WorldWideScience

Sample records for california central valley

  1. Alluvial Boundary of California's Central Valley

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the extent of the alluvial deposits in the Central Valley of California and encompasses the contiguous Sacramento, San Joaquin, and...

  2. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  3. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  4. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  5. Winter habitat associations of diurnal raptors in Californias Central Valley

    Science.gov (United States)

    Pandolrno, E.R.; Herzog, M.P.; Hooper, S.L.; Smith, Z.

    2011-01-01

    The wintering raptors of California's Central Valley are abundant and diverse. Despite this, little information exists on the habitats used by these birds in winter. We recorded diurnal raptors along 19 roadside survey routes throughout the Central Valley for three consecutive winters between 2007 and 2010. We obtained data sufficient to determine significant positive and negative habitat associations for the White-tailed Kite (Elanus leucurus), Bald Eagle {Haliaeetus leucocephalus), Northern Harrier (Circus cyaneus), Red-tailed Hawk (Buteo jamaicensis), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (Buteo lagopus), American Kestrel (Falco sparverius), and Prairie Falcon (Falco mexicanus). The Prairie Falcon and Ferruginous and Rough-legged hawks showed expected strong positive associations with grasslands. The Bald Eagle and Northern Harrier were positively associated not only with wetlands but also with rice. The strongest positive association for the White-tailed Kite was with wetlands. The Red-tailed Hawk was positively associated with a variety of habitat types but most strongly with wetlands and rice. The American Kestrel, Northern Harrier, and White-tailed Kite were positively associated with alfalfa. Nearly all species were negatively associated with urbanized landscapes, orchards, and other intensive forms of agriculture. The White-tailed Kite, Northern Harrier, Redtailed Hawk, Ferruginous Hawk, and American Kestrel showed significant negative associations with oak savanna. Given the rapid conversion of the Central Valley to urban and intensive agricultural uses over the past few decades, these results have important implications for conservation of these wintering raptors in this region.

  6. Evapotranspiration of applied water, Central Valley, California, 1957-78

    Science.gov (United States)

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  7. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  8. Satellites measure recent rates of groundwater depletion in California's Central Valley

    National Research Council Canada - National Science Library

    Famiglietti, J. S; Lo, M; Ho, S. L; Bethune, J; Anderson, K. J; Syed, T. H; Swenson, S. C; de Linage, C. R; Rodell, M

    2011-01-01

    In highly‐productive agricultural areas such as California's Central Valley, where groundwater often supplies the bulk of the water required for irrigation, quantifying rates of groundwater depletion remains...

  9. Spring 1961 water table of California's Central Valley (from Williamson and others, 1989)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the spring 1961 water-table altitude for the California's Central Valley. It was used to initiate the water-level altitudes for the...

  10. 78 FR 75332 - Proposed Information Collection; Comment Request; California Central Valley Angler Survey

    Science.gov (United States)

    2013-12-11

    ... California Department of Fish and Wildlife, with information useful for understanding the economic importance..., and ] expenditures of anglers who fish in the rivers of California's Central Valley. NMFS has engaged... recreational benefits associated with habitat restoration such as improved fish passage. Information to be...

  11. Constrained Inclusion: Access and Persistence Among Undocumented Community College Students in California's Central Valley

    Science.gov (United States)

    Negrón-Gonzales, Genevieve

    2017-01-01

    This article examines the ways in which citizenship status uniquely shapes both the access and persistence of undocumented community college students in the Central Valley of California. Drawing on more than 2 years of qualitative fieldwork, it is argued that undocumented community college students navigate an institutional landscape of…

  12. Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2013-01-01

    Characterizing climatological and hydrological responses to agricultural irrigation continues to be an important challenge to understanding the full impact of water management on the Earth's environment and hydrological cycle. In this study, we use a global climate model, combined with realistic estimates of regional agricultural water use, to simulate the local and remote impacts of irrigation in California's Central Valley. We demonstrate a clear mechanism that the resulting increase in evapotranspiration and water vapor export significantly impacts the atmospheric circulation in the southwestern United States, including strengthening the regional hydrological cycle. We also identify that irrigation in the Central Valley initiates a previously unknown, anthropogenic loop in the regional hydrological cycle, in which summer precipitation is increased by 15%, causing a corresponding increase in Colorado River streamflow of ~30%. Ultimately, some of this additional streamflow is returned to California via managed diversions through the Colorado River aqueduct and the All-American Canal.

  13. Geodatabase of the datasets used to represent the two subunits of the Central Valley aquifer system, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase includes spatial datasets that represent the Central Valley aquifer system in the State of California. Included are: (1) polygon extents; datasets...

  14. MODFLOW2000_FMP1_1 model used to simulate the groundwater flow of the Central Valley Aquifer, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional groundwater flow model (MODFLOW200-FMP1_1) of the Central Valley in California was developed to aid water managers in understanding how water...

  15. Spring 1961 hydraulic head in the lower pumped zone of California's Central Valley (from Williamson and others, 1989)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the spring 1961 hydraulic head in the lower pumped zone of California's Central Valley. It was used to initiate the water-level...

  16. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    Science.gov (United States)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  17. Drought Impacts on Agricultural Production and Land Fallowing in California's Central Valley in 2015

    Science.gov (United States)

    Rosevelt, Carolyn; Melton, Forrest S.; Johnson, Lee; Guzman, Alberto; Verdin, James P.; Thenkabail, Prasad S.; Mueller, Rick; Jones, Jeanine; Willis, Patrick

    2016-01-01

    The ongoing drought in California substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to mitigation of drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in fallow acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to time-series data from Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus), OLI (Operational Land Imager), and MODIS (Moderate Resolution Imaging Spectroradiometer). Our effort has been focused on development of indicators of drought impacts in the March-August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 650 fields from March-September in 2014 and 2015. We present the algorithm along with updated results from the accuracy assessment, and data and maps of land fallowing in the Central Valley in 2015.

  18. Drought Impacts to Water Footprints and Virtual Water Transfers of the Central Valley of California

    Science.gov (United States)

    Marston, L.; Konar, M.

    2016-12-01

    The Central Valley of California is one of the most productive agricultural locations in the world, which is made possible by a complex and vast irrigation system. Beginning in 2012, California endured one of the worst droughts in its history. Local impacts of the drought have been evaluated, but it is not yet well understood how the drought reverberated through the global food system. Here, we quantify drought impacts to the water footprint (WF) of agricultural production and virtual water transfers (VWT) of the Central Valley of California. To do this, we utilize high spatial, temporal, and water source resolution datasets and a crop model from pre-drought conditions (2011) through three years of exceptional drought (2012-2014). Over the course of the drought, there was a 0.6% increase (0.128 x 109 m3) in total WF. In particular, the groundwater WF increased from 6.00 x 109 m3 in 2011 to 11.61 x 109 m3 in 2014, predominantly in the Tulare Basin. However, production and food transfer declines led total VWT to decrease by 0.7% (0.097 x 109 m3). From 2011 to 2014, groundwater VWT increased by 3.19 x 109 m3, partially offsetting the 0.71 x 109 m3 reduction in green VWT and the 2.58 x 109 m3 decrease in surface VWT. During the drought, global consumers increased their reliance on the already over-exploited Central Valley Aquifer by 93.4% (5.61 x 109 m3). These results indicate that drought shocks may strengthen the telecoupling between unsustainable groundwater withdrawals and distant consumers of groundwater-intensive agricultural commodities.

  19. Water availability and land subsidence in the Central Valley, California, USA

    Science.gov (United States)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  20. Water availability and land subsidence in the Central Valley, California, USA

    Science.gov (United States)

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  1. Indications for Protacted Groundwater Depletion after Drought over the Central Valley of California

    OpenAIRE

    Wang, S.-Y. Simon; Lin, Yen-Heng; Gillies, Robert R.; Hakala, Kirsti

    2015-01-01

    Ongoing (2014-2015) drought in the state of California has played a major 10 role in the depletion of groundwater. Within California’s Central Valley, home to one 11 of the world’s most productive agricultural regions, drought and increased 12 groundwater depletion occurs almost hand-in-hand but this relationship appears to 13 have changed over the last decade. Data derived from 497 wells have revealed a 14 continued depletion of groundwater lasting a full year after drought, a phenomenon 15 ...

  2. Economic and Water Supply Effects of Ending Groundwater Overdraft in California's Central Valley

    OpenAIRE

    Nelson, Timothy; Chou, Heidi; Zikalala, Prudentia; Lund, Jay; Hui, Rui; Medellín–Azuara, Josué

    2016-01-01

    doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art7 Surface water and groundwater management are often tightly linked, even when linkage is not intended or expected. This link is especially common in semi-arid regions, such as California. This paper summarizes a modeling study on the effects of ending long-term overdraft in California’s Central Valley, the state’s largest aquifer system. The study focuses on economic and operational aspects, such as surface water pumping ...

  3. Subsidence in the Central Valley, California 2007 - present measured by InSAR

    Science.gov (United States)

    Farr, T. G.; Liu, Z.; Jones, C. E.

    2015-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with ~cm accuracy. For this study, we have obtained and analyzed Japanese PALSAR data for 2006 - 2011, Canadian Radarsat-1 data for 2011 - 2013, Radarsat-2 data for 2012 - 2015, and ESA's Sentinel-1A for 2015 and produced maps of subsidence for those periods. High resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2015. Using multiple scenes acquired by these systems, we were able to produce the time histories of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. The high resolution maps from UAVSAR were used to identify and quantify new, highly localized areas of accelerated subsidence along the California Aqueduct that occurred in 2014. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

  4. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  5. An Outcome-Driven Approach to Flood Management in California's Central Valley

    Science.gov (United States)

    Van Lienden, B.; Jimenez, M.; Mierzwa, M.; Grimm, R.

    2016-12-01

    The Central Valley Flood Protection Plan (CVFPP) is a long-range plan originally adopted in 2012 that guides California's participation in managing flood risk iin areas protected by the State-federal flood management system in the Central Valley. The 2017 Update to the CVFPP incorporates an outcome-driven approach that will help the State move towards sustainable flood management while delivering the best value for public investment. Application of this outcome-driven approach includes identification of flood-specific outcomes that help to accomplish societal goals (including public safety, economic stability, ecosystem vitality, and enriching experiences). To help build efficiency into the flood management system, the CVFPP identifies and supports implementation of a comprehensive set of individual but interrelated management actions that - when implemented together - work in concert to contribute to these flood-specific outcomes and societal goals to improve performance of the State-federal flood management system. To accomplish multiple intended outcomes and contribute in a resilient way towards all societal goals, it is necessary to invest in a diversity of actions (including both large-scale multi-benefit projects and smaller scale local projects) with varying strengths that complement and balance one another. The 2017 CVFPP Update describes what effective and resilient management action portfolios would look like on a systemwide scale and for urban, rural and small community regions in order to reconcile public safety, economic and environmental goals across the Central Valley flood management system.

  6. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  7. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  8. Can We Mitigate Climate Extremes using Managed Aquifer Recharge: Case Studies California Central Valley and South-Central Arizona, USA

    Science.gov (United States)

    Scanlon, B. R.; Reedy, R. C.; Faunt, C. C.; Pool, D. R.; Uhlman, K.

    2015-12-01

    Frequent long-term droughts interspersed with intense floods in the southwestern U.S. underscore the need to store more water to manage these climate extremes. Here we show how managed aquifer recharge can enhance drought resilience in the southwestern U.S. with ~ 70% of California under extreme drought and 75% of Arizona under moderate drought. Data on water sources, transportation, and users were compiled for managed aquifer recharge systems in the Central Valley and south-central Arizona. Groundwater depletion of 115 to 145 km3 in the 1900s created large subsurface reservoirs in thick alluvial basins in these regions. Large canals and aqueducts up to several 100 km long allow water to be imported from reservoirs, mostly in more humid regions. Imported water is either used instead of groundwater or is applied in surface spreading basins primarily during wet periods (≤1.3 km3/yr Central Valley, ≤0.7 km3/yr Arizona) and is extracted during droughts. The dominant water users include irrigators and municipalities both within and outside the managed aquifer recharge systems. Groundwater modeling indicates that recharge basins significantly increase groundwater storage in the Central Valley. Managed aquifer recharge systems significantly enhance drought resilience and increase sustainability of water resources in semiarid regions, complementing surface water reservoirs and conjunctive surface water/groundwater use by providing longer term storage.

  9. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    Science.gov (United States)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  10. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  11. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA

    Science.gov (United States)

    Scanlon, B. R.; Longuevergne, L.; Long, D.

    2012-04-01

    There is increasing interest in using Gravity Recovery and Climate Experiment (GRACE) satellite data to remotely monitor groundwater storage variations; however, comparisons with ground-based well data are limited but necessary to validate satellite data processing, especially when the study area is close to or below the GRACE footprint. The Central Valley is a heavily irrigated region with large-scale groundwater depletion during droughts. Here we compare updated estimates of groundwater storage changes in the California Central Valley using GRACE satellites with storage changes from groundwater level data. A new processing approach was applied that optimally uses available GRACE and water balance component data to extract changes in groundwater storage. GRACE satellites show that groundwater depletion totaled ˜31.0 ± 3.0 km3 for Groupe de Recherche de Geodesie Spatiale (GRGS) satellite data during the drought from October 2006 through March 2010. Groundwater storage changes from GRACE agreed with those from well data for the overlap period (April 2006 through September 2009) (27 km3 for both). General correspondence between GRACE and groundwater level data validates the methodology and increases confidence in use of GRACE satellites to monitor groundwater storage changes.

  12. Spatially distributed pesticide exposure assessment in the Central Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States)

    2010-05-15

    Field runoff is an important transport mechanism by which pesticides move into the hydrologic environment of intensive agricultural regions such as California's Central Valley. This study presents a spatially explicit modeling approach to extend Pesticide Root Zone Model (PRZM), a field-scale pesticide transport model, into basin level. The approach was applied to simulate chlorpyrifos use in the Central Valley during 2003-2007. The average value of loading as percent of use (LAPU) is 0.031%. Results of this study provide strong evidence that surface runoff generation and pesticide application timing are the two influencing factors on the spatial and temporal variability of chlorpyrifos sources from agricultural fields. This is one of the first studies in coupling GIS and field-scale models and providing simulations for the dynamics of pesticides over an agriculturally dominated landscape. The demonstrated modeling approach may be useful for implementations of best management practice (BMP) and total maximum daily load (TMDL). - Runoff generation and application timing are governing factors on spatiotemporal variability of pesticide sources.

  13. U.S. Geological Survey Stream Gages located in the Central Valley, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the locations of, and links to USGS gages on the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central...

  14. Downscaling GRACE satellite data for sub-region groundwater storage estimates in California's Central Valley

    Science.gov (United States)

    Kuss, A. M.; Newcomer, M. E.; Hsu, W.; Bourai, A.; Puranam, A.; Landerer, F. W.; Schmidt, C.

    2012-12-01

    The Central Valley aquifer (CVA) is a vital economic and environmental resource for California and the United States, and supplies water for one of the most agriculturally productive regions in the world. Recent estimates of groundwater (GW) availability in California have indicated declines in GW levels that may pose a threat to sustainable groundwater use in this region. The Gravity Recovery and Climate Experiment (GRACE) can be used to estimate variations in total water storage (TWS) and are therefore used to estimate GW storage changes within the CVA. However, using GRACE data in the CVA is challenging due to the coarse spatial resolution and increased error. To compensate for this, we used a statistical downscaling approach applied to GRACE data at the sub-region level using GW storage estimates from the California Department of Water Resources' (DWR) C2VSim hydrological model. This method produced a spatially and temporally variable GW anomaly dataset for sub-region GW management and for analysis of GW changes influenced by spatial and temporal variability. An additional challenge for this region is the influence of natural climate variability, altering GW recharge and influencing pumping practices. Understanding the effects of climate variability on GW storage changes, may improve GRACE TWS and GW estimates during periods of increased rain or droughts. Thus, the GRACE TWS and GW storage estimates were compared to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) using singular spectral analysis (SSA). Results from SSA indicate that variations in GRACE TWS are moderately correlated to PDO (10-25 year cycle), although low correlations were observed when compared to ENSO (2-7 year cycle). The incorporation of these new methods for estimating variations in groundwater storage in highly productive aquifers may improve water management techniques in California.

  15. The ecology of western equine encephalomyelitis virus in the Central Valley of California, 1945-1985.

    Science.gov (United States)

    Hardy, J L

    1987-11-01

    Reeves' concept of the summer transmission cycle of western equine encephalomyelitis virus in 1945 was that the virus was amplified in a silent transmission cycle involving mosquitoes, domestic chickens, and possibly wild birds, from which it could be transmitted tangentially to and cause disease in human and equine populations. Extensive field and laboratory studies done since 1945 in the Central Valley of California have more clearly defined the specific invertebrate and vertebrate hosts involved in the basic virus transmission cycle, but the overall concept remains unchanged. The basic transmission cycle involves Culex tarsalis as the primary vector mosquito species and house finches and house sparrows as the primary amplifying hosts. Secondary amplifying hosts, upon which Cx. tarsalis frequently feeds, include other passerine species, chickens, and possibly pheasants in areas where they are abundant. Another transmission cycle that most likely is initiated from the Cx. tarsalis-wild bird cycle involves Aedes melanimon and the blacktail jackrabbit. Like humans and horses, California ground squirrels, western tree squirrels, and a few other wild mammal species become infected tangentially with the virus but do not contribute significantly to virus amplification.

  16. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    Science.gov (United States)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from 100 years old), thickness of the vadose zone (from irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from 50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation with groundwater can complicate the use of tritium alone for age dating

  17. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-03-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  18. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  19. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  20. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    Science.gov (United States)

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  1. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California's Central Valley

    Science.gov (United States)

    Saleh, D.K.; Lorenz, D.L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations. ?? 2010 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  2. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    Science.gov (United States)

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  3. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    Science.gov (United States)

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-12-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94-1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22-0.39 for the maximum R2 models and 0.19-0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  4. Vernal Pool Distribution - Central Valley, 2005 [ds650

    Data.gov (United States)

    California Department of Resources — "Great Valley Vernal Pool Distribution", originally mapped by Bob Holland, 2005. This dataset contains vernal pool areas mapped over Califorina's Central Valley,...

  5. Economic and Policy Drivers of Agricultural Water Desalination in California's Central Valley

    Science.gov (United States)

    Welle, P.; Medellin-Azuara, J.; Viers, J. H.; Mauter, M.

    2016-12-01

    Agriculture in arid regions is threatened by the twin stresses of soil salinity and uncertain water availability. Recently, water desalination has been a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we combine data from earth observing systems with auxiliary information on prices, yields, and farmer behavior in order to create a decision framework which assesses the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. The use of remotely sensed crop classifiers allows us to resolve our analysis at the 30m pixel scale across the CV, a feature that allows us to characterize regional differences in technology effectiveness. We employ environmental and economic modeling to estimate the value of lower salinity irrigation water; the value of augmented water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between 800 and 1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.

  6. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    Science.gov (United States)

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services

  7. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  8. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  9. Drought, Land-Use Change, and Water Availability in California's Central Valley

    Science.gov (United States)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  10. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA

    OpenAIRE

    Scanlon, B. R.; Longuevergne, L.; Long, D.

    2012-01-01

    International audience; [1] There is increasing interest in using Gravity Recovery and Climate Experiment (GRACE) satellite data to remotely monitor groundwater storage variations; however, comparisons with ground-based well data are limited but necessary to validate satellite data processing, especially when the study area is close to or below the GRACE footprint. The Central Valley is a heavily irrigated region with large-scale groundwater depletion during droughts. Here we compare updated ...

  11. Recharge response to interannual and multidecadal climate variability and implications for groundwater resources of the Central Valley aquifer, California

    Science.gov (United States)

    Kuss, A. M.; Gurdak, J. J.

    2010-12-01

    Climate variability on interannual to multidecadal temporal scales has substantial implications for management and sustainability of water resources, yet are poorly understood throughout much of the United States. Climate forcings on these timescales partially control precipitation distribution, temperature fluctuations, drought occurrence and severity, streamflow, and recharge. Reliable predictions of future climate and subsequent adaptation of groundwater management strategies in vulnerable aquifers, such as the Central Valley aquifer located in central California of the United States, requires improved understanding of climate variability on interannual to multidecadal timescales and the associated responses in recharge rates. Groundwater withdrawals from the Central Valley aquifer are the second largest of all aquifers in the United States and are used to support one of the largest agricultural economies. However, the effects of the El Niño Southern Oscillation (ENSO) (2 to 6 year cycle), Pacific Decadal Oscillation (PDO) (10 to 25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50 to 80 year cycle) on recharge rates and groundwater levels in the Central Valley aquifer previously have not been quantified. In this study, singular spectrum analysis (SSA) was used to identify the principal components of groundwater level time series from selected wells in Central Valley aquifer that contribute to the greatest amount of variance in the record. In each of the time series analyzed, the PDO was the most significant contributor to groundwater level fluctuations. Wavelet analysis was also used to examine the nonstationary phase relation of multiple time series to identify significance and duration of each forcing. A consistent phase relation of multiple signals suggests possible coherence between climate forcings and groundwater levels, and also indicates the effect of the PDO on groundwater levels. These findings support the conclusion that interannual to

  12. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  13. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-01-01

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and in preparing emergency response plans. The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group of California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping (NSHM) Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault to the east of the study area. Earthquake scenarios are intended to depict the potential consequences of significant earthquakes. They are not necessarily the largest or most damaging earthquakes possible. Earthquake scenarios are both large enough and likely enough that emergency planners should consider them in regional emergency response plans. Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM).For the Hilton Creek Fault, two alternative scenarios were developed in addition to the NSHM scenario to account for different opinions in how far north the fault extends into the Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice

  14. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  15. How much groundwater did California's Central Valley lose during the 2012-2016 drought?

    Science.gov (United States)

    Xiao, Mu; Koppa, Akash; Mekonnen, Zelalem; Pagán, Brianna R.; Zhan, Shengan; Cao, Qian; Aierken, Abureli; Lee, Hyongki; Lettenmaier, Dennis P.

    2017-05-01

    We estimate net groundwater storage change in the Central Valley from April 2002 to September 2016 as the difference between inflows and outflows, precipitation, evapotranspiration, and changes in soil moisture and surface water storage. We also estimate total water storage change attributable to groundwater change using Gravity Recovery and Climate Experiment (GRACE) satellite data, which should be equivalent to our water balance estimates. Over two drought periods within our 14-1/2 years study period (January 2007 to December 2009 and October 2012 to September 2016), we estimate from our water balance that a total of 16.5 km3 and 40.0 km3 of groundwater was lost, respectively. Our water balance-based estimate of the overall groundwater loss over the 14-1/2 years is -20.7 km3, which includes substantial recovery during nondrought periods The estimated rate of groundwater loss is greater during the recent drought (10.0 ± 0.2 versus 5.5 ± 0.3 km3/yr) than in the 2007-2009 drought, due to lower net inflows, a transition from row crops to trees, and higher crop water use, notwithstanding a reduction in irrigated area. The GRACE estimates of groundwater loss (-5.0 km3/yr for both water balance and GRACE during 2007-2009, and -11.2 km3/yr for GRACE versus -10 km3/yr for water balance during 2012-2016) are quite consistent for the two methods. However, over the entire study period, the GRACE-based groundwater loss estimate is almost triple that from the water balance, mostly because GRACE does not indicate the between-drought groundwater recovery that is inferred from our water balance.

  16. 76 FR 56905 - The Central Valley Project, the California-Oregon Transmission Project, the Pacific Alternating...

    Science.gov (United States)

    2011-09-14

    ... INFORMATION CONTACT: Mr. Thomas R. Boyko, Regional Manager, Sierra Nevada Customer Service Region, Western... Cooperative, California; Power and Water Resources Pooling Authority (representing the Arvin-Edison Water...

  17. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA.

    Science.gov (United States)

    Ransom, Katherine M; Nolan, Bernard T; A Traum, Jonathan; Faunt, Claudia C; Bell, Andrew M; Gronberg, Jo Ann M; Wheeler, David C; Z Rosecrans, Celia; Jurgens, Bryant; Schwarz, Gregory E; Belitz, Kenneth; M Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-12-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50ppb and probability of dissolved oxygen concentration to be below 0.5ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971-2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on

  18. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    Science.gov (United States)

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative

  19. Genetic Variability of Two Leaffooted Bugs, Leptoglossus clypealis and Leptoglossus zonatus (Hemiptera: Coreidae) in the Central Valley of California.

    Science.gov (United States)

    Joyce, A L; Higbee, B S; Haviland, D R; Brailovsky, H

    2017-10-16

    Leaffooted plant bugs (LFPBs) (Leptoglossus spp., Guérin-Méneville) (Hemiptera: Coreidae) are large seed-feeding bugs native to the Western Hemisphere. In California, several Leptoglossus spp. feed on almonds, pistachios, and pomegranate and are occasional pests. The objective of this study was to survey the different species of Leptoglossus present in almond, pistachio, and pomegranate orchards in the Central Valley of California. We used two molecular markers, amplified fragment length polymorphisms (AFLPs) and mitochondrial DNA COI, to determine the number of species or strains of each species, and to infer whether individuals of each species move and possibly interbreed with populations from the other host plants. Two species of leaffooted bugs were abundant, Leptoglossus clypealis Heidemann, and Leptoglossus zonatus (Dallas). L. clypealis was collected in almond and pistachio, while L. zonatus was found on all three host plants, but was the dominant species in pomegranate. The AFLP results indicated that L. clypealis consisted of one species, which suggests it moves between almonds and pistachios during the growing season. Mitochondrial DNA COI for L. clypealis found 1-2% divergence between sequences, and a high haplotype diversity of 0.979 with 17 haplotypes. The AFLP results for L. zonatus found two genetically divergent populations which were morphologically similar. The mtDNA COI sequences for L. zonatus were used for haplotype analysis; three haplotypes were found in California, with one haplotype shared with collections from Brazil. The importance of genetic variability and cryptic species for pest management are discussed. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California

    Science.gov (United States)

    Zamora, Celia; Majewski, Michael S.; Foreman, William T.

    2013-01-01

    The U.S. Geological Survey monitored atmospheric deposition of pesticides in the Central Valley of California during two studies in 2001 and 2002–04. The 2001 study sampled wet deposition (rain) and storm-drain runoff in the Modesto, California, area during the orchard dormant-spray season to examine the contribution of pesticide concentrations to storm runoff from rainfall. In the 2002–04 study, the number and extent of collection sites in the Central Valley were increased to determine the areal distribution of organophosphate insecticides and other pesticides, and also five more sample types were collected. These were dry deposition, bulk deposition, and three sample types collected from a soil box: aqueous phase in runoff, suspended sediment in runoff, and surficial-soil samples. This report provides concentration data and describes methods and quality assurance of sample collection and laboratory analysis for pesticide compounds in all samples collected from 16 sites. Each sample was analyzed for 41 currently used pesticides and 23 pesticide degradates, including oxygen analogs (oxons) of 9 organophosphate insecticides. Analytical results are presented by sample type and study period. The median concentrations of both chloryprifos and diazinon sampled at four urban (0.067 micrograms per liter [μg/L] and 0.515 μg/L, respectively) and four agricultural sites (0.079 μg/L and 0.583 μg/L, respectively) during a January 2001 storm event in and around Modesto, Calif., were nearly identical, indicating that the overall atmospheric burden in the region appeared to be fairly similar during the sampling event. Comparisons of median concentrations in the rainfall to those in the McHenry storm-drain runoff showed that, for some compounds, rainfall contributed a substantial percentage of the concentration in the runoff; for other compounds, the concentrations in rainfall were much greater than in the runoff. For example, diazinon concentrations in rainfall were about

  1. An Airborne Investigation of Boundary Layer Dynamics, Entrainment, and Ozone Photochemical Production During DISCOVER-AQ in California's Central Valley

    Science.gov (United States)

    Conley, S. A.; Post, A.; Faloona, I. C.

    2014-12-01

    During the California deployment of NASA's DISCOVER-AQ project of January/February 2013, our team flew a Mooney TLS research aircraft instrumented with an in-house wind measurement system, a UV absorption ozone instrument, temperature probe, and a Picarro methane, carbon dioxide, and water vapor analyzer. Flights were focused on the lowest 1000 m across the Central Valley axis just north of Fresno in order to characterize the wintertime atmospheric boundary layer (ABL). For seven flights we report the observed ABL growth rates, and compare these with a simple mixed layer model driven by surface heat flux estimates from the North American Regional Reanalysis data set. By enforcing a mixed layer budget closure of the observed water vapor trend and the differential across the ABL top, we derive midday entrainment velocities for the region that average 1.2 (± 0.4) cm s-1. A similar budgeting method is used for ozone to estimate wintertime photochemical production rates that ranged from 0.5 to 7.0 ppb h-1, and exhibited a strong correlation with ambient temperature (see Figure) and total ozone abundance. Finally, the gross emissions of methane for this heavily agricultural region are estimated and compared to existing inventories. These results can provide important constraints on ABL growth and entrainment to aid surface studies of aerosol composition and other trace gases that are being conducted for DISCOVER-AQ.

  2. Steelhead Critical Habitat, Central Valley - NOAA [ds123

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the California Central Valley Evolutionary Significant Unit...

  3. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California.

    Science.gov (United States)

    Sousa, Daniel; Small, Christopher

    2018-02-14

    Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  4. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    Directory of Open Access Journals (Sweden)

    Daniel Sousa

    2018-02-01

    Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  5. Quantifying large scale deformation and aquifer properties over Central Valley, California using a combination of InSAR, GPS and hydraulic head level data

    Science.gov (United States)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2016-12-01

    California's Central Valley is one of the largest productive agricultural regions in the world, which heavily relies on the underground water supply. As a result of pumping and recharge processes, the aquifer systems compact and expand, which is manifested in quasi-cyclic changes in the surface elevation and observations of hydraulic head levels. On the other hand, over last century, due to overdrafting of aquifer systems the volume of groundwater has substantially reduced, which causes irreversible decline in surface elevation. The aquifer storativity, characterizing the capacity of an aquifer to release groundwater, is affected by the excess vertical strain and permanent deformation. To quantify the capacity of the Central Valley aquifer systems to release fresh water, a valley-wide estimate of the storativity is required. Hence, we performed a joint analysis of large set of interferometric SAR and GPS data sets in conjunction with well data across the valley. In this context, we used L-band set of 420 ALOS-PALSAR SAR images. The data has been processed to generate 1604 SAR interferograms, using a pixel dimension of about 100 m x 100 m and imposing a maximum spatial and temporal baseline threshold of 2000 meter and 1500 days, respectively. In this study we rigorously integrate >500 permanent GPS stations and InSAR data to determine a time series of line of sight changes in a reference frame fixed to (CM) the center of mass of solid Earth. The result highlights an overall map of surface deformation over the entire Central valley region, due to interseismic strain accumulation along San Andreas fault system and compaction of aquifer systems. In the southern part of Central Valley i.e., San Joaquin Valley, which includes the San Joaquin and Tulare Basins, has experienced large changes in groundwater storage during the drought period. As a result, total land subsidence of 0.30-0.50 m has observed [Farr and Liu 2015], adjacent to creeping rate of 20-30 mm/year along

  6. The persistence of ethion and zolone residues on grape folliage in the central valley of California.

    Science.gov (United States)

    Leffingwell, J T; Spear, R C

    1975-01-01

    The hazard of serious intoxication of agricultural field workers by organophosphate insecticide residues has led to the establishment of reentry intervals in California. In the attempt to extend this concept nationally, it has been found that there is a lack of relevant field data for setting of such standards. In an effort to expand knowledge of the relationship between foliar residue levels and occupational hazard, an examination of the persistence and transport of ethion, Zolone, and their oxygen analogs on grape foliage was conducted. Both dislodgeable and penetrated residues were followed for 28 days post-application for both insecticides while soil surface residues were followed for ethion only. A marked difference is seen in the decay rates of the dislodgeable vs. the penetrated residues of ethion, the dislodgeable residues decaying more quickly. This difference is not apparent for Zolone. Of particular significance to worker hazard is the finding that the oxones of both ethion and Zolone in the dislodgeable residues reach a plateau after approximately seven days and do not degrade further by day 28.

  7. Deep soil dynamics of floodplain carbon in the Central Valley of California

    Science.gov (United States)

    Steger, Kristin; Kim, Amy T.; Viers, Joshua H.; Fiener, Peter; Smart, David R.

    2017-04-01

    Active floodplains can putatively store large amounts of organic carbon (SOC) in subsoils originating from catchment erosion processes with subsequent floodplain deposition. Changes in catchment land use patterns and river management to optimize agricultural use of the floodplain or to restore the floodplain back to natural systems may alter SOC stocks in these soils. Our study focussed on the assessment of SOC pools associated with alluvial floodplain soils converting from conventional arable use to restored flooding and floodplain vegetation. We evaluated depth-dependent SOC contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the lower Cosumnes River, a non-constrained tributary to the Sacramento - San Joaquin Delta in California. In general, our data underline the importance of carbon stocks in subsoils >1m, which represent up to 19 and 6% of SOC stocks at the different sampling locations accounting for drillings down to 3 and 7m, respectively. All of our sampling sites revealed a SOC-rich buried A horizon between 70 and 130cm with SOC concentrations between 11 and 17g/kg, representative of the functioning floodplain system pre-disturbance. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, indicating a substantial sedimentation phase with sediments of low SOC concentrations and higher carbon age. This sedimentation phase was probably associated with the huge upstream sediment production resulting from the hydraulic gold mining at the Cosumnes River starting around 1860. Apart from larger SOC contents in the buried horizon compared to the recent topsoil, its 13C and 15N isotopic signature also differed suggesting a change in long-term input of plant organic matter as well as different fertilization regimes during the agricultural use of the area from approx. 1890 onwards. In summary, deep alluvial soils in floodplains store large amounts of SOC

  8. Validation and future predictions based on a new Non-Point Source Assessment Toolbox, applied to the Central Valley, California

    Science.gov (United States)

    Kourakos, G.; Harter, T.

    2011-12-01

    GIS platform and can be used for efficient scenario evaluations without the need to repeat groundwater model simulations. This method is applied to the southern third part of the Central Valley Aquifer, California, which is an intensively farmed semi-arid area, where the local communities rely heavily on groundwater. To obtain a detailed velocity field, the Central Valley Hydrologic Model (CVHM) developed by the USGS was used as the coarse solution, split and refined into a large number of sub-domains. The CVHM resolution is 1 sq mi, with the stresses applied to the center of each cell. In our refined model the well stresses are spatially distributed to a large number of hypothetical wells, where the pumping rates, well depths and screen lengths are obtained from empirical probability distributions, derived from real data. The NPSAT generates a time-dependent water quality probability distribution, which express the time-dependent probability for a discharge surface (e.g., well) to exceed a threshold level of contamination across at a specific time. The model result is compared against real historic nitrate data, and used for future predictions with different scenario evaluations.

  9. Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California

    Science.gov (United States)

    Jagucki, Martha L.; Jurgens, Bryant C.; Burow, Karen R.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Modesto, California. The well selected for study pumps on average about 1,600 gallons per minute from the Central Valley aquifer system during peak summer demand. Water samples were collected at the public-supply well and at monitoring wells installed in the Modesto vicinity. Samples from the public-supply wellhead contained the undesirable constituents uranium, nitrate, arsenic, volatile organic compounds (VOCs), and pesticides, although none were present at concentrations exceeding drinking-water standards. Of these contaminants, uranium and nitrate pose the most significant water-quality risk to the public-supply well because human activities have caused concentrations in groundwater to increase over time. Overall, study findings point to four primary factors that affect the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Modesto: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) irrigation and agricultural and municipal pumping that drives contaminants downward into the primary production zone of the aquifer; (3) short-circuiting of contaminated water down the public-supply well during the low-pumping season; and (4) natural geochemical conditions of the aquifer. A local-scale computer model of groundwater flow and transport to the public-supply well was constructed to simulate long-term nitrate and uranium concentrations reaching the well. With regard to nitrate, two conflicting processes influence concentrations in the area contributing recharge to the well: (1) Beneath land that is being farmed or has recently been farmed (within the last 10 to 20 years), downward-moving irrigation waters contain elevated nitrate concentrations; yet (2) the proportion of agricultural land has decreased and the proportion of urban land has increased since 1960. Urban land use is associated with low nitrate

  10. Vernal Pool Complexes - Central Valley, 1989-1998 [ds36

    Data.gov (United States)

    California Department of Resources — This Arc/Info coverage is a polygon layer of vernal pool complexes greater than 40 acres in size for 29 counties throughout the greater Central Valley, and some...

  11. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  12. Effects of Altered Weather Variables and Increased CO2 Concentrations on the Main Agricultural Crops of California's Central Valley Project

    Science.gov (United States)

    Flores-Lopez, F.; Young, C. A.; Tansey, M.; Yates, D.

    2010-12-01

    Potential changes in crop water demand and due to climate change is a growing concern among scientists and policy makers. In this study we analyze the potential response of evapotranspiration to climate change through the estimation of agricultural crops’ water use response to altered weather variables (temperature, precipitation, solar radiation, relative humidity, and wind speed) and an increased atmospheric CO2 concentration. Changes in growing season length, production of biomass and crop yields are also estimated through the use of downscaled climate futures selected to cover a wide range of the existing GCM results. An existing model, the Land, Air, and Water Simulator (LAWS) has been modified to include algorithms that account for the effects of altered weather variables, and the modeling of the top five agricultural crops in three representative regions of the California’s Central Valley Project System (Sacramento, San Joaquin river basin and the Delta area) is described. Study results show that atmospheric conditions can have complex and opposing influences on important evaluation metrics such as plant transpiration rates and cumulative water use, initiation and duration of the growing season, biomass production and crop yields. The magnitude of changes relative to historic conditions could be significant. Additional simulations are underway to expand the scope of the results throughout the California’s Central Valley Project System. These results will be directly relevant to the development of climate adaptation strategies effecting future Delta inflows.

  13. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California

    Science.gov (United States)

    McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.

    2013-01-01

    Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully

  14. Ascii grids of predicted pH in depth zones used by domestic and public drinking water supply depths, Central Valley, California

    Science.gov (United States)

    Zamora, Celia; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    The ascii grids associated with this data release are predicted distributions of continuous pH at the drinking water depth zones in the groundwater of Central Valley, California. The two prediction grids produced in this work represent predicted pH at the domestic supply and public supply drinking water depths, respectively and are bound by the alluvial boundary that defines the Central Valley. A depth of 46 m was used to stratify wells into the shallow and deep aquifer and were derived from depth percentiles associated with domestic and public supply in previous work by Burow et al. (2013). In this work, the median well depth categorized as domestic supply was 30 meters below land surface and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically Boosted Regression Trees (BRT) with a gaussian error distribution within a statistical learning framework within R's computing framework (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1337 wells, and was compiled from two sources: US Geological Survey (USGS) National Water Information System (NWIS) Database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993-2014 was used. A total of 1003 wells (training dataset) were used to train the BRT model and 334 wells (hold-out dataset) were used to validate the prediction model. The training r-squared was

  15. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    Science.gov (United States)

    Guha, Abhinav

    Methane (CH4) and nitrous oxide (N2O) are two major greenhouse gases that contribute significantly to the increase in anthropogenic radiative-forcing causing perturbations to the earth's climate system. In a watershed moment in the state's history of environmental leadership and commitment, California, in 2006, opted for sharp reductions in their greenhouse gas (GHG) emissions and adopted a long-term approach to address climate change that includes regulation of emissions from individual emitters and source categories. There are large CH4 and N2O emissions sources in the state, predominantly in the agricultural and waste management sector. While these two gases account for inventory. Additionally, an increasing number of `top-down' studies based on ambient observations point towards underestimation of their emissions in the inventory. Three intensive field observation campaigns that were spatially and temporally diverse took place between 2010 and 2013 in the Central Valley of California where the largest known sources of CH4 and N2O (e.g. agricultural systems and dairies) and potentially significant CH4 sources (e.g. oil and gas extraction) are located. The CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) field campaign during summer 2010 (May 15 - June 30) took place in the urban core of Bakersfield in the southern San Joaquin Valley, a city whose economy is built around agriculture and the oil and gas industry. During summer of 2011, airborne measurements were performed over a large spatial domain, all across and around the Central Valley as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) study. Next, a one-year continuous field campaign (WGC 2012-13, June 2012 - August 2013) was conducted at the Walnut Grove tall tower near the Sacramento-San Joaquin River Delta in the Central Valley. Through analysis of these field measurements, this dissertation presents the apportionment of

  16. Identifying and Addressing Genetic Counseling Challenges among Indigenous People of Oaxaca-One Center's Experience with Two Immigrant Farmworker Families in the Central Valley of California.

    Science.gov (United States)

    Shen, Joseph J; Carmichael, Jason; Vásquez Santos, Leoncio

    2018-02-03

    An important aspect of genetic counseling is the recognition of and adaptation to the socio-cultural uniqueness of the different populations that a genetics clinic serves. The Central Valley of California is home to a large population from Mexico, with a significant proportion of indigenous ancestry originating from the state of Oaxaca. We report on our experience with two families of this community-one extended family with an early lethal inborn error of metabolism and the other with a chronic disfiguring form of ichthyosis. We identified multiple important factors that needed to be considered, including the matching of language dialects, adaptation to different social interaction conventions, acknowledgement of traditional medicine beliefs, and effective transmission of genetic terms and concepts, all of which should be incorporated into the interactions with these families when aiming to provide comprehensive genetic counseling.

  17. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    Science.gov (United States)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to

  18. Regional Evaluation of Groundwater Age Distributions Using Lumped Parameter Models with Large, Sparse Datasets: Example from the Central Valley, California, USA

    Science.gov (United States)

    Jurgens, B. C.; Bohlke, J. K.; Voss, S.; Fram, M. S.; Esser, B.

    2015-12-01

    Tracer-based, lumped parameter models (LPMs) are an appealing way to estimate the distribution of age for groundwater because the cost of sampling wells is often less than building numerical groundwater flow models sufficiently complex to provide groundwater age distributions. In practice, however, tracer datasets are often incomplete because of anthropogenic or terrigenic contamination of tracers, or analytical limitations. While age interpretations using such datsets can have large uncertainties, it may still be possible to identify key parts of the age distribution if LPMs are carefully chosen to match hydrogeologic conceptualization and the degree of age mixing is reasonably estimated. We developed a systematic approach for evaluating groundwater age distributions using LPMs with a large but incomplete set of tracer data (3H, 3Hetrit, 14C, and CFCs) from 535 wells, mostly used for public supply, in the Central Valley, California, USA that were sampled by the USGS for the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment or the USGS National Water Quality Assessment Programs. In addition to mean ages, LPMs gave estimates of unsaturated zone travel times, recharge rates for pre- and post-development groundwater, the degree of age mixing in wells, proportion of young water (supplies being derived from it.

  19. The Central Valley Hydrologic Model

    Science.gov (United States)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  20. Stable isotopes as indicators of sources and processes influencing nitrate distributions in dairy monitoring wells and domestic supply wells in the Central Valley, California

    Science.gov (United States)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.; Esser, B. K.; Singleton, M. J.; Holstege, D.; Lockhart, K.; Applegate, O.

    2011-12-01

    Nitrate concentrations above the 10 mg/L NO3-N maximum contaminant level (MCL) have been found in many wells throughout the Central Valley, California. This area contains many possible anthropogenic nitrate sources including current and historic agriculture, private septic systems, municipal waste water, and confined animal feeding operations (primarily dairies). In order to better understand the potential contributions of dairy manure derived nitrate to both shallow and deep groundwater, we used a combined chemical, stable isotope, and age-dating approach for water samples collected from a network of shallow groundwater monitoring wells located on seven different dairies, and from a survey of approximately 200 deeper domestic supply wells (used for drinking water and dairy operations). Groundwater from shallow monitoring wells and deep supply wells was collected in two geographic regions. In the northern region, the lower San Joaquin Valley, the water table is shallow (2- 5 m below surface) and therefore considered highly vulnerable to contamination, while in the southern region, the Tulare Lake Basin, the water table is much deeper (20 - 30 m). Mean δ15N of nitrate in dairy monitoring wells in both the north and south regions was significantly higher than the mean δ15N measured in the deeper supply wells, and also showed greater variability. Mean δ15N and δ18O values measured in the deep supply wells were not significantly different between the north and south regions. Mean nitrate concentrations, δ15N, and δ18O were significantly higher in the northern (lower San Joaquin Valley) monitoring wells in comparison to the southern (Tulare Lake Basin) monitoring wells. Nitrate isotope measurements indicated that many of the northern monitoring wells had consistently high contributions of manure-derived nitrate to the shallow groundwater during the 16 month study. Monitoring wells located in relatively new dairies in the south region showed little evidence of

  1. California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

    2010-04-14

    This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This

  2. Geothermal resource investigations, Imperial Valley, California. Status report

    Energy Technology Data Exchange (ETDEWEB)

    1971-04-01

    The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

  3. Comparison of particle-tracking and lumped-parameter models for determining groundwater age distributions and nitrate in water-supply wells, Central Valley, California, USA

    Science.gov (United States)

    Jurgens, B. C.; Bohlke, J. K.; Kauffman, L. J.; Belitz, K.

    2013-12-01

    Age distributions for 30 production wells (mostly public-supply) were determined using two methods: 1) calibration of age tracer data with lumped parameter models (LPMs) and 2) by advective particle tracking (PT) simulations using MODPATH and a regional steady-state groundwater flow model. The LPMs were calibrated with measurements of 3H, 3He(trit), and 14C by minimizing the Chi-square test statistic using a non-linear solver. A partial exponential model (PEM) was the primary LPM used in this study and a combination of two PEMs were used in cases where binary age mixtures were identified. The PEM is a reformulated version of the exponential model that is parameterized to simulate the age distribution in a well that is screened over any finite interval within the aquifer. The regional numerical model was calibrated to water-levels and gradients, and simulated PT age tracer concentrations were calibrated to the MODPATH porosity value. Age distributions were then used to predict nitrate concentrations in wells using agricultural application rates of nitrate in the central eastside of the San Joaquin Valley, California. Both methods showed that wells in the study area captured groundwater with a broad range of ages, spanning decades to millennia. Age distributions from the LPMs predicted age tracer and nitrate concentrations more accurately than the regional PT simulation; whereas PT simulations incorporating more detailed information about water-levels and hydraulic gradients near wells also provided good fits. 14C concentrations were not simulated well by the regional steady-state model, especially for wells with a significant fraction of old groundwater, because the model simulates the current, perturbed system and does not simulate recharge rates and velocities of the predevelopment system. Results from the LPMs yielded an average recharge rate of 0.55 m/yr, which was similar to the average recharge rate of 0.54 m/yr determined from a water budget analysis for the

  4. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  5. Geology and water resources of Owens Valley, California

    Science.gov (United States)

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  6. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

    Science.gov (United States)

    Landon, Matthew K.; Green, Christopher T.; Belitz, Kenneth; Singleton, Michael J.; Esser, Bradley K.

    2011-01-01

    In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3–N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.

  7. Use of Unmanned Aerial Vehicles for Improving Farm Scale Agricultural Water Management in Agriculture at a Farm Scale. A case study for field crops in the California's Central Valley

    Science.gov (United States)

    Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.

    2016-12-01

    Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and

  8. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  9. Statistical modeling of valley fever data in Kern County, California.

    Science.gov (United States)

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it (Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  10. Subsurface stratigraphy of the eastern Hollister Valley, California

    Science.gov (United States)

    McMasters, Catherine R.; Herd, Darrell G.; Throckmorton, Constance K.; Heusser, Linda E.

    1987-01-01

    In September 1977, four cores were recovered by shallow auger drilling from Hollister Valley, California, near the Calaveras fault. The wells were drilled to search for evidence that Hollister Valley may have been occupied by a large lake during the late Pleistocene or Holocene. This small valley, near Monterey Bay, may have been dammed by a large landslide on the San Andreas fault (Jenkins, 1973; Herd and Helley, 1977). The cores sampled the first 38 m of sediment below the valley floor, but no lacustrine deposits were found at these sites; a very detailed record to Holocene alluviation in a tectonically subsiding basin. 

  11. Measured compaction for 24 extensometers in the Central Valley

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the compaction data for 24 extensometers used for observations in the Central Valley Hydrologic Model (CVHM). The Central Valley...

  12. Evapotranspiration Input Data for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains monthly reference evapotranspiration (ETo) data for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  13. 3D View of Death Valley, California

    Science.gov (United States)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide

  14. Total existing area and projected (years 2006–2099) area of primary waterbird habitat in the Central Valley of California for 17 climate, urbanization, and water management scenarios

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset summarizes total area (km2) and proportion of Central Valley waterbird habitat, summed across individual waterbird habitats (i.e., wetland and cropland...

  15. MOHO ORIENTATION BENEATH CENTRAL CALIFORNIA FROM REGIONAL EARTHQUAKE TRAVEL TIMES.

    Science.gov (United States)

    Oppenheimer, David H.; Eaton, Jerry P.

    1984-01-01

    This paper examines relative Pn arrival times, recorded by the U. S. Geological Survey seismic network in central and northern California from an azimuthally distributed set of regional earthquakes. Improved estimates are presented of upper mantle velocities in the Coast Ranges, Great Valley, and Sierra Nevada foothills and estimates of the orientation of the Moho throughout this region. Finally, the azimuthal distribution of apparent velocities, corrected for dip and individual station travel time effects, is then studied for evidence of upper mantle velocity anisotropy and for indications of lower crustal structure in central California.

  16. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  17. Surface Deformation in Imperial Valley, Southern California

    Science.gov (United States)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  18. Near-surface heat flow in Saline Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Mase, C.W.; Galanis, S.P. Jr.; Munroe, R.J.

    1979-01-01

    With the exception of values from one borehole drilled at Palm Spring and three boreholes drilled around Saline Valley dry lake, eight new heatflow values in Saline Valley, California, are within or somewhat below the range one would expect for this region of the Basin and Range heat-flow province. The lack of recent volcanism in the area and the apparently normal Basin and Range heat flow suggest that geothermal systems within the valley are stable stationary phases supported by high regional heat flow and forced convection.

  19. Water Resources Data for California, Water Year 1985. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Anderson, S.; Markham, K.L.; Trujillo, L.F.; Shelton, W.F.; Grillo, D.A.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; and stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 133 gaging stations; stage and contents for 9 lakes and reservoirs; and water quality for 34 stations. Also included are 3 low-flow partial-record stations and 1 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Water Resources Data for California, Water Year 1987. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line Except Central Valley

    Science.gov (United States)

    Anderson, S.; Markham, K.L.; Shelton, W.F.; Trujillo, L.F.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water. quality in wells. Volume 2 contains discharge records for 123 gaging stations; stage and contents for 7 lakes and reservoirs; and water quality for 29 stations. Also included are 1 partial-record station and 24 water-quality partial-record stations, These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  1. Water Resources Data for California, Water Year 1988. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line Except Central Valley

    Science.gov (United States)

    Markham, K.L.; Palmer, J.R.; Shelton, W.F.; Trujillo, L.F.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 123 gaging stations; stage and contents for 7 lakes and reservoirs; and water quality for 38 stations. Also included is l low-flow partial-record station and 22 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  2. Water Resources Data for California, Water Year 1986. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Anderson, S.; Markham, K.L.; Shelton, W.F.; Trujillo, L.F.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 132 gaging stations; stage and contents for 11 lakes and reservoirs; and water quality for 32 stations. Also included are 4 partial-record stations and 24 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  3. Water Resources Data, California, Water Year 1989. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Palmer, J.R.; Shelton, W.F.; Trujillo, L.F.; Markham, K.L.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water. quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 127 gaging stations, stage and contents for 7 lakes and reservoir and water quality for 32 stations. Also included is 1 low-flow partial-record station and 22 waterquality partial-record stations. These data represent that part of the National Water Data System operated by the u.s. Geological Survey and cooperating State and Federal agencies in California.

  4. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.

    1978-01-01

    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  5. Water resources data for California, water year 1975; Volume 4: Northern Central Valley basins and the Great Basin from Honey Lake basin to Oregon state line

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  6. Water Resources Data, California, Water Year 1991. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Trujillo, L.F.; Markham, K.L.; Palmer, J.R.; Friebel, M.F.

    1992-01-01

    Water resources data for the 1991 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 130 streamflow-gaging stations, 1 low-flow partial-record station, and 6 miscellaneous measurement sites; stage and contents for 7 lakes and reservoirs; precipitation records for 3 stations; and water-quality records for 41 streamflow-gaging stations and 3 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  7. Water Resources Data, California, Water Year 1990. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Shelton, W.F.; Trujillo, L.F.; Markham, K.L.; Palmer, J.R.

    1991-01-01

    Water resources data for the 1990 water year for. California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 125 streamflow-gaging stations and 1 low-flow partial-record station; stage and contents for 7 lakes and reservoirs; precipitation records for 4 stations; and water-quality records for 29 streamflow-gaging stations and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  8. Blue and Valley Oak Seedling Establishment on California's Hardwood Rangelands

    Science.gov (United States)

    Theodore E. Adams Jr.; Peter B. Sands; William H. Weitkamp; Neil K. McDougald

    1991-01-01

    Factors contributing to poor establishment of blue oak (Quercus douglasii) and valley oak (Q. lobata) in California oak-grassland savannas were studied in a series of acorn seeding experiments initiated in 1985. Exclusion of large herbivores permitted examination of herbaceous interference and small mammal and insect depredation....

  9. Water Resources Data, California, Water Year 1993. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Palmer, J.R.; Friebel, M.F.; Trujillo, L.F.; Markham, K.L.

    1994-01-01

    Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 119 streamflow-gaging stations, 1 low-flow partial-record streamflow station, and 6 miscellaneous measurement stations; stage and contents records for 6 lakes and reservoirs; precipitation records for 3 stations; and water-quality records for 31 streamflow-gaging stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and with other agencies.

  10. Water Resources Data, California, Water Year 1995. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Friebel, M.F.; Trujillo, L.F.; Markham, K.L.

    1996-01-01

    Water-resources data for the 1995 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 111 streamflow-gaging stations, 1 low-flow partial-record streamflow station; and 2 miscellaneous measurement stations; stage and contents for 6 lakes and reservoirs; precipitation records for 1 station; and water-quality records for 22 streamflow-gaging stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and with other agencies.

  11. Water Resources Data, California, Water Year 1992. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    Science.gov (United States)

    Markham, K.L.; Palmer, J.R.; Friebel, M.F.; Trujillo, L.F.

    1993-01-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 124 streamflow-gaging stations, 1 low-flow partial-record streamflow station, and 6 miscellaneous measurement stations; stage and contents records for 9 lakes and reservoirs; precipitation records for 3 stations; and water-quality records for 32 stream flow-gaging stations and 1 water-quality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and with other agencies.

  12. Assessing Drought Impacts on Water Storage Changes from New GRACE Mascons Solutions and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Faunt, C. C.; Save, H.; Wiese, D. N.; Dettinger, M. D.; Longuevergne, L.; Margulis, S. A.

    2016-12-01

    There is increasing interest in the impacts of the current five year drought in California on water resources. Here we use recently released GRACE mascons solutions from Univ. Texas Center for Space Research and NASA Jet Propulsion Lab and output from a regional groundwater model developed by the U.S Geological Survey to assess changes in water storage in response to the current and past droughts. Marked declines in Total Water Storage (TWS) from GRACE are recorded during the current drought from mid-2011 - mid-2015 with slight recovery after this time. TWS declines during the current drought exceed those recorded during the previous 2007 - 2009 drought. Contributors to TWS depletion include snow water storage (very low during 2013 and 2014), reservoir storage (decline mid 2011 - late 2015, with slight recovery in spring 2016), soil moisture storage from land surface models (greater decline during early years of drought and recent slight recovery) and groundwater storage estimated as a residual. There is general consistency between GRACE derived groundwater storage decline during the drought and simulated groundwater storage depletion from the regional groundwater model. Combining remote sensing estimation of TWS trends with global and regional modeling allows estimation of the contribution of different components to TWS anomalies, and assessment of the reliability of the groundwater storage changes.

  13. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    Science.gov (United States)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to

  14. 76 FR 38572 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2011-07-01

    ... taking direct final action to approve revisions to the Antelope Valley Air Quality Management District... Valley Air Quality Management District (AVAQMD) and submitted by the California Air Resources Board (CARB... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality...

  15. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  16. Habitat suitability and conservation of the Giant Gartersnake (Thamnophis gigas) in the Sacramento Valley of California

    Science.gov (United States)

    Halstead, B.J.; Wylie, G.D.; Casazza, Michael L.

    2010-01-01

    Resource managers often have little information regarding the habitat requirements and distribution of rare species. Factor analysis-based habitat suitability models describe the ecological niche of a species and identify locations where these conditions occur on the landscape using existing occurrence data. We used factor analyses to assess the suitability of habitats for Thamnophis gigas (Giant Gartersnake), a rare, threatened species endemic to the Central Valley of California, USA, and to map the locations of habitat suitable for T. gigas in the Sacramento Valley. Factor analyses indicated that the niche of T. gigas is composed of sites near rice agriculture with low stream densities. Sites with high canal densities and near wetlands also appeared suitable, but results for these variables were sensitive to potential sampling bias. In the Sacramento Valley, suitable habitats occur primarily in the central portion of the valley floor. Based upon the results of the factor analyses, recovery planning for T. gigas will require an on-the-ground assessment of the current distribution and abundance of T. gigas, maintaining the few remaining natural wetlands and the practice of rice agriculture in the Sacramento Valley, and studying the effects of agricultural practices and land use changes on populations of T. gigas. ?? 2010 by the American Society of Ichthyologists and Herpetologists.

  17. Temperature data from wells in Long Valley Caldera, California

    Science.gov (United States)

    Farrar, Christopher; DeAngelo, Jacob; Williams, Colin; Grubb, Frederick; Hurwitz, Shaul

    2010-01-01

    The 30-by-20-km Long Valley Caldera (LVC) in eastern California (fig.1) formed at 0.76 Ma in a cataclysmic eruption that resulted in the deposition of 600 km? of Bishop Tuff outside the caldera rim (Bailey, 1989). By approximately 0.6 Ma, uplift of the central part of the caldera floor and eruption of rhyolitic lava formed the resurgent dome. The most recent eruptive activity in the area occurred approximately 600 yr ago along the Mono-Inyo craters volcanic chain (Bailey, 2004; Hildreth, 2004). LVC hosts an active hydrothermal system that includes hot springs, fumaroles, mineral deposits, and an active geothermal well field and power plant at Casa Diablo along the southwestern boundary of the resurgent dome (Sorey and Lewis, 1976; Sorey and others, 1978; Sorey and others, 1991). Electric power generation began in 1985 with about 10 Mwe net capacity and was expanded to about 40 Mwe (net) in 1991 (Campbell, 2000; Suemnicht and others, 2007). Plans for further expansion are focused mainly on targets in the caldera?s western moat (Sass and Priest, 2002) where the most recent volcanic activity has occurred (Hildreth, 2004). LVC has been the site of extensive research on geothermal resources and volcanic hazards (Bailey and others, 1976; Muffler and Williams, 1976; Miller and others, 1982; Hill and others 2002). The first geothermal exploratory drilling was done in the shallow (cold groundwater recharge that occurs mostly around the caldera margin and beneath the resurgent dome. Reservoir temperatures at Casa Diablo (fig.1) are about 170?C (for example, MBP-3 and Mammoth-1), decreasing to about 100 degrees C in wells near Hot Creek Gorge (for example, MW-4 and CH-10B), and are generally less than 50?C in thermal springs near Lake

  18. Interrogating the Isabella Anomaly with the Central California Seismic Array

    Science.gov (United States)

    Hansen, S. M.; Schmandt, B.; Dougherty, S. L.; Clayton, R. W.

    2016-12-01

    The Isabella positive velocity anomaly is located in the uppermost mantle beneath the Great Valley of Central California ( 36°N) and was first recognized by seismic tomography efforts in 1980. The geologic interpretation of this feature remains contentious however. The conventional interpretation is that the anomaly is related to the delamination of a dense mafic root associated with the formation of the Sierra Nevada batholith which lies to the east. Alternatively, the anomaly has been interpreted as a fossil slab fragment associated with the stalled subduction of the Monterey microplate which lies offshore. One of the challenges in interpreting the Isabella anomaly is the relatively poor resolution due to a lack of seismic data in and around the Great Valley. To help further constrain the subsurface structure in this region, we deployed a dense line of 40 broadband seismometers in Central California stretching from the Sierra foothills to the coast that recorded data during 2013-2015. Here we report on our on-going research efforts which include body and surface wave tomography as well as scattered wave imaging derived from P and S wave receiver functions. The most prominent feature observed in the receiver function imaging is a high amplitude crustal discontinuity which is observed over 80 km distance. This westward dipping feature begins near the surface beneath the Sierra foothills and reaches 25 km depth beneath the Great Valley. We speculate that this feature represents the top of a high velocity ophiolite body that underlies most of the Great Valley. Receiver functions also suggest the presence of eastward dipping velocity discontinuities in the uppermost mantle (40-80 km) below the western Great Valley. Body wave travel-time measurements indicate that the Isabella anomaly extends west to beneath the coastal range. These observations support the hypothesis that the Isabella anomaly is a slab fragment rather than a piece of delaminating lithosphere.

  19. The hydrothermal system of Long Valley Caldera, California

    Science.gov (United States)

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  20. California Black Rail - Central Delta [ds17

    Data.gov (United States)

    California Department of Resources — Results of taped-call black rail surveys of in-stream habitat within certain waterways in the central Sacramento / San Joaquin Delta during 1992 and 1993. TIME...

  1. Earthquakes in Central California, 1980-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in central California. This set of slides shows earthquake damage from the following events: Livermore, 1980, Coalinga,...

  2. Landslide oil field, San Joaquin Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  3. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  4. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  5. 78 FR 59840 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-09-30

    ... of plan. * * * * * (c) * * * (428) * * * (i) * * * (B) Antelope Valley Air Quality Management...) * * * (i) * * * (B) Antelope Valley Air Quality Management District. (1) Rule 431.1, ``Sulfur Content of... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality...

  6. 77 FR 2496 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-01-18

    ... Valley Air Quality Management District (AVAQMD) and Imperial County Air Pollution Control District... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Imperial Valley Air Pollution Control District AGENCY: Environmental Protection...

  7. 77 FR 2469 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-01-18

    ... to the Antelope Valley Air Quality Management District (AVAQMD) and Imperial County Air Pollution.... * * * * * (G) Antelope Valley Air Quality Management District. (1) Rule 1134, ``Stationary Gas Turbines... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality...

  8. Rock-fall Hazard In The Yosemite Valley, California

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent slope movements in Yosemite Na- tional Park, California. In historical time (1851-2001), more than 400 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the preliminary results of an attempt to assess rockfall hazard in the Yosemite Valley using STONE, a 3-dimensional rock-fall simulation computer program. The software computes 3-dimensional rock-fall trajectories starting from a digital terrain model (DTM), the location of rock-fall release points (source areas), and maps of the dynamic rolling coefficient and of the coefficients of normal and tan- gential energy restitution. For each DTM cell the software also calculates the number of rock falls passing through the cell, the maximum rock-fall velocity and the maxi- mum flying height. For the Yosemite Valley, a DTM with a ground resolution of 10 x 10 m was prepared using topographic contour lines from USGS 1:24,000-scale maps. Rock-fall release points were identified as DTM cells having a slope steeper than 60 degrees, an assumption based on the location of historical rock falls. Maps of the nor- mal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to cali- brate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of the model. The model results are also compared with a geomorphic assessment of rock-fall hazard based on potential energy referred to as a "shadow angle" approach, recently completed for the Yosemite Valley.

  9. Mediterranean California, Chapter 13

    Science.gov (United States)

    M.E. Fenn; E.B. Allen; L.H. Geiser

    2011-01-01

    The Mediterranean California ecoregion (CEC 1997; Fig 2.2) encompasses the greater Central Valley, Sierra foothills, and central coast ranges of California south to Mexico and is bounded by the Pacific Ocean, Sierra Nevada Mountains and Mojave Desert.

  10. Hydrogeologic framework of the Santa Clara Valley, California

    Science.gov (United States)

    Hanson, Randall T.

    2015-01-01

    The hydrologic framework of the Santa Clara Valley in northern California was redefined on the basis of new data and a new hydrologic model. The regional groundwater flow systems can be subdivided into upper-aquifer and lower-aquifer systems that form a convergent flow system within a basin bounded by mountains and hills on three sides and discharge to pumping wells and the southern San Francisco Bay. Faults also control the flow of groundwater within the Santa Clara Valley and subdivide the aquifer system into three subregions.After decades of development and groundwater depletion that resulted in substantial land subsidence, Santa Clara Valley Water District (SCVWD) and the local water purveyors have refilled the basin through conservation and importation of water for direct use and artificial recharge. The natural flow system has been altered by extensive development with flow paths toward major well fields. Climate has not only affected the cycles of sedimentation during the glacial periods over the past million years, but interannual to interdecadal climate cycles also have affected the supply and demand components of the natural and anthropogenic inflows and outflows of water in the valley. Streamflow has been affected by development of the aquifer system and regulated flow from reservoirs, as well as conjunctive use of groundwater and surface water. Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of groundwater and recapture of artificial recharge in the Santa Clara Valley. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into wells from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 ft (152 m) of the aquifer system. Artificial recharge represents about one-half of the inflow of water into the valley for the period 1970–1999. Most subsidence is occurring below 250 ft

  11. Sustainability of irrigated agriculture in the San Joaquin Valley, California.

    Science.gov (United States)

    Schoups, Gerrit; Hopmans, Jan W; Young, Chuck A; Vrugt, Jasper A; Wallender, Wesley W; Tanji, Ken K; Panday, Sorab

    2005-10-25

    The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-km(2) study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  12. Abundance and sexual size dimorphism of the giant gartersnake (Thamnophis gigas) in the Sacramento valley of California

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Gregory, C.J.; Halstead, B.J.

    2010-01-01

    The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.

  13. 1:250,000-scale geology of the Dry Valley Hydrographic Area, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of digital geologic data for the Dry Valley Hydrographic area, Nevada and California. It was compiled from individual 1:250,000-scale geologic...

  14. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  15. Geologic map of the Lockwood Valley Quadrangle, Ventura County, California

    Science.gov (United States)

    Kellogg, Karl S.

    2001-01-01

    The Lockwood Valley quadrangle is located in the western Transverse Ranges of California, about 10 km southwest of Frazier Park. It includes the western flank of Frazier Mountain, southern Lockwood Valley, and a region of the Los Padres National Forest near northern Piru Creek. The oldest rocks are mostly biotite augen gneiss, in the hanging wall of the Frazier Mountain thrust and in a large body south of the thrust. A U-Pb zircon age for the gneiss is 1690+5 Ma (W. Premo, unpublished data). Two Cretaceous intrusive rocks are named the quartz monzonite of Sheep Creek and the coarse-grained granodiorite of Lockwood Peak. A U-Pb zircon age on the latter is 76.05+0.22 Ma (W. Premo, unpublished data). The northeastern edge of a large Eocene marine basin, comprising the sandstones, shales, and conglomerates of the Juncal Formation, occupies the southwestern 25 percent of the quadrangle. Miocene fluvial rocks, including coarse boulder conglomerates, sandstones, and shale, of the Caliente Formation crop out mostly in the northwestern part of the quadrangle. Commercially exploitable Lockwood Clay unconformably overlies the Caliente, which, in turn, is overlain by the mostly fluvial Pliocene Quatal Formation. Two major south-directed thrusts, the Frazier Mountain thrust and the South Frazier Mountain thrust, place crystalline rocks over Miocene and Pliocene sedimentary rocks. The South Frazier Mountain thrust is transected by the newly recognized, north-directed Lockwood Peak reverse fault. In addition, the newly recognized south-directed Yellowjacket thrust displaces rocks of the Pliocene Quatal Formation.

  16. 78 FR 16792 - Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley...

    Science.gov (United States)

    2013-03-19

    ... AGENCY 40 CFR Part 81 Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley Planning Area for PM10; Clarification of Nonattainment Area Boundary AGENCY: Environmental... Imperial Valley planning area, an area designated as nonattainment for the national ambient air quality...

  17. 78 FR 16827 - Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley...

    Science.gov (United States)

    2013-03-19

    ... AGENCY 40 CFR Part 81 Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley Planning Area for PM 10 Clarification of Nonattainment Area Boundary AGENCY: Environmental... Imperial Valley planning area, an area designated as nonattainment for the national ambient air quality...

  18. 77 FR 7536 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-02-13

    ... is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Reporting... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Joaquin Valley Unified Air...

  19. 78 FR 49925 - Revisions to California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-08-16

    ... the Antelope Valley Air Quality Air Management District (AVAQMD) and Ventura County Air Pollution... AGENCY 40 CFR Part 52 Revisions to California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency...

  20. 77 FR 12495 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency... the Antelope Valley Air Quality Management District (AVAQMD) and Mojave Desert Air Quality Management...

  1. 76 FR 38589 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2011-07-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) portion of...

  2. Surface-Water Network for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate...

  3. Monthly Diversions from the Surface-Water Network of the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly diversions from the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  4. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-08-31

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... Central Valley Project water conservation best management practices that shall ``develop criteria for...

  5. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-11-16

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The following Water Management Plans are... on Central Valley Project water conservation best management practices that shall ``* * * develop...

  6. Grid cells used for Surface-Water Network for the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the segment and reaches for the surface-water network by model cell for the Central Valley Hydrologic Model (CVHM). The Central Valley...

  7. Monthly Precipitation Input Data for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly precipitation for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate 50,000...

  8. Monthly inflows to the surface-water network for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly inflows to the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  9. Streamflow-gain- and streamflow-loss data for streamgages in the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains 61 sets of annual streamflow gains and losses between 1961 and 1977 along Central Valley surface-water network for the Central Valley...

  10. Location of 24 extensometers used to measure compaction in the Central Valley

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset describes the location of 21 extensometers used for observations of subsidence in the Central Valley Hydrologic Model (CVHM). The Central Valley...

  11. Virtual wells used for pumpage for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Abstract: This digital dataset contains the virtual wells used for pumpage for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  12. Inflow Locations and Magnitude Input Files to the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the name and location for the inflows to the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley...

  13. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  14. Survival of adult female northern pintails in Sacramento Valley, California

    Science.gov (United States)

    Miller, Michael R.; Fleskes, Joseph P.; Orthmeyer, Dennis L.; Newton, Wesley E.; Gilmer, David S.

    1995-01-01

    North American populations of northern pintails (Anas acuta) declined between 1979 and the early 1990s. To determine if low survival during winter contributed to declines, we estimated winter (last week of Aug-Feb 1987-90) survival for 190 adult (after hatching yr [AHY]) female radio-tagged pintails in late summer in Sacramento Valley (SACV), California. Survival rates did not vary by winter (P = 0.808), among preseason, hunting season, or postseason intervals (P = 0.579), or by body mass at time of capture (P = 0.127). Premolt (wing) pintails (n = 10) tended to survive at a lower rate (0.622, SE = 0.178) than pintails that had already replaced flight feathers (0.887, SE = 0.030) (P = 0.091). The pooled survival (all years) estimate for the 180-day winter was 0.874 (SE = 0.031). Hunting mortality rate (0.041-0.087) and nonhunting mortality rate (0.013-0.076) did not differ among years (P = 0.332) or within years (all P > 0.149). Legal hunting (n = 7), predation (n = 4), cholera (n = 2), illegal shooting (n = 2), botulism (n = 1), and unknown cause (n = 1) accounted for all mortality. Nonwintering survival (annu. survival/winter survival = 0.748) was lower than winter survival; thus, if gains in annual survival are desired for this population, managers should first examine the breeding-migration period for opportunities to achieve increases.

  15. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    Energy Technology Data Exchange (ETDEWEB)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into the nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.

  16. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley.

    Science.gov (United States)

    Scanlon, Bridget R; Faunt, Claudia C; Longuevergne, Laurent; Reedy, Robert C; Alley, William M; McGuire, Virginia L; McMahon, Peter B

    2012-06-12

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km(3) of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km(3), occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km(3) shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  17. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    Science.gov (United States)

    Scanlon, Bridget R.; Faunt, Claudia; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  18. An S to P Converted Phase Recorded Near Long Valley/Mono Craters Region, California

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, C. J.; Zucca, J.; Kasameyer, P.

    1989-01-01

    We examine and model the arrival time of a large secondary seismic arrival recorded in the Long Valley/Mono Craters region of east-central California. Zucca et. al. (1987) and Peppin (1987) both previously reported on different features of this same arrival. Using both arrays of sources and receivers we demonstrate that the arrival is an S to P converted phase as first suggested by Lewis and Peppin (1988). Backprojection of the observed travel times allows us to constrain the location of the converting material to a southeast dipping zone between 7 and 16 km depth, and {+-} 5 km on either side of the topographic margin of the caldera. The analysis demonstrates the power of source and receiver array combinations when analyzing seismic arrivals in complicated environments.

  19. Geology of the Desert Hot Springs-Upper Coachella Valley Area, California (with a selected bibliography of the Coachella Valley, Salton Sea, and vicinity)

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, Richard J.

    1968-01-01

    The Desert Hot Springs area is in the upper Coachella Valley at the junction of three natural geomorphic provinces of California--the Transverse Ranges, the Peninsular Ranges, and the Colorado Desert. The mapped area is about 100 miles east of Los Angeles and lies principally in north central Riverside County. The oldest rocks in the area are Precambrian(?) amphibolitic and migmatized paragneisses of the San Gorgonio igneous-metamorphic (Chuckwalla) complex. They are intruded by Cretaceous diorite porphyry, Cactus Granite, quartz monzonite, intrusive breccia, and basic plutonic rocks. Of probable late Paleozoic age are the metamorphic rocks of the San Jacinto Mountains which form spurs projecting into San Gorgonio Pass and Coachella Valley.

  20. Atmospheric Inverse Estimates of Methane Emissions from Central California

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  1. An Airborne Scanning Laser Altimetry Survey of Long Valley, California

    Science.gov (United States)

    Hofton, M. A.; Blair, J. B.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Bufton, J. L.; Rabine, D. L.

    1999-01-01

    Between 28 September and 7 October 1995, we conducted an airborne laser altimetry experiment over the Long Valley caldera, California, in which each of two scanning laser altimeters (dubbed SLICER and RASCAL) were flown in a NASA T-39 jet aircraft. Operating concurrently were a Global Positioning System (GPS) guidance system and dual frequency receivers for precise navigation and post-flight calculation or the airplane trajectory relative to a ground station, and an inertial navigation system (INS) for attitude determination. Reduction of raw laser ranges requires merging the differential kinematic GPS aircraft trajectory and the INS data with the laser data, and determination of the atmospheric delay. Data geolocation consists of obtaining the centre location and the mean elevation within each footprint in a geodetic coordinate system. The elevation of Crowley Lake is recovered to an accuracy of approximately 3 cm or better from 3 km above ground level and crossover analysis indicates that the elevation estimates are consistent from pass to pass. We test our geolocation procedures by comparing laser-derived elevations with those determined in situ for recognizable ground features. A comparison of laser and GPS-derived positions shows that the horizontal accuracy is better than the diameter of the footprint and vertical accuracy is within the error inherent in the range measurement. A comparison of SLICER elevation data with digital elevation models (DEMs) of the region shows that the DEM data provides surface topography to within stated accuracy limits. Although research continues to utilize the full potential of laser altimetry data, our results constitute a successful demonstration that the technique may be used to perform geodetic monitoring of surface topographic changes.

  2. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  3. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  4. Bats in Agroecosytems around California's Central Coast

    Science.gov (United States)

    Wayne, A.

    2014-12-01

    Bats in agroecosystems around California's Central Coast: A full quarter of California's land area is farmland. Crops account for 32.5 billion of California's GDP. Insect control is a big problem for farmers, and California bats eat only insects, saving farmers an estimated 3 to $53 billion a year. As farmers maximize crop yield, they use more pesticides, herbicides, and fertilizers, which contaminate runoff streams that bats drink from. Also, pesticide use kills bats' sole food source: insects. My research objective was to find out how farm management practices and landscape complexity affect bat diversity and activity, and to see which one affects bat activity more. We monitored 18 sites, including conventional, organic, and low and high-complexity landscapes. We noted more bat activity at sites with high complexity landscapes and organic practices than at sites with either low-complexity landscapes or conventional farming practices. I captured and processed bats and recorded data. I also classified insects collected from light traps. I learned how to handle bats and measure forearm length and weight, as well as how to indentify their gender. I took hair clippings and fecal samples, which yield data about the bats' diet. Their diet, in turn, gives us data about which pests they eat and therefore help control. I also learned about bats' echolocation: they have a special muscle over their ears that closes when they echolocate so that they don't burst their own eardrum. Also, some insects have evolved a special call that will disrupt bats echolocation so bats can't track it.

  5. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  6. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  7. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Science.gov (United States)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  8. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  9. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  10. Existing and projected “worst-year” (year with least available habitat) areas of available primary waterbird habitat (km2) in the Central Valley of California for 17 climate, urbanization, and water management scenarios, by habitat and month

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset summarizes areas of Central Valley wetland and cropland waterbird habitats available for each of 17 projected scenarios by each month (August–December...

  11. Description of Imperial Valley, California for the assessment of impacts of geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.; Ermak, D.

    1976-08-26

    Impending geothermal development in the Imperial Valley of California has raised concern over the possible impacts of such development. As an initial step in impact assessment of geothermal projects, relevant features of the valley's physical and human environments are described. Particular attention is placed on features that may either influence development or be affected by it. Major areas of consideration include the valley's physical resources (i.e., land, air, water, and biological resources), economic, fiscal, and social characteristics of Imperial County, and geothermal laws.

  12. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California

    OpenAIRE

    Ricardo Cisneros; Paul Brown; Linda Cameron; Erin Gaab; Mariaelena Gonzalez; Steven Ramondt; David Veloz; Anna Song; Don Schweizer

    2017-01-01

    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public’s views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as eith...

  13. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  14. Analysis of gravity data in Central Valleys, Oaxaca, southern, Mexico

    Science.gov (United States)

    Gonzalez, T.; Ferrusquia, I.

    2015-12-01

    The region known as Central Valleys is located in the state of Oaxaca, southern, Mexico (16.3o- 17.7 o N Lat. and 96 o - 97 o W Long.) In its central portion is settled the capital of the state. There are very few published detailed geological studies.. Geomorphological and geological features, indicates that Central Valleys and surrounding mountains conform a graben structure. Its shape is an inverted Y, centred on Oaxaca City. The study area was covered by a detailed gravity survey with a homogenous distribution of stations. The Bouguer gravity map is dominated by a large gravity low, oriented NW-SE. In order to know the characteristics of anomalies observed gravity, data transformations were used. The use of spectral methods has increased in recent years, especially for the estimation of the depth of the source. Analysis of the gravity data sheds light on the regional depth of the Graben basement and the spatial distribution of the volcanic rocks

  15. Basic subsurface geology of the south-central Sacramento Valley

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, S.T.

    1978-01-01

    The generalized east-west cross section of the south-central Sacramento Valley shows the subsurface geology underlying the 27 miles long Interstate Highway 5 and State Highway 16 from the Yuba City turnoff I-5 to Esparto on Highway 16. The uppermost 2,000 to 3,000 ft of section consists of the Mid-Miocene Valley Springs, Upper Miocene Mehrten and Pliocene Upper Mehrten, and Tehama and the Pleistocene Red Bluff gravels. These formations are not differentiated on the section. A westward thickening wedge of Upper Cretaceous to Oligocene marine units underlies the continental deposits. Basement complexes are Sierran on the east and Coast Range on the west. The boundary between these basement assemblages probably underlies the area just to the east of Woodland. The east-west portion of I-5 parallels a break in the geology of the Sacramento Valley. To the north, the Martinez, H and T, Starkey sands, and Winters Formation are soon truncated by the unconformity at the base of the Capay Shale. These units are important gas reservoirs adjacent to the south of the highway. To the north, most production is from the Cretaceous F Zone.

  16. Comparison of Oxygenate Mixing Ratios Observed in the San Joaquin Valley, California, as a Consequence of Dairy Farming

    Science.gov (United States)

    Yang, M. M.; Blake, D. R.

    2009-12-01

    The San Joaquin Valley Air Basin in Central California is plagued with air quality problems, and is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). One of the main sources of Volatile Organic Compounds (VOCs), and indirect sources of ozone in the Valley, has been identified as dairy farming (2). Among these compounds, we have found that several OVOCs such as ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Since 2008, several different types of sampling protocols have been employed by our group in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates (2). In 2008 and 2009, samples were in early summer, allowing us to compare the difference in concentration levels between both years.The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, for both 2008 and 2009, as much as 15% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that the data observed in 2008 is consistent with that observed in 2009, with a slight decrease in concentrations overall for 2009. 1. Lindberg, J. Analysis of the San Joaquin Valley 2007 Ozone Plan. State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. M. Yang, S. Meinardi, C. Krauter, D.R. Blake. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin

  17. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacramento Valley, California

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Empirical observations on the ground and examination of aerial color IR photographs indicate that in grassland terrain, the vegetation overlying sandstone tends to become less vigorous sooner in the late spring season than does the area overlain by an adjacent shale unit. The reverse relationship obtains in the fall. These relationships are thought to be a reflection of the relative porosity of each of the units and hence of their ability to retain or lose soil moisture. A comparison of the optically enlarged day and nite IR imagery of the Late Mesozoic interbedded sandstone and shale units along the western margin of the Sacramento Valley, California, taken at seasonally critical times of the year (late spring/early summer and late fall/early winter) reveals subtle seasonal variations of graytone which tend to support the empirical observations after consideration of Sun angle and azimuth, and the internal consistency of the data on each set of satellite imagery.

  18. Pesticide Risk Communication, Risk Perception, and Self-Protective Behaviors among Farmworkers in California's Salinas Valley

    Science.gov (United States)

    Cabrera, Nolan L.; Leckie, James O.

    2009-01-01

    Agricultural pesticide use is the highest of any industry, yet there is little research evaluating farmworkers' understandings of the health risks chemical exposure poses. This study examines pesticide education, risk perception, and self-protective behaviors among farmworkers in California's Salinas Valley. Fifty current and former farmworkers…

  19. Water-resources of the Antelope Valley-East Kern Water Agency area, California

    Science.gov (United States)

    Bloyd, R.M.

    1967-01-01

    The Antelope Valley-East Kern Water Agency (AVEK) area, most of which is within the Mojave Desert region of southern California, lacks adequate water resources to sustain the existing rate of ground-water pumpage for irrigation, industrial, and domestic use. However, by 1972 the California Aqueduct, a part of the California Water Plan, will be completed and will begin to convey water from northern California into the area. The chief economic pursuits in the area are irrigated agriculture and poultry production. At present, the major industries are related to national defense and mining. In the future, industry will increase and probably become the major economic activity. The Mojave Desert region, part of which lies within the AVEK area, is characterized by fault-block mountains and fault-block basins. The Tehachapi and San Gabriel Mountains are the major bordering fault blocks. The adjacent lowland areas of Antelope and Fremont Valleys have been depressed by movements along major faults. There are two major ground-water basins in the AVEK area: Antelope Valley and Fremont Valley basins. Each large basin is divided by faults or bodies of consolidated rock into several groundwater subunits.

  20. Preliminary catalog of earthquakes in Northern Imperial Valley, California, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, D.; Fuis, G.

    1977-01-01

    Seismic monitoring of the northern section of the Imperial Valley region in southern California has been underway since 1973. A description of the 22-station network and a list of preliminary data on earthquakes recorded by the network from April 1977 through June 1977 are presented. (JGB)

  1. 77 FR 745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Correction In rule document 2011-33660 appearing on pages...

  2. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  3. 78 FR 25011 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-04-29

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management... Quality Management District (SCAQMD) and Ventura County Air Pollution Control District (VCAPCD) portions...

  4. 78 FR 49992 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-08-16

    ... Quality Management District (AVAQMD) and Ventura County Air Pollution Control District (VCAPCD) portions... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency...

  5. 77 FR 12526 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency... Quality Management District (AVAQMD) and Mojave Desert Air Quality Management District (MDAQMD) portion of...

  6. A case study: Death Valley National Monument California-Nevada

    Science.gov (United States)

    Daniel Hamson; Ristau Toni

    1979-01-01

    With passage of the Mining in the Parks Act (P.L. 94-429) in 1976, the National Park Service, Department of the Interior, was given the responsibility of preparing a report to Congress outlining the environmental consequences of mining on claims within Death Valley National Monument. In addition, the Secretary of the Interior is required to formulate a recommendation...

  7. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  8. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    Science.gov (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  9. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  10. Calleguas Creek Simi Valley to Moorpark Ventura County, California.

    Science.gov (United States)

    1976-06-01

    limestone deposit in the Modelo Formation in Tapo Canyon. It is the only limestone deposit to have been mined in southern Ventura County. The product...provides an excellent habitat for invertebrate life and associated vertebrate consumers. Small rodents, rabbits, song birds, quail, doves, raptors, wading...park the length of Simi Valley that offers excellent recreational opportunities. 76. GOVERNMENT AGENCIES. The draft environmental statement was sent

  11. Pathology and Tissue Distribution of an LPAI H5N8 of North American Lineage Isolated from an Outbreak in Commercial Japanese Quail (Coturnix c. japonica) in the Central Valley of California.

    Science.gov (United States)

    Carnaccini, S; Stoute, S T; Bickford, A A; Shivaprasad, H L

    2017-03-01

    This report describes the pathology and tissue distribution of avian influenza (AI) antigens by immunohistochemistry (IHC) in the tissues of commercial layer quail from a natural outbreak of low pathogenic avian influenza (LPAI) H5N8. LPAI virus H5N8 of North American lineage was diagnosed in commercial Japanese quail hens ( Coturnix coturnix japonica) in California based on serology, reverse-transcriptase real-time polymerase chain reaction, virus isolation, and sequencing. The sudden increase in mortality in a flock of laying quail hens had prompted the submission of 15 live and 5 dead, 10- to 15-wk-old quail to the California Animal Health and Food Safety Laboratory System, Turlock branch in the beginning of April 2014. There was mild bilateral swelling of the eyelids and greenish diarrhea in 4/15 live quail submitted. On postmortem examination, there were severe, extensive hemorrhages and multifocal, confluent pale foci in the pancreas in 10/20 birds. Liver gross lesions in five birds ranged from a few pale areas to numerous disseminated foci. Histology revealed moderate to severe necrosis of acinar cells in the pancreas with little or no inflammation in most of the birds. Livers had acute multifocal coagulative necrosis of hepatocytes with fibrin exudation and infiltration of few to large numbers of heterophils and lymphocytes randomly scattered throughout. The AI virus was detected in the nucleus and cytoplasm of pancreatic acinar cells and hepatocytes by IHC targeting the nucleoprotein of the AI virus. A few birds had AI antigen in the reticuloendothelial cells of the spleen, endothelial cells of the lungs, epithelium of the respiratory mucosa, and lamina propria of the intestine. The severity of the lesions observed in this natural outbreak of LPAI in quail was higher than that expected for the pathotypic presentation in this species.

  12. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-10-22

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... establish and administer an office on Central Valley Project water conservation best management practices...

  13. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-04-10

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... an office on Central Valley Project water conservation best management practices that shall ``develop...

  14. Location of diversions from the surface-water network of the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the name and location for the diversions from the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central...

  15. Seasonal variations in N2O emissions from central California

    National Research Council Canada - National Science Library

    Jeong, Seongeun; Zhao, Chuanfeng; Andrews, Arlyn E; Dlugokencky, Edward J; Sweeney, Colm; Bianco, Laura; Wilczak, James M; Fischer, Marc L

    2012-01-01

    We estimate nitrous oxide (N 2 O) emissions from Central California for the period of December 2007 through November 2009 by comparing N 2 O mixing ratios measured at a tall tower (Walnut Grove, WGC...

  16. Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

  17. Stalking the next Parkfield earthquake in Central California

    Science.gov (United States)

    Kerr, R. A.

    1984-01-01

    Looking southeast from Middle Mountain toward Gold Hill, it is a subtle furrow in the grassy knolls of the Cholame Valley of California's Coast Range. To geophysicists, this 19-mile section of the San Andreas fault midway between San Francisco and Los Angeles is the most well understood, most intensely monitored fault in the world. As such, it is also the most likely place for American earthquake researchers to become earthquake predictors. 

  18. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Directory of Open Access Journals (Sweden)

    Richard J. Blakely

    2013-04-01

    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  19. SIR2015-5175, Pahute Mesa-Oasis Valley and surrounding groundwater basins, Nevada and California, version 1.1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This vector data set contains polygons representing the Pahute Mesa-Oasis Valley groundwater basin and surrounding groundwater basins in Nevada and California.

  20. Mapping Fault Slip in Central California Using Satellite, Airborne InSAR and GPS

    Science.gov (United States)

    Liu, Zhen; Lundgren, Paul; Hensley, Scott

    2015-05-01

    The central San Andreas fault is accommodating relative motion between the Sierra Nevada-Great Valley block and the Pacific plate in central California. It is creeping along the ~60 km long central segment while changing to locking towards the northwest and southeast. Characterizing its creeping nature and on and off-fault deformation are crucial for improved earthquake hazard assessment in the region. We use L-band ALOS PALSAR, NASA airborne UAVSAR data and geodetic measurements to map the fault slip variation. Our results show a distinct change in shallow fault creep and fault slip at depth from the central creeping to the transitional segment. Our work demonstrates that airborne UAVSAR provides useful constraints on shallow creep and near fault deformation. Continuing observations would be essential in capturing time-varying faulting behaviours and their implication towards present and future earthquake activities.

  1. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  2. Optimal pumping strategies for managing shallow, poorquality groundwater, western San Joaquin Valley, California

    Science.gov (United States)

    Barlow, P.; Wagner, B.; Belitz, K.

    1995-01-01

    Continued agricultural productivity in the western San Joaquin Valley, California, is threatened by the presence of shallow, poor-quality groundwater that can cause soil salinization. We evaluate the management alternative of using groundwater pumping to control the altitude of the water table and provide irrigation water requirements. A transient, three-dimensional, groundwater flow model was linked with nonlinear optimization to simulate management alternatives for the groundwater flow system. Optimal pumping strategies have been determined that substantially reduce the area subject to a shallow water table and bare-soil evaporation (that is, areas with a water table within 2.1 m of land surface) and the rate of drainflow to on-farm drainage systems. Optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  3. Lithospheric Structure in Central California: Towards Identifying the Tectonic Origin of the Isabella Anomaly

    Science.gov (United States)

    Dougherty, S. L.; Clayton, R. W.

    2015-12-01

    The tectonic origin of the Isabella high-velocity anomaly in the upper mantle beneath California's southern Great Valley is unclear. Previous low-resolution seismic imaging studies of the region have been unable to identify the structural connection between this upper mantle anomaly and the overlying lithosphere. The two dominant hypotheses attribute the Isabella anomaly to a fossil slab or the foundered lithospheric root of the Sierra Nevada batholith. The Central California Seismic Experiment (CCSE) is designed to distinguish between these hypotheses. We present results from the CCSE, which consists of 44 broadband seismometers currently deployed in a quasi-linear array spanning from the Pacific coast, across the Great Valley, to the Sierra Nevada foothills, at an approximate latitude of 36°N. Forward modeling of the 2D structure of the crust is performed using local earthquakes recorded by the CCSE and a finite-difference algorithm to provide constraints on the geometry and velocity of the seismic structure of the Great Valley. This sedimentary basin is suggested to be filled with very low velocity material at shallow depths and partially underlain by a high-velocity ophiolite body. Hence, a well-constrained basin structure will be important in correcting surface wave tomography and receiver function images. The impact of the Great Valley basin structure on body waves is evident by an observed delay in P-wave arrival times on the radial component relative to the vertical component for stations located within the basin. Surface waves along the CCSE array also show a distinct slowing by the valley at periods <10 sec. Data from teleseismic events recorded by the CCSE reveal scattered waves arriving tens of seconds after the S-wave, which we will interpret in terms of the lithospheric structure of the region by identifying the source location(s) of the scatterer(s). We may also gain insights into the structural connection between the Isabella anomaly and the

  4. Monitoring the hydrothermal system in Long Valley caldera, California

    Science.gov (United States)

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  5. Geologic field-trip guide to Long Valley Caldera, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2017-07-26

    This guide to the geology of Long Valley Caldera is presented in four parts: (1) An overview of the volcanic geology; (2) a chronological summary of the principal geologic events; (3) a road log with directions and descriptions for 38 field-trip stops; and (4) a summary of the geophysical unrest since 1978 and discussion of its causes. The sequence of stops is arranged as a four-day excursion for the quadrennial General Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), centered in Portland, Oregon, in August 2017. Most stops, however, are written freestanding, with directions that allow each one to be visited independently, in any order selected.

  6. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    Science.gov (United States)

    Smith, George I.

    2009-01-01

    Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas

  7. A Test of the California Wildlife-Habitat Relationship System for Breeding Birds in Valley-Foothill Riparian Habitat

    Science.gov (United States)

    Stephen A. Laymon

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  8. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California

    Science.gov (United States)

    Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don

    2017-01-01

    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons. PMID:28469673

  9. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California

    Directory of Open Access Journals (Sweden)

    Ricardo Cisneros

    2017-01-01

    Full Text Available The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public’s views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons.

  10. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California.

    Science.gov (United States)

    Cisneros, Ricardo; Brown, Paul; Cameron, Linda; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Veloz, David; Song, Anna; Schweizer, Don

    2017-01-01

    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons.

  11. Black carbon in Central California: soil carbon and air quality implications

    Science.gov (United States)

    Shrestha, G.; Traina, S. J.

    2008-12-01

    Black carbon (BC) plays a significant role in the carbon cycle, simultaneously influencing the quality of air from local to regional scales from its point of origin. We are investigating these influences with respect to BC recently produced in the Central Valley and Sierra Nevada Forest area of California. Surface biomass, charred matter and soil (0-5 cm) were collected after prescribed fires in Yosemite National Park (YNP) locations along an elevational gradient ranging from 1148 m to 1992 m. Surface soils and aerosols from a protected (non-burnt) grassland in Merced (central valley) were also collected. Soil organic carbon (SOC) concentrations in burnt sites were analyzed and compared with concentrations in adjacent unburnt soils (controls). The SOC concentrations ranged from 3 to 15% in the control soils and 2 to 12% in post-burn soils. Initial results show a lack of significant change in surface SOC concentration from prescribed fires in the YNP forest sites. The relative contribution of fossil fuel combustion versus biomass combustion on soil deposited aerosol BC (soot) was determined using radiocarbon analysis with accelerator mass spectrometry. Initial findings show an increase in the contribution of fossil fuel combustion to soot BC with decreasing elevation in YNP, with little difference between burnt and recently unburnt sites. The BET surface area of BC from the field samples will also be analyzed and compared with BC produced in the lab from field-collected biomass. Bulk carbon composition and an assessment of the relative percentage BC present in the samples will be conducted with 13-C NMR analysis. This will help in the establishment of a relationship between black carbon and total carbon in central California. In this poster, will be presenting some of our initial findings and their implications for air quality and carbon budget balance in central California. The effects of prescribed fires on soil carbon and black carbon properties will also be

  12. Air Pollution, Neighbourhood Socioeconomic Factors, and Neural Tube Defects in the San Joaquin Valley of California.

    Science.gov (United States)

    Padula, Amy M; Yang, Wei; Carmichael, Suzan L; Tager, Ira B; Lurmann, Frederick; Hammond, S Katharine; Shaw, Gary M

    2015-11-01

    Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. We used data from the California Center of the National Birth Defects Study and the Children's Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997-2006. There were 5 pollutant exposures, 3 outcomes, and 9 neighbourhood socioeconomic factors included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education, and multivitamin use. We present below odds ratios (ORs) that exclude 1 and a chi-square test of homogeneity P-value of neural tube defects in California. © 2015 John Wiley & Sons Ltd.

  13. Salmon Lifecycle Considerations to Guide Stream Management: Examples from California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Joseph E. Merz

    2013-06-01

    Full Text Available A primary goal of the Central Valley Project Improvement Act is to at least double natural production of Chinook salmon (Oncorhynchus tshawytscha, in California Central Valley (CV streams on a sustainable basis. Achievement relies on restoration actions that involve both discharge (e.g., dam releases and non-discharge (e.g., gravel augmentation, screening components. Annual adult and juvenile abundance estimates for individual watersheds must be tracked to assess effectiveness of individual actions. However, to date, no substantial efforts have been taken to demonstrate success or deficiencies of their implementations. A major challenge in interpreting time series of counts at any one life stage is that they reflect the cumulative effects of both freshwater and marine factors over the full life cycle. To address this issue, we developed a conceptual framework based on ratios of the abundance of consecutive CV fall-run Chinook salmon life stages and how variation in these ratios tracks key independent variables during the freshwater portion of the life cycle. Model validation with several case studies shows that estimates of previous stage class production correlate well with estimated individuals produced in the next class, indicating that transition rates tend to vary within a constrained range, and that monitoring programs generate abundance estimates whose errors are small enough not to swamp out the underlying signal. When selected environmental parameters were added to demonstration models, abundance estimates were more closely modeled and several tested relationships between environmental drivers and life-stage transition rates proved consistent across watersheds where data were available. Results from this generalized life-stage conceptual model suggest a potential framework for tracking the success of actions meant to improve survival for a given life stage within an individual stream and for determining how successive stages respond to

  14. Renewed inflation of Long Valley Caldera, California (2011 to 2014)

    Science.gov (United States)

    Montgomery-Brown, Emily; Wicks, Chuck; Cervelli, Peter F.; Langbein, John O.; Svarc, Jerry L.; Shelly, David R.; Hill, David P.; Lisowski, Michael

    2015-01-01

    Slow inflation began at Long Valley Caldera in late 2011, coinciding with renewed swarm seismicity. Ongoing deformation is concentrated within the caldera. We analyze this deformation using a combination of GPS and InSAR (TerraSAR-X) data processed with a persistent scatterer technique. The extension rate of the dome-crossing baseline during this episode (CA99 to KRAC) is 1 cm/yr, similar to past inflation episodes (1990–1995 and 2002–2003), and about a tenth of the peak rate observed during the 1997 unrest. The current deformation is well modeled by the inflation of a prolate spheroidal magma reservoir ∼7 km beneath the resurgent dome, with a volume change of ∼6 × 106 m3/yr from 2011.7 through the end of 2014. The current data cannot resolve a second source, which was required to model the 1997 episode. This source appears to be in the same region as previous inflation episodes, suggesting a persistent reservoir.

  15. Surface-water hydrology of Honey Lake Valley, Lassen County, California and Washoe County, Nevada

    Science.gov (United States)

    Rockwell, Gerald L.

    1993-01-01

    Honey Lake Valley straddles the State line of California and Nevada; it is about 35 mi north of Reno and about three-fourths of the area is in California. In this report, Honey Lake Valley (also referred to as “the basin") includes the entire area within the hydrographic boundary shown in figure 1. Susanville, Calif., in the northwestern part of the basin, is the largest town. Population is increasing rapidly in the Susanville area and in the Reno area of adjacent Washoe County, Nev. Lassen and Washoe Counties have identified water resources in Honey Lake Valley as a possible source to meet their needs for future development. An important component of an assessment of the availability of additional long-term supply is an appraisal of surface-water resources.The U.S. Geological Survey, in cooperation with the California Department of Water Resources and the Nevada Division of Water Resources, began a hydrologic assessment of the area in 1987. The study was primarily an appraisal of ground-water resources, but it also included an assessment of surface-water resources. The purpose of this map report is to present the results of the surface-water assessment, including (1) a broad overview of surface-water conditions in the basin, (2) an estimate of mean annual streamflow to the valley floor, and (3) an evaluation of the characteristics of Honey lake. Results of the study related to ground-water resources of the basin are discussed in a separate report by Handman and others (1990) and are summarized in a short “Water Fact Sheet” by Handman (1990).

  16. Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan

    Science.gov (United States)

    Stauffer, Karl W.

    1975-01-01

    The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined

  17. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    Science.gov (United States)

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  18. A Crustal Velocity Model for South Mexicali Valley, Baja California, México.

    Science.gov (United States)

    Ramirez, E.; Vidal-Villegas, A.; Stock, J. M.; Gonzalez-Fernandez, A.

    2016-12-01

    The northern Baja California region consists of two subregions of different geological features: the Peninsular Ranges of Baja California, of granitic composition, and the Mexicali Valley region, characterized by a series of sedimentary basins: the Laguna Salada and the Mexicali Valley. Due to the lack of an appropriate crust model for South Mexicali Valley, a refraction study was conducted. We installed 16 three-component short period stations (2 Hz) and one broadband station (100 s - 50 Hz). The stations, spaced 6 km along a refraction profile, recorded a blast performed in the southwest Arizona near the border with Sonora, Mexico. Records gathered were used to estimate a crust velocity structure model for South Mexicali Valley. The beginning of the profile is at San Luis Rio Colorado (SLRC), Sonora and its ending is at the middle of Sierra Juarez, Baja California. As a "reverse shot", for a 47 km section between SLRC and El Mayor Mountain, we used an aftershock M 3.4 of the 2010 M 7.2 El Mayor - Cucapah earthquake. Record sections show seismograms with impulsive P arrivals for nearby stations. The arrival Pn wave is observed at three stations located in Laguna Salada and Sierra Juarez. From the first arrivals of refractions and reflections of the P wave we performed direct modeling of travel times and relative amplitudes (normalized synthetic seismograms). Method based on asymptotic ray theory programed in the RAYINVR software (Zelt and Smith, 1992). We propose an average-three-layer velocity structure model: 2.9, 5.6 and 6.9 km/s, with thicknesses of 1.2, 4.4 and 9.6 km, respectively. Velocities of our model for the region under study are about 1 km/s higher than the model proposed by McMechan and Mooney (1984) for the Imperial Valley. The preliminary interpretation using the "reverse shot" indicates a crust of 15 km depth beneath the Mexicali Valley and 19 km under the El Mayor Mountain and Laguna Salada basin. On the eastern side of the El Mayor Mountain we

  19. Eruptive history of the Ubehebe Crater cluster, Death Valley, California

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2017-04-01

    A sequence of late Holocene eruptions from the Ubehebe Crater cluster in Death Valley was short-lived, emplacing several phreatomagmatic and magmatic deposits. Seven craters form the main group, which erupted along a north-south alignment 1.5 km long. At least five more make a 500-m east-west alignment west of the main crater group. One more is an isolated shallow crater 400 m south of that alignment. All erupted through Miocene fanglomerate and sandstone, which are now distributed as comminuted matrix and lithic clasts in all Ubehebe deposits. Stratigraphic evidence showing that all Ubehebe strata were emplaced within a short time interval includes: (1) deposits from the many Ubehebe vents make a multi-package sequence that conformably drapes paleo-basement topography with no erosive gullying between emplacement units; (2) several crater rims that formed early in the eruptive sequence are draped smoothly by subsequent deposits; and (3) tack-welded to agglutinated spatter and bombs that erupted at various times through the sequence remained hot enough to oxidize the overlying youngest emplacement package. In addition, all deposits sufficiently consolidated to be drilled yield reliable paleomagnetic directions, with site mean directions showing no evidence of geomagnetic secular variation. Chemical analyses of juvenile components representing every eruptive package yield a narrow range in major elements [SiO2 (48.65-50.11); MgO (4.98-6.23); K2O (2.24-2.39)] and trace elements [Rb (28-33); Sr (1513-1588); Zr (373-404)]. Despite lithologic similarities, individual fall units can be traced outward from vent by recording layer thicknesses, maximum scoria and lithic sizes, and juvenile clast textural variations. This permits reconstruction of the eruptive sequence, which produced a variety of eruptive styles. The largest and northernmost of the craters, Ubehebe Crater, is the youngest of the group. Its largely phreatomagmatic deposits drape all of the others, thicken in

  20. Water Level Altitude Contours for the Diamond Valley Flow System, Central Nevada, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  1. Groundwater discharge areas for Antelope, Kobeh, and Monitor Valleys, Central Nevada, 1964

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents "phreatophyte areas" mapped as part of a groundwater reconnaissance effort in four valleys in central Nevada and published in 1964. The data...

  2. Location of General Head Boundaries (GHB) in the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the area where lateral flow into and out of the Central Valley groundwater-flow system occurs. The General Head Boundary (GHB) is set...

  3. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-07-02

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... Project water conservation best management practices that shall `` * * * develop criteria for evaluating...

  4. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-03-08

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... project contractors using best available cost- effective technology and best management practices.'' These...

  5. Locations of hydraulic-head observations (HOBS) for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the well locations for hydraulic-head observations used in the calibration of the transient hydrologic model of the Central Valley flow...

  6. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  7. Contaminant exposure and reproductive health of sandhill cranes in the Central Platte River Valley, Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The central Platte River Valley provides crucial staging habitat for the endangered whooping crane (Grus americana) and the mid-continent population of sandhill...

  8. Extent of Corcoran Clay modified from Page (1986) for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the areal extent of the Corcoran Clay Member of the Tulare Formation. The complex hydrologic system of the Central Valley is simulated...

  9. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    Science.gov (United States)

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    Gravity anomalies, historical records of exploratory oil wells and oil seeps, new organic-geochemical results, and new stratigraphic and structural data indicate the presence of a concealed, oil-bearing sedimentary basin beneath a highly urbanized part of the Santa Clara Valley, Calif. A conspicuous isostatic-gravity low that extends about 35 km from Palo Alto southeastward to near Los Gatos reflects an asymmetric, northwest-trending sedimentary basin comprising low-density strata, principally of Miocene age, that rest on higher-density rocks of Mesozoic and Paleogene(?) age. Both gravity and well data show that the low-density rocks thin gradually to the northeast over a distance of about 10 km. The thickest (approx 4 km thick) accumulation of low-density material occurs along the basin's steep southwestern margin, which may be controlled by buried, northeast-dipping normal faults that were active during the Miocene. Movement along these hypothetical normal faults may been contemporaneous (approx 17–14 Ma) with sedimentation and local dacitic and basaltic volcanism, possibly in response to crustal extension related to passage of the northwestward-migrating Mendocino triple junction. During the Pliocene and Quaternary, the normal faults and Miocene strata were overridden by Mesozoic rocks, including the Franciscan Complex, along northeastward-vergent reverse and thrust faults of the Berrocal, Shannon, and Monte Vista Fault zones. Movement along these fault zones was accompanied by folding and tilting of strata as young as Quaternary and by uplift of the modern Santa Cruz Mountains; the fault zones remain seismically active. We attribute the Pliocene and Quaternary reverse and thrust faulting, folding, and uplift to compression caused by local San Andreas Fault tectonics and regional transpression along the Pacific-North American Plate boundary. Near the southwestern margin of the Santa Clara Valley, as many as 20 exploratory oil wells were drilled between 1891

  10. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    Science.gov (United States)

    Raymond, Lee H.; Rezin, Kelly V.

    1989-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote-sensing data to estimate evapotranspiration as an approximation of consumptive use of water in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation, using remote-sensing data in various types of analyses, and to multiply each area by a predetermined water-use rate. Two calibration and six remote-sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low-altitude (less than 5,000 feet) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 feet) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital-processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the two-date digital-processing method was the most consistent and least labor intensive for identifying two or three major crops; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6 percent. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 11 percent lower in Palo Verde Valley to 17 percent lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included.

  11. Groundwater discharge area for Diamond Valley, Central Nevada, 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents "phreatophyte areas" mapped as part of an analysis of irrigation pumping in Diamond Valley, Nevada published in 1968. The data were digitized...

  12. Physical subdivision and description of the water-bearing sediments of the Santa Clara Valley, California

    Science.gov (United States)

    Wentworth, Carl M.; Jachens, Robert C.; Williams, Robert A.; Tinsley, John C.; Hanson, Randall T.

    2015-01-01

    A thick Quaternary alluvial section fills a sedimentary basin beneath the Santa Clara Valley, California, located within the San Andreas Fault system at the south end of San Francisco Bay. This section consists of an upper sequence about 1,000 feet thick containing eight sedimentary cycles and a lower fine-grained unit as thick as several hundred feet. Together these constitute the Quaternary Santa Clara Basin. The section overlies an irregular unconformity with more than 1,200 feet of relief cut into the underlying bedrock. This stratigraphy is determined through study of new wells and seismic reflection profiles, together with a sample of the many thousands of water wells in the valley. It represents a major change and improvement in understanding of the basin, particularly with regard to the upper cyclic sequence, which forms a large groundwater system that is an important resource in the San Francisco Bay region.

  13. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    Science.gov (United States)

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  14. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    Science.gov (United States)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is

  15. Application of MODFLOW’s farm process to California’s Central Valley

    Science.gov (United States)

    Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth

    2008-01-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. During 1980–2007, the population nearly doubled in the Central Valley, increasing the competition for water. Because of the importance of ground water in the Central Valley, the U.S. Geological Survey (USGS) Ground-Water Resources Program is evaluating ground-water conditions in the valley on the basis of historical and anticipated water use. This study updates the USGS Central Valley Regional Aquifer System and Analysis (CVRASA) model that was originally? calibrated to observed conditions for the period 1961-77. The model developed for this study utilizes MODFLOW-2000, and was calibrated to observed conditions for the period 1961-2003. Key updates include characterization of the aquifer system using a detailed textural analysis of more than 8,500 drillers’ logs; use of the MODFLOW subsidence package (SUB) to simulate aquifer-system compaction; and, most importantly, use of the newly developed MODFLOW Farm Process (FMP) for simulating irrigation and other

  16. Application of pesticide transport model for simulating diazinon runoff in California’s central valley

    Science.gov (United States)

    Joyce, Brian A.; Wallender, Wesley W.; Mailapalli, Damodhara R.

    2010-12-01

    Dormant spray application of pesticides to almond and other stone fruit orchards is the main source of diazinon during the winter in California's central valley. Understanding the pesticide transport and the tradeoffs associated with the various management practices is greatly facilitated by the use of physically-based contaminant transport models. In this study, performance of Joyce's et al. (2008) pesticide transport model was evaluated using experimental data collected from two ground treatments such as resident vegetation and bare soil. The model simulation results obtained in calibration and validation process were analyzed for pesticide concentration and total load. The pesticide transport model accurately predicted the pesticide concentrations and total load in the runoff from bare field and was capable of simulating chemical responses to rainfall-runoff events. In case of resident vegetation, the model results exhibited a larger range of variation than was observed in the bare soil simulations due to increased model parameterization with the addition of foliage and thatch compartments. Furthermore, the model was applied to study the effect of runoff lag time, extent of crop cover, organic content of soil and post-application irrigation on the pesticide peak concentration and total load. Based on the model results, recommendations were suggested to growers prior to implementing certain management decisions to mitigate diazinon transport in the orchard's spray runoff.

  17. California GAMA Program: Groundwater Ambient Monitoring and Assessment Results for the Sacramento Valley and Volcanic Provinces of Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2005-01-20

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as methyl tert butyl ether (MTBE) from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the California Aquifer Susceptibility (CAS) project (under the GAMA Program) is to assess water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the Sacramento Valley and Volcanic Provinces. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  18. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  19. Is the Central Valley of Costa Rica a genetic isolate?

    Directory of Open Access Journals (Sweden)

    Bernal Morera

    2004-09-01

    Full Text Available In the last decade, the Costa Rican Central Valley population (CRCV, has received considerable scientific attention, attributed in part to a particularly interesting population structure. Two different and contradictory explanations have emerged: (1 An European-Amerindian-African admixed population, with some regional genetic heterocigosity and moderate degrees of consanguinity, similar to other Latin-American populations. (2 A genetic isolate, with a recent founder effect of European origin, genetically homogeneous, with a high inter-marriage rate, and with a high degree of consanguinity. Extensive civil and religious documentation, since the settlement of the current population, allows wide genealogy and isonymy studies useful in the analysis of both hypotheses. This paper reviews temporal and spatial aspects of endogamy and consanguinity in the CRCV as a key to understand population history. The average inbreeding coefficients ?(alpha between 1860 and 1969 show a general decrease within time. The consanguinity in the CRCV population is not homogeneous, and it is related to a variable geographic pattern. Results indicate that the endogamy frequencies are high but in general it was not correlated with alpha ?values. The general tendency shows a consanguinity decrease in time, and from rural to urban communities, repeating the tendencies observed in other countries with the same degree of development, and follows the general Western World tendency. Few human areas or communities in the world can be considered true genetic isolates. As shown, during last century, the CRCV population has had consanguinity values that definitively do not match those of true genetic isolates. A clear knowledge of the Costa Rican population genetic structure is needed to explain the origin of genetic diseases and its implications to the health system. Rev. Biol. Trop. 52(3: 629-644. Epub 2004 Dic 15.En la última década, la población del Valle Central de Costa Rica

  20. Geometry and subsurface lithology of southern Death Valley basin, California, based on refraction analysis of multichannel seismic data

    Science.gov (United States)

    Geist, Eric L.; Brocher, Thomas M.

    1987-12-01

    The shallow structure and subsurface lithology of southern Death Valley basin in eastern California were studied using refraction analysis of multichannel seismic reflection data acquired by COCORP. Two-dimensional velocity models of the upper 3 km of southern Death Valley were derived from iterative fitting of first-arrival travel-times on common-shot and common-receiver gathers. The structural basement beneath southern Death Valley, defined by rocks having velocities greater than 4.0 km/s, is asymmetric and dips gently to the east where it is terminated by a steeply dipping fault which parallels the Black Mountain range front and has normal, down-to-the-west displacement. Numerous other faults that have normal components of displacement obliquely cross the seismic lines and indicate that the southern Death Valley basin formed from the divergent wrench system of the southern Death Valley fault zone.

  1. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California

    Science.gov (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.

    2016-12-01

    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  2. Paired, facing monoclines in the Sanpete-Sevier Valley area, central Utah

    Science.gov (United States)

    Witkind, I.J.

    1992-01-01

    Several major monoclines that trend northward through the Sanpete-Sevier Valley area of central Utah are paired and face one another. This pairing of monoclines may have occurred when near-horizontal sedimentary and volcanic strata subsided into voids created as salt was removed from a salt diapir concealed beneath valley fill. Removal was mostly by dissolution or extrusion during Neogene time. The paired monoclines, thus, are viewed as collapse features rather than as normal synclinal folds. -from Author

  3. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  4. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of

  5. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    F. Guzzetti

    2003-01-01

    Full Text Available Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857–2002 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM, the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls

  6. Chemical and nutritional composition of tejate, a traditional maize and cacao beverage from the Central Valleys of Oaxaca, Mexico.

    Science.gov (United States)

    Sotelo, Angela; Soleri, Daniela; Wacher, Carmen; Sánchez-Chinchillas, Argelia; Argote, Rosa Maria

    2012-06-01

    Foam-topped cacao and maize beverages have a long history in Mesoamerica. Tejate is such a beverage found primarily in the Zapotec region of the Central Valleys of Oaxaca, Mexico. Historically tejate has been ceremonially important but also as an essential staple, especially during periods of hard fieldwork. However, the nutritional contribution of traditional foods such as tejate has not been investigated. We analyzed tejate samples from three Central Valley communities, vendors in urban Oaxaca markets and one migrant vendor in California, USA for their proximate composition, amino acid content and scores, and mineral and methylxanthine content. Nutritional and chemical variation exists among tejate recipes, however, the beverage is a source of energy, fat, methylxanthines, K, Fe and other minerals although their availability due to presence of phytates remains to be determined. Tejate is a source of protein comparable to an equal serving size of tortillas, with protein quality similarly limited in both. Tejate provides the nutritional benefits of maize, and some additional ones, in a form appealing during hot periods of intense work, and year round because of its cultural significance. Its substitution by sodas and other high glycemic beverages may have negative nutritional, health and cultural consequences.

  7. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Science.gov (United States)

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  8. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    Science.gov (United States)

    Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.

    2010-12-01

    George Smith’s career-long study of the surface geology of the Searles Valley was recently published by the USGS (Smith, 2009, online and printed). The co-authors of this abstract are the team responsible for completing the publication from the original materials. Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated is fully revealed by cores taken from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. Although this outcrop record is discontinuous, it provides direct evidence of the lake’s water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. The outcrop record is documented in six geologic maps (scales: 1:50,000 and 1:10,000). The Searles Lake Formation is divided into seven main units. The depositional intervals of the units that make up the Searles Lake Formation are determined primarily by correlation with subsurface deposits that are dated by radiocarbon ages on organic carbon and U-series dates on salts. Shorelines, the most obvious geologic expressions of former lakes, are abundant around Searles Valley. Erosional shorelines have cut as much as 100 m into brecciated bedrock; depositional shorelines

  9. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    Science.gov (United States)

    Dileanis, P.D.; Groeneveld, D.P.

    1988-01-01

    A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)

  10. Geotechnical Environmental Aspects of Geothermal Power Generation at Heber, Imperial Valley, California. Topical report 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-10-01

    This report presents a portion of the results from a one-year feasibility study sponsored by the Electric Power Research Institute (EPRI) to assess the feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source. The impact of power generation from hydrothermal resources on subsurface water flow, seismicity and subsidence are of acute interest in the determination of the environmental acceptance of geothermal energy. At the same time, the experience and data bases in these areas are very limited. The objective of the project was to assess the technical, geotechnical, environmental and economic feasibility of producing electricity from hydrothermal resources like those known to exist in the US. The objective of this part of the study was to investigate the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California. This report discusses geology, geophysics, hydrogeology, seismicity and subsidence in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. it also discusses estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds.

  11. 75 FR 51058 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Science.gov (United States)

    2010-08-18

    ... AGENCY The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian... Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields... documents are available via the Internet on NCEA's home page under the Recent Additions and Publications...

  12. 75 FR 39934 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Science.gov (United States)

    2010-07-13

    ... AGENCY The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian...) ``The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian... documents are available via the Internet on NCEA's home page under the Recent Additions and Publications...

  13. 75 FR 30393 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Science.gov (United States)

    2010-06-01

    ... AGENCY The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian... Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields... documents are available via the Internet on NCEA's home page under the Recent Additions and Publications...

  14. Stream-gage locations where streamflow gains/losses were quantified along the Central Valley surface-water network

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the name and location for the diversions from the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central...

  15. Location of virtual wells used for urban (municipal and industrial use) pumpage in the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the virtual wells used for urban (municipal and industrial use) pumpage for the Central Valley Hydrologic Model (CVHM). The Central...

  16. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    Science.gov (United States)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (pjustice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The human costs of nitrate-contaminated drinking water in the San Joaquin Valley. Oakland, CA: Pacific Institute. Morello-Frosch R, Pastor M, Sadd J. 2001. Environmental justice and southern california's 'riskscape': The distribution of air toxics exposures and health risks among diverse communities. Urban Affairs Review 36(4): 551

  17. Analysis of Adoption Spell of Hybrid Maize in the Central Rift Valley ...

    African Journals Online (AJOL)

    This paper estimates farm household level determinants of the speed of adoption of hybrid maize in the central rift valley of Ethiopia in the framework of the dynamic time on cross-sectional data. Descriptive statistics and duration model were used to study the objectives of the study. The results from descriptive analysis ...

  18. 75 FR 69698 - Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans

    Science.gov (United States)

    2010-11-15

    ...] [FR Doc No: 2010-28603] DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Criteria for Developing Refuge Water Management Plans...

  19. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-06-05

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... project contractors using best available cost-effective technology and best management practices.'' These...

  20. 78 FR 63491 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-10-24

    ... Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are... achievable by project contractors using best available cost-effective technology and best management...

  1. Yield gaps and resource use across farming zones in the central rift valley of Ethiopia

    NARCIS (Netherlands)

    Getnet, Mezegebu; Ittersum, van Martin; Hengsdijk, Huib; Descheemaeker, Katrien

    2016-01-01

    In the Central Rift Valley (CRV) of Ethiopia, low productive cereal systems and a declining resource base call for options to increase crop productivity and improve resource use efficiency to meet the growing demand of food. We compiled and analysed a large amount of data from farmers’ fields

  2. Barriers to Coverage of Transborder Environmental Issues in the Ferghana Valley of Central Asia

    Science.gov (United States)

    Freedman, Eric

    2014-01-01

    Three former Soviet republics occupy Central Asia's Ferghana Valley, a region of serious transborder environmental problems, especially ones that involve water and energy. Most news organizations in Kyrgyzstan, Tajikistan, and Uzbekistan provide little in-depth coverage of these issues. Journalists in one country usually do not seek news sources…

  3. Pesticide use practices among smallholder vegetable farmers in Ethiopian Central Rift Valley

    NARCIS (Netherlands)

    Mengistie, B.T.; Mol, A.P.J.; Oosterveer, P.J.M.

    2017-01-01

    Pesticide use is a common practice to control pests and diseases in vegetable cultivation, but often at the expense of the environment and human health. This article studies pesticide-buying and use practices among smallholder vegetable farmers in the Central Rift Valley of Ethiopia, using a

  4. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Science.gov (United States)

    2011-09-22

    ... Bureau of Reclamation Central Valley Project Improvement Act; Refuge Water Management Plans AGENCY... Refuge Water Management Plans (Refuge Criteria). Several entities have each developed a Refuge Water... requirements of these Refuge Criteria (see list in Supplementary Information below). Willow Creek Mutual Water...

  5. Exploring determinants of farmers' investments in land management in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Kessler, A.; Hengsdijk, H.

    2012-01-01

    Land degradation, especially water erosion and nutrient depletion, seriously affects agricultural production in the Central Rift Valley of Ethiopia. Farmers' investments to conserve their land are until now however quite limited. The objective of this study is to identify the major factors that

  6. Geochemical evidence for Se mobilization by the weathering of pyritic shale, San Joaquin Valley, California, U.S.A.

    Science.gov (United States)

    Presser, T.S.; Swain, W.C.

    1990-01-01

    Acidic (pH 4) seeps issue from the weathered Upper Cretaceous-Paleocene marine sedimentary shales of the Moreno Formation in the semi-arid Coast Ranges of California. The chemistry of the acidic solutions is believed to be evidence of current reactions ultimately yielding hydrous sodium and magnesium sulfate salts, e.g. mirabilite and bloedite, from the oxidation of primary pyrite. The selenate form of Se is concentrated in these soluble salts, which act as temporary geological sinks. Theoretically, the open lattice structures of these hydrous minerals could incorporate the selenate (SeO4-2) anion in the sulfate (SO4-2) space. When coupled with a semi-arid to arid climate, fractional crystallization and evaporative concentration can occur creating a sodium-sulfate fluid that exceeds the U.S. Environmental Protection Agency limit of 1000 ??g l-1 for a toxic Se waste. The oxidative alkaline conditions necessary to ensure the concentration of soluble selenate are provided in the accompanying marine sandstones of the Panoche and Lodo Formations and the eugeosynclinal Franciscan assemblage. Runoff and extensive mass wasting in the area reflect these processes and provide the mechanisms which transport Se to the farmlands of the west-central San Joaquin Valley. Subsurface drainage from these soils consequently transports Se to refuge areas in amounts elevated to cause a threat to wildlife. ?? 1990.

  7. Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran

    Science.gov (United States)

    Toomanian, Norair; Jalalian, Ahmad; Khademi, Hossein; Eghbal, Mostafa Karimian; Papritz, Andreas

    2006-11-01

    A geomorphic hierarchical downscaling method was used to decompose the forms and processes forming the landscapes and their subdivisions in the main region of Zayandeh-rud Valley. The purpose of this study was to determine the degree of soil heterogeneity and to check if K-entropy would be a good measure of soil evolution. Soil diversity analyses were performed considering soil families as individuals of soil entities in each geomorphic or taxonomic category level. Pedodiversity indices were used to follow the trend of soil and landscape evolution. The relationships between K-entropy (Shannon diversity index) and pedo-richness versus increasing area were analyzed to find out the effects of soil-landscape evolution on complexity of soil patterns in different geomorphic surfaces. Entropy-age relationship was studied to check the pedogenetic pathways responsible for soil landscape evolution. The soil diversity increases as geomorphic and taxonomic hierarchy levels decrease. The diversity indices were high when the sequence of soil horizons in a homogeneous family was also investigated. An increase in K-entropy of soil and landscape during time confirms the hypothesis of soil divergence evolution, whereby differences in initial conditions or local perturbations, and dynamic instability appear to have produced more variable soils and landscapes in the study area.

  8. Hypogene caves of the central Appalachian Shenandoah Valley in Virginia

    Science.gov (United States)

    Doctor, Daniel H.; Orndorff, Wil

    2017-01-01

    Several caves in the Shenandoah Valley in Virginia show evidence for early hypogenic conduit development with later-enhanced solution under partly confined phreatic conditions guided by geologic structures. Many (but not all) of these caves have been subsequently invaded by surface waters as a result of erosion and exhumation. Those not so affected are relict phreatic caves, bearing no relation to modern drainage patterns. Field and petrographic evidence shows that carbonate rocks hosting certain relict phreatic caves were dolomitized and/or silicified by early hydrothermal fluid migration in zones that served to locally enhance rock porosity, thus providing preferential pathways for later solution by groundwater flow, and making the surrounding bedrock more resistant to surficial weathering to result in caves that reside within isolated hills on the land surface. Features suggesting that deep phreatic processes dominated the development of these relict caves include (1) cave passage morphologies indicative of ascending fluids, (2) cave plans of irregular pattern, reflecting early maze or anastomosing development, (3) a general lack of cave breakdown and cave streams or cave stream deposits, and (4) calcite wall and pool coatings within isolated caves intersecting the local water table, and within unroofed caves at topographic locations elevated well above the local base level. Episodes of deep karstification were likely separated by long periods of geologic time, encompassing multiple phases of sedimentary fill and excavation within caves, and reflect a complex history of deep fluid migration that set the stage for later shallow speleogenesis that continues today.

  9. Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada

    Science.gov (United States)

    Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.

    2007-01-01

    Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.

  10. Geologic Map of the Warm Spring Canyon Area, Death Valley National Park, Inyo County, California, With a Discussion of the Regional Significance of the Stratigraphy and Structure

    Science.gov (United States)

    Wrucke, Chester T.; Stone, Paul; Stevens, Calvin H.

    2007-01-01

    Warm Spring Canyon is located in the southeastern part of the Panamint Range in east-central California, 54 km south of Death Valley National Park headquarters at Furnace Creek Ranch. For the relatively small size of the area mapped (57 km2), an unusual variety of Proterozoic and Phanerozoic rocks is present. The outcrop distribution of these rocks largely resulted from movement on the east-west-striking, south-directed Butte Valley Thrust Fault of Jurassic age. The upper plate of the thrust fault comprises a basement of Paleoproterozoic schist and gneiss overlain by a thick sequence of Mesoproterozoic and Neoproterozoic rocks, the latter of which includes diamictite generally considered to be of glacial origin. The lower plate is composed of Devonian to Permian marine formations overlain by Jurassic volcanic and sedimentary rocks. Late Jurassic or Early Cretaceous plutons intrude rocks of the area, and one pluton intrudes the Butte Valley Thrust Fault. Low-angle detachment faults of presumed Tertiary age underlie large masses of Neoproterozoic dolomite in parts of the area. Movement on these faults predated emplacement of middle Miocene volcanic rocks in deep, east-striking paleovalleys. Excellent exposures of all the rocks and structural features in the area result from sparse vegetation in the dry desert climate and from deep erosion along Warm Spring Canyon and its tributaries.

  11. Impacts of Geomorphic Disturbances on Plant Colonization in Ebba Valley, Central Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Stawska Monika

    2017-03-01

    Full Text Available Global warming observed nowadays causes an increase in geomorphic activity in polar regions. Within the areas influenced by cold climatic conditions, relief dynamics and vegetation development are the main landscape shaping processes. The study is limited to the Ebba Valley (78°43’N; 16°37’E in central Spitsbergen (Svalbard, where geomorphologic observations and vegetation sampling were conducted in 2007. The valley was divided into three zones differentiated by dominating geomorphic activity and stability of deposits. The settlement and the evolution of plant cover have been documented there. The main factors that control well developed vegetation cover within raised marine terraces are frost heave and solifluction. In deeper parts of the valley, aeolian processes dominate and high differentiation of microsite conditions causes high variability in plant coverage. The area close to the Ebba glacier marginal zone is characterized by initial stages of plant colonisation where disturbance to vegetation is mainly caused by hydrological processes.

  12. Geophysical Investigation of Avon Valley, West-Central Montana, using Gravity and Seismic Reflection Profiling

    Science.gov (United States)

    Knatterud, L.; Mosolf, J.; Speece, M. A.; Zhou, X.

    2014-12-01

    The Avon Valley and adjacent mountains in west-central Montana lie within the Lewis and Clark Line, a major system of WNW-striking faults and folds that transect the more northerly structural grain of the northern Rockies and represent alternating episodes of transtensional and transpressional deformation. The northwest-trending valley has been previously interpreted as an extensional half graben filled with Tertiary sedimentary and volcanic deposits; however, little-to-no geophysical constraints on basin architecture or the thickness of Tertiary fill have been reported. A major northwest-striking fault with significant normal displacement clearly bounds the valley to the northeast, juxtaposing Tertiary sedimentary deposits against Proterozoic-Mesozoic units deformed by shortening structures and crosscut by Cretaceous granitic intrusions. Tertiary volcanic deposits unconformably overlying faulted and folded Phanerozoic-Proterozoic sequences in the eastern Garnet Range bound the valley to the southwest, but in the past no faults had been mapped along this margin. New mapping by the Montana Bureau of Mines and Geology (MBMG) has identified a system of high-angle, northwest- and northeast-striking, oblique-slip faults along the southwest border of the Avon calling into question if the valley is a half, full, or asymmetrical graben. Geophysical data has recently been acquired by Montana Tech to help define the structural architecture of the Avon Valley and the thickness of its Tertiary fill. Gravity data and a short seismic reflection profile have been collected and a preliminary interpretation of these data indicates a half graben with a series of normal faults bounding the western side of the valley. Ongoing gravity data collection throughout 2014 should refine this interpretation by better defining the bedrock-Tertiary interface at depth.

  13. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California

    Science.gov (United States)

    Smith, R. G.; Knight, R.; Chen, J.; Reeves, J. A.; Zebker, H. A.; Farr, T.; Liu, Z.

    2017-03-01

    In the San Joaquin Valley, California, recent droughts starting in 2007 have increased the pumping of groundwater, leading to widespread subsidence. In the southern portion of the San Joaquin Valley, vertical subsidence as high as 85 cm has been observed between June 2007 and December 2010 using Interferometric Synthetic Aperture Radar (InSAR). This study seeks to map regions where inelastic (not recoverable) deformation occurred during the study period, resulting in permanent compaction and loss of groundwater storage. We estimated the amount of permanent compaction by incorporating multiple data sets: the total deformation derived from InSAR, estimated skeletal-specific storage and hydraulic parameters, geologic information, and measured water levels during our study period. We used two approaches, one that we consider to provide an estimate of the lowest possible amount of inelastic deformation, and one that provides a more reasonable estimate. These two approaches resulted in a spatial distribution of values for the percentage of the total deformation that was inelastic, with the former estimating a spatially averaged value of 54%, and the latter a spatially averaged value of 98%. The former corresponds to the permanent loss of 4.14 × 108 m3 of groundwater storage, or roughly 5% of the volume of groundwater used over the study time period; the latter corresponds to the loss of 7.48 × 108 m3 of groundwater storage, or roughly 9% of the volume of groundwater used. This study demonstrates that a data-driven approach can be used effectively to estimate the permanent loss of groundwater storage.

  14. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California

    Science.gov (United States)

    Lindsey, Eric O.; Fialko, Yuri

    2016-02-01

    We analyze a suite of geodetic observations across the Imperial Fault in southern California that span all parts of the earthquake cycle. Coseismic and postseismic surface slips due to the 1979 M 6.6 Imperial Valley earthquake were recorded with trilateration and alignment surveys by Harsh (1982) and Crook et al. (1982), and interseismic deformation is measured using a combination of multiple interferometric synthetic aperture radar (InSAR)-viewing geometries and continuous and survey-mode GPS. In particular, we combine more than 100 survey-mode GPS velocities with InSAR data from Envisat descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using a persistent scatterers method. The result is a dense map of interseismic velocities across the Imperial Fault and surrounding areas that allows us to evaluate the rate of interseismic loading and along-strike variations in surface creep. We compare available geodetic data to models of the earthquake cycle with rate- and state-dependent friction and find that a complete record of the earthquake cycle is required to constrain key fault properties including the rate-dependence parameter (a - b) as a function of depth, the extent of shallow creep, and the recurrence interval of large events. We find that the data are inconsistent with a high (>30 mm/yr) slip rate on the Imperial Fault and investigate the possibility that an extension of the San Jacinto-Superstition Hills Fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. Models including this additional fault are in better agreement with the available observations, suggesting that the long-term slip rate of the Imperial Fault is lower than previously suggested and that there may be a significant unmapped hazard in the western Imperial Valley.

  15. Comparison of estimates of evapotranspiration and consumptive use in Palo Verde Valley, California

    Science.gov (United States)

    Raymond, Lee H.; Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of evapotranspiration and consumptive use by vegetation in Palo Verde Valley, California, were compared for calendar years 1981 to 1984. Vegetation types were classified, and the areas covered by each type were computed from Landsat satellite digital-image analysis. Evapotranspiration was calculated by multiplying the area of each vegetation type by a corresponding water use rate adjusted for year-to-year variations in climate. The vegetation classification slightly underestimates the total vegetated area when compared to crop reports, because not all multiple cropping could be identified. The accuracy of evapotranspiration calculated from vegetation classification depends primarily on the correct classification of alfalfa and cotton because alfalfa and cotton have larger acreages and use more water/acre than the other crops in the valley. Consumptive use was calculated using a water budget for each of the 4 years. Estimates of evapotranspiration and consumptive use by vegetation, respectively, were: (1) 439,400 and 483,500 acre-ft in 1981, (2) 430,700 and 452,700 acre-ft in 1982, (3) 402,000 and 364,400 acre-ft in 1983, and (4) 406,700 and 373,800 acre-ft in 1984. Evapotranspiration estimates were lower than consumptive use estimates in 1981 and 1982 and higher in 1983 and 1984. Both estimates were lower in 1983 and 1984 than in 1981 and 1982. Yearly differences in estimates correspond most closely to significant changes in stage of the lower Colorado River caused by flood control releases in 1983 and 1984 and to changes in cropping practices. (Author 's abstract)

  16. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  17. Development of a complete Landsat evapotranspiration and energy balance archive to support agricultural consumptive water use reporting and prediction in the Central Valley, CA

    Science.gov (United States)

    Vitale, A.; Morton, C.; Huntington, J. L.; Melton, F. S.; Guzman, A.; McEvoy, D.

    2015-12-01

    Mapping evapotranspiration (ET) from agricultural areas in California's Central Valley is critical for understanding historical consumptive use of surface and groundwater. In addition, long histories of ET maps provide valuable training information for predictive studies of surface and groundwater demands. During times of drought, groundwater is commonly pumped to supplement reduced surface water supplies in the Central Valley. Due to the lack of extensive groundwater pumping records, mapping consumptive use using satellite imagery is an efficient and robust way for estimating agricultural consumptive use and assessing drought impacts. To this end, we have developed and implemented an algorithm for automated calibration of the METRIC remotely sensed surface energy balance model on NASA's Earth Exchange (NEX) to estimate ET at the field scale. Using automated calibration techniques on the NEX has allowed for the creation of spatially explicit historical ET estimates for the Landsat archive dating from 1984 to the near present. Further, our use of spatial NLDAS and CIMIS weather data, and spatial soil water balance simulations within the NEX METRIC workflow, has helped overcome challenges of time integration between satellite image dates. This historical and near present time archive of agricultural water consumption for the Central Valley will be an extremely useful dataset for water use and drought impact reporting, and predictive analyses of groundwater demands.

  18. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    Science.gov (United States)

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  19. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  20. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  1. Data for projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    he Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there.  Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats.  Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial.  Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework.  Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario.  Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time.  After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years.  The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats.  This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning.  Results indicate that increased wetland

  2. Holocene Evolution of two Upwelling Systems - Offshore Northern California and the Central Gulf of California

    Science.gov (United States)

    Barron, J. A.; Bischoff, J. L.; Bukry, D.; Heusser, L.; Herbert, T. D.; Lyle, M.

    2002-12-01

    High resolution records from offshore northern California \\(ODP 1019\\) and the central Gulf of California \\(DSDP 480 and BAM80 E17\\) reveal both similarities and differences in the Holocene evolution of these upwelling systems. Common themes include: 1\\ ) an earlier Holocene period \\(11.6-8.2 ka\\) with relatively high calcium carbonate deposition, probably reflecting a maximum in summer insolation; 2\\ ) increasing diatom deposition during the middle and late Holocene, likely signaling an intensification of seasonal northwest winds; and 3\\ ) the onset of modern oceanic conditions between 3.5 and 3.2 ka, possibly associated with the expression of increasing ENSO variability. At ODP 1019 off northern California, cooler alkenone-based SST's and the rarity of the subtropical-diatom Pseudoeunotia doliolus suggest that the California Current was rather broad during the middle part of the Holocene \\(ca. 8.2-3.2 ka\\), perhaps similar to the conditions that exist during a modern La Niña. Decreasing wt. % CaCO3 relatively low, but increasing wt. % organic C, and low to moderate estimated opal content typify this middle Holocene interval. Beginning at 5.2 ka, increasing coastal redwood pollen is evidence that coastal fog and coastal upwelling were becoming more important. Subsequently, at ca. 3.5 ka, a doubling of estimated opal coupled with increased coastal redwood pollen suggests a further enhancement of seasonal coastal upwelling. At about the same time \\(ca. 3.2 ka\\), a sustained ca. 1 deg. C increase in alkenone SST and 3-fold increase in P. doliolus imply warming of fall and winter SST's. An enhancement of the interannual variability of surface water conditions at this time is probably associated with an increasing expression of ENSO variability. In the central Gulf of California between ca. 11.0 and 8.2 ka, biosilica production was generally low compared to that of the latest Holocene, suggesting that wintertime NW winds were relatively weak. Stepwise

  3. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California.

    Science.gov (United States)

    Larsen, Ashley E; Gaines, Steven D; Deschênes, Olivier

    2017-08-29

    Virtually all agricultural communities worldwide are exposed to agricultural pesticides. Yet, the health consequences of such exposure are poorly understood, and the scientific literature remains ambiguous. Using individual birth and demographic characteristics for over 500 000 birth observations between 1997-2011 in the agriculturally dominated San Joaquin Valley, California, we statistically investigate if residential agricultural pesticide exposure during gestation, by trimester, and by toxicity influences birth weight, gestational length, or birth abnormalities. Overall, our analysis indicates that agricultural pesticide exposure increases adverse birth outcomes by 5-9%, but only among the population exposed to very high quantities of pesticides (e.g., top 5th percentile, i.e., ~4200 kg applied over gestation). Thus, policies and interventions targeting the extreme right tail of the pesticide distribution near human habitation could largely eliminate the adverse birth outcomes associated with agricultural pesticide exposure documented in this study.The health consequences of exposure to pesticides are uncertain and subject to much debate. Here, the effect of exposure during pregnancy is investigated in an agriculturally dominated residential area, showing that an increase in adverse birth outcomes is observed with very high levels of pesticide exposure.

  4. Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California

    Science.gov (United States)

    Kierein-Young, K. S.; Kruse, F. A.

    1992-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.

  5. Geohydrology and mathematical simulation of the Pajaro Valley aquifer system, Santa Cruz and Monterey counties, California

    Science.gov (United States)

    Johnson, M.J.; Londquist, C.J.; Laudon, Julie; Mitten, H.T.

    1988-01-01

    Groundwater development has resulted in lowered water levels and seawater intrusion in the Pajaro Valley, California. An investigation was undertaken to describe the geohydrology of the groundwater flow system and to evaluate the response of the system to pumping stresses by using a mathematical model. The aquifer system consists of three aquifers. The lower aquifer is in fluvial sequences of Quaternary Aromas Sand below interbedded clay layers. The middle aquifer is in upper fluvial and lower eolian sequence of Aromas Sand, and in overlying basal gravels in terrace deposits and alluvium. Weathered soil zones in the Aromas Sand, and clay layers in the terrace deposits and alluvium overlie the middle aquifer. The upper aquifer is actually many discontinuous water bearing zones in the Aromas Sand, terrace deposits, alluvium, and dune sand. The three aquifers are represented in the mathematical model by three model layers separated by two confining layers. Model-generated water budgets for the 11-year simulation period show that storage decreased by 23,000 acre-ft, mostly during the 1976-77 drought. The calibrated model can simulate, with acceptable accuracy, both semiannual and long-term trends of potentiometric heads in parts of the lower and middle layers. (USGS)

  6. Accessibility benchmarks: interpretive programs and services in north central California

    Science.gov (United States)

    Laura J. McLachlin; Emilyn A. Sheffield; Donald A. Penland; Charles W. Nelson

    1995-01-01

    The Heritage Corridors Project was a unique partnership between the California Department of Parks and Recreation, the California State University, and the Across California Conservancy. The purpose of the project was to develop a map of selected northern California outdoor recreation and heritage sites. Data about facility accessibility improvements (restrooms, clear...

  7. Geologic position of the Younger Dryas subfossil forest in the Warta River valley, central Poland

    Directory of Open Access Journals (Sweden)

    Danuta Dzieduszynska

    2012-07-01

    Full Text Available Numerous tree trunks are present in the Late Weichselian deposits on the low terrace of the Warta river valley, in central Poland. This study concerns the well preserved tree remnants as well as accompanying depositional series and their sedimentaryenvironments in relation to the geological position. The depositional sequence presented covers periods from the Middle Weichselian onwards. The riparian forest dates at the Younger Dryas. Environmental changes connected with rapid cooling were responsiblefor its destruction.

  8. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG&E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it`s new marketing plan.

  9. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    metamorphosed to some degree, thus rock types and their relationships vary over distance. Quaternary-age sediment and basalt compose the primary source of groundwater in the Wood River Valley aquifer system. These Quaternary deposits can be divided into three units: a coarse-grained sand and gravel unit, a fine-grained silt and clay unit, and a single basalt unit. The fine- and coarse-grained units were primarily deposited as alluvium derived from glaciation in the surrounding mountains and upper reaches of tributary canyons. The basalt unit is found in the southeastern Bellevue fan area and is composed of two flows of different ages. Most of the groundwater produced from the Wood River Valley aquifer system is from the coarse-grained deposits. The altitude of the pre-Quaternary bedrock surface in the Wood River Valley was compiled from about 1,000 well-driller reports for boreholes drilled to bedrock and about 70 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient-noise measurements. The bedrock surface generally mimics the land surface by decreasing down tributary canyons and the main valley from north to south; it ranges from more than 6,700 feet in Baker Creek to less than 4,600 feet in the central Bellevue fan. Most of the south-central portion of the Bellevue fan is underlain by an apparent topographically closed area on the bedrock surface that appears to drain to the southwest towards Stanton Crossing. Quaternary sediment thickness ranges from less than a foot on main and tributary valley margins to about 350 feet in the central Bellevue fan. Hydraulic conductivity for 81 wells in the study area was estimated from well-performance tests reported on well-driller reports. Estimated hydraulic conductivity for 79 wells completed in alluvium ranges from 1,900 feet per day (ft/d) along Warm Springs Creek to less than 1 ft/d in upper Croy Canyon. A well completed in bedrock had an estimated hydraulic conductivity value of 10 ft/d, one well completed in basalt had a value of

  10. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  11. 78 FR 45114 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-07-26

    ... proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) portion of... Rule 431.1 was actually for the South Coast Air Quality Management District (SCAQMD). The Antelope... Antelope Valley amended or rescinded the rule. On January 1, 2002, Antelope Valley Air Quality Management...

  12. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    Science.gov (United States)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source

  13. Fourteen years of forage monitoring on the California Central Coast shows tremendous variation

    Science.gov (United States)

    Royce Larsen; Karl Striby; Marc Horney

    2015-01-01

    To better understand forage production (above ground biomass) and precipitation patterns in the Central Coast region of California, the first in a growing network of primary production monitoring sites were established in 2001. The California Central Coast has a Mediterranean climate with cool, moist winters and hot, dry summers, and is dominated by annual grasslands...

  14. Monthly urban (municipal and industrial use) pumpage for the Central Valley Hydrologic Model (CVHM) by Water Balance Subregion (WBS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly urban (municipal and industrial use) pumpage for the Central Valley Hydrologic Model (CVHM) by Water Balance Subregion...

  15. Irrigated Agricultural Lands and Other Anthropogenic Land Disturbance in the Diamond Valley Flow System, Central Nevada, 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  16. Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  17. Contours of Corcoran Clay Thickness in feet by Page (1986) for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the thickness of the Corcoran Clay Member of the Tulare Formation. The complex hydrologic system of the Central Valley is simulated...

  18. Contours of Corcoran Clay Depth in feet from Page (1986) for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the depth of the Corcoran Clay Member of the Tulare Formation. The complex hydrologic system of the Central Valley is simulated using...

  19. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA

    Science.gov (United States)

    Manning, Andrew H.; Mills, Christopher T.; Morrison, Jean M.; Ball, Lyndsay B.

    2015-01-01

    Environmental tracers are useful for determining groundwater age and recharge source, yet their application in studies of geogenic Cr(VI) in groundwater has been limited. Environmental tracer data from 166 wells located in the Sacramento Valley, northern California, were interpreted and compared to Cr concentrations to determine the origin and age of groundwater with elevated Cr(VI), and better understand where Cr(VI) becomes mobilized and how it evolves along flowpaths. In addition to major ion and trace element concentrations, the dataset includes δ18O, δ2H, 3H concentration, 14C activity (of dissolved inorganic C), δ13C, 3He/4He ratio, and noble gas concentrations (He, Ne, Ar, Kr, Xe). Noble gas recharge temperatures (NGTs) were computed, and age-related tracers were interpreted in combination to constrain the age distribution in samples and sort them into six different age categories spanning from 10,000 yr old. Nearly all measured Cr is in the form of Cr(IV). Concentrations range from 3 mg L−1), and commonly have δ18O values enriched relative to local precipitation. These samples likely contain irrigation water and are elevated due to accelerated mobilization of Cr(VI) in the unsaturated zone (UZ) in irrigated areas. Group 2 samples are from throughout the valley and typically contain water 1000–10,000 yr old, have δ18O values consistent with local precipitation, and have unexpectedly warm NGTs. Chromium(VI) concentrations in Group 2 samples may be elevated for multiple reasons, but the hypothesis most consistent with all available data (notably, the warm NGTs) is a relatively long UZ residence time due to recharge through a deep UZ near the margin of the basin. A possible explanation for why Cr(VI) may be primarily mobilized in the UZ rather than farther along flowpaths in the oxic portion of the saturated zone is more dynamic cycling of Mn in the UZ due to transient moisture and redox conditions.

  20. Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California

    Science.gov (United States)

    Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.

    2016-12-01

    Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low

  1. Sacramento River Flood Control Project, California, Mid-Valley Area, Phase III. Design Memorandum, Volume 2 of 2

    Science.gov (United States)

    1995-08-01

    Passer domesticus Western meadowlark Sturnella neglecta Yellow-headed blackbird Xanthocephalus xanthocephalus Red-winged blackbird Agelaius phoeniceus Tri...of the Central Valley salmon population spawns in this system (USFWS 1990). Four genetically distinct species of chinooks presently use the river

  2. High-resolution seismic reflection/refraction imaging from Interstate 10 to Cherry Valley Boulevard, Cherry Valley, Riverside County, California: implications for water resources and earthquake hazards

    Science.gov (United States)

    Gandhok, G.; Catchings, R.D.; Goldman, M.R.; Horta, E.; Rymer, M.J.; Martin, P.; Christensen, A.

    1999-01-01

    This report is the second of two reports on seismic imaging investigations conducted by the U.S. Geological Survey (USGS) during the summers of 1997 and 1998 in the Cherry Valley area in California (Figure 1a). In the first report (Catchings et al., 1999), data and interpretations were presented for four seismic imaging profiles (CV-1, CV-2, CV-3, and CV-4) acquired during the summer of 1997 . In this report, we present data and interpretations for three additional profiles (CV-5, CV-6, and CV-7) acquired during the summer of 1998 and the combined seismic images for all seven profiles. This report addresses both groundwater resources and earthquake hazards in the San Gorgonio Pass area because the shallow (upper few hundred meters) subsurface stratigraphy and structure affect both issues. The cities of Cherry Valley and Beaumont are located approximately 130 km (~80 miles) east of Los Angeles, California along the southern alluvial fan of the San Bernardino Mountains (see Figure 1b). These cities are two of several small cities that are located within San Gorgonio Pass, a lower-lying area between the San Bernardino and the San Jacinto Mountains. Cherry Valley and Beaumont are desert cities with summer daytime temperatures often well above 100 o F. High water usage in the arid climate taxes the available groundwater supply in the region, increasing the need for efficient management of the groundwater resources. The USGS and the San Gorgonio Water District (SGWD) work cooperatively to evaluate the quantity and quality of groundwater supply in the San Gorgonio Pass region. To better manage the water supplies within the District during wet and dry periods, the SGWD sought to develop a groundwater recharge program, whereby, excess water would be stored in underground aquifers during wet periods (principally winter months) and retrieved during dry periods (principally summer months). The SGWD preferred a surface recharge approach because it could be less expensive than a

  3. Southern and Central California Chaparral and Oak Woodlands Ecoregion: Chapter 19 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Napton, Darrell E.

    2012-01-01

    The Southern and Central California Chaparral and Oak Woodlands Ecoregion, which covers approximately 102,110 km2 (39,425 mi2), is characterized by a Mediterranean climate with cool, moist winters and hot, dry summers (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Natural vegetation includes chaparral (for example, manzanita, Arctostaphylos spp.) and oak (Quercus spp.) woodlands with extensive grassland and shrubland cover. The low mountains and foothills of the ecoregion border or parallel the Pacific Ocean from Mexico to Point Reyes, California, and continue inland surrounding the Central California Valley Ecoregion (fig. 1). These mountains and hills are interrupted by limited areas of flat land generally used for development or agriculture. The largest developed area in the ecoregion is the Los Angeles Basin, followed by the San Francisco Bay area and the San Diego metropolitan area (fig. 1). The largest agricultural area is the Salinas River valley south of Monterey, California. Most of the ecoregion consists of rangelands classified as grassland/ shrubland and forest land covers (figs. 1,2).

  4. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    Science.gov (United States)

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, P.D.

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  5. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    Science.gov (United States)

    Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.

    2013-01-01

    Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.

  6. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California.

    Science.gov (United States)

    Burow, Karen R; Shelton, Jennifer L; Dubrovsky, Neil M

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices.

  7. Social disparities in nitrate-contaminated drinking water in California's San Joaquin Valley.

    Science.gov (United States)

    Balazs, Carolina; Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-09-01

    Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. We hypothesized that CWSs in California's San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. We used water quality monitoring data sets (1999-2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS's estimated NO3 concentration [95% confidence interval (CI), -0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, -0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03-0.84) and a decrease of 0.15 mg NO3/L (95% CI, -0.64 to 0.33), respectively. Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality.

  8. Determinants of field edge habitat restoration on farms in California's Sacramento Valley.

    Science.gov (United States)

    Garbach, Kelly; Long, Rachael Freeman

    2017-03-15

    Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California

    Science.gov (United States)

    D'Arcy, Mitch; Roda-Boluda, Duna C.; Whittaker, Alexander C.

    2017-08-01

    It is hotly debated whether and how climate changes are recorded by terrestrial stratigraphy. Basin sediments produced by catchment-alluvial fan systems may record past climate over a variety of timescales, and could offer unique information about how climate controls sedimentation. Unfortunately, there are fundamental uncertainties about how climatic variables such as rainfall and temperature translate into sedimentological signals. Here, we examine 35 debris flow fan surfaces in Owens Valley, California, that record deposition throughout the past 125,000 years, during which climate has varied significantly. We show that the last full glacial-interglacial cycle is recorded with high fidelity by the grain size distributions of the debris flow deposits. These flows transported finer sediment during the cooler glacial climate, and became systematically coarser-grained as the climate warmed and dried. We explore the physical mechanisms that might explain this signal, and rule out changes in sediment supply through time. Instead, we propose that grain size records past changes in storm intensity, which is responsible for debris flow initiation in this area and is decoupled from average rainfall rates. This is supported by an exponential Clausius-Clapeyron-style scaling between grain size and temperature, and also reconciles with climate dynamics and the initiation of debris flows. The fact that these alluvial fans exhibit a strong, sustained sensitivity to orbital climate changes sheds new light on how eroding landscapes and their sedimentary products respond to climatic forcing. Finally, our findings highlight the importance of threshold-controlled events, such as storms and debris flows, in driving erosion and sedimentation at the Earth's surface in response to climate change.

  10. Integration of subsidence, deformation, and groundwater-level measurements to characterize land subsidence in the San Joaquin Valley, California, USA

    Science.gov (United States)

    Sneed, M.; Solt, M.; Brandt, J.

    2012-12-01

    Extensive groundwater withdrawal from unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 meters (m) from 1926 to 1970. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of compaction in some areas. However, reduced surface-water availability during droughts (1976-77, 1987-92, and 2007-09) caused increased pumping, water-level declines, and renewed compaction. Land subsidence resulting from this compaction has reduced freeboard and flow capacity of the Delta-Mendota Canal (DMC), the California Aqueduct, and other canals that deliver irrigation water and transport floodwater. The location and magnitude of vertical land-surface changes during 2006-11 in the northwestern and central San Joaquin Valley were determined using Interferometric Synthetic Aperture Radar (InSAR), Global Positioning System (GPS), and extensometer techniques. Results of the InSAR analysis indicate that a 3,200 square-kilometer area, including parts of the DMC, the San Joaquin River, and the Eastside Bypass, was affected by at least 20 millimeters (mm) of subsidence during 2008-10. Within that area, InSAR analysis also indicates a localized maximum subsidence of at least 540 mm. Furthermore, InSAR results for 2006-10 indicate that subsidence rates doubled around 2008. GPS surveys in 2008 and 2010 confirm the high rates of subsidence measured using InSAR; GPS surveys in late 2011 indicate that these high rates continued through the next year. A comparison of data from extensometers (anchored near the top of the Corcoran Clay) and a continuous GPS station near Mendota indicates that most of the aquifer-system compaction occurred below the top of the Corcoran Clay (CC). The lack of correlation between continuous GPS data near Los Banos, which show subsidence, and water levels from nearby wells screened above the CC, which show

  11. Cone penetration tests and soil borings at the Mason Road site in Green Valley, Solano County, California

    Science.gov (United States)

    Bennett, Michael J.; Noce, Thomas E.; Lienkaemper, James J.

    2011-01-01

    In support of a study to investigate the history of the Green Valley Fault, 13 cone penetration test soundings and 3 auger borings were made at the Mason Road site in Green Valley, Solano County, California. Three borings were made at or near two of the cone penetration test soundings. The soils are mostly clayey with a few sandy layers or lenses. Fine-grained soils range from low plasticity sandy lean clay to very plastic fat clay. Lack of stratigraphic correlation in the subsurface prevented us from determining whether any channels had been offset at this site. Because the soils are generally very clayey and few sand layers or lenses are loose, the liquefaction potential at the site is very low.

  12. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.

    Science.gov (United States)

    Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L

    2015-06-01

    Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics.

  13. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8

  14. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  15. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley

  16. Residential Pesticide Usage in Older Adults Residing in Central California

    Directory of Open Access Journals (Sweden)

    Beate Ritz

    2011-07-01

    Full Text Available Information on residential pesticide usage and behaviors that may influence pesticide exposure was collected in three population-based studies of older adults residing in the three Central California counties of Fresno, Kern, and Tulare. We present data from participants in the Study of Use of Products and Exposure Related Behaviors (SUPERB study (N = 153 and from community controls ascertained in two Parkinson’s disease studies, the Parkinson’s Environment and Gene (PEG study (N = 359 and The Center for Gene-Environment Studies in Parkinson’s Disease (CGEP; N = 297. All participants were interviewed by telephone to obtain information on recent and lifetime indoor and outdoor residential pesticide use. Interviews ascertained type of product used, frequency of use, and behaviors that may influence exposure to pesticides during and after application. Well over half of all participants reported ever using indoor and outdoor pesticides; yet frequency of pesticide use was relatively low, and appeared to increase slightly with age. Few participants engaged in behaviors to protect themselves or family members and limit exposure to pesticides during and after treatment, such as ventilating and cleaning treated areas, or using protective equipment during application. Our findings on frequency of use over lifetime and exposure related behaviors will inform future efforts to develop population pesticide exposure models and risk assessment.

  17. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression

    Directory of Open Access Journals (Sweden)

    Anil Shrestha

    2017-09-01

    Full Text Available Groundwater nitrate contamination in the Central Valley (CV aquifer of California is a ubiquitous groundwater problem found in various parts of the valley. Heavy irrigation and application of fertilizer over the last several decades have caused groundwater nitrate contamination in several domestic, public and monitoring wells in the CV above EPA’s Maximum Contamination level of 10 mg/L. Source variables, aquifer susceptibility and geochemical variables could affect the contamination rate and groundwater quality in the aquifer. A comparative study was conducted using Geodetector (GED, Principal Component Analysis (PCA and Geographically Weighted Regression (GWR to observe which method is most effective at revealing environmental variables that control groundwater nitrate concentration. The GED method detected precipitation, fertilizer, elevation, manure and clay as statistically significant variables. Watersheds with percent of wells above 5 mg/L of nitrate were higher in San Joaquin and Tulare Basin compared to Sacramento Valley. PCA grouped cropland, fertilizer, manure and precipitation as a first principal component, suggesting similar construct of these variables and existence of data redundancy. The GWR model performed better than the OLS model, with lower corrected Akaike Information Criterion (AIC values, and captured the spatial heterogeneity of fertilizer, precipitation and elevation for the percent of wells above 5 mg/L in the CV. Overall, the GED method was more effective than the PCA and GWR methods in determining the influence of explanatory variables on groundwater nitrate contamination.

  18. 76 FR 26609 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-05-09

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Valley Unified Air Pollution Control District (No. 08-17309)] to overturn a District Court ruling that...

  19. 76 FR 45212 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-07-28

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: In this action, we are proposing to approve San Joaquin Valley Unified Air Pollution Control... the environment. San Joaquin Valley Unified Air Pollution Control District SJVUAPCD is an extreme...

  20. Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia

    Science.gov (United States)

    Muluneh, Alemayehu; Bewket, Woldeamlak; Keesstra, Saskia; Stroosnijder, Leo

    2017-05-01

    Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970-2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March-May) and Kiremt (June-September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7-35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.

  1. Search for geothermal seismic noise in the East Mesa area, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, H.M.

    1974-07-01

    Seismic noise measurements were made in the East Mesa area of Imperial Valley, California, to find out if a noise anomaly was associated with the Mesa thermal anomaly. Thirty-three locations were occupied in the area using slow-speed tape-recording seismic systems. One of the stations (CEN) was operated close to where a geothermal test well was subsequently drilled by the U. S. Bureau of Reclamation. Several sources of cultural noise are present in the area. Large fluctuations in noise level, superposed on a constant high level of noise, occur from traffic on a freeway to the south of the region. There is noise generated by canals to the west and south and agricultural activity to the west of the region. Noise at 2.5 Hz frequency generated by a small waterfall (power drop) on the All American Canal propagates as far as 10 km. Average noise levels were computed at each station using several quiet samples selected from 4-hour sections of data recorded at night and contoured. Spatial distribution of 2 to 3 Hz noise shows noise radiating from the power drop. Noise in 0 to 2, 3 to 5, and 5 to 10 Hz bands show high levels extending along the freeway to the south and East High Line Canal to the west of the area. The Mesa thermal anomaly is centered about 2.5 km from the freeway and canal and does not seem to have any anomalous noise amplitudes associated with it. Additional results using data from two arrays of closely-spaced instruments extending from the freeway to the Mesa thermal anomaly also show no indications of high noise levels over the anomaly. This conclusion differs from the results of two previous surveys in the area (Douze and Sorrells, 1972; Geothermal Staff of Teledyne-Geotech, 1972) which show well defined noise anomalies in the 0 to 2, and 3 to 5 Hz frequency bands. A search was also made for anomalous features in noise spectra and for coherent wave trains indicating the presence of discrete sources of noise.

  2. Using Laser Altimetry to Detect Topographic Change in Long Valley Caldera, California

    Science.gov (United States)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.

    1997-01-01

    Long Valley caldera California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of about 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and about 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera, and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about I cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data indicates uplift

  3. Using Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    Science.gov (United States)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.; Williams, N. P.

    1997-01-01

    Long Valley caldera, California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of approximately 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and approximately 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about 1 cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data

  4. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  5. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  6. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  7. 77 FR 10598 - BIOTECH Holdings Ltd., California Oil & Gas Corp., Central Minera Corp., Chemokine Therapeutics...

    Science.gov (United States)

    2012-02-22

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION BIOTECH Holdings Ltd., California Oil & Gas Corp., Central Minera Corp., Chemokine Therapeutics... current and accurate information concerning the securities of California Oil & Gas Corp. because it has...

  8. Quantitative investigations of geologic surfaces utilizing airborne visible/infrared imaging spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data for Death Valley, California

    Science.gov (United States)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data were collected over Death Valley, California, USA, in September 1989. These two data sets were used to quantitatively characterize both the mineralogy and surface structure of the valley floor. Field mapping and characterization of the salt flats across the valley identified 16 separate units. The AVIRIS data were calibrated using the 'empirical line' method, and spectra extracted for the 16 units. A water vapor map was generated from the AVIRIS data and showed spatial variations in its distribution due to evaporation of surface water. Unmixing of the 16 spectral units produced maps of endmember abundance.

  9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for amphibians and reptiles in Central California. Vector polygons in this data set represent sea turtle...

  10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for alcids, diving birds, gulls, terns, pelagic birds, and shorebirds in Central California. Vector points...

  11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for benthic habitats in Central California. Vector polygons in this data set represent kelp and eelgrass...

  12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish and rare fish species occurrences in Central California. Vector lines in this data set...

  13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: ALERTS (Vulnerable Resource Location Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector points representing locations in Central California that should be highlighted for protection due to the presence of certain highly...

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Central California. Vector polygons in this data set...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: SOCECON (Socioeconomic Resource Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains socioeconomic resource data for the following types of locations in Central California: access, airport, aquaculture, beach, boat ramp, USCG...

  16. Physical, Nutrient, and Biological Measurements of Coastal Waters off Central California in November 2007

    National Research Council Canada - National Science Library

    Rago, Thomas A; Michisaki, Reiko; Marinovic, Baldo; Blum, Marguerite; Whitaker, Katherine

    2008-01-01

    The results of analyses of hydrographic, nutrient, and biological data collected in coastal ocean waters off Central California in November 2007 aboard the NOAA Ship David Starr Jordan are presented...

  17. [Ethnic conflicts and environmental degradation in Central Asia. The Ferghana valley and northern Kazakhstan].

    Science.gov (United States)

    De Cordier, B

    1996-01-01

    This work seeks to demonstrate that the combination of ecological degradation, demographic pressure, and ethnic heterogeneity in Central Asia constitute a serious threat to the future stability of the region. The predominantly rural Ferghana Valley and Northern Kazakhstan suffer from shortages of water and land and from unemployment that leads to extensive out-migration to cities suffering from decline in their Soviet-era industries. The problem in the Ferghana Valley began with Tsarist conquest of the valley in 1876 and the subsequent imposition of cotton cultivation, which was greatly expanded by the Soviet Union. The Ferghana Valley, despite being a natural unit, was divided between Uzbekistan, Tajikistan, and Kyrgyzstan in the 1920s and 1930s, and remains divided between the independent states. The current population of 11 million is ethnically diverse, with Uzbeks in the majority and increasing most rapidly. Immigration from the Caucasus since 1950 added to the tension. Future peace will depend on such factors as whether the neo-Communist political regime chooses to incite ethnic hostilities, the manner in which land is redistributed, and the outcome of struggles for control of the flourishing narcotics trade. The northern Kazakhstan region was designated a pioneer wheat-growing region by Soviet planners in 1954. Russian and Ukrainian migrants established between 1954 and 1956 are today the predominant population sector, but feel their privileged position threatened by nationalist policies making Kazakh the official language and giving preference in employment to Kazakhs. Resettlement of Kazakhs from Mongolia, China, and Afghanistan in the region and the high Kazakh birth rate increase tensions. Grain production initially grew rapidly, but the mediocre soil and erosion-inducing constant dry winds have caused production to stagnate or decline. Regional disputes within Kazakhstan complicate the situation. Northern Kazakhstan, with its industrial development, is

  18. 76 FR 30002 - Establishment of the Antelope Valley of the California High Desert Viticultural Area

    Science.gov (United States)

    2011-05-24

    ... the Antelope Valley region, the rocks generally date to the Cretaceous Period (65 to 136 million years ago), the Jurassic Period (136 to 190 million years ago), and the Triassic Period (190 to 225 million...

  19. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  20. 75 FR 24408 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-05-05

    ... authority to address, as appropriate, disproportionate human health or environmental effects, using... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control...

  1. 76 FR 33181 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-06-08

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve a revision to the San Joaquin Valley Unified Air Pollution Control..., Air pollution control, Intergovernmental relations, Ozone, Reporting and recordkeeping requirements...

  2. 75 FR 2796 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Science.gov (United States)

    2010-01-19

    ... Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District portion..., large appliances, metal furniture, motor vehicles, mobile equipment, cans, coils, organic solvent...

  3. 76 FR 67369 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-11-01

    ... Pollution Control District and Imperial County Air Pollution Control District AGENCY: Environmental... Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) and Imperial County Air Pollution Control... Motor Vehicle Assembly, Metal Parts and Products, Plastic Parts and Products and Pleasure Crafts...

  4. 76 FR 47076 - Revision to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-08-04

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of a revision to the San Joaquin Valley Unified Air Pollution Control... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  5. 77 FR 71109 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-11-29

    ... Air Pollution Control District (SJVUAPCD) AGENCY: Environmental Protection Agency (EPA). ACTION: Final...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control... Joaquin Valley Unified Air Pollution Control District (SJVUAPCD). (1) The following specified portions of...

  6. 76 FR 69135 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-11-08

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  7. 76 FR 68106 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-11-03

    ... Unified Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  8. 77 FR 25384 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-04-30

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... Environmental protection, Air pollution control, Intergovernmental relations, Ozone, Reporting and recordkeeping...

  9. 76 FR 70886 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-11-16

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  10. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  11. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  12. Root Zone Microbial Communities and Restoration of Plant Communities in Owens Valley, California - Phase 1

    National Research Council Canada - National Science Library

    Fredrickson, Herbert; Furey, John; Price, David; Foote, Chris; Richmond, Margaret

    2007-01-01

    .... These interrelationships depend on soil characteristics affecting the microbial communities. This study was designed to provide survey information on microbial communities in soils from native and disturbed areas at ten locations spanning Owens Valley...

  13. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  14. Modified soil adjusted vegetation index for the Death Valley regional flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based Modified Soil Adjusted Vegetation Index was derived from Landsat Thematic Mapper imagery data acquired during June 1992 for the Death Valley...

  15. Evaluating the Feasibility of Using Produced Water from Oil and Natural Gas Production to Address Water Scarcity in California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Measrainsey Meng

    2016-12-01

    Full Text Available The current California drought has reduced freshwater availability, creating tensions between water users across the state. Although over 518 million m 3 of water were produced during fossil fuel production in California in 2014, the majority was disposed into Class II injection wells. There have been few attempts to assess the feasibility of using produced water for beneficial purposes, due in part to the difficulties of accessing, synthesizing and analyzing data regarding produced water quality and quantity. This study addresses this gap and provides a techno-economic assessment of upgrading produced water from California’s oil and natural gas activities and moving it to adjacent water-stressed regions. Results indicate that the four population centers facing the greatest water shortage risk are located in the Central Valley within a 161 km (100 mile radius of 230 million m 3 of total treatable produced water. This volume can supply up to one million people-years worth of potable water. The cost of desalinating and transporting this water source is comparable in magnitude to some agricultural and local public water supplies and is substantially lower than bottled water. Thus, utilizing reverse osmosis to treat produced water might be a feasible solution to help relieve water scarcity in some drought-stricken regions of California.

  16. Environmental Variability and Fluctuation of Coccidioidomycosis (Valley Fever) In California: Based on a New Framework Involving Fungal Life Cycle

    Science.gov (United States)

    Jia, S.; Okin, G. S.; Shafir, S. C.

    2013-12-01

    Coccidioidomycosis (valley fever), caused by inhalation of spores from pathogenic fungus includingCoccidiodes immitis (C. immitis) and Coccidioides posadasii (C. posadasii), is a disease endemic to arid regions in the southwest US, as well as parts of Central and South America. With a projected increase of drought in this region, an improved understanding of environmental factors behind the outbreaks of coccidioidomycosis will enable the prediction of coccidioidomycosis in a changing climate regime. Previous research shows the infections correlate with climate conditions including precipitation, temperature, and dust. However, most studies focus only on the environmental conditions of fungus growth, which is the first stage in the fungal life cycle. In contrast, we extend the analysis to the following two stages in the life cycle, arthrospore formation and dispersal, to form a better model to predict the disease outbreaks. Besides climate conditions, we use relative spectral mixture analysis (RSMA) based on MODIS MOD43 nadir BRDF adjusted reflectance (NBAR) data to derive the relative dynamics of green vegetation, non-photosynthetic vegetation and bare soil coverage as better indicators of soil moisture, which is important for arthospore formation and dispersal. After detecting the hotspots of disease outbreaks, we correlate seasonal incidence from 2000 to 2010 with the environmental variables zero to eight seasons before to obtain candidates for stepwise regression. Regression result shows a seasonal difference in the leading explanatory variables. Such difference indicates the different seasonal main influential process from fungal life cycle. C. immitis (fungus responsible for coccidioidomycosis outbreaks in California) growth explains outbreaks in winter and fall better than other two stages in the life cycle, while arthospore formation is more responsible for spring and summer outbreaks. As the driest season, summer has the largest area related with arthospore

  17. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  18. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    Science.gov (United States)

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  19. Physical measurements including temperature profiles of coastal Waters off Central California in October 2006 (NODC Accession 0019214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical measurements of Coastal Waters off Central California in October 2006. Naval Postgraduate School, Monterey, California, Technical Report NPS-OC-07-002. This...

  20. Jurassic and Cretaceous Hagiastridae from the Blake-Bahama Basin /Site 5A, JOIDES Leg I/ and the Great Valley Sequence, California Coast Ranges.

    Science.gov (United States)

    Pessagno, E. A., Jr.

    1971-01-01

    Description of a total of 24 new species and four genuses of Jurassic and Cretaceous Hagiastridae found in the Great Valley Sequence of the California Coast Ranges. Also described are four new species from the late Jurassic strata of the Blake-Bahama Basin. Spumellariina with a spongy meshwork is included in the superfamily Spongodiscacea Haeckel.

  1. Nitrate and pesticides in ground water in the eastern San Joaquin Valley, California : occurrence and trends

    Science.gov (United States)

    Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.

    1998-01-01

    The occurrence of nitrate and pesticides in ground water in California's eastern San Joaquin Valley may be greatly influenced by the long history of intensive farming and irrigation and the generally permeable sediments. This study, which is part of the U.S. Geological Survey National Water-Quality Assessment Program, was done to assess the quality of the ground water and to do a preliminary evaluation of the temporal trends in nitrate and pesticides in the alluvial fans of the eastern San Joaquin Valley. Ground-water samples were collected from 30 domestic wells in 1995 (each well was sampled once during 1995). The results of the analyses of these samples were related to various physical and chemical factors in an attempt to understand the processes that control the occurrence and the concentrations of nitrate and pesticides. A preliminary evaluation of the temporal trends in the occurrence and the concentration of nitrate and pesticides was done by comparing the results of the analyses of the 1995 ground-water samples with the results of the analyses of the samples collected in 1986-87 as part of the U.S. Geological Survey Regional Aquifer-System Analysis Program. Nitrate concentrations (dissolved nitrate plus nitrite, as nitrogen) in ground water sampled in 1995 ranged from less than 0.05 to 34 milligrams per liter, with a median concentration of 4.6 milligrams per liter. Nitrate concentrations exceeded the maximum contaminant level of 10 milligrams per liter (as nitrogen) in 5 of the 30 ground-water samples (17 percent), whereas 12 of the 30 samples (40 percent) had nitrate concentrations less than 3.0 milligrams per liter. The high nitrate concentrations were associated with recently recharged, well-oxygenated ground water that has been affected by agriculture (indicated by the positive correlations between nitrate, dissolved-oxygen, tritium, and specific conductance). Twelve pesticides were detected in 21 of the 30 ground-water samples (70 percent) in 1995

  2. The ends of uncertainty: Air quality science and planning in Central California

    Energy Technology Data Exchange (ETDEWEB)

    Fine, James [Univ. of California, San Francisco, CA (United States)

    2003-09-01

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by their uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently

  3. Buried paleoindian-age landscapes in stream valleys of the central plains, USA

    Science.gov (United States)

    Mandel, R.D.

    2008-01-01

    A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal

  4. Tree-climate relations along an elevational transect in Manang Valley, central Nepal

    DEFF Research Database (Denmark)

    Kharal, Deepak Kumar; Thapa, Udya K.; St. George, Scott

    2017-01-01

    across the tree-ring series was relatively weak, which is typical for ring-width chronologies from the Himalayas. Even though these forests are located within a semi-arid climate, temperature had a stronger and more consistent influence on Abies growth than precipitation. All three chronologies across......Elevation is a strong determinant of local climate and may therefore be an important factor to consider when examining the association between climate and tree growth. In this study, we developed a set of tree-ring width records for Abies spectablis (D.Don Spach) in the Manang Valley of central...... Nepal Himalaya and tested how tree growth and the relationship between tree growth and climate varied across a 450-m elevation transect. The sampled trees had a median age of 115 years, and the oldest individual specimen, which was located at 3775 m, had more than 212 rings. The common signal shared...

  5. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  6. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2013-10-01

    Full Text Available Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27–29 June 2010, when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3% was larger than at the CARES urban site (13.4–15.7%, and the most aged samples from CARES contained fewer carbon–carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol

  7. 75 FR 6696 - Draft Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California

    Science.gov (United States)

    2010-02-10

    ... Fish and Wildlife Service Draft Recovery Plan for Tidal Marsh Ecosystems of Northern and Central... draft recovery plan for Tidal Marsh Ecosystems of Northern and Central California for public review and... Salt Marsh Harvest Mouse Recovery Plan. The plan also addresses several federally endangered plant...

  8. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    Science.gov (United States)

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    Damage to pavement and near-surface utility pipes, caused by the 17 October 1989, Loma Prieta earthquake, provides evidence for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California (USA). A total of 1427 damage sites, collected from more than 30 sources, are concentrated in four zones, three of which lie near previously mapped faults. In one of these zones, the channel lining of Los Gatos Creek, a 2-km-long concrete strip trending perpendicular to regional geologic structure, was broken by thrusts that were concentrated in two belts, each several tens of meters wide, separated by more than 300 m of relatively undeformed concrete.

  9. 77 FR 5709 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-02-06

    ... authority to address disproportionate human health or environmental effects with practical, appropriate, and... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control...

  10. 78 FR 6740 - Revisions to the California State Implementation Plan, San Joaquin Valley United Air Pollution...

    Science.gov (United States)

    2013-01-31

    ... not provide EPA with the discretionary authority to address disproportionate human health or... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley United Air Pollution Control...

  11. 76 FR 53640 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-08-29

    ... not provide EPA with the discretionary authority to address disproportionate human health or... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control...

  12. 76 FR 5276 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-01-31

    ... SJVUAPCD 4308 Boilers, Steam Generators 12/17/09 05/17/10 and Process Heaters--0.075 MMBtu/hr to less than... Joaquin Valley Unified Air Pollution Control District. (1) Rule 4308, ``Boilers, Steam Generators and... proposed in the Federal Register on August 2, 2010 and concern oxides of nitrogen (NO X ) from boilers...

  13. Subtropical Fruit Fly Invasions into Temperate Fruit Fly Territory in California's San Joaquin Valley

    Science.gov (United States)

    Subtropical fruit fly species including peach fruit fly, Bactrocera zonata (Saunders); melon fly, B. cucurbitae (Coquillett); oriental fruit fly, B. dorsalis (Hendel); and Mediterranean fruit fly, Ceratitis capitata Weidemann, have been detected in the past decade in the San Joaquin Valley of Califo...

  14. Appraisal of the water resources of Death Valley, California-Nevada

    Science.gov (United States)

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  15. 75 FR 57862 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-09-23

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by...

  16. 77 FR 35329 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-06-13

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental...

  17. 77 FR 50021 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-08-20

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: In this action, EPA is finalizing approval of San Joaquin Valley Unified Air Pollution Control... plans that are specifically tailored to the nature of the air pollution sources in each state. The Act...

  18. 77 FR 66429 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-11-05

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control.... EPA, January 2001. 9. ``Interim White Paper--Midwest RPO Candidate Control Measure: Glass...

  19. 76 FR 37044 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-06-24

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... Programs,'' US EPA, January 2001. 5. ``Interim White Paper--Midwest RPO Candidate Control Measure: Glass...

  20. 76 FR 76112 - Approval and Promulgation of Implementation Plans, State of California, San Joaquin Valley...

    Science.gov (United States)

    2011-12-06

    ... addition to resolving the deficiency, the District also added an exemption for wind machines, and a definition of ``wind machine,'' to Rule 2020. A wind machine consists of a large fan mounted on a tower and... usage varies naturally with the frequency and duration of cold spells in the San Joaquin Valley during...

  1. Crop intensification options and trade-offs with the water balance in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Debas, Mezegebu

    2016-01-01

    The Central Rift Valley (CRV) of Ethiopia is a closed basin for which claims on land and water have strongly increased over the past decade resulting in over-exploitation of the resources. A clear symptom is the declining trend in the water level of the terminal Lake Abyata. The actual productivity

  2. 76 FR 16818 - Central Valley Project Improvement Act, Standard Criteria for Ag and Urban Water Management Plans

    Science.gov (United States)

    2011-03-25

    ... Bureau of Reclamation Central Valley Project Improvement Act, Standard Criteria for Ag and Urban Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Standard Criteria for Agricultural and Urban Water Management Plans'' (Criteria) are now available for...

  3. Farmers' strategies to perceived trends of rainfall and crop productivity on the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Kessler, C.A.; Stroosnijder, L.

    2014-01-01

    Despite decades of international attention to find solutions for the annual food shortages in Ethiopia, the problem still persists. This study, carried out in the Central Rift Valley (CRV) of Ethiopia, focuses on farmers¿ strategies to counter yield failures and food shortages. It reveals that

  4. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid &apos

  5. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    Science.gov (United States)

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to harvested.We encourage waterfowl managers to implement a rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  6. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA

    Science.gov (United States)

    Morrison, Jean M.; Goldhaber, Martin B.; Mills, Christopher T.; Breit, George N.; Hooper, Robert L.; Holloway, JoAnn M.; Diehl, Sharon F.; Ranville, James F.

    2015-01-01

    A soil geochemical study in northern California was done to investigate the role that weathering and transport play in the regional distribution and mobility of geogenic Cr and Ni, which are both potentially toxic and carcinogenic. These elements are enriched in ultramafic rocks (primarily serpentinite) and the soils derived from them (1700–10,000 mg Cr per kg soil and 1300–3900 mg Ni per kg soil) in the Coast Range ophiolite. Chromium and Ni have been transported eastward from the Coast Range into the western Sacramento Valley and as a result, valley soil is enriched in Cr (80–1420 mg kg−1) and Ni (65–224 mg kg−1) compared to median values of U.S. soils of 50 and 15 mg kg−1, respectively. Nickel in ultramafic source rocks and soils is present in serpentine minerals (lizardite, antigorite, and chrysotile) and is more easily weathered compared to Cr, which primarily resides in highly refractory chromite ([Mg,Fe2+][Cr3+,Al,Fe3+]2O4). Although the majority of Cr and Ni in soils are in refractory chromite and serpentine minerals, the etching and dissolution of these minerals, presence of Cr- and Ni-enriched clay minerals and development of nanocrystalline Fe (hydr)oxides is evidence that a significant fractions of these elements have been transferred to potentially more labile phases.

  7. Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-26

    The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

  8. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  9. Water Quality and Supply Issues of Irrigated Agricultural Regions - Lessons from the San Joaquin Valley of California

    Science.gov (United States)

    Suen, C. J.; Wang, D.

    2014-12-01

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrigation water is mostly derived from the Sierra snow melt. On the west side, water is imported from the northern part of the state through the Sacramento Delta and a network of canals and aqueducts. Ground water is also used for both east and west sides of the valley to supplement surface water sources, especially during droughts. After years of intense irrigation, a number of water supply and water quality issues have emerged. They include groundwater overdraft, land subsidence, water contamination by agricultural drainage laden with selenium, salinity buildup in soil and water, nutrients contamination from fertilizers and livestock production, competition for water with megalopolis and environmental use and restoration. All these problems are intensified by the effect of climate change that has already taken place and other geological hazards, such as earthquakes that can bring the water supply system to a complete halt. In addition to scientific and technical considerations, solutions for these complex issues necessarily involve management planning, public policy and actions. Currently, they include furloughing marginally productive lands, groundwater recharge and banking, water reuse and recycle, salinity and nutrient management, integrated regional water management planning, and public education and outreach. New laws have been enacted to better monitor groundwater elevations, and new bond measures to improve storage, infrastructures, and reliability, have been placed on the public ballot. The presentation will discuss these complex water issues.

  10. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  11. Linking economic and integrated hydrologic models to investigate the effects of reduced surface water deliveries on the aquifers of California’s Central Valley

    Science.gov (United States)

    Brush, C. F.; Dale, L. L.; Miller, N. L.; Dogrul, E. C.; Kadir, T.; Vicuna, S. D.; Chung, F. I.

    2009-12-01

    Predicted global mean temperature increases will change the rates and timing of mountain-front discharges and thus the availability of surface water supplies for agricultural and urban water consumers. California’s water supply and distribution system collects runoff from the Sierra Nevada Mountain range in the northeastern and eastern part of the state, and routes this to agricultural and urban consumers in the central, western and southern parts of the state. The surface water collection and distribution system relies heavily on the storage of winter precipitation as snow in the Sierra Nevada Mountains, with moderately-sized reservoirs collecting and releasing melt-water through the spring and summer months. Higher elevations of the Sierra Nevada have already experienced a 0.60C rise and 10% reduction in snowpack, and continued warming may reduce snowpack volume by 25% by 2050, with further reductions likely as lower-elevation precipitation increasingly falls as rain. Snowpack reductions, environmental restrictions and recurring droughts may significantly constrain surface water supplies. Agricultural water users have historically increased groundwater pumping to replace surface water during droughts, and groundwater levels have recovered in subsequent years of higher precipitation (and recharge) and surface water flows. Central Valley aquifers could be significantly impacted if reduced snowpack leads to sustained increases in groundwater pumping. These impacts are being studied using the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) and the Central Valley Production Model (CVPM). Multiple CVPM runs were conducted to simulate crop acreage changes in response to surface water reductions and groundwater depth increases, and were then converted to logit function parameters. C2VSIM was used to simulate three future levels of drought (corresponding to 30%, 50% and 70% reductions in precipitation) for periods of 10, 20, 30 and 60 years

  12. Fluid-driven uplift at Long Valley Caldera, California: Geologic perspectives

    Science.gov (United States)

    Hildreth, Wes

    2017-07-01

    Since persistent seismicity began in the Sierra Nevada adjacent to Long Valley caldera in 1978-1980, intracaldera unrest has been marked by (1) episodes of uplift totaling 83 cm, centered on the middle Pleistocene resurgent dome, and (2) recurrent earthquake swarms along a 12-km-long segment of the caldera's ring-fault zone that is contiguous with both the dome and the Sierran seismogenic domain. Others have attributed the recent unrest to magmatic intrusion(s), but it is argued here that evidence for new magma is lacking and that ongoing uplift and ring-fault-zone seismicity are both promoted by ascent of aqueous fluid released by second boiling of the residue of the enormous Pleistocene rhyolitic reservoir terminally crystallizing at depths ≥ 10 km. For 2 Myr, eruptive vent clusters migrated southwestward from Glass Mountain to Mammoth Mountain. There has been no eruption on the resurgent dome since 500 ka, and since 230 ka volcanism has been restricted to the caldera's west moat and contiguous Sierran terrain, both outside the structural caldera. High-temperature hydrothermal activity in the central caldera waned after 300 ka, cooling the Pleistocene rhyolitic focus to the extent that drilling on the resurgent dome found mid-caldera temperature to be only 100 °C and isothermal at depths of 2-3 km. Beneath most of the resurgent dome, there is little seismicity at any depth, no emission of magmatic CO2 or other magmatic gases, no elevated 3He/4He ratios, and only normal to below-normal heat flow. Most of the 75-km-long ring-fault zone is likewise aseismic, excepting only the 12-km segment contiguous with the extracaldera seismogenic domain in the Sierra. Since 1980, the Sierran seismicity has released 3.6 times more cumulative seismic energy than have intracaldera earthquakes. The caldera seismicity is not driven by stresses associated with the adjacent uplift but, instead, by the extracaldera tectonic stressfield. Sierran seismicity activated the directly

  13. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    changes by region. In recent years, pumping depressions have developed southeast of Sonoma and southwest of El Verano. Water-chemistry data for samples collected from 75 wells during 2002-04 indicate that the ground-water quality in the study area generally is acceptable for potable use. The water from some wells, however, contains one or more constituents in excess of the recommended standards for drinking water. The chemical composition of water from creeks, springs, and wells sampled for major ions plot within three groups on a trilinear diagram: mixed-bicarbonate, sodium-mixed anion, and sodium-bicarbonate. An area of saline ground water in the southern part of the Sonoma Valley appears to have shifted since the late 1940s and early 1950s, expanding in one area, but receding in another. Sparse temperature data from wells southwest of the known occurrence of thermal water suggest that thermal water may be present beneath a larger part of the valley than previously thought. Thermal water contains higher concentrations of dissolved minerals than nonthermal waters because mineral solubilities generally increase with temperature. Geohydrologic Characterization, Water-Chemistry, and Ground-Water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California Oxygen-18 (d18 O) and deuterium (dD) values for water from most wells plot along the global meteoric water line, indicating that recharge primarily is derived from the direct infiltration of precipitation or the infiltration of seepage from creeks. Samples from shallow- and intermediate-depth wells located near Sonoma Creek and (or) in the vicinity of Shellville plot to the right of the global meteoric water line, indicating that these waters are partly evaporated. The d18 O and dD composition of water from sampled wells indicates that water from wells deeper than 200 feet is isotopically lighter (more negative) than water from wells less than 200 feet deep, possibly indicating that older ground wate

  14. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    Science.gov (United States)

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  15. Paleoseismology of a possible fault scarp in Wenas Valley, central Washington

    Science.gov (United States)

    Sherrod, Brian L.; Barnett, Elizabeth A.; Knepprath, Nichole; Foit, Franklin F.

    2013-01-01

    In October 2009, two trenches excavated across an 11-kilometer-long scarp at Wenas Valley in central Washington exposed evidence for late Quaternary deformation. Lidar imagery of the Wenas Valley illuminated the west-northwest-trending, 2- to 8-meter-high scarp as it bisected alluvial fans developed at the mouths of canyons along the south side of Umtanum Ridge. The alignment of the scarp and aeromagnetic lineaments suggested that the scarp may be a product of and controlled by the same tectonic structure that produced the magnetic lineaments. Several large landslides mapped in the area demonstrated the potential for large mass-wasting events in the area. In order to test whether the scarp was the result of an earthquake-generated surface rupture or a landslide, trenches were excavated at Hessler Flats and McCabe Place. The profiles of bedrock and soil stratigraphy that underlie the scarp in each trench were photographed, mapped, and described, and a sequence of depositional and deformational events established for each trench. The McCabe Place trench exposed a sequence of volcaniclastic deposits overlain by soils and alluvial deposits separated by three unconformities. Six normal faults and two possible reverse faults deformed the exposed strata. Crosscutting relations indicated that up to five earthquakes occurred on a blind reverse fault, and a microprobe analysis of lapilli suggested that the earliest faulting occurred after 47,000 years before present. The Hessler Flat trench exposure revealed weathered bedrock that abuts loess and colluvium deposits and is overlain by soil, an upper sequence of loess, and colluvium. The latter two units bury a distinctive paloesol.

  16. Pattern of Holocene glaciation in the monsoon-dominated Kosa Valley, central Himalaya, Uttarakhand, India

    Science.gov (United States)

    Bisht, Pinkey; Nawaz Ali, S.; Rana, Naresh; Singh, Sunil; Poonam; Sundriyal, Y. P.; Bagri, D. S.; Juyal, Navin

    2017-05-01

    Reconstruction based on the geomorphology, lateral moraine stratigraphy, and limited optical chronology indicate that the monsoon-dominated Kosa Valley experienced four glacial advances during the late glacial to late Holocene. The oldest and most extensive glaciation, which is termed as Raj Bank Stage-1 (RBS-1), is represented by the degraded moraine ridge. This glaciation remains undated; however, the chronology of outwash terrace gravel dated to 12.7 ± 1.3 ka indicates that the RBS-1 probably represents the Last Glacial Maximum (LGM). The second glacial advance (RBS-2) is preserved as a curvilinear lateral moraine and is dated to 6.1 ± 0.4 ka. The third glacial advance viz. RBS-3 is bracketed between 5.0 ± 0.5 and 4.0 ± 0.4 ka. Following this, the glacier receded in pulses that are represented by two distinct recessional moraines (RBS-3a and b). The forth glacial stage (RBS-4), which is dated between 2.2 ± 0.2 and 1.6 ± 0.2 ka, shows a pulsating recession and is represented by a prominent recessional moraine (RBS-4a). Whereas, presence of unconsolidated, poorly defined moraine mounds proximal to the glacier snout are ascribed as neoglacial advance corresponding to the Little Ice Age (LIA). With the limited chronometric data, we speculated that the glaciation was driven during the weak to moderate Indian Summer Monsoon (ISM) aided by lowered temperature. Presence of recessional moraines associated with mid-Holocene glacial phase indicate that the monsoon-dominated glaciers respond sensitively to minor (sub-millennial scale) changes in temperature and precipitation conditions. The observations are broadly in accordance with the studies carried out in other monsoon-dominated valleys in the central Himalaya, implying that in ISM dominated regions, lowered temperature seems to be the major driver of glaciations during the late glacial to late Holocene.

  17. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    Science.gov (United States)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  18. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacremento Valley

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. A preliminary analysis of the HCMM imagery of the project area indicated that locally some differentiation of lithologic units within the Northern Coast Range may be possible. Of significance, however, was a thermally cool linear area that appeared on the 30 May 1978 Nite-IR. This linear feature seemed to coincide with the Bear Mt. Fault and with the axis of the Chico Monocline along the eastern margin of the Sacramento Valley.

  19. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  20. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California

    Science.gov (United States)

    Kellogg, K.S.; Minor, S.A.

    2005-01-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  1. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the ``Big Bend'' of the San Andreas fault: An example from Lockwood Valley, southern California

    Science.gov (United States)

    Kellogg, Karl S.; Minor, Scott A.

    2005-02-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (˜5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The formerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  2. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    Increasing population, agricultural development (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available groundwater resources in the Pajaro Valley, one of the most productive agricultural regions in the world. This study provided a refined conceptual model, geohydrologic framework, and integrated hydrologic model of the Pajaro Valley. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that are being considered in the revision and updates to the Basin Management Plan (BMP). The Pajaro Valley Hydrologic Model (PVHM) was designed to reproduce the most important natural and human components of the hydrologic system and related climatic factors, permitting an accurate assessment of groundwater conditions and processes that can inform the new BMP and help to improve planning for long-term sustainability of water resources. Model development included a revision of the conceptual model of the flow system, reevaluation of the previous model transformed into MODFLOW, implementation of the new geohydrologic model and conceptual model, and calibration of the transient hydrologic model.

  3. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States.

    Science.gov (United States)

    Hoffacker, Madison K; Allen, Michael F; Hernandez, Rebecca R

    2017-12-19

    Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year -1 ) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km 2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year -1 for photovoltaic (PV) and 2213 TWh year -1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

  4. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  5. 75 FR 74517 - Approval and Promulgation of Implementation Plans; State of California; 2008 San Joaquin Valley...

    Science.gov (United States)

    2010-11-30

    ... Hawthorne Street, San Francisco, CA 94105. Instructions: All comments will be included in the public docket... Region IX, 75 Hawthorne Street, San Francisco, California. While all documents in the docket are listed... the standards based on substantial evidence from numerous health studies demonstrating that serious...

  6. 75 FR 1716 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-01-13

    .... 6. County Sanitation Districts of Los Angeles County, letter from Stephen R. Maguin and Gregory M. Adams, dated August 11, 2009. 7. County Sanitation Districts of Los Angeles County, letter from Stephen... 13, 2009. 11. Southern California Air Quality Alliance, letter from Curtis L. Coleman, Esq., dated...

  7. 75 FR 24409 - Designation of Areas for Air Quality Planning Purposes; California; San Joaquin Valley, South...

    Science.gov (United States)

    2010-05-05

    ... proposed action. This comment does not challenge our proposed action to grant the State of California's... nonattainment area to ``extreme'' for the 1997 8-hour ozone standard nor does it challenge our decision not to... Indians San Manuel Band of Cabazon Band of Mission United Auburn Indian (including the North Fork...

  8. 75 FR 1715 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-01-13

    ... California SIP. Local agency Rule No. Rule title Adopted Submitted SJVAPCD 4306 Boilers, Steam Generators and 10/16/08 03/17/09 Process Heaters--Phase 3. SJVAPCD 4307 Boilers, Steam Generators and 10/16/08 03/17...) * * * (A) * * * (3) Rule 4306, ``Boilers, Steam Generators and Process Heaters-- Phase 3, '' adopted on...

  9. 76 FR 41745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-07-15

    ..., polyethylene, and polypropylene products. We are proposing action on a local rule that regulates these emission... Polypropylene Products Manufacturing, amended on September 20, 2007, and submitted by the California Air... ground-level ozone and smog, which harm human health and the environment. Section 110(a) of the CAA...

  10. 77 FR 12651 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Science.gov (United States)

    2012-03-01

    ... establishing the waiver process in the first place, of the pioneering California motor vehicle control program... motor vehicle control requirements, which EPA has always allowed States to credit in their SIPs without... motor vehicle control program and because amendments to the CAA (in 1977) expanded the flexibility...

  11. Sacramento River Flood Control Project, California Mid-Valley Area, Phase 3. Design Memorandum Volume 1

    Science.gov (United States)

    1996-06-01

    California lists the Swainson’s hawk, western yellow-billed cuckoo, bank swallow, and giant garter snake as threatened and Mason’s lilaeopsis as rare... lilaeopsis , little mousetail, and Colusa grass. No sites in the study area are listed in the National Register of Historic Places. Records of

  12. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  13. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  14. Evidence for a Putative Impact Structure in Palm Valley, Central Australia

    Science.gov (United States)

    Hamacher, D. W.; O'Neill, C.; Buchel, A.; Britton, T. R.

    2010-07-01

    Introduction: We present evidence supporting the impact origin of a circular structure located in Palm Valley, Central Australia (24° 03' 06'' S, 132° 42' 34'' E). The ~280 m wide structure was discovered using a combination of Google Maps and a local Arrernte Aboriginal oral tradition regarding a star that fell into a waterhole called Puka in Palm Valley, Northern Territory [1][2] (see [3] for details of the discovery). Geophysical Evidence: A survey of the structure in September 2009 collected magnetic, gravity and topographic data. Geophysical modeling of the data revealed the structure has a bowl-shaped subsurface morphology, as expected for a simple impact crater. Though the structure sits within the Finke Gorge system, the models do not support an erosional origin for the structure, as no buried channels are observed. Nor does the modeling fit a volcanic origin, as the density structure at depth is consistent with fractured sandstone/sediments. Geological Evidence: One channel runs out of the crater to the south, consistent with outflow from crater-filling events, but again not with an erosional origin for the structure itself. The microstructure of rock samples collected from the site revealed the presence of planar deformation features in the quartz grains. The coincident angle of the fractures is consistent with the crystallographic fracture directions under mild-end shocks. These grains probably represent local focusing of stress as the shock wave moved through the heterogeneous grain matrix, suggesting the conditions were right for the shock pressure to locally exceed the ~7.5 GPa required to form the features, even though the bulk of the shock pressure was much less. Conclusion: Based on the level of erosion and the absence of shatter cones and meteorite fragments, we estimate the structure's age to be in the millions of years. While the presence of shocked-quartz is a direct indicator of a cosmic impact, we cannot rule out that the quartz was

  15. Vulnerability of Groundwater Recharge to Climate Change in an Alpine Basin (Martis Valley, California)

    Science.gov (United States)

    Visser, A.; Segal, D.; Urióstegui, S. H.; Singleton, M. J.; Moran, J. E.; Esser, B. K.

    2013-12-01

    Martis Valley's groundwater basin is experiencing increasing water demand and changes in the amount and timing of snowmelt due to climate change. Groundwater is the exclusive water supply for the town of Truckee and its surrounding ski resorts and golf courses. The objective of this study was to examine seasonal variability in the aquifer recharge by analyzing supply wells for: 1) tritium and helium isotopes to determine groundwater sources and age, 2) dissolved noble gases to determine recharge temperatures and excess air concentrations and 3) stable isotopes to determine groundwater sources. Recharge temperatures were found to be similar to mean annual air temperatures at lower elevations, suggesting that most recharge is occurring at lower elevations after equilibrating in the vadose zone. Low levels of excess air found in groundwater confirm that most recharge is occurring in the valley alluvium rather than the mountain block. The mean integrated groundwater flow depth was estimated for each well from the temperature difference between recharge and discharge and the geothermal gradient. Groundwater samples contained large amounts of excess terrigenic helium, from both mantle and radiogenic sources. Terrigenic helium and tritium concentrations were used to reconstruct the mixing between the younger and older groundwater sources. Mantle helium originating from the Polaris Fault was used to trace groundwater flow directions. Higher seasonal variability was found in wells with younger groundwater and shallower flow depths, suggesting that changes in the timing and amount of recharge under warmer climate conditions will rather quickly impact at least a portion of the aquifer system in Martis Valley. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    E. Glowacka

    2015-11-01

    Full Text Available The Mexicali Valley (northwestern Mexico, situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500–3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF, has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008 in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C. have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015. The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011. In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain

  17. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  18. Comment on "Revisiting the 1872 owens valley, California, earthquake" by Susan E. Hough and Kate Hutton

    Science.gov (United States)

    Bakun, W.H.

    2009-01-01

    Bakun (2009) argues that the conclusions of Hough and Hutton (2008) are wrong because the study failed to take into account the Sierra Nevada attenuation model of Bakun (2006). In particular, Bakun (2009) argues that propagation effects can explain the relatively high intensities generated by the 1872 Owens Valley earthquake. Using an intensity attenuation model that attempts to account for attenuation through the Sierra Nevada, Bakun (2006) infers the magnitude estimate (Mw 7.4–7.5) that is currently accepted by National Earthquake Information Center (NEIC).

  19. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    Science.gov (United States)

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit

  20. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  1. Determining The Importance Of Stock Structure, And Production Sources To Population Dynamics Of California Chinook Salmon Using Otoliths As Geochemical Signatures

    OpenAIRE

    Barnett-Johnson, Rachel

    2004-01-01

    Pacific coast salmonids, including California stocks, have declined in numbers with all populations of California Central Valley Chinook salmon (Oncorhynchus tshawytscha) listed or proposed for listing as endangered or threatened under the U.S. Endangered Species Act. Although California's natural stocks are declining, mass production of Central Valley fall-run Chinook salmon through hatchery production has supplemented the commercial and recreational fisheries. One challenge in understanding...

  2. California GAMA Special Study: Nitrate Fate and Transport in the Salinas Valley

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Jean E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hillegonds, Darren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtz, Marianne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Sarah K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-13

    The Groundwater Ambient Monitoring and Assessment (GAMA) Program is a comprehensive groundwater quality monitoring program managed by the California State Water Resources Control Board (SWRCB). Under the GAMA program, Lawrence Livermore National Laboratory carries out special studies that address groundwater quality issues of statewide relevance. The study described here is one in a series of special studies that address the fate and transport of nitrate in basins where groundwater is the main source of water for both irrigation and public drinking water supply.

  3. South Fork of the Santa Clara River, Santa Clarita Valley, California. Supplement.

    Science.gov (United States)

    1985-01-01

    well as from the Miocene Topanga sandstone and the Modelo shale found near the crest of the Santa Susana Mountains in Aliso and Rice Canyons. Fossil...ground squirrel. The woodland habitat provides excellent habitat for wildlife in the project area, particularly hole nesting species such as plain...coyote (Canis latrans), dusky-footed woodrat (Neotoma fuscipes), and California ground squirrel. The woodland habitat provides excellent habitat for

  4. Hydrologic models and analysis of water availability in Cuyama Valley, California

    Science.gov (United States)

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    Changes in population, agricultural development practices (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available water resources, particularly groundwater, in the Cuyama Valley, one of the most productive agricultural regions in Santa Barbara County. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that could be considered in the evaluation of the sustainable water supply. The Cuyama Valley Hydrologic Model (CUVHM) was designed to simulate the most important natural and human components of the hydrologic system, including components dependent on variations in climate, thereby providing a reliable assessment of groundwater conditions and processes that can inform water users and help to improve planning for future conditions. Model development included a revision of the conceptual model of the flow system, construction of a precipitation-runoff model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (MF-OWHM). The hydrologic models were calibrated to historical conditions of water and land use and, then, used to assess the use and movement of water throughout the Valley. These tools provide a means to understand the evolution of water use in the Valley, its availability, and the limits of sustainability. The conceptual model identified inflows and outflows that include the movement and use of water in both natural and anthropogenic systems. The groundwater flow system is characterized by a layered geologic sedimentary sequence that—in combination with the effects of groundwater pumping, natural recharge, and the application of irrigation water at the land surface—displays vertical hydraulic-head gradients. Overall, most of the agricultural demand for water in the Cuyama Valley in the initial part of the growing season is

  5. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  6. Multiple geophysical methods examining neotectonic blind structures in the Maradona valley, Central Precordillera (Argentina)

    Science.gov (United States)

    Lara, Gabriela; Klinger, Federico Lince; Perucca, Laura; Rojo, Guillermo; Vargas, Nicolás; Leiva, Flavia

    2017-08-01

    A high-resolution superficial geophysical study was carried out in an area of the retroarc region of the Andes mountains, located in the southwest of San Juan Province (31°45‧ S, 68°50‧ W), Central Precordillera of Argentina. The main objectives of this study were to confirm the presence of blind neotectonic structures and characterize them by observing variations in magnetic susceptibility, density and p-wave velocities. Geological evidence demonstrates the existence of a neotectonic fault scarps affecting Quaternary alluvial deposits in eastern piedmont of de Las Osamentas range, in addition to direct observation of the cinematic of this feature in several natural exposures. The Maradona valley is characterized by the imbricated eastern-vergence Maradona Fault System that uplifts Neogene sedimentary rocks (Albarracín Formation) over Quaternary (Late Pleistocene-Holocene) alluvial deposits. The combined application of different geophysical methods has allowed the characterization of a blind fault geometry also identified on a natural exposure. The magnetic data added to the gravimetric model, and its integration with a seismic profile clearly shows the existence of an anomalous zone, interpreted as uplifted blocks of Miocene sedimentary rocks of Formation Albarracín displaced over Quaternary deposits. The application and development of different geophysical methods, together with geological studies allow to significantly improving the knowledge of an area affected by Quaternary tectonic activity. Finally, this multidisciplinary study, applied in active blind structures is very relevant for future seismic hazard analysis on areas located very close to populated centers.

  7. Climate change adaptation strategies of maize producers of the Central Rift Valley of Ethiopia

    Directory of Open Access Journals (Sweden)

    Musa Hasen Ahmed

    2016-06-01

    Full Text Available The impacts of climate change are considered to be strong in countries located in tropical Africa that depend on agriculture for their food, income and livelihood. Therefore, a better understanding of the local dimensions of adaptation strategies is essential to develop appropriate measures that will mitigate adverse consequences. Hence, this study was conducted to identify the most commonly used adaptation strategies that farm households practice among a set of options to withstand the effects of climate change and to identify factors that affect the choice of climate change adaptation strategies in the Central Rift Valley of Ethiopia. To address this objective, Multivariate Probit model was used. The results of the model indicated that the likelihood of households to adapt improved varieties of crops, adjust planting date, crop diversification and soil conservation practices were 58.73%, 57.72%, 35.61% and 41.15%, respectively. The Simulated Maximum Likelihood estimation of the Multivariate Probit model results suggested that there was positive and significant interdependence between household decisions to adapt crop diversification and using improved varieties of crops; and between adjusting planting date and using improved varieties of crops. The results also showed that there was a negative and significant relationship between household decisions to adapt crop diversification and soil conservation practices. The paper also recommended household, socioeconomic, institutional and plot characteristics that facilitate and impede the probability of choosing those adaptation strategies.

  8. Smallholder goat breeding and flock management practices in the central rift valley of Ethiopia.

    Science.gov (United States)

    Kebede, Tesfaye; Haile, Aynalem; Dadi, Hailu

    2012-06-01

    The study was conducted in the central rift valley of Ethiopia to define Arsi-Bale goat keepers' breeding objectives and breeding practices and to describe flock management practices and rate of inbreeding in Arsi-Bale goat population. Two-stage sampling techniques were employed to select study sites and 202 respondents. Semistructured questionnaire and group discussion were used to collect the required information. Data were analyzed using statistical package for social science. Rate of inbreeding in the population and indices were also calculated. On average, each respondent holds around 12 goats in which 30.7, 66.6 and 2.7% were males, females and castrates, respectively. The most important purpose of goat production in the study area was for milk utilization. Farmers have multiple breeding objectives and they considered both subjective and objective selection criteria with slightly more emphasis on morphological characteristics for buck selection than replacement doe selection. Only 39.1% (n = 79) of respondents have their own breeding bucks. None of the respondents practiced controlled mating. Average rate of inbreeding in the population was around 0.20. Arsi-Bale goats are found to be adaptive to the prevailing condition. Therefore, any breed improvement strategy to be designed or implemented in the study area and other similar areas should consider important traditional breeding practices.

  9. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  10. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  11. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    Science.gov (United States)

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  12. Variability of surface temperature in agricultural fields of central California

    Science.gov (United States)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  13. Geologic, water-chemistry, and hydrologic data from multiple-well monitoring sites and selected water-supply wells in the Santa Clara Valley, California, 1999-2003

    Science.gov (United States)

    Newhouse, M.W.; Hanson, R.T.; Wentworth, C.M.; Everett, Rhett; Williams, C.F.; Tinsley, J.C.; Noce, T.E.; Carkin, B.A.

    2004-01-01

    To better identify the three-dimensional geohydrologic framework of the Santa Clara Valley, lithologic, geologic, geophysical, geomechanical, hydraulic, and water-chemistry data were collected from eight ground-water multiple-well monitoring sites constructed in Santa Clara County, California, as part of a series of cooperative studies between the U.S. Geological Survey and the Santa Clara Valley Water District. The data are being used to update and improve the three-dimensional geohydrologic framework of the basin and to address issues related to water supply, water chemistry, sequence stratigraphy, geology, and geological hazards. This report represents a compilation of data collected from 1999 to 2003, including location and design of the monitoring sites, cone penetrometer borings, geologic logs, lithologic logs, geophysical logs, core analysis, water-chemistry analysis, ground-water-level measurements, and hydraulic and geomechanical properties from wells and core samples. Exploratory cone penetrometer borings taken in the upper 17 to 130 feet at six of the monitoring sites identified the base of Holocene as no deeper than 75 feet in the central confined area and no deeper than 35 feet in the southern unconfined areas of the valley. Generalized lithologic characterization from the monitoring sites indicates about four to six different aquifer units separated by relatively fine-grained units occur within the alluvial deposits shallower than 860 feet deep. Analysis of geophysical logs indicates that coarse-grained units varied in thickness between 10 and 25 feet in the southeastern unconfined area of the valley and between 50 and 200 feet in the south-central and southwestern areas of the valley. Deviations from temperature-gradient logs indicate that the majority of horizontal ground-water flow occurs above a depth of 775 feet in the south central and above 510 feet in the southeastern areas of the valley. Bulk physical properties from more than 1,150 feet of

  14. Timber resource statistics for the central coast resource area of California.

    Science.gov (United States)

    Karen L. Waddell; Patricia M. Bassett

    1996-01-01

    This report is a summary of timber resource statistics for the Central Coast Resource Area of California, which includes Alameda, Contra Costa, Marin, Monterey, San Benito, San Francisco, San Luis Obispo, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Solano, and Ventura Counties. Data were collected as part of a statewide multi-resource inventory. The inventory...

  15. Chapter 34: Offshore Occurrence Patterns of Marbled Murrelets in Central California

    Science.gov (United States)

    David G. Ainley; Sarah G. Allen; Larry B. Spear

    1995-01-01

    We assessed the occurrence patterns of Marbled Murrelets (Brachyramphus marmoratus) offshore of Waddell Creek, in central California. Data were derived primarily from cruises during the height of the murrelet breeding season, in June, between 1986 and 1994, as well as some cruises during the prebreeding period, February to early April. The large...

  16. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2010-06-23

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

  17. Application Of Geowall Technology To The Analysis Of A Three Dimensional Geologic Map Of The Santa Clara (Silicon) Valley, California

    Science.gov (United States)

    Phelps, G. A.; Jachens, R. C.; Wentworth, C. M.; Langenheim, V. E.; Hanson, R. T.; Faunt, C. C.

    2003-12-01

    Geowall, a stereo projection system suitable for meetings and conferences, is being used to visualize, understand, interpret, and test a three-dimensional geologic map of the Santa Clara (Silicon) Valley, southern San Francisco Bay area, California. Geowall*, developed at the Electronic Visualization Laboratory associated with the University of Illinois, uses dual polarized images projected onto a polarization-preserving screen to create the illusion of three dimensions when viewed through polarized glasses. The map of Santa Clara Valley encompasses a 45 by 45 km area, extends to a depth of 14 km, and includes the northern Santa Clara Valley and surrounding hillsides between the active Calaveras and San Andreas faults. It is currently divided by several major faults into tectonic blocks, within which 9 units represent the Cenozoic and Mesozoic sections. Many of these units will be subdivided as the map evolves. The map is being constructed in EarthVision*(TM, Dynamic Graphics, Inc.), a geologic modeling software that includes three dimensional rendering and model manipulation capabilities. Earthvision generates data and model images of which the entire, or only portions of the model, can be viewed in three dimensions. The geowall presentation will explore the datasets and three-dimensional geologic map of Santa Clara Valley and structures defined by geologic mapping, stratigraphy, hydrology, potential field geophysics, seismic reflection, and earthquake seismicity. The map is the result of a collaborative effort among several earth science disciplines, and as such requires the integration of diverse datasets and the communication of diverse ideas. The geowall is particularly effective at promoting group discussion and analysis of the three-dimensional map, because the map can be displayed in a group setting as a 6x6 ft., stereo image. The spatial relationships of the datasets are easily seen, and the map can be deconstructed and particular relationships isolated

  18. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    Science.gov (United States)

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  19. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  20. Airborne and field-temperature surveys compared at Long Valley KGRA, California

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.

    1981-06-01

    An airborne predawn radiometric temperature survey was flown over the Long Valley KGRA. Radiometric temperatures were recorded at 10 to 12 ..mu..m and 4.5 to 5.5 ..mu..m. They were corrected to obtain true land-surface temperatures in agreement with field data. After accounting for thermal effects from surface features, there remained a thermal anomaly. The anomalous zone encompassed 2 km/sup 2/. It was a dry land area with a predawn surface temperature which averaged 1.4 +- 0.3/sup 0/C warmer than ambient. This area coincided with a thermal discharge zone where deep temperature gradients were 5 to 30 times normal. The predawn radiometric survey clarified and supplemented conclusions drawn from 6 to 30m deep field surveys. Heat from hydrothermal discharge was stored in a shallow aquifer and conducted to the surface.

  1. Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with field investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.

  2. Tephra layers of blind Spring Valley and related upper pliocene and pleistocene tephra layers, California, Nevada, and Utah: isotopic ages, correlation, and magnetostratigraphy

    Science.gov (United States)

    Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.

    2005-01-01

    Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other

  3. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  4. Numerous Unpaired Meteorites Exposed on a Deflating Playa Lake at Lucerne Valley, California

    Science.gov (United States)

    Rubin, Alan E.; Verish, Robert S.; Moore, Carleton B.; Oriti, Ronald A.

    2000-01-01

    Out of 16 well-characterized 1 to 37 g meteorite specimens recovered from Lucerne Dry Lake (an approximately 3 7 km playa in the southern Mojave Desert of California), there are 9 separate ordinary chondrite finds. The ratio of independent meteorites to total number of specimens (0.6) is among the highest in the world. This is due to lack of initial deep burial of the small meteorites, significant deflation of the lake exposing falls of individual stones (or small numbers of paired meteorites), and the absence of a large meteorite shower in the region. Playas appear to be excellent candidates for high-yield meteorite-collecting areas.

  5. Preliminary Image Map of the 2007 Witch Fire Perimeter, Valley Center Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  7. Near real-time monitoring of volcanic surface deformation from GPS measurements at Long Valley Caldera, California

    Science.gov (United States)

    Ji, Kang Hyeun; Herring, Thomas A.; Llenos, Andrea L.

    2013-01-01

    Long Valley Caldera in eastern California is an active volcanic area and has shown continued unrest in the last three decades. We have monitored surface deformation from Global Positioning System (GPS) data by using a projection method that we call Targeted Projection Operator (TPO). TPO projects residual time series with secular rates and periodic terms removed onto a predefined spatial pattern. We used the 2009–2010 slow deflation as a target spatial pattern. The resulting TPO time series shows a detailed deformation history including the 2007–2009 inflation, the 2009–2010 deflation, and a recent inflation that started in late-2011 and is continuing at the present time (November 2012). The recent inflation event is about four times faster than the previous 2007–2009 event. A Mogi source of the recent event is located beneath the resurgent dome at about 6.6 km depth at a rate of 0.009 km3/yr volume change. TPO is simple and fast and can provide a near real-time continuous monitoring tool without directly looking at all the data from many GPS sites in this potentially eruptive volcanic system.

  8. Climate History of the Southern San Joaquin Valley of California, USA: Authentic Paleoclimate Research with K-12 Teachers

    Science.gov (United States)

    Baron, D.; Negrini, R. M.; Palacios-Fest, M. R.; Auffant, K.

    2006-12-01

    For three summers, the Department of Geology at California State University, Bakersfield (CSUB) has invited teachers from local schools to participate in a research program that is investigating the climate history of the San Joaquin Valley of California. In each 4-week summer project, three elementary/middle school teachers and three high school teachers worked with CSUB faculty, undergraduate geology students, and a small group of high school students. The research centers around the analysis of 50-foot (15 m) sediment cores from two locations in the Tulare Lake basin. These cores preserve a regional climate record dating back to about 35,000 years before the present. Research tasks include the description of sediments from the cores for parameters such as grain size, color, and mineralogy. Sediment analyses include total organic and total inorganic carbon, as well as magnetic susceptibility. Ostracode shells were separated from the sediments, ostracode species present were identified and their abundances determined. Each teacher was put in charge of the description and analysis of several 5-foot (1.5 m) core segments. Each teacher was the leader of a research group including a CSUB geology student and one or two high school students. The groups were responsible for all aspects of the description and analysis of their core segments. They were also in charge of the paleoclimate interpretations and the presentation of their research results at the end of the summer projects. Surveys conducted before and after the summer program indicate that teacher's knowledge of climate change and regional geology, as well as their confidence in teaching Earth science at their schools increased. Follow- up surveys conducted a year after the first summer program indicate that the research experience had a lasting positive impact on teacher's confidence and their enthusiasm for teaching Earth science. Several of the teachers have developed lesson plans and/or field trips for their

  9. A seamless, high-resolution digital elevation model (DEM) of the north-central California coast

    Science.gov (United States)

    Foxgrover, Amy C.; Barnard, Patrick L.

    2012-01-01

    A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.

  10. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie

    2014-12-01

    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  11. Serosurveillance of infectious agents in equines of the Central Valley of Costa Rica

    Directory of Open Access Journals (Sweden)

    D. Jiménez

    2014-11-01

    Full Text Available Blood samples from 181 equines from the Central Valley of Costa Rica were collected in the year 2012 to determine the presence of antibodies against selected infectious agents in horses and to determine the risk factors associated with these agents. The presence of antibodies against Equine Infectious Anemia Virus (EIAV, Equine Herpes Virus 1 and 4 (EHV-1 and EHV-4, West Nile Virus (WNV, Influenza A Virus (IAV, Equine Viral Arteritis Virus (EVAV, Babesia caballi, Theileria equi, Neospora caninum and Chlamydia abortus was determined using commercial assays, and risk factors associated with seropositivity to the different infectious agents was established. The most seroprevalent agent detected was EHV-4 (96.7%, followed by WNV (44.2%, and IAV (41.8%. Horses >3 years, used for work or sports, and with access to pastures, had significantly increased probability to be seropositive to WNV, whereas horses used for breeding and recreational purposes, being stabled, and without access to pastures, had significantly greater probability to be seropositive to IAV. Seroprevalence to B. caballi (19.9% was lower than to T. equi (38.1%. For B. caballi, access to pastures was determined as a risk factor, whereas being older than 3 years was established as a risk factor for T. equi. Low seroprevalences were determined for EHV-1 (5.0%, EVAV (5.0%, C. abortus (4.8%, and N. caninum (4.4%. Mares having history of abortion were more likely to be seropositive to EHV-1, whereas horses >3 years, used for work and sports, and mares having multiple parturitions, were more likely to be seropositive to N. caninum. None of the horses were seropositive to EIAV. Earlier, only diseases caused by EIAV, WNV and piroplasmosis were reported in Costa Rica. The present study however, determined the presence of carriers for EHV-1, EHV-4, and EIAV.

  12. Rainwater harvesting for small-scale irrigation of maize in the Central Rift Valley, Ethiopia

    Science.gov (United States)

    Keesstra, Saskia; Hartog, Maaike; Muluneh, Alemayehu; Stroosnijder, Leo

    2013-04-01

    In the Central Rift Valley of Ethiopia, small scale farmers mostly rely on rainfall for crop production. The erratic nature of rainfall causes frequent crop failures and makes the region structurally dependent on food aid. Rainwater Harvesting (RWH) is a technique to collect and store runoff that could provide water for livestock, domestic use or small scale irrigation. Usually, such irrigation is promoted for high value crops, but in the light of regional food security it may become interesting to invest in irrigation of maize. In this research, two cemented RWH cisterns were investigated to determine their economic and social potential for supplemental irrigation of maize using drip irrigation. For this, data from test fields with irrigated maize and monitoring of water levels of the cisterns were used, as well as a survey under 30 farmers living close to the experimental site. The results show that catchment size and management should be in balance with the designed RWH system, to prevent too little runoff or flooding. An analysis with Cropwat 8.0 was used to investigate the possibility of irrigating maize with the observed amounts of water in the RWH cisterns. This would suffice for 0.3-0.8 ha of maize. For a RWH cistern with a drip irrigation system to be economically viable, the production on this acreage should become 3-4 ton/ha; 2.5 times higher than the current yield. But the biggest challenge would be to change the perception of respondents, who don't find it logical to spend precious water on a common crop like maize. Therefore, if the Ethiopian government considers the irrigation of maize to be important for regional food security, it is recommended to either subsidize the construction of RWH cisterns or provide credit on favourable terms.

  13. Maize Response to Fertilizer Dosing at Three Sites in the Central Rift Valley of Ethiopia

    Directory of Open Access Journals (Sweden)

    Getachew Sime

    2014-09-01

    Full Text Available This study examines the agronomic response, efficiency and profitability of fertilizer microdosing in maize. An experiment with the following treatments was conducted: control without fertilizer, microdosing treatments, with the rate of 27 + 27, 53 + 53 and 80 + 80 kg ha−1, and banding of fertilizer with 100 + 100 kg ha−1 of di ammonium phosphate (DAP + urea, applied at planting and jointing, respectively. The treatments were arranged in a randomized complete block design with four replications. The experiment was conducted during the 2011/2012 and 2012/2013 cropping seasons at Ziway, Melkassa and Hawassa in the semiarid central rift valley region of Ethiopia. Compared to the control, the fertilizer treatments had higher yield and fertilizer use efficiency (FUE profitably. The 27 + 27 kg ha−1 fertilizer rate increased the grain yield by 19, 45 and 46% at Hawassa, Ziway and Melkassa, respectively, and it was equivalent to the higher rates. The value cost ratio (VCR was highest with the lowest fertilizer rate, varying between seven and 11 in the treatment with 27 + 27 kg ha−1, but two and three in the banding treatment. Similarly, FUE was highest with the lowest fertilizer rate, varying between 23 and 34 kg kg−1 but 7 and 8 kg kg−1 in the banding treatment. The improved yield, FUE, VCR and gross margin in maize with microdosing at the 27 + 27 kg ha−1 of DAP + urea rate makes it low cost, low risk, high yielding and profitable. Therefore, application of this particular rate in maize may be an option for the marginal farmers in the region with similar socioeconomic and agroecological conditions.

  14. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  15. Initial characterization of the groundwater system near the Lower Colorado Water Supply Project, Imperial Valley, California

    Science.gov (United States)

    Coes, Alissa L.; Land, Michael; Densmore, Jill N.; Landrum, Michael T.; Beisner, Kimberly R.; Kennedy, Jeffrey R.; Macy, Jamie P.; Tillman, Fred D

    2015-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the city of Needles, began a study of the hydrogeology along the All-American Canal, which conveys water from the Colorado River to the Imperial Valley. The focus of this study was to gain a better understanding of the effect of lining the All-American Canal, and other management actions, on future total dissolved solids concentrations in groundwater pumped by Lower Colorado Water Supply Project wells that is delivered to the All-American Canal. The study included the compilation and evaluation of previously published hydrogeologic and geochemical information, establishment of a groundwater-elevation and groundwater-quality monitoring network, results of monitoring groundwater elevations and groundwater quality from 2009 to 2011, site-specific hydrologic investigations of the Lower Colorado Water Supply Project area, examination of groundwater salinity by depth by using time-domain electromagnetic surveys, and monitoring of groundwater-storage change by using microgravity methods. 

  16. Aerial radiometric and magnetic survey: Death Valley National Topographic Map, Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-17

    The results of analysis of the airborne gamma radiation survey flown for the region identified as the Death Valley National Topographic Map NJ11-11 is presented in the bound Volume of this report. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  17. Estimated Thickness of Quaternary Sediment in the Wood River Valley aquifer system, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the estimated thickness of Quaternary sediment of the Wood River Valley aquifer system. This isopach map was constructed by subtracting the estimated...

  18. Aquifer Boundary of the Wood River Valley Aquifer System, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains the boundary of the Wood River Valley aquifer system as modified and expanded from that defined by Skinner and others (2007): It has been...

  19. Medium Scale Central Valley Riparian Vegetation and Land Use with Aggregated Delta Veg, 2011 [ds724

    Data.gov (United States)

    California Department of Resources — Geodatabase (SDE) feature class containing map of vegetation along mainstem rivers and major tributaries (including ancillary natural and semi-natural vegetation)...

  20. Vegetation - Medium Scale Central Valley Riparian Vegetation and Land Use, 2011 [ds723

    Data.gov (United States)

    California Department of Resources — Geodatabase (SDE) feature class containing map of vegetation along mainstem rivers and major tributaries (including ancillary natural and semi-natural vegetation)...

  1. Boundary of the Death Valley region by Bedinger and others (1989), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set delineates the boundary of the Death Valley region that was first evaluated by the U.S. Geological Survey (USGS) as a potential hydrogeologic...

  2. Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (California) using cosmogenic 10Be and 26Al

    Science.gov (United States)

    Dühnforth, Miriam; Densmore, Alexander L.; Ivy-Ochs, Susan; Allen, Philip; Kubik, Peter W.

    2017-03-01

    Debris-flow fans with depositional records over several 105 years may be useful archives for the understanding of fan construction by debris flows and post-depositional surface modification over long timescales. Reading these archives, however, requires that we establish the temporal and spatial pattern of debris-flow activity over time. We used a combination of geomorphic mapping of fan surface characteristics, digital topographic analysis, and cosmogenic radionuclide dating using 10Be and 26Al to study the evolution of the Warm Springs fan on the west side of southern Death Valley, California. The 10Be concentrations yield dates that vary from 989 ± 43 to 595 ± 17 ka on the proximal fan and between 369 ± 13 and 125 ± 5 ka on distal fan surfaces. The interpretation of these results as true depositional ages though is complicated by high inheritance with a minimum of 65 ka measured at the catchment outlet and of at least 125 ka at the distal fan. Results from the 26Al measurements suggest that most sample locations on the fan surfaces underwent simple exposure and were not affected by complex histories of burial and re-exposure. This implies that Warm Springs fan is a relatively stable landform that underwent several 105 years of fan aggradation before fan head incision caused abandonment of the proximal and central fan surfaces and deposition continued on a younger unit at the distal fan. We show that the primary depositional debris-flow morphology is eliminated over a time scale of less than 105 years, which prevents the delineation of individual debris flows as well as the precise reconstruction of lateral shifts in deposition as we find it on younger debris-flow fans. Secondary post-depositional processes control subsequent evolution of surface morphology with the dissection of planar surfaces while smoothing of convex-up interfluves between incised channels continues through time.

  3. Land subsidence in the San Joaquin Valley, California, USA, 2007–2014

    Directory of Open Access Journals (Sweden)

    M. Sneed

    2015-11-01

    Full Text Available Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV: between Merced and Fresno (El Nido, and between Fresno and Bakersfield (Pixley. Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR, Continuous Global Positioning System (CGPS, and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.

  4. Land subsidence in the San Joaquin Valley, California, USA, 2007-14

    Science.gov (United States)

    Sneed, Michelle; Brandt, Justin

    2015-01-01

    Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.

  5. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    Science.gov (United States)

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  6. Incidence of first primary central nervous system tumors in California, 2001-2005.

    Science.gov (United States)

    Brown, Monica; Schrot, Rudolph; Bauer, Katrina; Letendre, Deanna

    2009-09-01

    We examined the incidence of first primary central nervous system tumors (PCNST) in California from 2001-2005. This study period represents the first five years of data collection of benign PCNST by the California Cancer Registry. California's age-adjusted incidence rates (AAIR) for malignant and benign PCNST (5.5 and 8.5 per 100,000, respectively). Malignant PCNST were highest among non-Hispanic white males (7.8 per 100,000). Benign PCNST were highest among African American females (10.5 per 100,000). Hispanics, those with the lowest socioeconomic status, and those who lived in rural California were found to be significantly younger at diagnosis. Glioblastoma was the most frequent malignant histology, while meningioma had the highest incidence among benign histologies (2.6 and 4.5 per 100,000, respectively). This study is the first in the US to compare malignant to benign PCNST using a population-based data source. It illustrates the importance of PCNST surveillance in California and in diverse communities.

  7. Fjord-valley fill stratigraphy from onshore high-resolution shear-wave seismics, Trondheim harbour area, central Norway

    Science.gov (United States)

    Hansen, L.; Polom, U.; L'Heureux, J.; Sauvin, G.; Lecomte, I.; Krawczyk, C. M.; Longva, O.

    2009-12-01

    To obtain information on the stratigraphic variability within the underlying fjord-valley fill, a shallow, shear-wave reflection seismic survey was successfully carried out on land in the Trondheim harbor area, central Norway. Since the last deglaciation, the region has been subjected to a fall of relative sea level of totally 175 m due to glacioisostatic rebound. The relative sea-level fall was accompanied by river erosion of emerging (glacio) marine deposits, several, large landslides, and delta progradation into the fjord. The infilled harbour area is located on the submerged part of a delta plain, and land reclamation is still going on. Historic and older submarine landslides are known to have taken place along the shoreline and an improved understanding of the ground conditions is therefore valuable for engineering purposes. In addition, the unique, S-wave seismic record gives insight into the overall architecture and long-term development of a fjord-valley filling influenced by relative sea level fall accompanied by occasional major mass-wasting events. Shear-wave reflection seismics was applied using a land streamer of 120 channels combined with a newly developed shear-wave vibrator from LIAG. Overall, 4.2 profile-km were acquired in a 2.5-D grid along paved roads and parking lots during night to minimize environmental noise. The investigations achieved a highly resolved image of the fjord-valley fill and clear bedrock detection. Vertical resolution is within a few meters over the entire profile whereas horizontal resolution decreases with depth. The entire fjord-valley fill is up to 160 m thick and five main stratigraphic units have been identified including bedrock. The fjord-valley fill is interpreted as consisting of glaciomarine deposits overlain by marine fjord sediments grading upwards into deltaic deposits. The change from continuous to more discontinuous or irregular reflection patterns reflects a progressive influence of delta-derived processes and

  8. The development of a deep-towed gravity meter, and its use in marine geophysical surveys of offshore southern California and an airborne laser altimeter survey of Long Valley, California

    Science.gov (United States)

    Ridgway, Jeffrey R.

    Marine Gravity is presently measured on the sea surface and on the sea floor. Surface measurements suffer from a loss of resolution, and seafloor measurements are slow to perform. The TOWDOG was created to operate near the seafloor but have a faster data recovery rate than seafloor measurements. It is a Lacoste and Romberg gravity meter, mounted inside a pressure case, and placed upon a platform which is stable while being towed. The instrument's depth is determined by pressure measurements. Its horizontal position is calculated using a dynamic model of the towing cable. The first deployment of the instrument was in the San Diego Trough, a sedimentary basin offshore San Diego. Multiple gravity tracks were obtained at a depth of 935 meters. The rms repeatability between coincident tracks is 0.4 mGal. The inter-track gravity signal is coherent for wavelengths greater than 640 meters. A 1-km-wide seafloor depression in the Trough generates a 0.7 mGal gravity anomaly, which is seen in the data when 3 tracks are stacked. The goal of the San Diego Trough survey was to determine if a significant density contrast exists across the basin's central axial fault. The survey reveals that no discernible contrast exists across the near-surface part of the fault. Two-dimensional gravity modeling constrained by seismic reflection profiles yields a depth to basement of 3.8 to 4.8 km below sea-level. A 3-component model (younger sediment, older, sedimentary rocks, and acoustic basement), best fits the seismic and gravity data. The laser altimeter survey of Long Valley, California tests the capabilities of an aircraft-mounted laser in monitoring time-varying uplift of a resurgent volcanic dome. The system can profile a lake surface with an r.m.s. repeatability of 3-5 cm, and can detect time-varying height changes of the lake level of 5 cm per day. This should be sufficiently accurate to detect yearly uplift of 4 cm per year, as is occurring at Long Valley. The detection of such

  9. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  10. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  11. Decoding sediment transport dynamics on alluvial fans from spatial changes in grain size, Death Valley, California

    Science.gov (United States)

    Brooke, Sam; Whittaker, Alexander; Watkins, Stephen; Armitage, John

    2017-04-01

    How fluvial sediment transport processes are transmitted to the sedimentary record remains a complex problem for the interpretation of fluvial stratigraphy. Alluvial fans represent the condensed sedimentary archive of upstream fluvial processes, controlled by the interplay between tectonics and climate over time, infused with the complex signal of internal autogenic processes. With high sedimentation rates and near complete preservation, alluvial fans present a unique opportunity to tackle the problem of landscape sensitivity to external boundary conditions such as climate. For three coupled catchments-fan systems in the tectonically well-constrained northern Death Valley, we measure grain size trends across well-preserved Holocene and Late-Pleistocene deposits, which we have mapped in detail. Our results show that fan surfaces from the Late-Pleistocene are, on average, 50% coarser than counterpart active or Holocene fan surfaces, with clear variations in input grain sizes observed between surfaces of differing age. Furthermore, the change in ratio between mean grain size and standard deviation is stable downstream for all surfaces, satisfying the statistical definition of self-similarity. Applying a self-similarity model of selective deposition, we derive a relative mobility function directly from our grain size distributions, and we evaluate for each fan surface the grain size for which the ratio of the probability of transport to deposition is 1. We show that the "equally mobile" grain size lies in the range of 20 to 35 mm, varies over time, and is clearly lower in the Holocene than in the Pleistocene. Our results indicate that coarser grain sizes on alluvial fans are much less mobile than in river systems where such an analysis has been previously applied. These results support recent findings that alluvial fan sediment characteristics can be used as an archive of past environmental change and that landscapes are sensitive to environmental change over a glacial

  12. Effects of long-term deforestation and remnant forests on rainfall and temperature in the Central Rift Valley of Ethiopia

    Directory of Open Access Journals (Sweden)

    Alemayehu Muluneh

    2017-11-01

    Full Text Available Background Some evidence suggests that forests attract rain and that deforestation contributes to changes in rainfall and temperature. The evidence, however, is scant, particularly on smaller spatial scales. The specific objectives of the study were: (i to evaluate long-term trends in rainfall (1970–2009 and temperature (1981–2009 and their relationships with change in forest cover, and (ii to assess the influence of remnant forests and topographical factors on the spatial variability of annual rainfall. Methods This study investigated the forest-rainfall relationships in the Central Rift Valley of Ethiopia. The study used 16 long-term (1970–2009 and 15 short-term (2012–2013 rainfall and six long term (1981–2009 temperature datasets. Forest and woodland cover decline over the past 40 years (1970–2009 and the measured distances between the remnant forests and rainfall stations were also used. The long-term trends in rainfall (1970–2009 and temperature (1981–2009 were determined using Mann-Kendall (MK and Regional Kendall (RK tests and their relationships with long-term deforestation were evaluated using simple linear regression. Influence of remnant forests and topographical variables on the spatial variability of rainfall were determined by stepwise multiple regression method. A continuous forest and woodland cover decline was estimated using exponential interpolation. Results The forest and woodland cover declined from 44% in 1973 to less than 15% in 2009 in the Central Rift Valley. Annual rainfall on the valley floor showed an increase by 37.9 mm/decade while annual rainfall on the escarpments/highlands decreased by 29.8 mm/decade. The remnant forests had a significant effect (P-value <0.05, R 2 = 0.40 on the spatial variability of the number of rainy days observed over two years (2012–2013, but had little effect on the variability of rainfall distribution. For the total annual rainfall, slope was the best predictor which

  13. Soil properties relevant to land degradation in abandoned sloping fields in Aisa valley, Central Pyrenees (Spain

    Directory of Open Access Journals (Sweden)

    Pardini, G.

    1991-06-01

    Full Text Available A multi-approach characterization of soil properties in abandoned fields in the Aisa valley, at mid mountain in the Central Spanish Pyrenees, demonstrated that the soil's own peculiar characteristics are concerned with conservation problems. Aggregate stability and shrinkage tests pointed to a relatively good soil performance due to the aggregating role of organic matter and calcium carbonates, although calcium ions, in some instances, may exert and additional antagonistic role for a sealed surface, increasing runoff. On the other hand, soil micromorphology suggests that the poor condition of the soils is in some contradiction to paedogenic activity. These findings, together with the presence of ashes, support the hypothesis that land degradation in these areas is mainly related to human activity thought unsuitable management after land abandonment.

    [es] La caracterización de diversas propiedades del suelo en campos abandonados del valle de Aisa, montaña media del Pirineo Central, ha mostrado que dichos suelos presentan algunos caracteres de interés desde el punto de vista de la conservación. La estabilidad de los agregados y los test de agrietamiento evidencian un comportamiento aceptable, gracias al papel agregante de la materia orgánica y carbonatos de calcio, a pesar que los iones calcio, en algunas ocasiones, pueden ejercer un papel antagonista adicional y favorecer el sellado de la superficie del suelo, aumentando la escorrentía superficial. Por otra parte, la micromorfología sugiere que el estado de degradación de los suelos contrasta con la actividad pedogénica. Estos resultados, juntamente con la presencia de cenizas, apoyan la hipótesis de que el estado de degradación en estas áreas es consecuencia principalmente de una utilización incorrecta después del abandono de los cultivos.
    [fr] Un étude des propriétés des sois dans une zone à cultures en pente abandonnées dans la vallée d'Aisa (Pyr

  14. Response of Acala Cotton to Nitrogen Rates in the San Joaquin Valley of California

    Directory of Open Access Journals (Sweden)

    R.B. Hutmacher

    2001-01-01

    Full Text Available The responses of Acala cotton (Gossypium hirsutum L. in California to a range of applied nitrogen (N treatments were investigated in a 5-year, multisite experiment. The experiment’s goals were to identify crop growth and yield responses to applied N and provide information to better assess the utility of soil residual N estimates in improving fertilizer management. Baseline fertilizer application rates for the lowest applied N treatments were based on residual soil nitrate-N (NO3-N levels determined on soil samples from the upper 0.6 m of the soil collected prior to spring N fertilization and within 1 week postplanting each year. Results have shown positive cotton lint yield responses to increases in applied N across the 56 to 224 kg N/ha range in only 41% (16 out of 39 of test sites. Soil NO3-N monitoring to a depth of 2.4 m in the spring (after planting and fall (postharvest indicate most changes in soil NO3- occur within the upper 1.2 m of soil. However, some sites (those most prone to leaching losses of soluble nutrients also exhibited net increases in soil NO3-N in the 1.2- to 2.4-m depth zone when comparing planting time vs. postharvest data. The lack of yield responses and soil NO3-N accumulations at some sites indicate that more efforts should be put into identifying the amount of plant N requirements that can be met from residual soil N, rather than solely from fertilizer N applications.

  15. Berriasian (Early Cretaceous) radiometric ages from the Grindstone Creek Section, Sacramento Valley, California

    Science.gov (United States)

    Bralower, T.J.; Ludwig, K. R.; Obradovich, J.D.

    1990-01-01

    The Grindstone Creek Section, Glenn County, Northern California is a sequence of hemipelagic mudstone, siltstone and sandstone interbedded with concretionary limestone and a few thin tuffs and bentonites. Two tuffs have been collected from a narrow interval of this sequence and subjected to mineralogical and isotopic analyses. UPb isotopic analyses of zircon fractions from these volcanic horizons indicate an age of 137.1 + 1.6/-0.6 Ma. A detailed investigation has been conducted on the calcareous nannofossil stratigraphy of this section based on numerous samples with moderately preserved assemblages. The nannoflora is largely of Tethyan affinity, and allows direct correlation with the Berriasian stratotype section, with sections with published magnetostratigraphies and with a DSDP site drilled between known magnetic anomalies. The dated tuffs lie in the lower part of the upper Berriasian Cretarhabdus angustiforatus Zone (Assipetra infracretacea Subzone) and within the narrow range of Rhagodiscus nebulosus. At three different sections, this subzone can be correlated with M-sequence Polarity Zones M16 and M16n. An independent magnetostratigraphic correlation is provided at DSDP Site 387, drilled between anomalies M15 and M16, where basal sediments contain R. nebulosus. Buchia collected within a meter of the lower tuff lie within the B. uncitoides Zone which is Berriasian in age. The upper tuff level, which occurs 65 m above the lower tuff, is situated within the overlying B. pacifica Zone. This zone had previously been correlated with the early Valanginian, but is clearly also partly of Berriasian age based on nannofossil stratigraphy. Our results allow an estimate of the age of the Berriasian-Valanginian and Jurassic-Cretaceous boundaries of 135.1 Ma and 141.1 Ma, respectively, and these fall within the range of, but differ significantiy from, several published time-scales. ?? 1990.

  16. Maritime climate influence on chaparral composition and diversity in the coast range of central California

    OpenAIRE

    Vasey, Michael C; Parker, V Thomas; Holl, Karen D; Loik, Michael E; Hiatt, Seth

    2014-01-01

    © 2014 The Authors. We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1-hectare plots along a coast-to-interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis t...

  17. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    Science.gov (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  18. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds

  19. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    Science.gov (United States)

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  20. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    Science.gov (United States)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  1. A Photogrammetric Approach to Measuring Temporal Change in Tree Kill Areas at Mammoth Mountain and Long Valley Caldera, California

    Science.gov (United States)

    Clor, L. E.; Barefoot, J. D.; Hurwitz, S.; Diefenbach, A. K.

    2015-12-01

    A zone of dead trees and bare ground near Horseshoe Lake on the southeast flank of Mammoth Mountain in California is attributed to high emissions of volcanic CO2 and has been characterized and studied since the 1990s. Measurements of diffuse CO2 emissions have been made since 1994, but tree kills occurred following a large earthquake swarm in 1989 and before these first measurements. In order to track vegetation changes over time, fifteen aerial images of the Horseshoe Lake tree kill from 1951 to 2014 were analyzed using photogrammetric techniques which allow us to quantify the extent of bare ground and provide an indirect analysis of tree mortality, possibly related to CO2 emissions. The aerial images were assigned a uniform spatial reference, then image pixels were classified into two main categories, trees or bare ground, and the aerial extent quantified using the GIS software ArcMap. Between 1951 and 1987, there was little change in area of bare ground or tree density near Horseshoe Lake. The tree kill area appeared in 1992 and expanded rapidly to about 0.20 km2 by 1998, which is similar to its present extent. In images from 2012 and onward, a large increase in bare ground was identified and correlated with a powerful windstorm that occurred in 2011. Overlaying CO2 flux maps on the GIS classified images shows that the area of diffuse emission generally correlates with the tree kill area. This method was applied to imagery of thermal tree kill areas within Long Valley Caldera as well. Tree kill near Shady Rest Park in Mammoth Lakes expanded incrementally to the east, southeast and west between 1993 and 2014 to its present extent of about 0.053 km2, but this area also includes significant tree thinning by the city. In Basalt Canyon, southeast of Shady Rest, tree kill area has slowly expanded since 1995 to its present extent of about 0.041 km2.

  2. Kelp forest fish populations in marine reserves and adjacent exploited areas of central California

    Science.gov (United States)

    Paddack, M.J.; Estes, J.A.

    2000-01-01

    Population structure (density and size distribution) of 10 species of epibenthic kelp forest fishes was compared between three marine reserves and adjacent exploited areas in central California. We also contrasted substrate relief, algal turf cover, and kelp population density among these areas. Densities of fishes were 12-35% greater within the reserves, but this difference was not statistically) significant. Habitat features explained only 4% of the variation in fish density and did not vary consistently between reserves and nonreserves. The average length of rockfish (genus Sebastes) was significantly greater in two of the three reserve sites, as was the proportion of larger fish. Population density and size differences combined to produce substantially greater biomass and, therefore, greater reproductive potential per unit of area within the reserves. The magnitude of these effects seems to be influenced by the reserve's age. Our findings demonstrate that current levels of fishing pressure influence kelp forest rockfish populations and suggest that this effect is widespread in central California. Existing marine reserves in central California kelp forests may help sustain exploited populations both through adult emigration and larval pool augmentation. The magnitude of these effects remains uncertain, however, because the spatial scale of both larval and adult dispersal relative to the size of existing reserves is unknown.

  3. Identifying krill eggs in the central California current using novel multiplex PCR primers: Applications and limitations

    Science.gov (United States)

    Carrion, C. N.; Slesinger, E.; Marinovic, B.

    2016-02-01

    Euphausiids, otherwise known as krill, are an important link between primary producers and higher trophic levels within the central California current upwelling system. Euphausia pacifica and Thysanoessa spinifera, two of the most common euphausiid species along the central California coast, are both broadcast spawners and have some overlap in habitat, e.g. near marine life hotspots like the Monterey Bay and Gulf of Farallones. Species composition of euphausiid egg population within these regions is currently unknown. Distinct morphological differences between their eggs are lost once the egg dies or is preserved via formalin, alcohol, or freezing. In this project we designed genus specific DNA primers (mtCOI) for use in a multiplex PCR to distinguish among spawned euphausiid eggs of Euphausia spp. and Thysanoessa spp. in central California current surface waters. Effective and ineffective application of primers in a multiplex versus single-plex PCR is discussed, with an emphasis on primer design limitations in reference to the available barcoded regions of mitochondrial cytochrome oxidase subunit I (mtCOI) for each species in GenBank. This new protocol expands current monitoring efforts into sampling a non-swimming portion of the population which has the potential to improve euphausiid biomass estimates.

  4. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    Science.gov (United States)

    Ransom, Katherine M; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Sounders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan B.; Harter, Thomas

    2016-01-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  5. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  6. Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral Mountains core complex, Death Valley, Southeastern California

    Science.gov (United States)

    Beyene, Mengesha Assefa

    2011-12-01

    The Funeral Mountains of Death Valley National Park, CA, provide an opportunity to date metamorphism resulting from crustal shortening and subsequent episodic extensional events in the Sevier hinterland. It was not clear whether crustal shortening and thus peak temperature metamorphism in the hinterland of the Sevier-Laramide orogenic wedge have occurred whether in Late Jurassic, Early Cretaceous, Late Cretaceous or somewhere between. Particularly ambiguous is the timing of crustal shortening in the deep levels of the hinterland of the Sevier belt, now manifest in the metamorphic core complexes, and how and when these middle-to-lower crustal rocks were exhumed. A 6-point garnet and a whole rock Savillax isochron from middle greenschist facies pelitic schist of the southeastern Funeral Mountains core complex yields an age of 162.1 +/- 5.8 Ma (2sigma). Composite PT paths determined from growth-zoned garnets from the same samples show a nearly isothermal pressure increase of ˜2 kbar at ˜490°C, suggesting thrust burial at 162.1 +/- 5.8 Ma. A second sample of Johnnie Formation from the comparatively higher metamorphic grade area to the northwest (East of Chloride Cliff) yielded an age of 172.9 +/- 4.9 Ma (2sigma) suggesting an increase of thrust burial age towards the higher grade rocks (northwest part of the core complex), consistent with paleo-depth interpretation and metamorphic grade. 40Ar/ 39Ar muscovite ages along footwall of the Boundary Canyon detachment fault and intra-core Chloride Cliff shear zone exhibit significant 40Ar/39Ar muscovite age differences. For samples from the immediate footwall of BCD, the pattern of ages decreasing toward the northwest is consistent with differences in depth of metamorphism, and for Late Cretaceous, top-to-northwest exhumation by motion along the precursor BCD; consistent with mesoscopic and microscopic kinematic studies. Samples from the footwall of the structurally-lower Chloride Cliff shear zone yield Tertiary 40Ar/39Ar

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Central California classified according to the Environmental...

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins, porpoises, whales, seals, sea lions, and sea otters in Central California. Vector polygons in...

  9. Environmental Sensitivity Index (ESI) Atlas: Central California (Including Monterey Bay Sanctuary), maps and geographic information systems data (NODC Accession 0013176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Environmental Sensitivity Index (ESI) maps have been developed for the coastal areas of Central California from Point Conception to Point Reyes National Seashore....

  10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for rare/sensitive species occurrences of terrestrial mammals in Central California. Vector polygons in...

  11. New geochronological, paleoclimatological, and archaeological data from the Narmada Valley hominin locality, central India.

    Science.gov (United States)

    Patnaik, Rajeev; Chauhan, Parth R; Rao, M R; Blackwell, B A B; Skinner, A R; Sahni, Ashok; Chauhan, M S; Khan, H S

    2009-02-01

    fossils on the surface and within the stratigraphic sequence. At the foot of the Vindhyan Hills 2km from the river, we recovered a typologically Early Acheulean assemblage comprised of asymmetrical bifaces, large cleavers with minimal working, trihedral picks, and flake tools in fresh condition. These tools may be the oldest Acheulean in the Narmada Valley. Several lithics recovered from the Dhansi Formation may represent the first unequivocal evidence for an early Pleistocene hominin presence in India. In situ invertebrate and vertebrate fossils, pollen, and spores indicate a warm, humid climate during the late middle Pleistocene. High uranium concentrations in the mammalian teeth indicate exposure to saline water, suggesting highly evaporative conditions in the past. Late Pleistocene sediment dated between 24.28+/-0.39cal ky BP and 13.15+/-340ky BP has yielded pollen and spores indicating cool, dry climatic conditions corresponding to Oxygen Isotope Stage 2 (OIS 2). An early Holocene palynological assemblage from the type locality at Baneta shows evidence for relatively dry conditions and a deciduous forest within the region. The Dhansi Formation provisionally replaces the Pilikarar Formation as the oldest Quaternary formation within the central Narmada Basin. The Baneta Formation, previously dated at 70ka to 128ka, correlates with the late Pleistocene and early Holocene. Our results highlight the need for further Quaternary geological and paleoanthropological research within the Narmada Basin, especially because dam construction threatens these deposits.

  12. GOES-derived fog and low cloud indices for coastal north and central California ecological analyses

    Science.gov (United States)

    Torregrosa, Alicia; Cindy Combs,; Peters, Jeff

    2015-01-01

    Fog and low cloud cover (FLCC) changes the water, energy, and nutrient flux of coastal ecosystems. Easy-to-use FLCC data are needed to quantify the impacts of FLC on ecosystem dynamics during hot, dry Mediterranean climate summers. FLCC indices were generated from 26,000 hourly night and day FLCC maps derived from Geostationary Environmental Operational Satellite (GOES) data for June, July, August, and September, 1999- 2009 for coastal California, latitude 34.50°N, south of Monterey Bay, to latitude 41.95°N, north of Crescent City. Monthly FLCC average hours per day (h/d) range from juts into the prevailing NW winds and is lowest in the lee of major capes. FLCC advects furthest inland through low-lying NW ocean-facing valleys. At night hours of FLCC is higher more frequently on land than over the ocean. Interannual FLCC coefficient of variation shows long term geographic stability strongly associated with landform position. Contours delineating homogeneous zones of FLCC, derived from average decadal h/d FLCC, provide data to refine the commonly used term ‘fog belt.’ FLCC indices are available for download from the California Landscape Conservation Cooperative Climate Commons website. FLCC indices can be used to improve analyses of biogeographic and bioclimatic species distribution models, meteorological mechanisms driving FLCC patterns, ecohydrological investigations of evapotranspiration, solar energy feasibility studies, agricultural irrigation demand and viticultural ripening models.

  13. Assessing the efficacy of LGBT cultural competency training for aging services providers in California's central valley.

    Science.gov (United States)

    Leyva, Valerie L; Breshears, Elizabeth M; Ringstad, Robin

    2014-01-01

    This study reviews the outcomes of a cultural competency training for aging services providers regarding lesbian, gay, bisexual, and transgender (LGBT) older adults. Results indicate that participants significantly increased their knowledge, skills, and positive attitudes about working with LGBT older adults, with men and non-LGBT individuals reporting the most gain. Recommendations for future research include determining which factors influence the enduring effects of this type of training and developing a standardized instrument for measuring such success. Legislative and policy changes targeted at requiring this type of cultural competency training for all direct service providers are considered.

  14. Impacts of the 1986 San Joaquin Valley crude oil spill on marine birds in central California

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A total of 10577 birds of at least 26 species were estimated to have been debilitated or killed by the spill. The totals for major groups were estimated as: 276...

  15. Evaluation of pesticides in vernal pools of the Central Valley, California

    Data.gov (United States)

    Department of the Interior — Vernal pools are a unique ephemeral wetland feature of California’s native landscape which has been heavily impacted over the past century by agricultural and urban...

  16. Evidence for biologic response to pedogenesis along the Merced River chronosequence, Central Valley, California

    Science.gov (United States)

    Reed, S. E.; Amundson, R.

    2010-12-01

    Long-term soil weathering results in accumulations of clay and reduced hydraulic conductivity. How biology responds to these changes in the physical environment and how the response, in turn, influences landscape development are crucial questions in the effort to elucidate the links between the biologic and physical earth surface domains. Mima mounds are small, circular half-domes of soil that are suspected of being formed by burrowing rodents, as an adaption to saturated soil conditions. In the swales between the mounds, ephemeral wetlands called vernal pools, support a suite of endemic and endangered plant and animal species. Mima mounds, then, may provide a useful model by which to examine the complex feedbacks between landscape and life. In this study, changes in mound characteristics and in biological activity (pocket gopher, Thomomys bottae) are investigated across the Merced River chronosequence, a series of alluvial terraces which have been shown to exhibit an increasing degree of soil and hardpan development with landform age. Mound morphology (size, slope, curvature, concentration, elongation, dispersion) and relation to environmental parameters were analyzed using airborne LIDAR (light detection and ranging) imagery of the mounds. The high-resolution (1m) LIDAR surveys (conducted in 2006 and 2010) cover 65km2 and comprise seven different-aged landforms, ranging from several hundred years to several million years. Minimal filtering was performed on the dataset given the absence of large vegetation or other obstructions. A 20x20m moving window filter was used to smooth out the low frequency signals and accentuate mounded features. To test how and whether the subterranean mammals modify their burrowing habits in response to soil age, biotic sediment transport was measured monthly on 0.01, 0.5, and 2 m.y.o. terraces using RFID (radio frequency identification) technology. Half-liter portions of soil containing five RFID tags were implanted in active gopher tunnels on several size classes of mounds and at three positions on each mound (base, mid, and top). Within two weeks of insertion, tags were located using an RFID reader, and displacement was measured using a differential GPS. The surveys show distinct differences in mound and burrow form and biotic activity across the terraces. These results enhance our understanding of the rates at which landscapes are biotically transformed, and, when applied to sediment transport models, provide further evidence that Mima mounds are likely created and maintained by pocket gophers.

  17. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  18. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  19. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality

  20. Water Quality in a Wet Meadow, Platte River Valley, Central Nebraska

    Science.gov (United States)

    Emmons, Patrick J.

    1996-01-01

    The Platte River Valley in Nebraska, and in particular the reach from Kearney to Grand Island, is an extremely important natural habitat area. Over 300 migratory bird species, including several threatened and endangered species, have been observed along the Platte River. In the spring, nearly 500,000 sandhill cranes, along with millions of ducks and geese, use this reach as a staging and feeding area during their northerly migration. Wet meadows (grasslands which have waterlogged soils much of the year) are a critical part of this migratory-bird habitat. However, the area of wet meadows between Kearney and Grand Island has declined nearly 50 percent due to the activities of man. The condition of the remaining wet meadows is of vital importance. The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nation's surface water and groundwater resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. A study of the groundwater beneath a selected wet meadow was undertaken as part of the Central Nebraska Basins NAWQA study unit. Observation wells were installed in the wet meadow at various distances along two transects downgradient from the edge of a corn field. One to five wells completed at depths of about 15 to 100 feet were located at each of the 5 sites. The wells were completed in the Platte River alluvium or the underlying Ogallala Formation. The depth to the water table ranges from 0 to 5 feet below land surface. The general direction of groundwater flow is parallel to flow in the Platte River. Selected wells were sampled in February, March, June, and December 1994 for major cations and anions, nutrients, and organonitrogen herbicides. Pesticides and fertilizers are used extensively in Nebraska to enhance the production of row crops. Some of these pesticides and fertilizers have migrated into the groundwater