. A Solid-State Fault Current Limiting Device for VSC-HVDC Systems

    Science.gov (United States)

    Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz

    2013-08-01

    Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.

  6. Managing Water Resources for Drought: Insights from California

    Science.gov (United States)

    Medellin-Azuara, Josue; Lund, Jay

    2016-04-01

    Droughts bring great opportunities to better understand and improve water systems. California's economic powerhouse relies on highly engineered water systems to fulfill large and growing urban and agricultural water demands. Current and past droughts show these systems are highly robust and resilient to droughts, as they recover promptly. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper provides an overview of the economic and ecosystem impacts of the recent multi-year drought in California in the context of a global economy. We explore the potential of water markets, groundwater management and use of remote sensing technology to improve understanding of adaptation to drought. Insights for future management of water resources and scientific work are discussed.

  7. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    CERN Document Server

    Laundal, Karl M; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting $\\textit{Swarm}$ and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV ...

  8. Mid-latitude solar eclipses and their influence on ionospheric current systems

    Directory of Open Access Journals (Sweden)

    A. T. Tomás

    2009-12-01

    Full Text Available Using CHAMP magnetic field data we study the behaviour of the geomagnetic field during two mid latitude eclipses on 21 June 2001 and 22 September 2006. The possible influence of the eclipses on different ionospheric current systems, as seen in the magnetic field measured by CHAMP, is discussed. It is expected that the blocking of solar radiation during an eclipse causes a reduction of the ionospheric conductivity and therefore has an effect on the different current systems. We address in particular the effects of the eclipses on the inter-hemispheric field-aligned currents and on the Sq current system. The two events studied occur under different seasonal conditions, e.g. June solstice and September equinox, therefore quite different aspects can be investigated. We find that the eclipses might affect the direction and intensity of the inter-hemispheric currents and possibly influence the direction of zonal winds, therefore changing the direction of the prevailing F-region dynamo currents. The eclipse in the Southern Hemisphere during September equinox caused inter-hemispheric currents similar to those observed in northern summer. Reverse inter-hemispheric currents were recorded after the end of the eclipse. A large variety of atypical currents was observed during the June event. Most of them might be related to a reversed F-region dynamo in the morning sector and an enhanced conductivity difference between the hemispheres. The eclipse in the south seems to enhance the June solstice conditions considerably.

  9. Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; He, Ran; Jian, Jiamin;

    2016-01-01

    Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanism...

  10. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  11. Teale California Ambient Air Quality Standards for Ozone

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  12. Teale California Ambient Air Quality Standards for carbon monoxide

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  13. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.; Van Herwaarden, Joost A.

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  14. Study on Catastrophic Air Current Early-warning and Control System of Coalmines

    Directory of Open Access Journals (Sweden)

    L.F. Fang

    2016-02-01

    Full Text Available Catastrophic air current significantly influences the stability of ventilation system, and existing studies have not considered the flow characteristics of catastrophic air current when designing the control systems. To analyze the effects of different kinds of coalmine accidents on safety production, grey relation entropy theory was used to analyze the hazard assessment of coalmine accidents. Fluent software was employed to study the flow characteristics of catastrophic air current, and the catastrophic air current early-warning and control system of coalmine was researched according to the theoretical analysis and numerical simulation. The threat of fire accidents and roof accidents were larger than other accidents. The influence of temperature and CO volume fraction distribution of fire accidents to the tailwind side was larger than that of the weather side, and gradient decreased on the weather side. This system can effectively control the spread of fire and poisonous gas,

  15. Research on Integrated Monitoring and Prevention System for Stray Current in Metro

    Institute of Scientific and Technical Information of China (English)

    李威; 严旭

    2001-01-01

    On the basis of analyzing the influencing factors and harmfulness of stray current, and discussing the existing problems of monitoring and prevention system for stray current, the integrated monitoring and prevention system for stray current in metro was developed. A net system of distributed computers for monitoring was set up. It can monitor the distribution of stray current in metro and the corrosion of the metal structure in the whole line. According to the situation of monitoring it can also control the drainage of its tank to reach the best effect and eliminate the negative effect of polarity drainage. By using the new type unilateral electric device, the problem of burning the rail by electric arc can be avoided. The unilateral electric device can be connected with the monitoring net system directly to realize the monitor in line and improve the reliability of the device.

  16. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  17. PRESENT STATE OF THE HYDROTHERMAL SYSTEM IN LONG VALLEY CALDERA, CALIFORNIA.

    Science.gov (United States)

    Sorey, Michael L.

    1985-01-01

    Results of test drilling to depths of 2 km and data on the chemical and isotopic content of waters from hot springs and fumaroles permit a conceptual model of the present-day hydrothermal system in Long Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the resurgent dome. Maximum measured temperatures within these zones are near 170 degree C, but estimates from chemical geothermometers and extrapolation of a high temperature gradient measured in a recent drill hole indicate that a source reservoir at temperatures near 240 degree C may exist at greater depths in the Bishop Tuff beneath the west moat.

  18. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  19. Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced

    Energy Technology Data Exchange (ETDEWEB)

    Haves, Phillip; Hencey, Brandon; Borrell, Francesco; Elliot, John; Ma, Yudong; Coffey, Brian; Bengea, Sorin; Wetter, Michael

    2010-06-29

    A Model Predictive Control algorithm was developed for the UC Merced campus chilled water plant. Model predictive control (MPC) is an advanced control technology that has proven successful in the chemical process industry and other industries. The main goal of the research was to demonstrate the practical and commercial viability of MPC for optimization of building energy systems. The control algorithms were developed and implemented in MATLAB, allowing for rapid development, performance, and robustness assessment. The UC Merced chilled water plant includes three water-cooled chillers and a two million gallon chilled water storage tank. The tank is charged during the night to minimize on-peak electricity consumption and take advantage of the lower ambient wet bulb temperature. The control algorithms determined the optimal chilled water plant operation including chilled water supply (CHWS) temperature set-point, condenser water supply (CWS) temperature set-point and the charging start and stop times to minimize a cost function that includes energy consumption and peak electrical demand over a 3-day prediction horizon. A detailed model of the chilled water plant and simplified models of the buildings served by the plant were developed using the equation-based modeling language Modelica. Steady state models of the chillers, cooling towers and pumps were developed, based on manufacturers performance data, and calibrated using measured data collected and archived by the control system. A detailed dynamic model of the chilled water storage tank was also developed and calibrated. Simple, semi-empirical models were developed to predict the temperature and flow rate of the chilled water returning to the plant from the buildings. These models were then combined and simplified for use in a model predictive control algorithm that determines the optimal chiller start and stop times and set-points for the condenser water temperature and the chilled water supply temperature. The

  20. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    Science.gov (United States)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.