WorldWideScience

Sample records for calibrators tandem systems

  1. Tandem mobile robot system

    Energy Technology Data Exchange (ETDEWEB)

    Buttz, James H. (Albuquerque, NM); Shirey, David L. (Albuquerque, NM); Hayward, David R. (Albuquerque, NM)

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  2. Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  3. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  4. Establishment of a tandem ionization chamber system in standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas O. da; Caldas, L.V.E., E-mail: jonas.silva@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A double-faced tandem ionization chamber system was developed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminium and graphite. The response repeatability and reproducibility and the energy dependence test of this tandem ionization chamber were evaluated. The chamber response stability is within the {+-}3% limit recommended in international standards. The energy dependence test of the ionization chamber system using the tandem curve obtained, presented agreement with literature results. (author)

  5. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  6. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  7. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    Mandjes, M.R.H.

    2004-01-01

    We examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution of the total

  8. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    M.R.H. Mandjes

    2004-01-01

    Abstract : We examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution o

  9. Improving quantitative precision and throughput by reducing calibrator use in liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rule, Geoffrey S., E-mail: geoffrey.s.rule@aruplab.com [ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Rockwood, Alan L. [ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah School of Medicine, 2100 Jones Medical Research Bldg., Salt Lake City, UT 84132 (United States)

    2016-05-05

    To improve efficiency in our mass spectrometry laboratories we have made efforts to reduce the number of calibration standards utilized for quantitation over time. We often analyze three or more batches of 96 samples per day, on a single instrument, for a number of assays. With a conventional calibration scheme at six concentration levels this amounts to more than 5000 calibration points per year. Modern LC-tandem mass spectrometric instrumentation is extremely rugged however, and isotopically labelled internal standards are widely available. This made us consider whether alternative calibration strategies could be utilized to reduce the number of calibration standards analyzed while still retaining high precision and accurate quantitation. Here we demonstrate how, by utilizing a single calibration point in each sample batch, and using the resulting response factor (RF) to update an existing, historical response factor (HRF), we are able to obtain improved precision over a conventional multipoint calibration approach, as judged by quality control samples. The laboratory component of this study was conducted with an existing LC tandem mass spectrometric method for three androgen analytes in our production laboratory. Using examples from both simulated and laboratory data we illustrate several aspects of our single point alternative calibration strategy and compare it with a conventional, multipoint calibration approach. We conclude that both the cost and burden of preparing multiple calibration standards with every batch of samples can be reduced while at the same time maintaining, or even improving, analytical quality. - Highlights: • Use of a weighted single point calibration approach improves quantitative precision. • A weighted response factor approach incorporates historical calibration information. • Several scenarios are discussed with regard to their influence on quantitation.

  10. Large deviations for tandem queueing systems

    Directory of Open Access Journals (Sweden)

    Roland L. Dobrushin

    1994-01-01

    Full Text Available The crude asymptotics of the large delay probability in a tandem queueing system is considered. The main result states that one of the two channels in the tandem system defines the crude asymptotics. The constant that determines the crude asymptotics is given. The results obtained are based on the large deviation principle for random processes with independent increments on an infinite interval recently established by the authors.

  11. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  12. The KLOE Online Calibration System

    Institute of Scientific and Technical Information of China (English)

    E.Pasqualucci

    2001-01-01

    Based on all the features of the KLOE online software,the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed.Acalibration manager process controls the system,implementing the interface to the online system,receiving information from the run control and translating its state transitions to a separate state machine.It acts as a " calibration run controller"and performs failure recovery when requested by a set of process checkers.The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms.A client library and C,fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an bool-like interface.Several calibration processes running in parallel in a destributed,multiplatform environment can fill the same histograms,allowing fast external information check.A monitor thread allow remote browsing for visual inspection,Pre-filtered data are read in nonprivileged spy mode from the data acquisition system via the Kloe Integrated Dataflow,privileged spy mode from the data acquisiton system via the Kole Integrated Dataflow.The main characteristics of the system are presented.

  13. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  14. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  15. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, J.L.; Juras, R.C.

    1998-11-04

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in eaeh area at points of maximum dose rate and the resulting signals are integrated by redundan~ circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several vears at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  16. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  17. Systems and methods of eye tracking calibration

    DEFF Research Database (Denmark)

    2014-01-01

    Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  18. Tandem robot control system and method for controlling mobile robots in tandem

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, David R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Shirey, David L. (Albuquerque, NM)

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  19. DECal: A Spectrophotometric Calibration System For DECam

    CERN Document Server

    Marshall, J L; DePoy, D L; Prochaska, Travis; Allen, Richard; Behm, Tyler W; Martin, Emily C; Veal, Brannon; Villanueva,, Steven; Williams, Patrick; Wise, Jason

    2013-01-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (about 1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 < lambda < 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determ...

  20. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  1. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  2. FY2008 Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  3. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  4. Automated system for the calibration of magnetometers

    DEFF Research Database (Denmark)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical Uni...... through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented. ©2009 American Institute of Physics...

  5. Characterization of Tandem systems of commercial ionization chambers for radiation dosimetry (radiotherapy level)

    CERN Document Server

    Galhardo, E P

    1998-01-01

    The use of X rays for radiotherapy purposes is of great importance for Medicine, and it is necessary to control periodically the performance of the ionization chambers and the radiation beams in order to obtain the best results. The verification of the beam characteristics is made by using standard dosimetry procedures which include the determination of the half-value layers and the exposure rates or the absorbed dose rates in air. Several Tandem systems were set up and tested, using commercial ionization chambers in the energy interval from 14 up to 130 KeV at the Instrumentation Calibration Laboratory of IPEN and at other three institutions, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The obtained results show the usefulness of these Tandem system for the routine dosimetric procedures of radiotherapy X radiation beams.

  6. Colorimetric calibration of coupled infrared simulation system

    Science.gov (United States)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  7. 14 CFR 105.45 - Use of tandem parachute systems.

    Science.gov (United States)

    2010-01-01

    ...) Has completed a minimum of 500 freefall parachute jumps using a ram-air parachute, and (iii) Holds a... parachute jump with a tandem parachute system unless— (1) The main parachute has been packed by a certificated parachute rigger, the parachutist in command making the next jump with that parachute, or a...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. Comparison of different calibration approaches for chloramphenicol quantification in chicken muscle by ultra-high pressure liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Pan, Xiao-Dong; Jiang, Wei; Wu, Ping-Gu

    2015-01-07

    Matrix-dependent signal suppression often occurs in quantitative analysis by ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS). In this study, we investigated three calibration methods for compensation of signal suppression on chloramphenicol (CAP) quantification in chicken muscle. The data showed that the spiking recoveries by solvent standard calibration with a stable isotope labelled internal standard (SIL-IS) and matrix-matched standard calibration with a SIL-IS were significantly higher than by external matrix-matched standard calibration (P 0.05). The limit of detection (LOD) for external matrix matched standard calibration was 0.1 μg kg(-1), and that for SIL-IS calibration (including matrix matched and solvent dissolved standard) was 0.03 μg kg(-1).

  10. MULTIPLE ELECTRONIC CONTROL UNITS CALIBRATION SYSTEM BASED ON EXPLICIT CALIBRATION PROTOCOL AND J1939 PROTOCOL

    Institute of Scientific and Technical Information of China (English)

    YANG Shiwei; ZHU Keqing; XU Quankui; YANG Lin; ZHUO Bin

    2008-01-01

    The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP , with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.

  11. Plume Measurement System (PLUMES) Calibration Experiment

    Science.gov (United States)

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  12. Computer Generated Hologram System for Wavefront Measurement System Calibration

    Science.gov (United States)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  13. Ozone measurement systems: associated instrumentation and calibration

    Directory of Open Access Journals (Sweden)

    J. Bellido

    2006-01-01

    Full Text Available The harmful effects produced by ozone have lead to a vast regulation to define and establish the quality goals of ambient air, based on common methods and criteria. The surveillance nets of atmospheric pollution are worldwide extended systems and the applied technology for the ozone measurement is nowadays quite standardized. The aim of this paper is to give a general view of the most common systems used in the ozone measurement in ambient air from a practical point of view. The used instrumentation and the usual calibration methods will be described.

  14. Calibration and Validation of Measurement System

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Riemann, Sven; Knapp, Wilfried

    The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype.......The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype....

  15. Development of a tiny tandem balloon system for atmospheric observation

    Science.gov (United States)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  16. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  17. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems

    Science.gov (United States)

    Al-Abed, N. A.; Whiteley, H. R.

    2002-11-01

    Calibrating a comprehensive, multi-parameter conceptual hydrological model, such as the Hydrological Simulation Program Fortran model, is a major challenge. This paper describes calibration procedures for water-quantity parameters of the HSPF version 10·11 using the automatic-calibration parameter estimator model coupled with a geographical information system (GIS) approach for spatially averaged properties. The study area was the Grand River watershed, located in southern Ontario, Canada, between 79° 30 and 80° 57W longitude and 42° 51 and 44° 31N latitude. The drainage area is 6965 km2. Calibration efforts were directed to those model parameters that produced large changes in model response during sensitivity tests run prior to undertaking calibration. A GIS was used extensively in this study. It was first used in the watershed segmentation process. During calibration, the GIS data were used to establish realistic starting values for the surface and subsurface zone parameters LZSN, UZSN, COVER, and INFILT and physically reasonable ratios of these parameters among watersheds were preserved during calibration with the ratios based on the known properties of the subwatersheds determined using GIS. This calibration procedure produced very satisfactory results; the percentage difference between the simulated and the measured yearly discharge ranged between 4 to 16%, which is classified as good to very good calibration. The average simulated daily discharge for the watershed outlet at Brantford for the years 1981-85 was 67 m3 s-1 and the average measured discharge at Brantford was 70 m3 s-1. The coupling of a GIS with automatice calibration produced a realistic and accurate calibration for the HSPF model with much less effort and subjectivity than would be required for unassisted calibration.

  18. Design and Implementation of A Circuit Board Calibration System

    Directory of Open Access Journals (Sweden)

    Bai Hang

    2016-01-01

    Full Text Available With the development of science and technology, the traditional artificial detection methods cannot meet the requirements of modern equipment testing and calibration. Combined with the actual demand, a kind of circuit boards calibration system are put forward. It can to realize automatic testing and calibration of the circuit boards. Many functions of the calibration system such as automatic testing, self-test and monitoring are summarized. The hardware is introduced which including the industrial computer system, calibration adapter and so on. Then, development platform, the thought of program design and the structure of the software are introduced in detail. The function of automatic calibration to specific circuit boards are realized. Because the system has good commonality and easy to extend to upgrade, the development ideas and experiences can be applied to similar circuit boards automatic testing system.

  19. Structured light system calibration method with optimal fringe angle.

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2014-11-20

    For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H)  mm×250(W)  mm×500(D)  mm.

  20. Calibration method for a central catadioptric-perspective camera system.

    Science.gov (United States)

    He, Bingwei; Chen, Zhipeng; Li, Youfu

    2012-11-01

    A central catadioptric-perspective camera system is widely used nowadays. A critical problem is that current calibration methods cannot determine the extrinsic parameters between the central catadioptric camera and a perspective camera effectively. We present a novel calibration method for a central catadioptric-perspective camera system, in which the central catadioptric camera has a hyperbolic mirror. Two cameras are used to capture images of one calibration pattern at different spatial positions. A virtual camera is constructed at the origin of the central catadioptric camera and faced toward the calibration pattern. The transformation between the virtual camera and the calibration pattern could be computed first and the extrinsic parameters between the central catadioptric camera and the calibration pattern could be obtained. Three-dimensional reconstruction results of the calibration pattern show a high accuracy and validate the feasibility of our method.

  1. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    Directory of Open Access Journals (Sweden)

    Mark Shortis

    2015-12-01

    Full Text Available Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  2. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    Science.gov (United States)

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  3. Mammography calibration qualities establishment in a Mo- Mo clinical system

    Science.gov (United States)

    Corrêa, E. L.; dos Santos, L. R.; Vivolo, V.; Potiens, M. P. A.

    2016-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained.

  4. Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging.

    Directory of Open Access Journals (Sweden)

    James O'Callaghan

    Full Text Available High-field, pre-clinical MRI systems are widely used to characterise tissue structure and volume in small animals, using high resolution imaging. Both applications rely heavily on the consistent, accurate calibration of imaging gradients, yet such calibrations are typically only performed during maintenance sessions by equipment manufacturers, and potentially with acceptance limits that are inadequate for phenotyping. To overcome this difficulty, we present a protocol for gradient calibration quality assurance testing, based on a 3D-printed, open source, structural phantom that can be customised to the dimensions of individual scanners and RF coils. In trials on a 9.4 T system, the gradient scaling errors were reduced by an order of magnitude, and displacements of greater than 100 µm, caused by gradient non-linearity, were corrected using a post-processing technique. The step-by-step protocol can be integrated into routine pre-clinical MRI quality assurance to measure and correct for these errors. We suggest that this type of quality assurance is essential for robust pre-clinical MRI experiments that rely on accurate imaging gradients, including small animal phenotyping and diffusion MR.

  5. Radioxenon detector calibration spike production and delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P.; Cameron, Ian M.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Kriss, Aaron A.; Lidey, Lance S.; Mendez, Jennifer M.; Prinke, Amanda M.; Riedmann, Robin A.

    2016-03-01

    Abstract Beta-Gamma coincidence radioxenon detectors must be calibrated for each of the four-radioxenon isotopes (135Xe, 133Xe, 133mXe, and 131mXe). Without a proper calibration, there is potential for the misidentification of the amount of each isotope detected. It is important to accurately determine the amount of each radioxenon isotope, as the ratios can be used to distinguish between an anthropogenic source and a nuclear explosion. We have developed a xenon calibration system (XeCalS) that produces calibration spikes of known activity and pressure for field calibration of detectors. The activity concentrations of these calibration spikes are measured using a beta-gamma coincidence detector and a high purity germanium (HPGe) detector. We will present the results from the development and commissioning of XeCalS, along with the future plans for a portable spike implementation system.

  6. Accurate and Simple Calibration of DLP Projector Systems

    OpenAIRE

    Wilm, Jakob; Olesen, Oline Vinter; Larsen, Rasmus

    2014-01-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry pr...

  7. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-09-15

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80/sup 0/K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  8. Method for large-range structured light system calibration.

    Science.gov (United States)

    An, Yatong; Bell, Tyler; Li, Beiwen; Xu, Jing; Zhang, Song

    2016-11-20

    Structured light system calibration often requires the usage of a calibration target with a similar size as the field of view (FOV), which brings challenges to a large-range structured light system calibration since fabricating large calibration targets is difficult and expensive. This paper presents a large-range system calibration method that does not need a large calibration target. The proposed method includes two stages: (1) accurately calibrate intrinsics (i.e., focal lengths and principle points) at a near range where both the camera and projector are out of focus, and (2) calibrate the extrinsic parameters (translation and rotation) from camera to projector with the assistance of a low-accuracy, large-range three-dimensional (3D) sensor (e.g., Microsoft Kinect). We have developed a large-scale 3D shape measurement system with a FOV of 1120  mm×1900  mm×1000  mm. Experiments demonstrate our system can achieve measurement accuracy as high as 0.07 mm with a standard deviation of 0.80 mm by measuring a 304.8 mm diameter sphere. As a comparison, Kinect V2 only achieved mean error of 0.80 mm with a standard deviation of 3.41 mm for the FOV of measurement.

  9. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  10. Manual Calibration System for Daya Bay Reactor Neutrino Experiment

    Institute of Scientific and Technical Information of China (English)

    HUANG; Han-xiong; RUAN; Xi-chao; REN; Jie; LV; Yin-long; FAN; Cheng-jun; CHEN; Yan-nan; WANG; Zhao-hui; ZHOU; Zu-ying; HOU; Long; ZHANG; Jia-wen; ZHANG; Yin-hong; YU; Chao-ju; HE; Wei; ZHOU; Bin

    2012-01-01

    <正>The neutrino mixing angle θ13 with a significance of 7.7 standard deviations has been published by the Daya Bay anti-neutrino experiment collaboration in 2012. To understand the non-uniformity and the energy non-linearity of the anti-neutrino detector (AD), a calibration campaign for the AD1 with the Manual Calibration System (MCS) has been finished. The aim of this calibration plan is to deploy the calibration sources to any positions inside the Inner Acrylic Vessel (IAV), to study detail properties of AD.

  11. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  12. Omnidirectional vision systems calibration, feature extraction and 3D information

    CERN Document Server

    Puig, Luis

    2013-01-01

    This work focuses on central catadioptric systems, from the early step of calibration to high-level tasks such as 3D information retrieval. The book opens with a thorough introduction to the sphere camera model, along with an analysis of the relation between this model and actual central catadioptric systems. Then, a new approach to calibrate any single-viewpoint catadioptric camera is described.  This is followed by an analysis of existing methods for calibrating central omnivision systems, and a detailed examination of hybrid two-view relations that combine images acquired with uncalibrated

  13. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  14. Multi-Instrument Inter-Calibration (MIIC System

    Directory of Open Access Journals (Sweden)

    Chris Currey

    2016-11-01

    Full Text Available In order to have confidence in the long-term records of atmospheric and surface properties derived from satellite measurements it is important to know the stability and accuracy of the actual radiance or reflectance measurements. Climate quality measurements require accurate calibration of space-borne instruments. Inter-calibration is the process that ties the calibration of a target instrument to a more accurate, preferably SI-traceable, reference instrument by matching measurements in time, space, wavelength, and view angles. A major challenge for any inter-calibration study is to find and acquire matched samples from within the large data volumes distributed across Earth science data centers. Typically less than 0.1% of the instrument data are required for inter-calibration analysis. Software tools and networking middleware are necessary for intelligent selection and retrieval of matched samples from multiple instruments on separate spacecraft.  This paper discusses the Multi-Instrument Inter-Calibration (MIIC system, a web-based software framework used by the Climate Absolute Radiance and Refractivity Observatory (CLARREO Pathfinder mission to simplify the data management mechanics of inter-calibration. MIIC provides three main services: (1 inter-calibration event prediction; (2 data acquisition; and (3 data analysis. The combination of event prediction and powerful server-side functions reduces the data volume required for inter-calibration studies by several orders of magnitude, dramatically reducing network bandwidth and disk storage needs. MIIC provides generic retrospective analysis services capable of sifting through large data volumes of existing instrument data. The MIIC tiered design deployed at large institutional data centers can help international organizations, such as Global Space Based Inter-Calibration System (GSICS, more efficiently acquire matched data from multiple data centers. In this paper we describe the MIIC

  15. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    Science.gov (United States)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  16. Calibration of a catadioptric omnidirectional vision system with conic mirror

    Science.gov (United States)

    Marcato Junior, J.; Tommaselli, A. M. G.; Moraes, M. V. A.

    2016-03-01

    Omnidirectional vision systems that enable 360° imaging have been widely used in several research areas, including close-range photogrammetry, which allows the accurate 3D measurement of objects. To achieve accurate results in Photogrammetric applications, it is necessary to model and calibrate these systems. The major contribution of this paper relates to the rigorous geometric modeling and calibration of a catadioptric, omnidirectional vision system that is composed of a wide-angle lens camera and a conic mirror. The indirect orientation of the omnidirectional images can also be estimated using this rigorous mathematical model. When calibrating the system, which is composed of a wide-angle camera and a conic mirror, misalignment of the conical mirror axis with respect to the camera's optical axis is a critical problem that must be considered in mathematical models. The interior calibration technique developed in this paper encompasses the following steps: wide-angle camera calibration; conic mirror modeling; and estimation of the transformation parameters between the camera and conic mirror reference systems. The main advantage of the developed technique is that it does not require accurate physical alignment between the camera and conic mirror axis. The exterior orientation is based on the properties of the conic mirror reflection. Experiments were conducted with images collected from a calibration field, and the results verified that the catadioptric omnidirectional system allows for the generation of ground coordinates with high geometric quality, provided that rigorous photogrammetric processes are applied.

  17. Vision system for dial gage torque wrench calibration

    Science.gov (United States)

    Aggarwal, Neelam; Doiron, Theodore D.; Sanghera, Paramjeet S.

    1993-11-01

    In this paper, we present the development of a fast and robust vision system which, in conjunction with the Dial Gage Calibration system developed by AKO Inc., will be used by the U.S. Army in calibrating dial gage torque wrenches. The vision system detects the change in the angular position of the dial pointer in a dial gage. The angular change is proportional to the applied torque. The input to the system is a sequence of images of the torque wrench dial gage taken at different dial pointer positions. The system then reports the angular difference between the different positions. The primary components of this vision system include modules for image acquisition, linear feature extraction and angle measurements. For each of these modules, several techniques were evaluated and the most applicable one was selected. This system has numerous other applications like vision systems to read and calibrate analog instruments.

  18. Calibration of robotic drilling systems with a moving rail

    Institute of Scientific and Technical Information of China (English)

    Tian Wei; Zeng Yuanfan; Zhou Wei; Liao Wenhe

    2014-01-01

    Industrial robots are widely used in aircraft assembly systems such as robotic drilling sys-tems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a mov-ing rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85%to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  19. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  20. Dynamic system multivariate calibration by system identification methods

    Directory of Open Access Journals (Sweden)

    Rolf Ergon

    1998-04-01

    Full Text Available In the first part of the paper, the optimal estimator for normally nonmeasured primary outputs from a linear and time invariant dynamic system is developed. The estimator is based on an underlying Kalman filter, utilizing all available information in known inputs and measured secondary outputs. Assuming sufficient experimental data, the optimal estimator can be identified by specifying an output error model in a standard prediction error identification method. It is further shown that static estimators found by the ordinary least squares method or multivariate calibration by means of principal component regression (PCR or partial least squares regression (PLSR can be seen as special cases of the optimal dynamic estimator. Finally, it is shown that dynamic system PCR and PLSR solutions can be developed as special cases of the general estimator for dynamic systems.

  1. The Calibration System of the HAWC Gamma-Ray Observatory

    CERN Document Server

    Solares, Hugo A Ayala; Hui, C Michelle; Lauer, Robert J; Ren, Zhixiang; Greus, Francisco Salesa; Zhou, Hao

    2015-01-01

    The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.

  2. Accurate and simple calibration of DLP projector systems

    Science.gov (United States)

    Wilm, Jakob; Olesen, Oline V.; Larsen, Rasmus

    2014-03-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination of parameters including lens distortion. Our implementation acquires printed planar calibration scenes in less than 1s. This makes our method both fast and convenient. We evaluate our method in terms of reprojection errors and structured light image reconstruction quality.

  3. Landsat 8 on-orbit characterization and calibration system

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  4. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  5. Method of Hydrogenous Fuel Usage to Increase the Efficiency in Tandem Diverse Temperature Oxidation System

    Directory of Open Access Journals (Sweden)

    Zubkova Marina

    2016-01-01

    Full Text Available This paper presents the results of estimation energy efficiency, the collation data of thermodynamic calculations and data on material balance for an assessment of electric and thermal components in considered ways to use convention products, performance enhancement in the tandem system containing the high-temperature fuel cell and the low-temperature fuel cell with full heat regeneration for hydrogenous fuel (CH4. The overall effective efficiency (ηΣef. making full use of the recovered heat considered tandem system depends on the efficiency of its constituent fuel cells. The overall effective efficiency of the tandem installation including the fuel converter, separating system, high-temperature oxidation system, and hydrogen disposal system in case of fuel use in the low-temperature fuel cell, is higher than for each of the fuel cell elements separately.

  6. Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems

    Directory of Open Access Journals (Sweden)

    Yanchang Wang

    2012-10-01

    Full Text Available Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐eye cameras and cannot be applied directly to multi‐camera systems. In this work, we propose an easy calibration method with closed‐form initialization and iterative optimization for omnidirectional multi‐camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising.

  7. The KamLAND Full-Volume Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O' Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  8. The Dark Energy Survey Data Processing and Calibration System

    CERN Document Server

    Mohr, Joseph J; Bertin, Emmanuel; Daues, Gregory E; Desai, Shantanu; Gower, Michelle; Gruendl, Robert; Hanlon, William; Kuropatkin, Nikolay; Lin, Huan; Marriner, John; Petravick, Don; Sevilla, Ignacio; Swanson, Molly; Tomashek, Todd; Tucker, Douglas; Yanny, Brian

    2012-01-01

    The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have included building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint mode...

  9. A harvester based calibration system for cotton yield monitors

    Science.gov (United States)

    The objective of this work was to develop a system for measuring seed cotton weight on a cotton harvester to facilitate on-farm research efforts and provide information for use in semi-real-time calibration of yield monitors. The system tested in 2014 was improved from the original design developed...

  10. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  11. Calibration of Frequency Data Collection Systems Using Shortwave Radio Signals

    Science.gov (United States)

    Estler, Ron

    2000-09-01

    The atomic-clock-derived audio tones broadcast on the National Institute of Standards and Technology (NIST) shortwave station WWV are used to calibrate computer frequency data collection systems via Fast Fourier Transforms (FFT). Once calibrated, the data collection system can be used to accurately determine the audio signals used in several instructional physical chemistry laboratory experiments. This method can be applied to virtually any hardware-software configuration that allows adjustment of the apparent time scale (digitizing rate) of the recorded audio file.

  12. Calibration and investigation of infrared camera systems applying blackbody radiation

    Science.gov (United States)

    Hartmann, Juergen; Fischer, Joachim

    2001-03-01

    An experimental facility is presented, which allows calibration and detailed investigation of infrared camera systems. Various blackbodies operating in the temperature range from -60 degree(s)C up to 3000 degree(s)C serve as standard radiation sources, enabling calibration of camera systems in a wide temperature and spectral range with highest accuracy. Quantitative results and precise long-term investigations, especially in detecting climatic trends, require accurate traceability to the International Temperature Scale of 1990 (ITS-90). For the used blackbodies the traceability to ITS- 90 is either realized by standard platinum resistance thermometers (in the temperature range below 962 degree(s)C) or by absolute and relative radiometry (in the temperature range above 962 degree(s)C). This traceability is fundamental for implementation of quality assurance systems and realization of different standardizations, for example according ISO 9000. For investigation of the angular and the temperature resolution our set-up enables minimum resolvable (MRTD) and minimum detectable temperature difference (MDTD) measurements in the various temperature ranges. A collimator system may be used to image the MRTD and MDTD targets to infinity. As internal calibration of infrared camera systems critically depends on the temperature of the surrounding, the calibration and investigation of the cameras is performed in a climate box, which allows a detailed controlling of the environmental parameters like humidity and temperature. Experimental results obtained for different camera systems are presented and discussed.

  13. Flexible Calibration Method for 3D Laser Scanner System

    Institute of Scientific and Technical Information of China (English)

    杨中东; 王鹏; 李晓慧; 孙长库

    2014-01-01

    In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square (RMS) error of distance was 0.000 7 mm.

  14. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  15. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  16. Adaptive Color Calibration Based One-Shot Structured Light System

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    2012-08-01

    Full Text Available In one-shot color structured light systems, the color of stripe patterns are typically distorted with respect to color crosstalk, ambient light and the albedo of the scanned objects, leading to mismatch in the correspondence of color stripes between the projected and captured images. In this paper, an adaptive color calibration and Discrete Trend Transform algorithm are presented to achieve high-resolution 3D reconstructions. The adaptive color calibration, according to the relative albedo in RGB channels, can improve the accuracy of labeling stripe by alleviating the effect of albedo and ambient light while decoding the color. Furthermore, the Discrete Trend Transform in the M channel makes the color calibration an effective method for detecting weak stripes due to the uneven surfaces or reflectance characteristics of the scanned objects. With this approach, the presented system is suitable for scanning moving objects and generating high-resolution 3D reconstructions without the need of dark laboratory environments.

  17. Adaptive color calibration based one-shot structured light system.

    Science.gov (United States)

    Zhou, Yu; Zhao, Dongwei; Yu, Yao; Yuan, Jie; Du, Sidan

    2012-01-01

    In one-shot color structured light systems, the color of stripe patterns are typically distorted with respect to color crosstalk, ambient light and the albedo of the scanned objects, leading to mismatch in the correspondence of color stripes between the projected and captured images. In this paper, an adaptive color calibration and Discrete Trend Transform algorithm are presented to achieve high-resolution 3D reconstructions. The adaptive color calibration, according to the relative albedo in RGB channels, can improve the accuracy of labeling stripe by alleviating the effect of albedo and ambient light while decoding the color. Furthermore, the Discrete Trend Transform in the M channel makes the color calibration an effective method for detecting weak stripes due to the uneven surfaces or reflectance characteristics of the scanned objects. With this approach, the presented system is suitable for scanning moving objects and generating high-resolution 3D reconstructions without the need of dark laboratory environments.

  18. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  19. Numerical Analysis of a Radiant Heat Flux Calibration System

    Science.gov (United States)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  20. On the efficiency calibration of a drum waste assay system

    CERN Document Server

    Dinescu, L; Cazan, I L; Macrin, R; Caragheorgheopol, G; Rotarescu, G

    2002-01-01

    The efficiency calibration of a gamma spectroscopy waste assay system, constructed by IFIN-HH, was performed. The calibration technique was based on the assumption of a uniform distribution of the source activity in the drum and also a uniform sample matrix. A collimated detector (HPGe--20% relative efficiency) placed at 30 cm from the drum was used. The detection limit for sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co is approximately 45 Bq/kg for a sample of about 400 kg and a counting time of 10 min. A total measurement uncertainty of -70% to +40% was estimated.

  1. Seismic margins and calibration of piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  2. Automatic Calibration and Reconstruction for Active Vision Systems

    CERN Document Server

    Zhang, Beiwei

    2012-01-01

    In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects.

  3. The Detector Calibration System for the CUORE cryogenic bolometer array

    CERN Document Server

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  4. The performance of the CHEOPS on-ground calibration system

    Science.gov (United States)

    Chazelas, B.; Wildi, F. P.; Sarajlic, M.; Sordet, M.; Deline, A.

    2016-07-01

    The CHEOPS space mission will measure photometric transits of exo-planets with a precision of 20 ppm in 6 hours of integration time on a 9th magnitude star. This corresponds to a signal-to-noise ratio of 5 for a transit of an Earth-sized planet orbiting a solar-sized star. Achieving the precision goal requires precise on-ground calibration of the payload to remove its signature from the raw data while in flight. A sophisticated calibration system will inject a stimulus beam in the payload and measure its response to the variation of electrical and environmental parameters. These variations will be compiled in a correction model. At the very end of the testing phase, the CHEOPS photometric performance will be assessed on an artificial star, applying the correction model This paper addresses some original details of the CHEOPS calibration bench and its performance as measured in the lab.

  5. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  6. The Habitable-zone Planet Finder Calibration System

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Terrien, Ryan; Roy, Arpita; Schwab, Christian; Bender, Chad; Hearty, Fred; Levi, Eric; Osterman, Steve; Ycas, Gabe; Diddams, Scott

    2014-01-01

    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R$\\sim$50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s$^{-1}$ or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to...

  7. Simulation of tandem hydrofoils by finite volume method with moving grid system; Henkei koshi wo tsukatta yugen taisekiho ni yoru tandem suichuyoku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H. [Ship Research Inst., Tokyo (Japan); Miyata, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-12-31

    With an objective to clarify possibility of application of time-advancing calculated fluid dynamic (CFD) simulation by using a finite volume method with moving grid system, a simulation was performed on motion of a ship with hydrofoils including the control system therein. The simulation consists of a method that couples a moving grid system technology, an equation of motion, and the control system. Complex interactions between wings and with free surface may be considered automatically by directly deriving fluid force from a flow field by using the CFD. In addition, two-dimensional flows around tandem hydrofoils were calculated to solve the motion problem within a vertical plane. As a result, the following results were obtained: a finite volume method using a dynamic moving grid system method was applied to problems in non-steady tandem hydrofoils to show its usefulness; a method that couples the CFD with the equation of motion was applied to the control problems in the tandem hydrofoils to show possibility of a new technology for simulating motions; and a simulation that considers such wing interference as wave creation, discharged vortices, and associated flows was shown useful to understand characteristics of the tandem hydrofoils. 13 refs., 14 figs.

  8. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  9. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  10. Design of a novel digital phantom for EIT system calibration.

    Science.gov (United States)

    Li, Nan; Wang, Wei; Xu, Hui

    2011-01-01

    This paper presented the design method of a novel digital phantom for electrical impedance tomography system calibration. By current sensing, voltage generating circuitry and digital processing algorithms implemented in FPGA, the digital phantom can simulate different impedances of tissues. The hardware of the digital phantom mainly consists of current sensing section, voltage generating section, electrodes switching section and a FPGA. Concerning software, the CORDIC algorithm is implemented in the FPGA to realize direct digital synthesis (DDS) technique and related algorithms. Simulation results show that the suggested system exhibits sufficient accuracy in the frequency range 10 Hz to 2 MHz. With the advantages offered by digital techniques, our approach has the potential of speed, accuracy and flexibility of the EIT system calibration process.

  11. Calibration procedure of measuring system for vehicle wheel load estimation

    Science.gov (United States)

    Kluziewicz, M.; Maniowski, M.

    2016-09-01

    The calibration procedure of wheel load measuring system is presented. Designed method allows estimation of selected wheel load components while the vehicle is in motion. Mentioned system is developed to determine friction forces between tire and road surface, basing on measured internal reaction forces in wheel suspension mechanism. Three strain gauge bridges and three-component piezoelectric load cell are responsible for internal force measurement in suspension components, two wire sensors are measuring displacements. External load is calculated via kinematic model of suspension mechanism implemented in Matlab environment. In the described calibration procedure, internal reactions are measured on a test stand while the system is loaded by a force of known direction and value.

  12. Online Calibration for LTE-Based Antenna Array System

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2016-01-01

    Full Text Available This paper presents a novel calibration method that equalizes the impulse responses of all the Radio Frequency (RF modules of an antenna array system operating in Long-Term Evolution (LTE evolved NodeB (eNB. The proposed technique utilizes the Zadoff-Chu (Z-C sequence of the Primary Synchronization Signal (PSS and Sounding Reference Signal (SRS that are available in every LTE data frame for downlink and uplink, respectively, for estimating and compensating the differences in the impulse responses among the RF modules. The proposed calibration method is suitable for wide bandwidth signal environments of LTE because it equalizes the impulse response of each RF module, which is ultimately equivalent to compensate the phase and amplitude differences among RF modules for the entire frequency band. In addition, the proposed method is applicable while the target eNB is transmitting or receiving a data stream. From various experimental tests obtained from a test-bed implemented with 2 RF modules, it has been verified that the proposed method provides a reliable calibration for Release 10 Time Division Duplex (TDD LTE signals. Phase errors after the calibration in our test-bed have been found to be about 2.418° and 2.983° for downlink and uplink, respectively.

  13. CMR Shuffler System: Passive Mode Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Salazar, William R. [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  14. A linear signal transmission system calibration method of wideband GPR

    Science.gov (United States)

    Wu, Bin; Zhao, Kai; Gu, Ling-jia; Cao, Qiong; Li, Xiao-feng; Zheng, Xing-ming

    2016-09-01

    In VHF pulse Ground Penetrating Radar(GPR) system, the echo pass through the antenna and transmission line circuit, then reach the GPR receiver. Thus the reflection coefficient at the receiver sampling gate interface, which is at the end of the transmission line, is different from the real reflection coefficient of the media at the antenna interface, which could cause the GPR receiving error. The pulse GPR receiver is a wideband system that can't be simply described as traditional narrowband transmission line model. Since the GPR transmission circuit is a linear system, the linear transformation method could be used to analyze the characteristic of the GPR receiving system. A GPR receiver calibration method based on transmission line theory is proposed in this paper, which analyzes the relationship between the reflection coefficients of theory calculation at antenna interface and the measuring data by network analyzer at the sampling gate interface. Then the least square method is introduced to calibrate the transfer function of the GPR receiver transmission circuit. This calibration method can be useful in media quantitative inversion by GPR. When the reflection coefficient at the sampling gate is obtained, the real reflection coefficient of the media at the antenna interface can be easily determined.

  15. The Calibration System of the E989 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, Antonio [Univ. of Messina (Italy)

    2017-01-01

    The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm, improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10-4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10-4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level

  16. Improved spatial calibration for the CXRS system on EAST

    Science.gov (United States)

    Yin, X. H.; Li, Y. Y.; Fu, J.; Jiang, D.; Feng, S. Y.; Gu, Y. Q.; Cheng, Y.; Lyu, B.; Shi, Y. J.; Ye, M. Y.; Wan, B. N.

    2016-11-01

    A Charge eXchange Recombination Spectroscopy (CXRS) diagnostic system has been developed to measure profiles of ion temperature and rotation since 2014 on EAST. Several techniques have been developed to improve the spatial calibration of the CXRS diagnostic. The sightline location was obtained by measuring the coordinates of three points on each sightline using an articulated flexible coordinate measuring arm when the vessel was accessible. After vacuum pumping, the effect of pressure change in the vacuum vessel was evaluated by observing the movement of the light spot from back-illuminated sightlines on the first wall using the newly developed articulated inspection arm. In addition, the rotation of the periscope after vacuum pumping was derived by using the Doppler shift of neutral beam emission spectra without magnetic field. Combining these techniques, improved spatial calibration was implemented to provide a complete and accurate description of the EAST CXRS system. Due to the effects of the change of air pressure, a ˜0.4° periscope rotation, yielding a ˜20 mm movement of the major radius of observation positions to the lower field side, was derived. Results of Zeeman splitting of neutral beam emission spectra with magnetic field also showed good agreement with the calibration results.

  17. Calibration system for measuring the radon flux density.

    Science.gov (United States)

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  18. Calibration systems and methods for the ANTARES neutrino telescope

    CERN Document Server

    Fehr, Felix

    2007-01-01

    The ANTARES neutrino telescope is currently being constructed in the Mediterranean Sea. The complete detector will consist of 12 strings, supplemented by an additional instrumentation line. Nine strings are at present deployed of which five are already connected to the shore and operating. Each string is equipped with 75 Optical Modules (OMs) housing the photomultipliers to detect the Cherenkov light induced by the charged particles produced in neutrino reactions. An accurate measurement of the Cherenkov photon arrival times as well as the positions and orientations of the OMs is required for a precise reconstruction of the direction of the detected neutrinos. For this purpose the ANTARES detector is provided with several system s to facilitate the calibration of the detector. The time calibration is performed using light pulses emitted from LED and laser devices. The positioning is done via acoustic triangulation using hydrophones. Additionally, local tilt angles and the orientations of the modules are measu...

  19. Design and development of an ultrasound calibration phantom and system

    Science.gov (United States)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  20. The calibration system of the GERDA muon veto Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Florian, E-mail: ritter@pit.physik.uni-tuebingen.d [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Lubsandorzhiev, Bayarto [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Institute for Nuclear Research of RAS, Moscow (Russian Federation); Freund, Kai; Grabmayr, Peter; Jochum, Josef; Knapp, Markus; Meierhofer, Georg [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Shaibonov, Bator [Institute for Nuclear Research of RAS, Moscow (Russian Federation)

    2010-05-21

    The GERDA experiment searches for neutrinoless double beta decay (0{nu}{beta}{beta}). To achieve a sensitivity of 10{sup -3}counts/(keVkgy) or better within a specific region of interest (ROI), a good background identification is needed. Therefore GERDA is located in the LNGS (Laboratori Nationali del Gran Sasso) underground facility. In addition to the good rejection of cosmic muons due to the surrounding bedrocks, a dual muon veto system has to be used. For calibration and monitoring of the muon veto, two separate systems have been developed.

  1. System for Measuring Elevator Guide Rail Quality and Its Calibration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A system for measuring the quality parameters of elevator guide rails is developed. The quality parameters the system can measure include straightness, flatness, squareness, width and height of the rail. The system consists of six parts:main guideway, auxiliary guideway, reference rail, saddle, control casing and measured rail. The guide rail to be measured is mounted on a bed.The straightness errors of surfaces are checked by five linear displacement sensors mounted on the saddle. The deviation of readings from the sensor, which is in contact with top guiding surface,gives the straightness error of the surface and height of the rail. The other four sensors are used to measure side guiding surfaces respectively and give other parameters including flatness on the surfaces, squareness, width and height of the rail. A novel calibration method is also developed to calibrate the straightness motion error of the system in horizontal and vertical directions. The deflection deformation of the measured rail is fitted by using a fourth-order polynomial. Experimental results show that the uncertainty of the system on the side surfaces after compensating the straightness motion error is less than 0.01 mm, and the uncertainty of the system on the top surface after compensating the straightness motion error and the deflection deformation of the rail is less than 0.03 mm.

  2. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hearing aid calibrator and analysis system. 874... aid calibrator and analysis system. (a) Identification. A hearing aid calibrator and analysis system... sound intensity characteristics emanating from a hearing aid, master hearing aid, group hearing aid...

  3. Development of a Calibration and Monitoring System for GD-1 High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    王俊席; 杨林; 冯静; 冒晓建; 卓斌

    2004-01-01

    Based on CAN calibration protocol, a new calibration and monitoring system was developed for the GD1 high pressure common rail diesel engine. CAN driver block, monitoring program and calibration program for this system were designed respectively. The inquiry mode was used in the monitoring program and the interrupt mode was used in calibration program. The calibration program was designed in structural programming model. This system provides a reliable, accurate and quick CAN bus between ECU and PC, with baud rate up to 500Kbit/s.The implementation of the compatible and universal CAN calibration protocol makes it easy to displace the system and its function modules. It also provides friendly, compatible and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system was successfully used in a GD-1 high pressure common rail diesel engine and the engine performance and exhaust emissions were significantly improved.

  4. Design of a Calibration System for Heat Flux Meters

    Science.gov (United States)

    Arpino, F.; Dell'Isola, M.; Ficco, G.; Iacomini, L.; Fernicola, V.

    2011-12-01

    Accurate heat flux measurements are needed to gain a better knowledge of the thermal performance of buildings and to evaluate the heat exchange among various parts of a building envelope. Heat flux meters (HFMs) are commonly used both in laboratory applications and in situ for measuring one-dimensional heat fluxes and, thus, estimating the thermal transmittance of material samples and existing buildings components. Building applications often requires heat flux measurements below 100 W · m-2. However, a standard reference system generating such a low heat flux is available only in a few national metrology institutes (NMIs). In this work, a numerical study aimed at designing an HFM calibration apparatus operating in the heat flux range from 5 W·m-2 to 100 W · m-2 is presented. Predictions about the metrological performance of such a calibration system were estimated by numerical modeling exploiting a commercial FEM code (COMSOL®). On the basis of the modeling results, an engineered design of such an apparatus was developed and discussed in detail. The system was designed for two different purposes: (i) for measuring the thermal conductivity of insulators and (ii) for calibrating an HFM with an absolute method (i.e., by measuring the applied power from the heater and its active cross section) or by a relative method (i.e., by measuring the temperature drop across a reference material of known thickness and thermal conductivity). The numerical investigations show that in order to minimize the uncertainty of the generated heat flux, a fine temperature control on the thermal guard is needed. The predicted standard uncertainty is within 2% at 10W·m-2 and within 0.5% at 100 W · m-2.

  5. Extrinsic Calibration for Vehicle-based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    SHI Limei

    2015-01-01

    Full Text Available Having the advantage of 360° imaging and rotation invariance, panoramic camera has gradually been used in mobile mapping systems(MMS. Calibration is an essential requirement to make sure that MMS can get high quality geo-information. This paper presents a way to address the extrinsic calibration for vehicle-based MMS composed of panoramic camera and Position and Orientation System (POS. Firstly, control points in the natural scene are set up, whose spatial coordinates are measured with high precision. Secondly, a panoramic spherical model is constructed and panoramic image can be projected to this model by means of spherical reverse transformation projection. Then, localize and select the control points in 3D spherical panoramic view but not in panoramic distorted image directly, the spherical coordinates of control points in panoramic image are gotten. After points correspondence is established, make use of direct geo-reference positioning equation and coordinate transformation, the translation and rotation parameters of panoramic camera relative to POS are computed. Experiments are conducted separately in space city calibration site located in Beijing and the Binhai New Area in Tianjin using our approach. Test results are listed as follows. When the GPS signal are of good quality, absolute positioning mean square error of a point is 10.3 cm in two-dimension plane and 16.5 cm in height direction; Otherwise, it is 35.4 cm in two-dimension plane and 54.8 cm in height direction. The max relative error of distance measurement is about 5 cm over a short distance (distance<3 km, which is not obviously affected by the GPS signal quality.

  6. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  7. Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Björn J. Döring

    2013-12-01

    Full Text Available A synthetic aperture radar (SAR system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not systematically determined. Here for the first time it is proposed to use hierarchical modeling and Bayesian statistics as a consistent method for handling and analyzing the hierarchical data typically acquired during external calibration campaigns. Through the use of Markov chain Monte Carlo simulations, a joint posterior probability can be conveniently derived from measurement data despite the necessary grouping of data samples. The applicability of the method is demonstrated through a case study: The radar reflectivity of DLR’s new C-band Kalibri transponder is derived through a series of RADARSAT-2 acquisitions and a comparison with reference point targets (corner reflectors. The systematic derivation of calibration uncertainties is seen as an important step toward traceable radiometric calibration of synthetic aperture radars.

  8. Evolution of the JPSS Ground Project Calibration and Validation System

    Science.gov (United States)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  9. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    Science.gov (United States)

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  10. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  11. Guidelines for the Calibration of Routine Dosimetry Systems for use in Radiation Processing

    DEFF Research Database (Denmark)

    Sharpe, Peter; Miller, Arne

    A set of guidelines has been developed to assist in the calibration of routine dosimetry systems for use in industrial radiation processing plants. Topics covered include the calibration of equipment, the performance of calibration irradiations and the derivation of mathematical functions...

  12. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    Science.gov (United States)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  13. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-11-29

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states.

  14. Study on the wavelength calibration of type III concave grating spectrometry system

    Institute of Scientific and Technical Information of China (English)

    Li Bai(白力); Ningfang Liao(廖宁放); Zhaojian Li(栗兆剑); Weiping Yang(杨卫平)

    2004-01-01

    We discuss and calibrate the spectrometry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem, three methods are put forward and discussed in detail with formulation calculation method, circular iteration method and interpolation. Interpolation is used to calibrate the concave reflection grating spectrometry system and the error is less than 1 nm. Four spectrum images that the system collected are given in this paper. The experimental results indicate that a spectrometry system can be based on concave reflection grating and be calibrated by interpolation.

  15. CRYOGENIC SYSTEM FOR PRECISE CALIBRATION OF TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. N. Solovyev

    2016-09-01

    Full Text Available A calibration technique for cryogenic temperature sensors is proposed and implemented. The experimental setup is based on the helium cryogenerator, providing calibration of the temperature sensors of various types in wide temperature range, including cryogenic band (25-100K. A condensation thermometer with hydrogen, neon, argon and xenon as working gases is used as a reference sensor. The experimental setup was successfully used for precise (0.1K precision calibration of platinum resistive temperature detectors (Pt-100 for international nuclear physics experiments MuSun and PolFusion. The setup can also be used for calibration of temperature sensors of the other types.

  16. Flux density calibration in diffuse optical tomographic systems.

    Science.gov (United States)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  17. Evolution of the JPSS Ground Project Calibration and Validation System

    Science.gov (United States)

    Chander, G.; Jain, P.

    2014-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, and coasts environments, which supports the nation's economy and protects lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a NOAA system developed and deployed by JPSS Ground Project to support Calibration and Validation (Cal/Val), Algorithm Integration, Investigation, and Tuning, and Data Quality Monitoring. It is a mature, deployed system that supports SNPP mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is a robust, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  18. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  19. Acoustic Self-Calibrating System for Indoor Smart Phone Tracking

    Directory of Open Access Journals (Sweden)

    Alexander Ens

    2015-01-01

    Full Text Available This paper presents an acoustic indoor localization system for commercial smart phones that emit high pitched acoustic signals beyond the audible range. The acoustic signals with an identifier code modulated on the signal are detected by self-built receivers which are placed at the ceiling or on walls in a room. The receivers are connected in a Wi-Fi network, such that they synchronize their clocks and exchange the time differences of arrival (TDoA of the received chirps. The location of the smart phone is calculated by TDoA multilateration. The precise time measuring of sound enables high precision localization in indoor areas. Our approach enables applications that require high accuracy, such as finding products in a supermarket or guiding blind people through complicated buildings. We have evaluated our system in real-world experiments using different algorithms for calibration-free localization and different types of sound signals. The adaptive GOGO-CFAR threshold enables a detection of 48% of the chirp pulses even at a distance of 30 m. In addition, we have compared the trajectory of a pedestrian carrying a smart phone to reference positions of an optic system. Consequently, the localization error is observed to be less than 30 cm.

  20. Accurate and Simple Calibration of DLP Projector Systems

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Larsen, Rasmus

    2014-01-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods...

  1. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolo

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing.The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of light to monitor the efficiency of the sys...

  2. Mammography calibration qualities establishment in a Mo-Mo clinical system

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.L.; Santos, L.R. dos; Vivolo, V.; Potiens, M.P.A., E-mail: educorrea1905@gmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained. (author)

  3. Calibration and validation of measurement system. Wave Dragon, Nissum Bredning

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P-; Riemann, S.; Knapp, W.

    2004-03-01

    This report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning (WD-NB) prototype. The report covers the following instruments on board WD-NB: 1) Pressure transducers. 2) Force transducers. 3) Accelerometers. 4) Displacement sensors. 5) Strain gauges. 6) Inclinometers. All of these instruments are connected to the HBM MGC+ amplifier and data acquisition unit. In the following the calibration will be dealt with individually. Furthermore, a preliminary calibration of the siphon and dummy turbines has been carried out and this is also described in the following. (au)

  4. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  5. A Java-based control system for the Orsay tandem accelerator

    Indian Academy of Sciences (India)

    Dominique Delbourg; Gérard Penillault; Tran Khan Tuong; Martial Decourt; Nicole Borome; Henri Harroch; Bertrand Lessellier; Bernard Waast; Jean Pierre Mouffron

    2002-12-01

    A new control system was designed for the tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix work-stations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Others manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network.

  6. Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mutlu, Ayten Gizem; Gernaey, Krist

    2013-01-01

    screening of the parameter space proposed by Sin et al. (2008) - to find the best fit of the model to dynamic data. Finally, the calibrated model was validated with an independent data set. CONCLUSION: The presented calibration procedure is the first customized procedure for this type of system...... and is expected to contribute to achieve a fast and effective model calibration, an important enabling tool for various biochemical engineering design, control and operation problems....

  7. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  8. A study on ten short tandem repeat systems: African immigrant and Spanish population data.

    Science.gov (United States)

    Gamero, J J; Romero, J L; Gonzalez, J L; Arufe, M I; Cuesta, M I; Corte-Real, F; Carvalho, M; Anjos, M J; Vieira, D N; Vide, M C

    2000-06-05

    This work presents the results obtained from a genetic-population study for the D1S1656 system in the population of Southwest Spain (Huelva, Cádiz and Sevilla), Spaniards of Caucasian origin from North Africa (Ceuta), as well as in the black Central West African and Moroccan immigrant populations in Spain. The results of a study of the autochtonous population of the Canary Islands (n=138), and immigrant Central West African populations in Spain (n=132), obtained for nine short tandem repeat (STR) loci (D3S1358, VWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820), as well as the amelogenin locus, all contained in Profiler Plus (Perkin-Elmer) PCR amplification kits, are also presented. Except for the FGA and VWA data on immigrant Central West African populations in Spain, no deviations from the Hardy-Weinberg equilibrium were detected.

  9. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    Science.gov (United States)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2016-08-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  10. The Photomultiplier Tube Calibration System of the MicroBooNE Experiment

    CERN Document Server

    Conrad, J; Moss, Z; Strauss, T; Toups, M

    2015-01-01

    We report on the design and construction of an LED-based fiber calibration system for large liquid argon time projection detectors. This system was developed to calibrate the optical systems of the MicroBooNE experiment. As well as detailing the materials and installation procedure, we provide technical drawings and specifications so that the system may be easily replicated in future LArTPC detectors.

  11. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    CERN Document Server

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  12. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  13. Novel calibration method for structured-light system with an out-of-focus projector.

    Science.gov (United States)

    Li, Beiwen; Karpinsky, Nikolaus; Zhang, Song

    2014-06-01

    A structured-light system with a binary defocusing technique has the potential to have more extensive application due to its high speeds, gamma-calibration-free nature, and lack of rigid synchronization requirements between the camera and projector. However, the existing calibration methods fail to achieve high accuracy for a structured-light system with an out-of-focus projector. This paper proposes a method that can accurately calibrate a structured-light system even when the projector is not in focus, making it possible for high-accuracy and high-speed measurement with the binary defocusing method. Experiments demonstrate that our calibration approach performs consistently under different defocusing degrees, and a root-mean-square error of about 73 μm can be achieved with a calibration volume of 150(H) mm×250(W) mm×200(D)mm.

  14. Leveraging microwave polarization information for calibration of a land data assimilation system

    Science.gov (United States)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  15. An Incremental Target-Adapted Strategy for Active Geometric Calibration of Projector-Camera Systems

    Directory of Open Access Journals (Sweden)

    Hsiang-Jen Chien

    2013-02-01

    Full Text Available The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved.

  16. Calibration of an Automatic System Using a Laser Signature

    Directory of Open Access Journals (Sweden)

    Edward F. Plinski

    2003-04-01

    Full Text Available The specific phenomenon, which appears in tuned CO2 lasers, called a laser signature, is used as a standard for calibration of the servomechanism. The proposed servomechanism can be used for continuous investigations of the laser signatures of different laser media.

  17. Opticle fibre calibration system and adaptive power supply

    CERN Document Server

    Cvach, J; Kovalcuk, M; Kvasnicka, J; Polak, I; Smolik, J

    2015-01-01

    We summarize the recent activity of our group in the calibration, monitoring and gain stabilization of photodetectors, primarily silicon photomultipliers, in calorimeters using scintillator as active medium. The task originally solved for the CALICE analog hadron calorimeter founds application in other experiments.

  18. A self-calibration method for tri-axis rotational inertial navigation system

    Science.gov (United States)

    Gao, Pengyu; Li, Kui; Wang, Lei; Liu, Zengjun

    2016-11-01

    The navigation accuracy of the rotational inertial navigation system (RINS) could be greatly improved by periodically rotating the inertial measurement unit (IMU) with gimbals. However, error parameters in RINS should be effectively calibrated and compensated. In this paper, a self-calibration method is proposed for tri-axis RINS using attitude errors and velocity errors as measurements. The proposed calibration scheme is designed as three separate steps, and a certain gimbal rotates continuously in each step. All the error parameters in the RINS are calibrated when the whole scheme finishes. The separate calibration steps reduce the correlations between error parameters, and the observability of errors in this method is clear to demonstrate according to the relations between navigation errors and error parameters when gimbals rotate. Each calibration step only lasts 12 min, thus gyro drifts and accelerometers biases could be regarded as constant. The proposed calibration scheme is tested in both simulation and actual tri-axis RINS, and simulation and experimental results show that all 23 error parameters could be well estimated in tri-axis RINS. A long-term vehicle navigation experiment results show that after calibration and compensation, the navigation performance has doubled approximately, and the velocity accuracy is less than 2 m s-1 while the position accuracy is less than 1500 m, fully illustrating the significance of the proposed self-calibration method in improving the navigation performance of RINS.

  19. An accurate system for onsite calibration of electronic transformers with digital output

    Science.gov (United States)

    Zhi, Zhang; Li, Hong-Bin

    2012-06-01

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  20. Resolution of a phase ambiguity in a calibration procedure for polarimetric radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Sletten, M.A. (Naval Research Lab., Washington, DC (United States). Radar Div.)

    1994-01-01

    In response to the remote sensing communities' interest in radar polarimetry, considerable effort has recently been devoted to the development of calibration techniques for polarimetric radar systems. A cross-pol/co-pol phase ambiguity in a previously published calibration procedure for polarimetric radar systems is discussed. The original procedure is modified to resolve the ambiguity while still retaining insensitivity to calibration target orientation. The modified form is then generalized and applied to an ultrawideband radar system for which the ambiguity in the original procedure is particularly evident.

  1. Computer-Based Simulation and Test System for the Calibration of EFI Engine

    Institute of Scientific and Technical Information of China (English)

    赵长禄; 张付军; 黄英; 葛蕴珊; 刘福水

    2004-01-01

    A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, identifying the dynamic transfer functions for air/fuel ratio, idle speed and ignition timing control. So the experiment work is reduced and the calibration is accelerated. In order to increase the simulation accuracy of the initial control MAP, the mathematical models are not only based on theoretical equations, but also on the control data of reference working points, which is obtained by the on-line calibration of special engines. The application of this system on a mini-car shows that the simulated control MAP has good accuracy, the interface of the system is friendly, the integrated simulation and test system is a powerful aid for EFI engine calibration and the development speed is accelerated.

  2. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Directory of Open Access Journals (Sweden)

    Jose Emilio Vargas-Soto

    2013-10-01

    Full Text Available The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  3. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  4. General Calibration Algorithm for Single-transmitting-dual-receiving Polarimetric SAR System

    Directory of Open Access Journals (Sweden)

    Chen Lin

    2012-09-01

    Full Text Available The single-transmitting-dual-receiving polarimetric SAR system has only two receving channels, which induces lack of prior information for calibration. Due to the polarization diversity of this kind of system (which operates on different dual and compact polarimetric modes, there has not a general algorithm currently. In this paper, a new general calibration algorithm is proposed for single-transmitting-dual-receiving polarimetric SAR system, which can be widely applied to diverse polarization modes. The transmitting and receiving distortion can be estimated using trihedral, 0° dihedral and 45° dihedral as ideal point targets without any assumption on the scene and system. The basic principle of this new algorithm is induced theoretically. The effect of calibrator error on the distortion estimation is analyzed by simulation. Point targets’calibration results and polarization signatures verify this algorithm.

  5. Available energy analysis of new tandem double-capillary tube refrigeration system for refrigerator-freezers

    Institute of Scientific and Technical Information of China (English)

    Maogang HE; Xinzhou SONG; Ying ZHANG; Jiantao ZHANG

    2008-01-01

    A new tandem double-capillary tube refri-geration system for refrigerator-freezers is proposed. A capillary tube was added between the two evaporators in the fresh and frozen food storage chests to raise the evaporation temperature of the refrigerating chamber, and reduce the heat exchange temperature difference and the available energy loss. Peng-Robinson (P-R) equation of state was adopted to calculate the thermodynamic properties of the refrigerants, and the available energy analysis of the vapor compression refrigeration cycle was programmed to calculate the thermodynamic perfor-mances of the new and the conventional refrigeration cycle of the refrigerator-freezer. The calculation results show that the available energy efficiency of the conven-tional refrigeration cycle of the refrigerator-freezer is 21.20% and 20.57%, respectively when the refrigerant is R12 and R134a, while that of the double-capillary tube refrigeration cycle of the refrigerator-freezer is 23.97% and 23.44%, respectively. By comparison, the available energy efficiency of the new refrigeration system increases by 13.07% and 13.95%, respectively.

  6. A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

    Directory of Open Access Journals (Sweden)

    M. Hassanein

    2016-06-01

    Full Text Available In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated

  7. a New Automatic System Calibration of Multi-Cameras and LIDAR Sensors

    Science.gov (United States)

    Hassanein, M.; Moussa, A.; El-Sheimy, N.

    2016-06-01

    In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated calibration without

  8. Test system calibrate used in DAM%DAM测试系统校准

    Institute of Scientific and Technical Information of China (English)

    张思敏; 盛永鑫

    2013-01-01

    The test system used in DAM is the critical equipment of the DAM, its performance has a direct impact on DAM. In order to solve the problem of the system calibration is not comprehensive and the automated calibration is not high, the in-site calibration idea is put forward. Through the analysis of the principle and the work process of the test system used in DAM,the calibration system of test system used in DAM is set up,the calibration adapter diagram and software composition are stated . This method has been proved to be good in versatility and high automation,can meet the calibration needs of the test system used in DAM .%DAM测试系统是DAM关键测试设备,它的性能会对DAM的性能指标有直接的影响,为了解决系统校准不全面和自动化程度不高的问题,提出了原位校准思路.通过对DAM测试系统原理和工作流程分析,构建DAM测试系统校准装置,阐述了校准适配网络组成和软件组成框图.经过实际应用证明,该方法通用性好,自动化程度高,满足DAM测试系统校准需求.

  9. SU-D-BRF-05: A Novel System to Provide Real-Time Image-Guidance for Intrauterine Tandem Insertion and Placement

    Energy Technology Data Exchange (ETDEWEB)

    Price, M; Fontenot, J [pF Biomedical Solutions LLC, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To develop a system that provides real-time image-guidance for intrauterine tandem insertion and placement for brachytherapy. Methods: The conceptualized system consists of an intrauterine tandem with a transparent, lensed tip, a flexible miniature fiber optic scope, light source and interface for CCD coupling. The tandem tip was designed to act as a lens providing a wide field-of-view (FOV) with minimal image distortion and focus length appropriate for the application. The system is designed so that once inserted, the image-guidance component of the system can be removed and brachytherapy can be administered without interfering with source transport or disturbing tandem placement. Proof-of-principle studies were conducted to assess the conceptualized system's (1) lens functionality (clarity, focus and FOV) (2) and ability to visualize the cervical os of a female placed in the lithotomy position. Results: A prototype of this device was constructed using a commercial tandem modified to incorporate a transparent tip that internally coupled with a 1.9mm diameter fiber optic cable. The 900mm-long cable terminated at an interface that provided illumination as well as facilitated visualization of patient anatomy on a computer. The system provided a 23mm FOV with a focal length of 1cm and provided clear visualization of the cervix, cervical fornix and cervical os. The optical components of the system are easily removed without perturbing the position of a tandem placed in a common fixation clamp. Conclusion: Clinicians frequently encounter difficulty inserting an intrauterine tandem through the cervical os, circumventing fibrotic tissue or masses within the uterus, and positioning the tandem without perforating the uterus. To mitigate these challenges, we have designed and conducted proof-of- principle studies to discern the utility of a prototype device that provides real-time image-guidance for intrauterine tandem placement using fiber optic components.

  10. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    Science.gov (United States)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively.

  11. IFIN-HH ionization chamber calibration and its validation; electrometric system improvement.

    Science.gov (United States)

    Sahagia, M; Wätjen, A C; Luca, A; Ivan, C

    2010-01-01

    The paper presents the results obtained in the calibration of the CENTRONIC IG12/20A ionization chamber for 18 gamma ray emitters, and its improvement with a Keithley 6517A electrometer. The calibration figures were determined either directly in pA MBq(-1) units, or calculated from old units, by using the system capacity value. The calibration figures, determined with RML's standards, are compared with those deduced from the KCRV or the mean of the comparisons, and the values determined at PTB-Germany.

  12. Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2013-01-01

    Full Text Available In order to improve the precision of Strapdown Inertial Navigation System (SINS and reduce the complexity of the traditional calibration method, a novel calibration and compensation scheme is proposed. An optimization calibration method with four-direction rotations is designed to calculate all error coefficients of Ring Laser Gyroscope (RLG SINS in a series of constant temperatures. According to the actual working environment, the temperature errors of RLG SINS are compensated by a nonlinear interpolation compensation algorithm. The experimental results show that the inertial navigation errors of the proposed method are reduced.

  13. IFIN-HH ionization chamber calibration and its validation; electrometric system improvement

    Energy Technology Data Exchange (ETDEWEB)

    Sahagia, M., E-mail: msahagia@nipne.r [' Horia Hulubei' National Institute of R and D for Physics and Nuclear Engineering, IFIN-HH, P.O. Box MG-6, Bucharest, RO-77125 (Romania); Waetjen, A.C.; Luca, A.; Ivan, C. [' Horia Hulubei' National Institute of R and D for Physics and Nuclear Engineering, IFIN-HH, P.O. Box MG-6, Bucharest, RO-77125 (Romania)

    2010-07-15

    The paper presents the results obtained in the calibration of the CENTRONIC IG12/20A ionization chamber for 18 gamma ray emitters, and its improvement with a Keithley 6517A electrometer. The calibration figures were determined either directly in pA MBq{sup -1} units, or calculated from old units, by using the system capacity value. The calibration figures, determined with RML's standards, are compared with those deduced from the KCRV or the mean of the comparisons, and the values determined at PTB-Germany.

  14. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    Science.gov (United States)

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-10-13

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  15. Easy calibration method of vision system for in-situ measurement of strain of thin films

    Institute of Scientific and Technical Information of China (English)

    Jun-Hyub PARK; Dong-Joong KANG; Myung-Soo SHIN; Sung-Jo LIM; Son-Cheol YU; Kwang-Soo LEE; Jong-Eun HA; Sung-Hoon CHOA

    2009-01-01

    An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.

  16. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    Directory of Open Access Journals (Sweden)

    Markus Lüken

    2015-10-01

    Full Text Available We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF magnetic, angular rate and gravity (MARG sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN. The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  17. Design and calibration of a new high-definition three-dimensional laparoscopic system

    Institute of Scientific and Technical Information of China (English)

    Jia TANG; Li-qiang WANG‡; Bo YUAN; Hong JIANG; Qi-ming ZHU

    2015-01-01

    We present a high-definition (HD) 3D laparoscopic system including a dual channel optical system, two cameras, a camera control unit (CCU), and an HD 3D monitor. This laparoscopic system is capable of outputting dual high-definition videos and providing vivid 3D images. A modified pinhole camera model is used for camera calibration and a new method of depth measurement to improve precision. The average error of depth measurement measured by experiment (about 1.13 mm) was small in proportion to the large range in distance of the system (10–150 mm). The new method is applicable to any calibrated binocular vision system.

  18. Amplitude variation in calibrated audiometer systems in Clinical Simulations

    Directory of Open Access Journals (Sweden)

    Christopher Barlow

    2014-01-01

    Full Text Available Manual pure tone audiometry is considered to be the gold standard for the assessment of hearing thresholds and has been in consistent use for a long period of time. An increased legislative requirement to monitor and screen workers, and an increasing amount of legislation relating to hearing loss is putting greater reliance on this as a tool. There are a number of questions regarding the degree of accuracy of pure tone audiometry when undertaken in field conditions, particularly relating to the difference in conditions between laboratory calibration and clinical or industrial screening use. This study analyzed the output sound pressure level of four different commercial audiometers, all using TDH39 headphones and each of which had recently undergone calibration at an appropriate laboratory. Levels were measured using a Bruël and Kjaer Head and Torso simulator, which accurately replicates the size and shape of a human head, including the ears. A clinical environment was simulated by a trained audiometrist replacing the headphones for each test. Tests were undertaken at three presentation levels, and at the frequencies of 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 6 kHz. The results showed a high level of test-retest variability, both between different audiometers and within the same audiometer. Maximum variation of sound pressure level at the ear for the same tone presentation was 21 decibels, with a particularly high level of variation at 6 kHz for all meters. An audiometer with attenuating cups exhibited significantly higher variation than ones using supral-aural headphones. Overall the variation exhibited suggests that there is a higher degree of potential error with screening pure tone audiometry than is commonly assumed and that results particularly at the 6 kHz frequency need to be assessed carefully alongside other methods such as speech audiometry.

  19. SYS 2: Acoustic ENSBox A System of Self Calibrating Distributed Acoustic Arrays

    OpenAIRE

    Lewis Girod; Martin Lukac; Vlad Trifa; Deborah Estrin

    2006-01-01

    The Acoustic Embedded Networked Sensing Box, is a platform for prototyping rapid-deployable distributed acoustic sensing systems, particularly distributed source localization. Each ENSBox integrates an ARM processor running Linux and supports key facilities required for source localization: a sensor array, wireless network services, time synchronization, and precise self-calibration of array position and orientation. The ENSBoxs integrated high precision self-calibration facility sets it ap...

  20. A robust method for online stereo camera self-calibration in unmanned vehicle system

    Science.gov (United States)

    Zhao, Yu; Chihara, Nobuhiro; Guo, Tao; Kimura, Nobutaka

    2014-06-01

    Self-calibration is a fundamental technology used to estimate the relative posture of the cameras for environment recognition in unmanned system. We focused on the issue of recognition accuracy decrease caused by the vibration of platform and conducted this research to achieve on-line self-calibration using feature point's registration and robust estimation of fundamental matrix. Three key factors in this respect are needed to be improved. Firstly, the feature mismatching exists resulting in the decrease of estimation accuracy of relative posture. The second, the conventional estimation method cannot satisfy both the estimation speed and calibration accuracy at the same tame. The third, some system intrinsic noises also lead greatly to the deviation of estimation results. In order to improve the calibration accuracy, estimation speed and system robustness for the practical implementation, we discuss and analyze the algorithms to make improvements on the stereo camera system to achieve on-line self-calibration. Based on the epipolar geometry and 3D images parallax, two geometry constraints are proposed to make the corresponding feature points search performed in a small search-range resulting in the improvement of matching accuracy and searching speed. Then, two conventional estimation algorithms are analyzed and evaluated for estimation accuracy and robustness. The third, Rigorous posture calculation method is proposed with consideration of the relative posture deviation of each separated parts in the stereo camera system. Validation experiments were performed with the stereo camera mounted on the Pen-Tilt Unit for accurate rotation control and the evaluation shows that our proposed method is fast and of high accuracy with high robustness for on-line self-calibration algorithm. Thus, as the main contribution, we proposed methods to solve the on-line self-calibration fast and accurately, envision the possibility for practical implementation on unmanned system as

  1. Study of the performance of stereoscopic panomorph systems calibrated with traditional pinhole model

    Science.gov (United States)

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-06-01

    With their large field of view, anamorphosis, and areas of enhanced magnification, panomorph lenses are an interesting choice for navigation systems for mobile robotics in which knowledge of the surroundings is mandatory. However, panomorph lenses special characteristics can be challenging during the calibration process. This study focuses on the calibration of two panomorph stereoscopic systems with a model and technique developed for narrow-angle lenses, the "Camera Calibration Toolbox for MATLAB." In order to assess the performance of the systems, the mean reprojection error (MRE) related to the calibration and the reconstruction error of control points of an object of interest at various locations in the field of view are used. The calibrations were successful and exhibit MREs of less than one pixel in all cases. However, some poorly reconstructed control points illustrate that an acceptable MRE guarantees neither the quality of 3-D reconstruction nor its uniformity in the field of view. In addition, the nonuniformity in the 3-D reconstruction quality indicates that panomorph lenses require a more accurate estimation of the principal point (center of distortion) coordinates to improve the calibration and therefore the 3-D reconstruction.

  2. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    Science.gov (United States)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  3. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-05-01

    Full Text Available The Simultaneous Localization and Mapping (SLAM technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs: one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  4. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems

    Science.gov (United States)

    Ratheesh, K. M.; Seah, L. K.; Murukeshan, V. M.

    2016-11-01

    The automatic calibration in Fourier-domain optical coherence tomography (FD-OCT) systems allows for high resolution imaging with precise depth ranging functionality in many complex imaging scenarios, such as microsurgery. However, the accuracy and speed of the existing automatic schemes are limited due to the functional approximations and iterative operations used in their procedures. In this paper, we present a new real-time automatic calibration scheme for swept source-based optical coherence tomography (SS-OCT) systems. The proposed automatic calibration can be performed during scanning operation and does not require an auxiliary interferometer for calibration signal generation and an additional channel for its acquisition. The proposed method makes use of the spectral component corresponding to the sample surface reflection as the calibration signal. The spectral phase function representing the non-linear sweeping characteristic of the frequency-swept laser source is determined from the calibration signal. The phase linearization with improved accuracy is achieved by normalization and rescaling of the obtained phase function. The fractional-time indices corresponding to the equidistantly spaced phase intervals are estimated directly from the resampling function and are used to resample the OCT signals. The proposed approach allows for precise calibration irrespective of the path length variation induced by the non-planar topography of the sample or galvo scanning. The conceived idea was illustrated using an in-house-developed SS-OCT system by considering the specular reflection from a mirror and other test samples. It was shown that the proposed method provides high-performance calibration in terms of axial resolution and sensitivity without increasing computational and hardware complexity.

  5. An investigation into factors affecting electron density calibration for a megavoltage cone-beam CT system.

    Science.gov (United States)

    Hughes, Jessica; Holloway, Lois C; Quinn, Alexandra; Fielding, Andrew

    2012-09-06

    There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

  6. Comparison between external and internal standard calibration in the validation of an analytical method for 1-hydroxypyrene in human urine by high-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Pigini, D; Cialdella, A M; Faranda, P; Tranfo, G

    2006-01-01

    1-Hydroxypyrene is a metabolite of pyrene, a member of the class of polycyclic aromatic hydrocarbons (PAHs) whose toxic properties in some cases include carcinogenicity. The determination of 1-hydroxypyrene in human urine is used as a biological indicator for exposure to PAHs, which is related to the combustion of organic materials, like smoking, living in urban environments, and eating grilled or smoked food. The determination of 1-hydroxypyrene by high-performance liquid chromatography (HPLC) with fluorescence detection has very good sensitivity but it is not highly specific: this can reduce accuracy in the quantitative determination of low levels of analyte in a complex matrix like urine. An HPLC method that uses triple quadrupole mass detection has been validated with the objective both to improve the signal-to-noise (S/N) ratio and to achieve the maximum specificity for the analyte in those urine samples that are richer in possible inteferents. The calibration range for 1-hydroxypyrene is from 0.005-0.1 microg/L in the urine of non-smoking healthy volunteers. After solid-phase extraction, samples were analyzed by HPLC/tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode. In order to obtain reliable results quantitative analysis must be performed by means of the internal standard method (we used deuterium-labelled 1-hydroxypyrene): the method accuracy is not less than 85%. The S/N ratio at a concentration of 0.1 microg/L is about 10, and therefore this can be considered the lowest limit of quantitation. The method performance does not change if urine samples are measured using a calibration curve prepared in methanol, thus reducing the time of analysis and costs.

  7. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2016-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.

  8. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  9. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    Full Text Available High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF. The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  10. A Visual Servoing-Based Method for ProCam Systems Calibration

    Directory of Open Access Journals (Sweden)

    Jeremie Mosnier

    2013-10-01

    Full Text Available Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy.

  11. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    Energy Technology Data Exchange (ETDEWEB)

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  12. A visual servoing-based method for ProCam systems calibration.

    Science.gov (United States)

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-10-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D-3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy.

  13. A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System

    Directory of Open Access Journals (Sweden)

    Jianying Yuan

    2014-01-01

    Full Text Available 3D (three-dimensional structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system.

  14. Review of AO calibrations, or how to best educate your AO system

    Science.gov (United States)

    Kolb, Johann

    2016-07-01

    If the Real-Time Computer is the heart of an AO system, the Wavefront Sensor (WFS) its eyes, the Deformable Mirror (DM) its hands and the control strategy its nervous system, the sum of all those parts is made into a harmonious entity thanks to calibrations. This paper does not have the ambition to provide an overview of all the currently existing calibration strategies, but rather to focus on a few challenging problems and their recent evolution in the era of adaptive telescopes, mostly based on the experience of ESO's Adaptive Optics Instruments in general and the AO Facility in particular. Single most important calibration in post-focal AO system, the recording of the Interaction Matrix (IM) between WFS and DM has since long evolved to use fast modulation techniques, has shown to be feasible on-sky and is now almost free from measurements thanks to its pseudo-synthetic generation, quasi-mandatory solution in an adaptive telescope. Pseudo- because it requires an unprecedented knowledge of the components' characteristics, especially the WFS, DM and the optical registration between the two. Bigger telescopes and the use of Laser Guide Stars (LGS) also mean that the properties of the system will change in time and thus need to be constantly updated thanks to online diagnosis tools for spot size measurement, atmosphere monitoring, Wavefront Sensing and control optimization. New loops come into play like the one to minimize LGS Jitter and the one taking over the telescope active optics by means of offloading the DM low orders, and they all require calibration. More calibration means more time and one has to carefully balance the calibrations that require precious telescope night time, day time or for the best, no telescope time at all. Their importance sometimes underestimated, calibrations have repeatedly shown to be a vital part in the optimum functioning of present and future AO systems.

  15. Aspects of the optical system relevant for the KM3NeT timing calibration

    Directory of Open Access Journals (Sweden)

    Kieft Gerard

    2016-01-01

    Full Text Available KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  16. The Data Acquisition and Calibration System for the ATLAS Semiconductor Tracker

    CERN Document Server

    Abdesselam, A; Barr, A J; Bell, P; Bernabeu, J; Butterworth, J M; Carter, J R; Carter, A A; Charles, E; Clark, A; Colijn, A P; Costa, M J; Dalmau, J M; Demirkoz, B; Dervan, P J; Donega, M; D'Onifrio, M; Escobar, C; Fasching, D; Ferguson, D P S; Ferrari, P; Ferrère, D; Fuster, J; Gallop, B; García, C; González, S; González-Sevilla, S; Goodrick, M J; Gorisek, A; Greenall, A; Grillo, A A; Hessey, N P; Hill, J C; Jackson, J N; Jared, R C; Johannson, P D C; de Jong, P; Joseph, J; Lacasta, C; Lane, J B; Lester, C G; Limper, M; Lindsay, S W; McKay, R L; Magrath, C A; Mangin-Brinet, M; Martí i García, S; Mellado, B; Meyer, W T; Mikulec, B; Minano, M; Mitsou, V A; Moorhead, G; Morrissey, M; Paganis, E; Palmer, M J; Parker, M A; Pernegger, H; Phillips, A; Phillips, P W; Postranecky, M; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sciacca, F; Sfyrla, A; Stanecka, E; Stapnes, S; Stradling, A; Tyndel, M; Tricoli, A; Vickey, T; Vossebeld, J H; Warren, M R M; Weidberg, A R; Wells, P S; Wu, S L

    2008-01-01

    The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap assembly and for performance confirmation tests after transport of the barrels and endcaps to CERN. Operating in data-taking mode, the DAQ has recorded nearly twenty million synchronously-triggered events during commissioning tests including almost a million cosmic ray triggered events. In this paper we describe the components of the data acquisition system, discuss its operation in calibration and data-taking modes and present some detector performance results from these tests.

  17. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-03-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibrations of tested transformers have attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and Standard Trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Labview software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  18. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-05-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibration of tested transformers has attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and standard trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Lab view software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  19. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    Science.gov (United States)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  20. 光电综合标校系统光轴平行度标校方法%Optical Parallelism Calibration Method of Photoelectric Integrated Calibration System

    Institute of Scientific and Technical Information of China (English)

    郑均杰; 张镭; 李杰然

    2011-01-01

    针对光电综合标校系统的功能组成及标校原理,提出了标校靶标的设计及标校方法,并利用感光相纸对激光光斑进行聚焦采集,实现了对电视/红外/激光三者光轴一致性的标校,检测结果验证了该标校靶标及标校方法的可行性和有效性。%Aiming at the function component and calibration principle of photoelectric integrated calibration system,this paper presents the design and calibration method of calibration drone,and realizes the calibration to the axes consistency of television,infrared and laser by using the photographic papers to focus and collect laser spots.The detection result proves the feasibility and usefulness of the calibration drone and the calibration method.

  1. Micromorph tandem solar cells: optimization of the microcrystalline silicon bottom cell in a single chamber system

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Dan; Zheng Xin-Xia; Xu Sheng-Zhi; Lin Quan; Wei Chang-Chun; Sun Jian; Geng Xin-Hua; Zhao Ying

    2011-01-01

    We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates.The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO.By controlling boron and phosphorus contaminations,a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm.In tandem devices,by thickness optimization of the microcrystalline silicon bottom solar cell,we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer.In order to enhance the performance of the tandem solar cells,an improved light trapping structure with a ZnO/Al back reflector is used.As a result,a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.

  2. Development of a tandem repeat-based multilocus typing system distinguishing Babesia bovis geographic isolates

    Science.gov (United States)

    Mini and microsatellite sequences have proven to be excellent tools for the differentiation of strains and populations in several protozoan parasites due to their high variability. In the present work we have searched the genome of the tick-transmitted bovine hemoprotozoon Babesia bovis for tandem r...

  3. Calibration of the Failed-Fuel-Element Detection Systems in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O.

    1966-06-15

    Results from a calibration of the systems for detection of fuel element ruptures in the Aagesta reactor are presented. The calibration was carried out by means of foils of zirconium-uranium alloy which were placed in a special fuel assembly. The release of fission products from these foils is due mainly to recoil and can be accurately calculated. Before the foils were used in the reactor their corrosion behaviour in high temperature water was investigated. The results obtained with the precipitator systems for bulk detection and localization are in good agreement with the expected performance. The sensitivity of these systems was found to be high enough for detection and localization of small defects of pin-hole type ({nu} = 10{sup -8}/s ). The general performance of the systems was satisfactory during the calibration tests, although a few adjustments are desirable. A bulk detecting system for monitoring of activities in the moderator, in which the {gamma}-radiation from coolant samples is measured directly after an ion exchanger, showed lower sensitivity than expected from calculations. It seems that the sensitivity of the latter system has to be improved to admit the detection of small defects. In the ion exchanger system, and to some extent in the precipitator systems, the background from A{sup 41} in the coolant limits the sensitivity. The calibration technique utilized seems to be of great advantage when investigating the performance of failed-fuel-element detection systems.

  4. A laser diode based system for calibration of fast time-of-flight detectors

    Science.gov (United States)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  5. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  6. IRFM Temperature Calibrations for the Vilnius, Geneva, RI(C) and DDO Photometric Systems

    CERN Document Server

    Melendez, J; Melendez, Jorge; Ramirez, Ivan

    2003-01-01

    We have used the infrared flux method (IRFM) temperatures of a large sample of late type dwarfs given by Alonso et al. (1996a) to calibrate empirically the relations Teff = f (colour, [Fe/H]) for the Vilnius, Geneva, RI(C) and DDO photometric systems. The resulting temperature scale and intrinsic colour-colour diagrams for these systems are also obtained. From this scale, the solar colours are derived and compared with those of the solar twin 18 Sco. Since our work is based on the same Teff and [Fe/H] values used by Alonso et al. (1996b) to calibrate other colours, we now have an homogeneous calibration for a large set of photometric systems.

  7. The Calibration Algorithm of a 3D Color Measurement System based on the Line Feature

    Directory of Open Access Journals (Sweden)

    Ganhua Li

    2009-10-01

    Full Text Available This paper describes a novel 3 dimensional color measurement system. After 3 kinds of geometrical features are analyzed, the line features were selected. A calibration board with right-angled triangle outline was designed to improve the calibration precision. For this system, two algorithms are presented. One is the calibration algorithm between 2 dimensional laser range finder (2D LRF, while the other is for 2D LRF and the color camera. The result parameters were obtained through solving the constrain equations by the correspond data between the 2D LRF and other two sensors. The 3D color reconstruction experiments of real data prove the effectiveness and the efficient of the system and the algorithms.

  8. Radioactive source control and electronics for the ATLAS tile calorimeter cesium calibration system

    CERN Document Server

    Shalanda, N A; Kopikov, S; Shalimov, A; Soldatov, M; Solodkov, A; Starchenko, E A

    2003-01-01

    A system using a radioactive /sup 137/Cs source to calibrate and monitor the Hadron Calorimeter (TileCal) of the ATLAS experiment at the LHC is described. The system includes a set of sensors to monitor the position of the source which moves via hydraulic propulsion. The design of the sensors, the corresponding electronic modules and their performance are detailed. (6 refs).

  9. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Stoffel, T.

    2010-03-15

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  10. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  11. Shading correction and calibration in bacterial fluorescence measurement by image processing system

    NARCIS (Netherlands)

    Wilkinson, M.H.F.

    1994-01-01

    An image processing system with applications in bacterial (immuno-)fluorescence measurement has been developed. To reach quantitative results, correction for non-uniformities in system sensitivity, both as a function of time (calibration for drifts) and as a function of image coordinates (shading co

  12. The use of liquid chromatography tandem mass spectrometry to detect proteins in saliva from horses with and without systemic inflammation

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Top Adler, Ditte Marie; Bundgaard, Louise

    2014-01-01

    The objective of the study was to assess global expression of proteins in equine saliva using liquid chromatography tandem mass spectrometry (LC-MS/MS). Saliva was obtained from seven horses with and six horses without evidence of systemic inflammatory disease. Tryptic peptides from saliva were......, and alpha1-acid glycoprotein. The study is the first to describe detection of inflammatory proteins in horse saliva. The proteins detected were similar to those described in saliva from cattle, small ruminants and pigs. Detection of APPs in horses with systemic inflammation suggests that saliva may be used...

  13. Self-calibration of a cone-beam micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); The Supercomputing Institute for Advanced Computational Research, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only

  14. Development of a New Low-Cost Indoor Mapping System - System Design, System Calibration and First Results

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.

    2016-06-01

    For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.

  15. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    the effect of noise. At the Technical University of Denmark, a 32-channel microwave imaging system for breast cancer screening has been under development for some time. In this system, each antenna is equipped with its own transceiver module, containing amplifiers, switches, and a mixer. This design ensures...... that the low-amplitude RF signals, available at the terminals of the antennas, only need to travel a very short distance to get to the low-noise amplifier, while the RF as well as the IF signals running to and from the transceiver modules all have significant amplitudes. However, some leakage between...... a measurement with an empty imaging system and a measurement with a simple known object in the system, i.e., a metal cylinder, and the relative change observed between simulations of the same two situations. Assuming that the simulation software is capable of accurately modeling the imaging system, some...

  16. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC Run 2 conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slow...

  17. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2016-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  18. High precision, low disturbance calibration system for the CMS Barrel Electromagnetic Calorimeter High Voltage apparatus

    Science.gov (United States)

    Fasanella, G.

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillation lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3%/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  19. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    Science.gov (United States)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to

  20. Measurement System of Reducing Temperature Fluctuation of Thermostat Bath for Calibrating Thermocouple

    OpenAIRE

    Zhang, Min; Liang, Feixia; Xie, Yue; Huang, Ruguo; Yuan, Haitao; Lu, Jiahua

    2014-01-01

    International audience; Based on the periodic unsteady state heat conduction theory, a new measurement system of reducing temperature fluctuation of thermostat bath was developed in order to obtain a liquid environment with uniform and constant temperature controlled for the measurement requirements of calibrating thermocouple. The experimental results show that the temperature stability in this measurement system is superior to that in traditional system. The measurement system had the advan...

  1. An indirect accuracy calibration and uncertainty evaluation method for large scale inner dimensional measurement system

    Science.gov (United States)

    Liu, Bai-Ling; Qu, Xing-Hua

    2013-10-01

    In view of present problem of low accuracy, limited range and low automaticity existing in the large-scale diameter inspection instrument, a precise measuring system (robot) was designed based on laser displacement sensor for large-scale inner diameter in this paper. Since the traditional measuring tool of the robot is expensive and hard to manufacture, an indirect calibration method is proposed. In this study, the system eccentric error is calibrated by ring gauge of laboratory. An experiment, which changes the installed order of located rods to introduce located rods' eccentric error, is designed to test whether the spindle eccentric error remains unchanged. The experiment result shows the variation of spindle's eccentricity after changing rods is within 0.02mm. Due to the spindle is an unchanged part of robot, based on Φ584 series robot calibrated by ring gauge, other series robot can be deduced combining with the length of extended arm.

  2. A calibration system for Compton polarimetry at e{sup +}e{sup -} linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Vormwald, Benedikt; Vauth, Annika [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-09-15

    Polarimetry with permille-level precision is essential for future electron-positron linear colliders. Compton polarimeters can reach negligible statistical uncertainties within seconds of measurement time. The dominating systematic uncertainties originate from the response and alignment of the detector which records the Compton scattered electrons. The robust baseline technology for the Compton polarimeters foreseen at future linear colliders is based on an array of gas Cherenkov detectors read out by photomultipliers. In this paper, we will present a calibration method which promises to monitor nonlinearities in the response of such a detector at the level of a few permille. This method has been implemented in an LED-based calibration system which matches the existing prototype detector. The performance of this calibration system is sufficient to control the corresponding contribution to the total uncertainty on the extracted polarisation to better than 0.1%.

  3. A Calibration System for Compton Polarimetry at $e^+e^-$ Linear Colliders

    CERN Document Server

    Vormwald, Benedikt; Vauth, Annika

    2015-01-01

    Polarimetry with permille-level precision is essential for future electron-positron linear colliders. Compton polarimeters can reach negligible statistical uncertainties within seconds of measurement time. The dominating systematic uncertainties originate from the response and alignment of the detector which records the Compton scattered electrons. The robust baseline technology for the Compton polarimeters foreseen at future linear colliders is based on an array of gas Cherenkov detectors read out by photomultipliers. In this paper, we will present a calibration method which promises to monitor nonlinearities in the response of such a detector at the level of a few permille. This method has been implemented in an LED-based calibration system which matches the existing prototype detector. The performance of this calibration system is sufficient to control the corresponding contribution to the total uncertainty on the extracted polarisation to better than $0.1\\%$.

  4. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    Science.gov (United States)

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards.

  5. The Calibration Model and Simulation Analysis of Circular Scanning Airborne Laser Bathymetry System

    Directory of Open Access Journals (Sweden)

    SHEN Erhua

    2016-08-01

    Full Text Available To improve the positioning accuracy of circular scanning airborne laser bathymetry system, a calibration method is presented in this paper. When the laser points are collected by the bathymetry system on the level area, they should be on the same plane. However, they are not coplanar because of systematic error and random error. So we try to fit the points to a plane, which may help to adjust the errors and then correct the point location.Firstly, the circular scanning airborne laser bathymetry positioning model is derived in the simple mode. The intersection of laser line and sea surface is simulated depending on the mathematical principles of line and plane intersection. Combined with the direction vector of laser line in the water got by the refraction principle, the sea floor plane mathematical equation is used to compute the location of the laser points. Then, the parameter weighted least squares adjustment model is derived with the prior variance introduced, which lays the foundation for the following computing of calibration model. Finally, the calibration adjustment mathematic model and the detailed computing process are derived. The simulation computing and analysis for the calibration process is presented, and some meaningful conclusions for the calibration are achieved.

  6. Calibration of the Accuscan II IN Vivo System for High Energy Lung Counting

    Energy Technology Data Exchange (ETDEWEB)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to the junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  7. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    Energy Technology Data Exchange (ETDEWEB)

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  8. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    Energy Technology Data Exchange (ETDEWEB)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J). Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  9. Efficiency of tandem solar cell systems as function of temperature and solar energy concentration ratio

    Science.gov (United States)

    Gokcen, N. A.; Loferski, J. J.

    1979-01-01

    The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent.

  10. Precision calibration method for binocular vision measurement systems based on arbitrary translations and 3D-connection information

    Science.gov (United States)

    Yang, Jinghao; Jia, Zhenyuan; Liu, Wei; Fan, Chaonan; Xu, Pengtao; Wang, Fuji; Liu, Yang

    2016-10-01

    Binocular vision systems play an important role in computer vision, and high-precision system calibration is a necessary and indispensable process. In this paper, an improved calibration method for binocular stereo vision measurement systems based on arbitrary translations and 3D-connection information is proposed. First, a new method for calibrating the intrinsic parameters of binocular vision system based on two translations with an arbitrary angle difference is presented, which reduces the effect of the deviation of the motion actuator on calibration accuracy. This method is simpler and more accurate than existing active-vision calibration methods and can provide a better initial value for the determination of extrinsic parameters. Second, a 3D-connection calibration and optimization method is developed that links the information of the calibration target in different positions, further improving the accuracy of the system calibration. Calibration experiments show that the calibration error can be reduced to 0.09%, outperforming traditional methods for the experiments of this study.

  11. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    Science.gov (United States)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  12. A new in situ electrical calibration system for high temperature Calvet calorimeters.

    Science.gov (United States)

    Razouk, Refat; Hay, Bruno; Himbert, Marc

    2013-09-01

    A new in situ high temperature electrical calibration system was developed at Laboratoire National de Metrologie et d'Essais, Laboratoire Commun de Metrologie and integrated into a heat flux Calvet calorimeter in order to perform accurate and reliable measurements of enthalpy of fusion that are directly traceable to the International System of Units (SI). This system has been designed to enable the calibration of the calorimeter by electrical substitution (Joule effect) as well as the measurement of enthalpy of fusion in perfectly identical experimental conditions. The metrological features (repeatability, linearity, etc.) of the calorimeter have been evaluated with this system by investigating the influence of some parameters (level of energy, dissipation time, and temperature) on the determination of the sensitivity factor of its thermopiles. Two different procedures, for the calibration and the enthalpy measurements with this new electrical calibration system, have been implemented and tested by measuring the enthalpy of fusion of high purity 6N tin. The results obtained are in very good agreement with those measured by other National Metrology Institutes on the same material.

  13. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasin [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  14. Calibration and characterisation with a new laser-based magnetostriction measurement system

    OpenAIRE

    Rafferty, Aran; Bakir, S.; BRABAZON, Dermot; Prescott, Tim

    2009-01-01

    A laser-based magnet measurement system has been developed to measure the magnetostrictive strain of large cylindrical samples. The measurement system incorporates a solenoid capable of generating a maximum magnetic field intensity of 3000 Oe and a laser displacement sensor. For calibration and evaluation purposes, the positive magnetostrictions of two different types of giant magnetostrictive Tb–Dy–Fe-based materials were accessed with this system. A magnetostrictive strain of 622 ppm was ob...

  15. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    Science.gov (United States)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  16. A NEW ELECTRONIC BOARD TO DRIVE THE LASER CALIBRATION SYSTEM OF THE ATLAS HADRON CALORIMETER

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00086824; The ATLAS collaboration

    2016-01-01

    The LASER calibration system of the ATLAS hadron calorimeter aims at monitoring the ~10000 PMTs of the TileCal. The LASER light injected in the PMTs is measured by sets of photodiodes at several stages of the optical path. The monitoring of the photodiodes is performed by a redundant internal calibration system using an LED, a radioactive source, and a charge injection system. The LASer Calibration Rod (LASCAR) electronics card is a major component of the LASER calibration scheme. Housed in a VME crate, its main components include a charge ADC, a TTCRx, a HOLA part, an interface to control the LASER, and a charge injection system. The 13 bits ADC is a 2000pc full-scale converter that processes up to 16 signals stemming from 11 photodiodes, 2 PMTs, and 3 charge injection channels. Two gains are used (x1 and x4) to increase the dynamic range and avoid a saturation of the LASER signal for high intensities. The TTCRx chip (designed by CERN) retrieves LHC signals to synchronize the LASCAR card with the collider. T...

  17. Vacuum gage calibration system for 10 to the minus 8th power to 10 torr

    Science.gov (United States)

    Holanda, R.

    1969-01-01

    Calibration system consists of a gas source, a source pressure gage, source volume, transfer volume and test chamber, plus appropriate piping, valves and vacuum source. It has been modified to cover as broad a range as possible while still providing accuracy and convenience.

  18. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak

    Science.gov (United States)

    Fu, Chao; Zhong, Fangchuan; Hu, Liqun; Yang, Jianhua; Yang, Zhendong; Gan, Kaifu; Zhang, Bin; East Team

    2016-09-01

    A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos. supported by National Natural Science Foundation of China (No. 11275047), the National Magnetic Confinement Fusion Science Program of China (No. 2013GB102000)

  19. A Fast Calibration System for SiPM Based Scintillator HCAL Detector

    CERN Document Server

    Polak, I

    2015-01-01

    with mid-range a fixed-intensity light pulse. The full SiPM response function is cross-checked by varying the light intensity from zero to the saturation level. In calibration systems we developed, we concentrate especially on the aspect a high dynamic range of pre...

  20. CALIS - a CALibration Insertion System for the DarkSide-50 dark matter search experiment

    CERN Document Server

    Agnes, P; Alexander, T; Alton, A K; Asner, D M; Back, H O; Baldin, B; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cicalo, C; Cocco, A G; Covone, G; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giagu, S; Giganti, C; Giovanetti, G K; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hughes, D; Humble, P; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Johnson, T N; Jollet, C; Keeter, K; Kendziora, C L; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Loer, B; Lombardi, P; Longo, G; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Milincic, R; Miller, J D; Montanari, D; Monte, A; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Agasson, A Navrer; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A L; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Savarese, C; Schlitzer, B; Segreto, E; Semenova, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, Xi; Xiao, X; Xu, J; Yang, C; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2016-01-01

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  1. CALIS - a CALibration Insertion System for the DarkSide-50 dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; et al.

    2012-12-28

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  2. Scanner external calibration algorithm based on fixed point in robot remanufacturing system

    Institute of Scientific and Technical Information of China (English)

    ZHU Sheng; CUI Pei-zhi; SHEN Chan-duo; GUO Ying-chun

    2005-01-01

    This paper deals with the scanner exterior calibration algorithm when the scanner is arranged by the robot and the object scanned is fixed on a rotate device in the Robot Remanufacturing System. The method of calibrating the relationship between the scanner coordinate and the robot Tool0, such as the rotation, Rx, Ry, R,, and the transformation X, Y, Z is studied. The data of Tool0 can be directly obtained from the relationship with the robot base-coordinate. So, the coordinate relationship between the scanner coordinate and the robot base coordinate can be easily gotten. This paper explains the basic algorithm theory, computing method, data collecting process and the resulted data in detail. The calibration algorithm is deduced under the orthogonal coordinate.

  3. Monte Carlo Studies for the Calibration System of the GERDA Experiment

    CERN Document Server

    Baudis, Laura; Froborg, Francis; Tarka, Michal

    2013-01-01

    The GERmanium Detector Array, GERDA, searches for neutrinoless double beta decay in Ge-76 using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors gamma emitting sources have to be lowered from their parking position on top of the cryostat over more than five meters down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three Th-228 sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than four hours of calibration time. These sources will contribute to the background of the experiment with a total of (1.07 +/- 0.04(stat) +0.13 -0.19(sys)) 10^{-4} cts/(keV kg yr) when shielded from below with 6 cm of tantalum in the parking position.

  4. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    Science.gov (United States)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  5. Portable 3D laser-camera calibration system with color fusion for SLAM

    Directory of Open Access Journals (Sweden)

    Javier Navarrete

    2013-03-01

    Full Text Available Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM, in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

  6. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    Science.gov (United States)

    Gordon, M.; Meidow, J.

    2013-10-01

    Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS) device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground). Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements - distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  7. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    Science.gov (United States)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  8. The calibration system for the photomultiplier array of the SNO+ experiment

    CERN Document Server

    Alves, R; Bradbury, S; Carvalho, J; Chauhan, D; Clark, K; Coulter, I; Descamps, F; Falk, E; Gurriana, L; Kraus, C; Lefeuvre, G; Maio, A; Maneira, J; Mottram, M; Peeters, S; Rose, J; Seabra, L; Sinclair, J; Skensved, P; Waterfield, J; White, R; Wilson, J R

    2014-01-01

    A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements.

  9. Calibration of the Multi-camera Registration System for Visual Navigation Benchmarking

    Directory of Open Access Journals (Sweden)

    Adam Schmidt

    2014-06-01

    Full Text Available This paper presents the complete calibration procedure of a multi-camera system for mobile robot motion registration. Optimization-based, purely visual methods for the estimation of the relative poses of the motion registration system cameras, as well as the relative poses of the cameras and markers placed on the mobile robot were proposed. The introduced methods were applied to the calibration of the system and the quality of the obtained results was evaluated. The obtained results compare favourably with the state of the art solutions, allowing the use of the considered motion registration system for the accurate reconstruction of the mobile robot trajectory and to register new datasets suitable for the benchmarking of indoor, visual-based navigation algorithms.

  10. Challenges when using real-world bio-data to calibrate simulation systems.

    Science.gov (United States)

    Blount, Elaine M; Ringleb, Stacie I; Tolk, Andreas

    2011-01-01

    Computer simulations allow us to gain insight into biological systems that would not be possible without destroying or changing the system in significant ways. To ensure that results are relevant, real-world bio-data should be used to calibrate simulations. Real-world data contain uncertainty due to the nature of how it is obtained. This chapter provides various sources on uncertainty and methods to cope with this challenge.

  11. PMT response drift of ATLAS Tile Laser II calibration system: an introduction of a new method

    CERN Document Server

    Di Gregorio, Giulia

    2016-01-01

    In this article I describe the performance of the monitoring diodes of the Laser II system, a new system for run II used to calibrate the gain variation of PMTs in between two cesium scan. I also show a new method to measure the PMT drift response that it is compared to the method used up to now (Clermont-Ferrant) corrected with the Pisa method. The agreement between the two method is within 0.2%.

  12. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    CERN Document Server

    Anastasi, A; Baffigi, F; Cantatore, G; Cauz, D; Corradi, G; Dabagov, S; Di Sciascio, G; Di Stefano, R; Ferrari, C; Fienberg, A T; Fioretti, A; Fulgentini, L; Gabbanini, C; Gizzi, L A; Hampai, D; Hertzog, D W; Iacovacci, M; Karuza, M; Kaspar, J; Koester, P; Labate, L; Mastroianni, S; Moricciani, D; Pauletta, G; Santi, L; Venanzoni, G

    2015-01-01

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  13. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  14. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  15. Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses.

    Science.gov (United States)

    Islas-Cital, Alan; Atkins, Philip R; Foo, Kae Y; Picó, Ruben

    2011-10-01

    The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz.

  16. Design of an expert system to automatically calibrate impedance control for powered knee prostheses.

    Science.gov (United States)

    Wang, Ding; Liu, Ming; Zhang, Fan; Huang, He

    2013-06-01

    Many currently available powered knee prostheses (PKP) use finite state impedance control to operate a prosthetic knee joint. The desired impedance values were usually manually calibrated with trial-and-error in order to enable near-normal walking pattern. However, such a manual approach is inaccurate, time consuming, and impractical. This paper aimed to design an expert system that can tune the control impedance for powered knee prostheses automatically and quickly. The expert system was designed based on fuzzy logic inference (FLI) to match the desired knee motion and gait timing while walking. The developed system was validated on an able-bodied subject wearing a powered prosthesis. Preliminary experimental results demonstrated that the developed expert system can converge the user's knee profile and gait timing to the desired values within 2 minutes. Additionally, after the auto-tuning procedure, the user produced more symmetrical gait. These preliminary results indicate the promise of the designed expert system for quick and accuracy impedance calibration, which can significantly improve the practical value of powered lower limb prosthesis. Continuous engineering efforts are still needed to determine the calibration objectives and validate the expert system.

  17. ISAC time-of-flight system with laser-based calibration

    Energy Technology Data Exchange (ETDEWEB)

    Verzilov, V.A., E-mail: verzilov@triumf.ca

    2015-06-11

    The time-of-flight (TOF) system is available at the ISAC rare isotope facility to measure the energy of stable and radioactive ion beams in the range of 0.5–22 Mev/u. The system, comprised of three secondary electron emission based monitors, is operated with practically all available beam intensities starting from as low as 10{sup 3} ions per second. Recently the system was equipped with the calibration setup based on a 266 nm ultraviolet laser. Laser light interacting with the TOF monitors generates secondary electrons due to the photoelectric effect and acts as a reference beam traveling at a well- known velocity. After calibration, accuracy of energy measurements improved to be better than 0.1%.

  18. Development of the laser alignment system with PSD used for shaft calibration

    Science.gov (United States)

    Jiao, Guohua; Li, Yulin; Hu, Baowen

    2006-02-01

    Shaft calibration is an important technique during installation and maintenance of a rotating machine. It requires unique and high-precision measurement instruments with calculation capability, and relies on experience on heavy, high-speed, or high-temperature machines. A high-precision laser alignment system has been designed using PSD (Position Sensing Detector) to change traditional manual way of shaft calibration and to make the measurement easier and more accurate. The system is comprised of two small measuring units (Laser transmitter and detector) and a hand operated control unit or a PC. Such a laser alignment system has been used in some actual shaft alignment with offset resolution 1.5μm and angular resolution 0.1°.

  19. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    Science.gov (United States)

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  20. A robust photometric calibration framework for projector-camera display system

    Institute of Scientific and Technical Information of China (English)

    Wenhai Zou; Haisong Xu

    2009-01-01

    A novel photometric calibration framework is presented for a projector-camera (ProCam) display system,which is currently under booming development.Firstly,a piccewise bilinear model and five 5-ary color coding images are used to construct the homography between the image planes of a projector and a camcra.Secondly,a photometric model is proposed to describe the data flow of the ProCam display system for displaying color images on colored surface in a general way. An efficient self-calibration algorithm is correspondingly put forward to recover the model parameters.Aiming to adapt this algorithm to different types of ProCam display system robustly,a 3×7 masking coupling matrix and a patches image with 1024 color samples are adopted to fit the complex channel interference function of the display system.Finally,the experimental results demonstrate the validity and superiority of this calibration algorithm for the ProCam display system.

  1. Double-layer parallelization for hydrological model calibration on HPC systems

    Science.gov (United States)

    Zhang, Ang; Li, Tiejian; Si, Yuan; Liu, Ronghua; Shi, Haiyun; Li, Xiang; Li, Jiaye; Wu, Xia

    2016-04-01

    Large-scale problems that demand high precision have remarkably increased the computational time of numerical simulation models. Therefore, the parallelization of models has been widely implemented in recent years. However, computing time remains a major challenge when a large model is calibrated using optimization techniques. To overcome this difficulty, we proposed a double-layer parallel system for hydrological model calibration using high-performance computing (HPC) systems. The lower-layer parallelism is achieved using a hydrological model, the Digital Yellow River Integrated Model, which was parallelized by decomposing river basins. The upper-layer parallelism is achieved by simultaneous hydrological simulations with different parameter combinations in the same generation of the genetic algorithm and is implemented using the job scheduling functions of an HPC system. The proposed system was applied to the upstream of the Qingjian River basin, a sub-basin of the middle Yellow River, to calibrate the model effectively by making full use of the computing resources in the HPC system and to investigate the model's behavior under various parameter combinations. This approach is applicable to most of the existing hydrology models for many applications.

  2. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  3. Calibration of dual-energy gamma systems for determining liquid saturations during multiphase flow in soil

    Energy Technology Data Exchange (ETDEWEB)

    Bali, K.M.; Grismer, M.E. [University of California, Cooperative Extension and University of California, Holtville (United States)

    1994-12-31

    The purpose of this study was to calibrate a dual-energy gamma system for simultaneous determination of aqueous and non-aqueous phase liquid (NAPL) in soil column. A dual energy gamma system containing {sup 241}Am and {sup 137}Cs was used to study the infiltration and displacement of aqueous liquid by NAPL and vice versa. Distilled water and Nal solution, and Soltrol 130 were used as fluids. The system was calibrated to minimize errors in liquid saturations due to random nature of gamma photons emission and drift in the photon detection equipment. The measurement accuracy in liquid saturations was substantially improved by increasing counting time and fluid attenuation coefficient. Nal salt was used to increase the attenuation coefficient of water. Measured and predicted liquid saturation during immiscible displacement in soil were consistent with mass balance measurements and anticipated deviations in saturations from probable error calculations. The calibration procedure resulted in a significant improvement in the prediction of liquid saturation using dual-energy gamma system. (author). 8 refs, 4 tabs.

  4. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    Science.gov (United States)

    D'Emilia, Giulio; Di Gasbarro, David; Gaspari, Antonella; Natale, Emanuela

    2016-06-01

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  5. System calibration and image reconstruction for a new small-animal SPECT system

    Science.gov (United States)

    Chen, Yi-Chun

    A novel small-animal SPECT imager, FastSPECT II, was recently developed at the Center for Gamma-Ray Imaging. FastSPECT II consists of two rings of eight modular scintillation cameras and list-mode data-acquisition electronics that enable stationary and dynamic imaging studies. The instrument is equipped with exchangeable aperture assemblies and adjustable camera positions for selections of magnifications, pinhole sizes, and fields of view (FOVs). The purpose of SPECT imaging is to recover the radiotracer distribution in the object from the measured image data. Accurate knowledge of the imaging system matrix (referred to as H) is essential for image reconstruction. To assure that all of the system physics is contained in the matrix, experimental calibration methods for the individual cameras and the whole imaging system were developed and carefully performed. The average spatial resolution over the FOV of FastSPECT II in its low-magnification (2.4X) configuration is around 2.4 mm, computed from the Fourier crosstalk matrix. The system sensitivity measured with a 99mTc point source at the center of the FOV is about 267 cps/MBq. The system detectability was evaluated by computing the ideal-observer performance on SKE/BKE (signal-known-exactly/background-known-exactly) detection tasks. To reduce the system-calibration time and achieve finer reconstruction grids, two schemes for interpolating H were implemented and compared: these are centroid interpolation with Gaussian fitting and Fourier interpolation. Reconstructed phantom and mouse-cardiac images demonstrated the effectiveness of the H-matrix interpolation. Tomographic reconstruction can be formulated as a linear inverse problem and solved using statistical-estimation techniques. Several iterative reconstruction algorithms were introduced, including maximum-likelihood expectation-maximization (ML-EM) and its ordered-subsets (OS) version, and some least-squares (LS) and weighted-least-squares (WLS) algorithms such

  6. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  7. Drive system alignment calibration of a microgravity drop tower of novel design

    Science.gov (United States)

    Trunins, J.; Osborne, B. P.; Augousti, A.

    2013-06-01

    We report here the calibration of the drive system of a new scientific facility for production of microgravity, operating on a novel design of electromagnetically driven platform. The construction achieves the design specification of alignment of the guide rails to better than 0.254mm across the entire guide rail height of 8m, despite a small lean to the right (within tolerance) and it was noted that this alignment is improved by the presence of the trolley that carries the platform.

  8. Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System

    Science.gov (United States)

    Chan, T. O.; Lichti, D. D.; Belton, D.

    2013-10-01

    At the end of the first quarter of 2012, more than 600 Velodyne LiDAR systems had been sold worldwide for various robotic and high-accuracy survey applications. The ultra-compact Velodyne HDL-32E LiDAR has become a predominant sensor for many applications that require lower sensor size/weight and cost. For high accuracy applications, cost-effective calibration methods with minimal manual intervention are always desired by users. However, the calibrations are complicated by the Velodyne LiDAR's narrow vertical field of view and the very highly time-variant nature of its measurements. In the paper, the temporal stability of the HDL-32E is first analysed as the motivation for developing a new, automated calibration method. This is followed by a detailed description of the calibration method that is driven by a novel segmentation method for extracting vertical cylindrical features from the Velodyne point clouds. The proposed segmentation method utilizes the Velodyne point cloud's slice-like nature and first decomposes the point clouds into 2D layers. Then the layers are treated as 2D images and are processed with the Generalized Hough Transform which extracts the points distributed in circular patterns from the point cloud layers. Subsequently, the vertical cylindrical features can be readily extracted from the whole point clouds based on the previously extracted points. The points are passed to the calibration that estimates the cylinder parameters and the LiDAR's additional parameters simultaneously by constraining the segmented points to fit to the cylindrical geometric model in such a way the weighted sum of the adjustment residuals are minimized. The proposed calibration is highly automatic and this allows end users to obtain the time-variant additional parameters instantly and frequently whenever there are vertical cylindrical features presenting in scenes. The methods were verified with two different real datasets, and the results suggest that up to 78

  9. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems.

    Science.gov (United States)

    Hong, Seunghwan; Park, Ilsuk; Lee, Jisang; Lim, Kwangyong; Choi, Yoonjo; Sohn, Hong-Gyoo

    2017-02-27

    This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS). On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D) terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively.

  10. A laser diode based system for calibration of fast time-of-flight detectors

    CERN Document Server

    Bonesini, M; deBari, A; Rossella, M

    2016-01-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range $\\sim 400$ nm,and multimode fiber patches, fused fiber splitters and optical switches may be assembled,for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range ($\\lambda \\sim 850, 1300-1500$ nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution ($\\sigma$) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50...

  11. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  12. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    Science.gov (United States)

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-04-11

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  13. Tandem mass spectrometry of human tryptic blood peptides calculated by a statistical algorithm and captured by a relational database with exploration by a general statistical analysis system.

    Science.gov (United States)

    Bowden, Peter; Beavis, Ron; Marshall, John

    2009-11-02

    A goodness of fit test may be used to assign tandem mass spectra of peptides to amino acid sequences and to directly calculate the expected probability of mis-identification. The product of the peptide expectation values directly yields the probability that the parent protein has been mis-identified. A relational database could capture the mass spectral data, the best fit results, and permit subsequent calculations by a general statistical analysis system. The many files of the Hupo blood protein data correlated by X!TANDEM against the proteins of ENSEMBL were collected into a relational database. A redundant set of 247,077 proteins and peptides were correlated by X!TANDEM, and that was collapsed to a set of 34,956 peptides from 13,379 distinct proteins. About 6875 distinct proteins were only represented by a single distinct peptide, 2866 proteins showed 2 distinct peptides, and 3454 proteins showed at least three distinct peptides by X!TANDEM. More than 99% of the peptides were associated with proteins that had cumulative expectation values, i.e. probability of false positive identification, of one in one hundred or less. The distribution of peptides per protein from X!TANDEM was significantly different than those expected from random assignment of peptides.

  14. A Calibration Method Based on Linear InGaAs in Fiber Grating Sensors Interrogation System

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; ZHANG Xia

    2009-01-01

    In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system, the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed. Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit, thus the calibration method is needed. Based on an analysis of InGaAs imaging model, least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position. The experimental results show that the methods are effective and the demodulation system precision is improved.

  15. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;

    2011-01-01

    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  16. The HumD21S11 system of short tandem repeat DNA polymorphisms in Japanese and Chinese.

    Science.gov (United States)

    Zhou, H G; Sato, K; Nishimaki, Y; Fang, L; Hasekura, H

    1997-04-18

    HumD21S11 is a short tandem repeat DNA polymorphic system with a complex basic structure of (TCTA)4-6 (TCTG)5-6 (TCTA)3 TA (TCTA)3 TCA (TCTA)2 TCCA TA (TCTA)n. Using the allelic ladder prepared by us, the distribution of alleles among Japanese and Chinese was investigated, and four new alleles 28.2, 34, 35.2, and 36.2, were discovered. DNA sequencing was performed on the newly found alleles as well as on family samples and led to the discovery of different gene structures within alleles 28 and 32. Forensic materials, including hairs and seminal stains, were tested in parallel with blood samples from the same individual and were successfully typed for D21S11.

  17. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.

    Science.gov (United States)

    Leitch, David C; Lam, Yan Choi; Labinger, Jay A; Bercaw, John E

    2013-07-17

    Light alkanes and alkenes are abundant but are underutilized as energy carriers because of their high volatility and low energy density. A tandem catalytic approach for the coupling of alkanes and alkenes has been developed in order to upgrade these light hydrocarbons into heavier fuel molecules. This process involves alkane dehydrogenation by a pincer-ligated iridium complex and alkene dimerization by a Cp*TaCl2(alkene) catalyst. These two homogeneous catalysts operate with up to 60/30 cooperative turnovers (Ir/Ta) in the dimerization of 1-hexene/n-heptane, giving C13/C14 products in 40% yield. This dual system can also effect the catalytic dimerization of n-heptane (neohexene as the H2 acceptor) with cooperative turnover numbers of 22/3 (Ir/Ta).

  18. Optical configuration optimization and calibration for the POINT system on EAST

    Science.gov (United States)

    Zou, Z. Y.; Liu, H. Q.; Li, W. M.; Lian, H.; Wang, S. X.; Yao, Y.; Lan, T.; Zeng, L.; Jie, Y. X.

    2016-11-01

    Calibration of the polarimeter system is one of the key elements to determine the overall measurement accuracy. The anisotropic reflection and transmission properties of the mesh beam splitters can easily distort the polarization state of the circularly polarized beams. Using a rotating crystal quartz λ/2-waveplate to replace the plasma can effectively allow us to obtain the ratio of the measured Faraday rotation angle to the known rotation angle of the waveplate. This ratio is used to estimate the calibration factor for each chord to be accurately determined and help to minimize distortions introduced by the wire-mesh beam splitters. With the novel configuration optimization, the distortion of polarization state is effectively eliminated.

  19. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  20. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System.

    Science.gov (United States)

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-06-25

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems.

  1. Supercal: Cross-Calibration of Multiple Photometric Systems to Improve Cosmological Measurements with Type Ia Supernovae

    CERN Document Server

    Scolnic, D; Riess, A G; Rest, A; Schlafly, E; Foley, R J; Finkbeiner, D; Tang, C; Burgett, W S; Chambers, K C; Draper, P W; Hodapp, K W; Huber, M E; Kaiser, N; Kudritzki, R P; Magnier, E A; Metcalfe, N; Stubbs, C W

    2015-01-01

    Current cosmological analyses which use Type Ia supernova (SN Ia) observations combine SN samples to expand the redshift range beyond that of a single sample and increase the overall sample size. The inhomogeneous photometric calibration between different SN samples is one of the largest systematic uncertainties of the cosmological parameter estimation. To place these different samples on a single system, analyses currently use observations of a small sample of very bright flux standards on the $HST$ system. We propose a complementary method, called `Supercal', in which we use measurements of secondary standards in each system, compare these to measurements of the same stars in the Pan-STARRS1 (PS1) system, and determine offsets for each system relative to PS1, placing all SN observations on a single, consistent photometric system. PS1 has observed $3\\pi$ of the sky and has a relative calibration of better than 5 mmag (for $\\sim15system. We use this process t...

  2. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    Science.gov (United States)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  3. Calibration method of the time synchronization error of many data acquisition nodes in the chained system

    Science.gov (United States)

    Jiang, Jia-jia; Duan, Fa-jie; Chen, Jin; Zhang, Chao; Wang, Kai; Chang, Zong-jie

    2012-08-01

    Time synchronization is very important in a distributed chained seismic acquisition system with a large number of data acquisition nodes (DANs). The time synchronization error has two causes. On the one hand, there is a large accumulated propagation delay when commands propagate from the analysis and control system to multiple distant DANs, which makes it impossible for different DANs to receive the same command synchronously. Unfortunately, the propagation delay of commands (PDCs) varies in different application environments. On the other hand, the phase jitter of both the master clock and the clock recovery phase-locked loop, which is designed to extract the timing signal, may also cause the time synchronization error. In this paper, in order to achieve accurate time synchronization, a novel calibration method is proposed which can align the PDCs of all of the DANs in real time and overcome the time synchronization error caused by the phase jitter. Firstly, we give a quantitative analysis of the time synchronization error caused by both the PDCs and the phase jitter. Secondly, we propose a back and forth model (BFM) and a transmission delay measurement method (TDMM) to overcome these difficulties. Furthermore, the BFM is designed as the hardware configuration to measure the PDCs and calibrate the time synchronization error. The TDMM is used to measure the PDCs accurately. Thirdly, in order to overcome the time synchronization error caused by the phase jitter, a compression and mapping algorithm (CMA) is presented. Finally, based on the proposed BFM, TDMM and CMA, a united calibration algorithm is developed to overcome the time synchronization error caused by both the PDCs and the phase jitter. The simulation experiment results show the effectiveness of the calibration method proposed in this paper.

  4. Measuring the electrical properties of soil using a calibrated ground-coupled GPR system

    Science.gov (United States)

    Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.

    2008-01-01

    Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.

  5. Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system.

    Science.gov (United States)

    Mendoza, Maria A; Mills, DeEtta K; Lata, Hemant; Chandra, Suman; ElSohly, Mahmoud A; Almirall, Jose R

    2009-01-01

    Cannabis sativa is the most frequently used of all illicit drugs in the USA. Cannabis has been used throughout history for its stems in the production of hemp fiber, seed for oil and food, and buds and leaves as a psychoactive drug. Short tandem repeats (STRs) were chosen as molecular markers owing to their distinct advantages over other genetic methods. STRs are codominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power, and can be multiplexed. In this study, six STR markers previously described for C. sativa were multiplexed into one reaction. The multiplex reaction was able to individualize 98 cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 states of the USA) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single-reaction sixplex and apply it to the analysis of almost 100 cannabis samples of known geographic origin.

  6. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  7. A vision-based self-calibration method for robotic visual inspection systems.

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-12-03

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system.

  8. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  9. Electron beam test of key elements of the laser-based calibration system for the muon $g$ $-$ $2$ experiment

    CERN Document Server

    Anastasi, A; Bedeschi, F; Bartolini, M; Cantatore, G; Cauz, D; Corradi, G; Dabagov, S; DI Sciascio, G; Di Stefano, R; Driutti, A; Escalante, O; Ferrari, C; Fienberg, A T; Fioretti, A; Gabbanini, C; Gioiosa, A; Hampai, D; Hertzog, D W; Iacovacci, M; Karuza, M; Kaspar, J; Liedl, A; Luisiani, A; Marignetti, F; Mastroianni, S; Moricciani, D; Pauletta, G; Piacentino, G M; Raha, N; Rossi, E; Santi, L; Venanzoni, G

    2016-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  10. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Rossi, E.; Santi, L.; Venanzoni, G.

    2017-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  11. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  12. Data Acquisition and Management in the Calibration Processes of the CMS Barrel Muon Alignment System

    CERN Document Server

    Székely, Géza; Bencze, Gy L; Béni, N; Imrek, J; Molnár, J; Novák, D; Raics, P; Szabó, Z

    2007-01-01

    In order to be able to match correctly the track elements produced by a muon in the Tracker and the Muon System of the CMS experiment [1] the mutual alignment precision between the Tracker and the Barrel Muon System must be no worse than 100-400 micrometers depending on the radial distance of the muon chambers from the Tracker. To fulfill this requirement an alignment system had to be designed. This system contains subsystems for determining the positions of the barrel and endcap chambers while a third one connects these two to the Tracker. Since the Barrel muon chambers are embedded into the magnet yoke of the experiment a nonconventional alignment method had to be developed. In this paper we restrict ourselves to the Barrel Alignment System and the calibration methods of its components.

  13. A fiber-optic-based calibration system for the High Resolution Fly's Eye cosmic ray observatory

    Energy Technology Data Exchange (ETDEWEB)

    Girard, J.H.V.; Wiencke, L.R. E-mail: wiencke@cosmic.utah.edu; Archbold, G.C.; Bellido, J.A.; Belov, K.; Boyer, J.H.; Everett, A.A.; Gray, R.C.; Jui, C.C.H.; Knapp, B.C.; Mannel, E.J.; Matthews, J.N.; Moore, S.A.; Mumford, J.R.; Roberts, M.D.; Shen, P.; Sokolsky, P.V.; Springer, R.W.; Thomas, S.B

    2001-03-21

    This article describes the fiber-optic-based calibration system installed at the High Resolution Fly's Eye (HiRes) astro-particle physics observatory. The HiRes detectors measure ultra violet scintillation light from distant extensive air showers. This automated calibration system delivers light from a frequency tripled 355 nm YAG laser to the 10,752 photo-multiplier tubes of the 42 HiRes-II detectors.

  14. Development of Rapid, Continuous Calibration Techniques and Implementation as a Prototype System for Civil Engineering Materials Evaluation

    Science.gov (United States)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-06-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  15. On calibrating the sensor errors of a PDR-based indoor localization system.

    Science.gov (United States)

    Lan, Kun-Chan; Shih, Wen-Yuah

    2013-04-10

    Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared) to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR) for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope) are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user's moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user's step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user's change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user's walking distance, with an overall location error of about 0.48 m.

  16. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    Science.gov (United States)

    Tao, S.; Trzasko, J. D.; Gunter, J. L.; Weavers, P. T.; Shu, Y.; Huston, J., III; Lee, S. K.; Tan, E. T.; Bernstein, M. A.

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to

  17. The calibration system of the new g-2 experiment at Fermilab

    Science.gov (United States)

    Anastasi, A.; Babusci, D.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Meo, P.; Di Sciascio, G.; Di Stefano, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Santi, L.; Venanzoni, G.

    2016-07-01

    The muon anomaly (g - 2) μ / 2 has been measured to 0.54 parts per million by E821 experiment at Brookhaven National Laboratory, and at present there is a 3-4 standard-deviation difference between the Standard Model prediction and the experimental value. A new muon g-2 experiment, E989, is being prepared at Fermilab that will improve the experimental error by a factor of four to clarify this difference. A central component to reach this fourfold improvement in accuracy is the high-precision laser calibration system which should monitor the gain fluctuations of the calorimeter photodetectors at 0.04% accuracy.

  18. Cinematica: a system for calibrated, Macintosh-driven displays from within Mathematica.

    Science.gov (United States)

    Solomon, J A; Watson, A B

    1996-01-01

    Cinematica is a minimal system for producing calibrated grayscale movies on an Apple Macintosh computer from within the Mathematica programming environment. It makes use of the ISR Video Attenuator and the Video Toolbox software library developed by Denis Pelli. By design, Cinematica provides a very low-level interface to the display routine. Display instructions take the form of a list of pairs (image index, colormap index). The philosophy is that programming is much easier in Mathematica than in C, so we reserve the complexity for Mathematica. A few simple examples are provided.

  19. High-accuracy calibration of an adaptive optics system using a phase shifting diffraction interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J; Campbell, E W; Olivier, S S; Sweider, D R

    1999-06-23

    A phase-shifting diffraction interferometer (PSDI) has been integrated into an adaptive optics (AO) system developed by LLNL for use on the three meter Shane telescope at Lick Observatory. The interferometer is an all fiber optic design, which is extremely compact. It is useful for calibrating the control sensors, measuring the aberrations of the entire AO optical train, and measuring the influence functions of the individual actuators on the deformable mirror. The PSDI is particularly well suited for this application because it measures converging, quasi-spherical wavefronts, such as are produced by an AO imaging system. Thus, a PSDI can be used to measure the aberrations of the entire AO system, in-situ and without errors introduced by auxiliary optics. This provides an extremely accurate measurement ({approximately} 5 nm RMS) of the optical properties of the AO system.

  20. Calibration of line structured light vision system based on camera's projective center

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-gui; LI Yan-jun; YE Sheng-hua

    2005-01-01

    Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera's projective center and the light's information in the camera's image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.

  1. Development of a Calibration System for Cryogenic Light Detectors in CUPID

    Science.gov (United States)

    Luo, Meng; Kolomensky, Yury; O'Donnell, Thomas; Schmidt, Benjamin; Cupid Collaboration

    2017-01-01

    If neutrino is a Majorana particle, it is possible to observe neutrinoless double beta decay (0 νββ), whose signature is a monochromatic line at the Q-value of the decay in the energy spectrum of the two electrons. Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment which aims to search for 0 νββ in 130Te with TeO2 bolometers, whose background is dominated by α particles from natural radioactivity in the detector material. CUPID (CUORE Upgrade with Particle IDentification) is the next generation experiment proposed to distinguish 0 νββ events from those of α particles with Cherenkov radiation. An important part of CUPID R&D is to design, build and characterize a calibration system that can generate a known amount of light and transport that light to the dilution refrigerator at mK temperatures. We describe the design, implementation and performance of a calibration system developed for bolometric light detectors. Preparation work includes researching and selecting a light source (LED). A transport system (optical fiber) was developed to direct the light to the coldest part of the dilution refrigerator. Additionally, the light yield attenuation of optical fiber at cryogenic temperatures was measured. This project is supported by National Science Foundation and UC-Berkeley.

  2. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  3. The Research of Through-casing Resistivity Logging Logging Calibration System Leakage Current Measurement Method

    Directory of Open Access Journals (Sweden)

    ZHANG Jiatian

    2013-07-01

    Full Text Available This paper introduces the logging principle of through-casing resistivity logging technology, finds a phenomenon that the leakage current measurements are susceptible to sufferring interferences. The through-casing resistivity logging technology in Russia and that of Schlumberger are studied, and the system of through-casing resistivity logging is established to improve the accuracy of calibrating, testing and measuring of the instrument. In this paper, distribution parameters of the form is replaced by the lumped parameter, and precision resistor array simulation in formation leakage current and scale pool simulation in different resistivity of formation are conducted, which make the dynamic range of the simulation in formation resistivity of the medium increase to 1- 300 Ω·m and meet the requirement of through-casing resistivity logging technology measurement range, 1 Ω·m ~ 100 Ω·m. Since the measuring signals of calibration acquisition and processing systems are extremely weak and calculation signals need to tell the nV (nanovolts level, the high accurate data acquisition system of 24 digits is applied.

  4. Design, calibration, and operation of 220Rn stack effluent monitoring systems at Argonne National Laboratory.

    Science.gov (United States)

    Munyon, W J; Kretz, N D; Marchetti, F P

    1994-09-01

    A group of stack effluent monitoring systems have been developed to monitor discharges of 220Rn from a hot cell facility at Argonne National Laboratory. The stack monitors use flow-through scintillation cells and are completely microprocessor-based systems. A method for calibrating the stack monitors in the laboratory and in the field is described. A nominal calibration factor for the stack monitoring systems in use is 15.0 cts min-1 per kBq m-3 (0.56 cts min-1 per pCi L-1) +/- 26% at the 95% confidence level. The plate-out fraction of decay products in the stack monitor scintillation cells, without any pre-filtering, was found to be nominally 25% under normal operating conditions. When the sample was pre-filtered upstream of the scintillation cell, the observed cell plate-out fraction ranged from 16-22%, depending on the specific sampling conditions. The instantaneous 220Rn stack concentration can be underestimated or overestimated when the steady state condition established between 220Rn and its decay products in the scintillation cell is disrupted by sudden changes in the monitored 220Rn concentration. For long-term measurements, however, the time-averaged response of the monitor represents the steady state condition and leads to a reasonable estimate of the average 220Rn concentration during the monitoring period.

  5. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    Science.gov (United States)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  6. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system.

    Science.gov (United States)

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Beavis, A W; Saunderson, J R

    2014-05-07

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  7. Aplicação de metodologia dosimétrica de feixes terapêuticos de raios X com sistema Tandem Application of a dosimetric methodology of therapeutic X-ray beams with a Tandem system

    Directory of Open Access Journals (Sweden)

    Carla Eri Sartoris

    2001-12-01

    Full Text Available Um sistema Tandem, constituído por um par de câmaras de ionização comerciais (uma cilíndrica e uma de placas paralelas, foi estabelecido para aplicação em instituição hospitalar, em substituição ao procedimento convencional de determinação de camadas semi-redutoras utilizando-se absorvedores. Os resultados obtidos mostram a possibilidade de utilização deste sistema em procedimentos de dosimetria para os feixes de ortovoltagem utilizados em radioterapia, como complemento de um programa de controle de qualidade.We developed a Tandem system using a pair of ionization chambers (a cylindrical and a parallel-plate type to perform X-ray measurements in a medical Institution, in substitution of the routine conventional procedure of determination of half-values layers using absorbers. The results obtained indicate the possibility of application of this method in dosimetric procedures of orthovoltage beams (radiotherapy as a complementary procedure in a quality control program.

  8. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    Science.gov (United States)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  9. Analysis of short tandem repeat (STR polymorphisms by the powerplex 16 system and capillary electrophoresis: application to forensic practice.

    Directory of Open Access Journals (Sweden)

    Okamoto O

    2003-04-01

    Full Text Available Allele and genotype frequencies for 15 short tandem repeat (STR polymorphisms--D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX and FGA--in a Japanese population were estimated. No deviations of the observed allele frequency from Hardy-Weinberg equilibrium expectations were found for any of the systems studied. Between 2 new pentanucleotide STR loci, Penta E and Penta D, for which there is only limited data regarding the allelic distribution in Japanese, the Penta E locus was found to be highly polymorphic and exhibited a tri- or tetra-modal distribution pattern having allelic peaks with 5, 11, 15 and 20 repeats. The distribution was significantly different from that of the other ethnic groups. Statistical parameters of forensic importance, the power of discrimination (PD, observed and expected heterozygosity values (H, polymorphism information content (PIC, power of discrimination (PD, matching probability (pM, power of exclusion (PE, and typical paternity index (PI, were calculated for the loci. These parameters indicated the usefulness of the loci in forensic personal identification and paternity testing among Japanese. The systems Penta E, FGA, D18S51 and D8S1179 were the most informative. This method was successfully applied to forensic personal identification and paternity testing among Japanese, thereby confirming its efficacy for forensic practice.

  10. On data requirements for calibration of integrated models for urban water systems.

    Science.gov (United States)

    Langeveld, Jeroen; Nopens, Ingmar; Schilperoort, Remy; Benedetti, Lorenzo; de Klein, Jeroen; Amerlinck, Youri; Weijers, Stefan

    2013-01-01

    Modeling of integrated urban water systems (IUWS) has seen a rapid development in recent years. Models and software are available that describe the process dynamics in sewers, wastewater treatment plants (WWTPs), receiving water systems as well as at the interfaces between the submodels. Successful applications of integrated modeling are, however, relatively scarce. One of the reasons for this is the lack of high-quality monitoring data with the required spatial and temporal resolution and accuracy to calibrate and validate the integrated models, even though the state of the art of monitoring itself is no longer the limiting factor. This paper discusses the efforts to be able to meet the data requirements associated with integrated modeling and describes the methods applied to validate the monitoring data and to use submodels as software sensor to provide the necessary input for other submodels. The main conclusion of the paper is that state of the art monitoring is in principle sufficient to provide the data necessary to calibrate integrated models, but practical limitations resulting in incomplete data-sets hamper widespread application. In order to overcome these difficulties, redundancy of future monitoring networks should be increased and, at the same time, data handling (including data validation, mining and assimilation) should receive much more attention.

  11. Automatic Calibration of Frequency Compensation System in Computer-Controlled Patch-Clamp Amplifier

    Directory of Open Access Journals (Sweden)

    Jun Xion

    2007-01-01

    Full Text Available Computer-controlled patch-clamp amplifier is a digitally controlled analog device used to record the cellular ion channel currents in electrophysiology research. The inherent bandwidth and performance of the headstage is limited by the stray capacitance and distributed capacitance across the feedback resistors. In order to effectively improve the performance of the headstage, the paper advanced a simplified automatic calibration method of frequency compensation system in resistor-feedback patch-clamp amplifier. The dynamic model of headstage was approximate as a two poles and one zero system in the transfer function by experience and test results, so the dynamic characteristics of the headstage were obtained employing least squares parameter estimation algorithm. Further more, the compensation parameter of high frequency booster can be estimated by the time constant of main pole of headstage. And automatic adjustment of the parameters in transient response correction stage was performed as a least squares fitting problem. The software routine running on the host computer conducted all operations of frequency compensation. Experimental results demonstrate that the simplified automatic calibration method can substantially extend the bandwidth and minimize step response error of headstage.

  12. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  13. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  14. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  15. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  16. Calibration Standards for Surface Topography Measuring Systems down to Nanometric Range

    DEFF Research Database (Denmark)

    Trumpold, H.; De Chiffre, Leonardo; Andreasen, Jan Lasson

    calibrator has been designed, built and tested. Primary calibration standards have been produced by ion-beam and plasma etching (step height standards), by holographic generation of sinusoidal structures with two-beam interference exposure and by ultra-precision diamond cutting. From primary standards...... to be replicated during all stages of the replication processes. Procedures for cleaning glass, PVC, PC, PMM and Ni-surfaces have been developed and tested. Calibration procedures for calibration standards and for calibrating instruments in X-, Y- and Z-direction have been developed and tested. Proposals...

  17. Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles.

    Science.gov (United States)

    Iwanaga, Shintaroh; Saito, Noriaki; Sanae, Hidetoshi; Nakamura, Makoto

    2013-09-01

    This article describes a rapid and facile method for manufacturing various size-controlled gel particles with utilizing inkjet printing technology. Generally, the size of droplets could be controlled by changing nozzle heads of inkjet printer, from which ink solution is ejected. However, this method uses drying process before gelling microparticles, and with that, the size of microparticles was easily controlled by only altering the concentration of ejected solution. When sodium alginate solution with various concentrations was ejected from inkjet printer, we found that the concentration of alginate solution vs. the volume of dried alginate particle showed an almost linear relationship in the concentration range from 0.1 to 3.0%. After dried alginate particles were soaked into calcium chloride solution, the size of microgel beads were obtained almost without increasing their size. The microparticles including various sizes of nanoparticles were easily manufactured by ejecting nanoparticle-dispersed alginate solution. The release of 25-nm sized nanoparticles from alginate microgel beads was finished in a relatively-rapid manner, whereas 100-nm sized nanoparticles were partially released from those ones. Moreover, most of 250-nm sized nanoparticles were not released from alginate microgel beads even after 24-h soaking. This particle fabricating method would enable the tandem drug delivery system with a combination of the release from nano and microparticles, and be expected for the biological and tissue engineering application.

  18. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    Directory of Open Access Journals (Sweden)

    Wen-Yuah Shih

    2013-04-01

    Full Text Available Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user’s moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user’s step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user’s change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user’s walking distance, with an overall location error of about 0.48 m.

  19. Analysis of Short Tandem Repeat and Single Nucleotide Polymorphism Loci From Single-Source Samples Using a Custom HaloPlex Target Enrichment System Panel.

    Science.gov (United States)

    Wendt, Frank R; Zeng, Xiangpei; Churchill, Jennifer D; King, Jonathan L; Budowle, Bruce

    2016-06-01

    Short tandem repeats and single nucleotide polymorphisms (SNPs) are used to individualize biological evidence samples. Short tandem repeat alleles are characterized by size separation during capillary electrophoresis (CE). Massively parallel sequencing (MPS) offers an alternative that can overcome limitations of the CE. With MPS, libraries are prepared for each sample, entailing target enrichment and bar coding, purification, and normalization. The HaloPlex Target Enrichment System (Agilent Technologies) uses a capture-based enrichment system with restriction enzyme digestion to generate fragments containing custom-selected markers. It offers another possible workflow for typing reference samples. Its efficacy was assessed using a panel of 275 human identity SNPs, 88 short tandem repeats, and amelogenin. The data analyzed included locus typing success, depth of sequence coverage, heterozygote balance, and concordance. The results indicate that the HaloPlex Target Enrichment System provides genetic data similar to that obtained by conventional polymerase chain reaction-CE methods with the advantage of analyzing substantially more markers in 1 sequencing run. The genetic typing performance of HaloPlex is comparable to other MPS-based sample preparation systems that utilize primer-based target enrichment.

  20. The geometric calibration of cone-beam imaging and delivery systems in radiation therapy

    CERN Document Server

    Matsinos, E; Kaissl, Wolfgang; Matsinos, Evangelos

    2006-01-01

    We propose a method to achieve the geometric calibration of cone-beam imaging and delivery systems in radiation therapy; our approach applies to devices where an X-ray source and a flat-panel detector, facing each other, move in circular orbits around the irradiated object. In order to extract the parameters of the geometry from the data, we use a light needle phantom which is easy to manufacture. A model with ten free parameters (spatial lengths and distortion angles) has been put forth to describe the geometry and the mechanical imperfections of the units being calibrated; a few additional parameters are introduced to account for residual effects (small effects which lie beyond our model). The values of the model parameters are determined from one complete scan of the needle phantom via a robust optimisation scheme. The application of this method to two sets of five counterclockwise (ccw) and five clockwise (cw) scans yielded consistent and reproducible results. A number of differences have been observed be...

  1. The low-temperature energy calibration system for the CUORE bolometer array

    CERN Document Server

    Sangiorgio, S; Heeger, K M; Maruyama, R H; Nucciotti, A; Olcese, M; Wise, T S; Woodcraft, A L

    2009-01-01

    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into...

  2. An Overview of the Joint Polar Satellite System (JPSS Science Data Product Calibration and Validation

    Directory of Open Access Journals (Sweden)

    Lihang Zhou

    2016-02-01

    Full Text Available The Joint Polar Satellite System (JPSS will launch its first JPSS-1 satellite in early 2017. The JPSS-1 and follow-on satellites will carry aboard an array of instruments including the Visible Infrared Imaging Radiometer Suite (VIIRS, the Cross-track Infrared Sounder (CrIS, the Advanced Technology Microwave Sounder (ATMS, and the Ozone Mapping and Profiler Suite (OMPS. These instruments are similar to the instruments currently operating on the Suomi National Polar-orbiting Partnership (S-NPP satellite. In preparation for the JPSS-1 launch, the JPSS program at the Center for Satellite Applications and Research (JSTAR Calibration/Validation (Cal/Val teams, have laid out the Cal/Val plans to oversee JPSS-1 science products’ algorithm development efforts, verification and characterization of these algorithms during the pre-launch period, calibration and validation of the products during post-launch, and long-term science maintenance (LTSM. In addition, the team has developed the necessary schedules, deliverables and infrastructure for routing JPSS-1 science product algorithms for operational implementation. This paper presents an overview of these efforts. In addition, this paper will provide insight into the processes of both adapting S-NPP science products for JPSS-1 and performing upgrades for enterprise solutions, and will discuss Cal/Val processes and quality assurance procedures.

  3. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    Science.gov (United States)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  4. The Pointing System of the Herschel Space Observatory. Description, Calibration, Performance and Improvements

    CERN Document Server

    Sánchez-Portal, Miguel; Altieri, Bruno; Aussel, Hervé; Feuchtgruber, Helmut; Klaas, Ulrich; Linz, Hendrik; Lutz, Dieter; Merín, Bruno; Müller, Thomas; Nielbock, Markus; Oort, Marc; Pilbratt, Göran; Schmidt, Micha; Stephenson, Craig; Tuttlebee, Mark

    2014-01-01

    We present the activities carried out to calibrate and characterise the performance of the elements of attitude control and measurement on board the Herschel spacecraft. The main calibration parameters and the evolution of the indicators of the pointing performance are described, from the initial values derived from the observations carried out in the performance verification phase to those attained in the last year and half of mission, an absolute pointing error around or even below 1 arcsec, a spatial relative pointing error of some 1 arcsec and a pointing stability below 0.2 arsec. The actions carried out at the ground segment to improve the spacecraft pointing measurements are outlined. On-going and future developments towards a final refinement of the Herschel astrometry are also summarised. A brief description of the different components of the attitude control and measurement system (both in the space and in the ground segments) is also given for reference. We stress the importance of the cooperation b...

  5. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  6. SU-E-T-442: Geometric Calibration and Verification of a GammaPod Breast SBRT System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C [Univ Maryland School of Medicine, Baltimore, MD (United States); Xcision Medical Systems, Columbia, MD (United States); Niu, Y; Maton, P; Hoban, P [Xcision Medical Systems, Columbia, MD (United States); Mutaf, Y [Univ Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: The first GammaPod™ unit for prone stereotactic treatment of early stage breast cancer has recently been installed and calibrated. Thirty-six rotating circular Co-60 beams focus dose at an isocenter that traverses throughout a breast target via continuous motion of the treatment table. The breast is immobilized and localized using a vacuum-assisted stereotactic cup system that is fixed to the table during treatment. Here we report on system calibration and on verification of geometric and dosimetric accuracy. Methods: Spatial calibration involves setting the origin of each table translational axis within the treatment control system such that the relationship between beam isocenter and table geometry is consistent with that assumed by the treatment planning system. A polyethylene QA breast phantom inserted into an aperture in the patient couch is used for calibration and verification. The comparison is performed via fiducial-based registration of measured single-isocenter dose profiles (radiochromic film) with kernel dose profiles. With the table calibrations applied, measured relative dose distributions were compared with TPS calculations for single-isocenter and dynamic (many-isocenter) treatment plans. Further, table motion accuracy and linearity was tested via comparison of planned control points with independent encoder readouts. Results: After table calibration, comparison of measured and calculated single-isocenter dose profiles show agreement to within 0.5 mm for each axis. Gamma analysis of measured vs calculated profiles with 3%/2mm criteria yields a passing rate of >99% and >98% for single-isocenter and dynamic plans respectively. This also validates the relative dose distributions produced by the TPS. Measured table motion accuracy was within 0.05 mm for all translational axes. Conclusion: GammaPod table coordinate calibration is a straightforward process that yields very good agreement between planned and measured relative dose distributions

  7. Development and application of a dosimetric methodology of therapeutic X radiation beams using a tandem system; Desenvolvimento e aplicacao de metodologia dosimetrica de feixes terapeuticos de raios X com sistema tandem

    Energy Technology Data Exchange (ETDEWEB)

    Sartoris, Carla Eri

    2001-07-01

    In radiotherapy the use of orthovoltage X radiation beams is still recommended; to obtain satisfactory results, a periodic control is necessary to check the performance of the ionization chambers and the radiation beams characteristics. This control is performed by using standard dosimetric procedures, as for example the determination of half-value layers and the absorbed dose rates. A Tandem system was established in this work using a pair of ionization chambers (a thimble type and a superficial type) used for measures in a medical institution, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The results obtained show the application of this method in dosimetric procedures of orthovoltage beams (radiotherapy) as a complement for a quality control program. (author)

  8. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Basam Musleh

    2016-09-01

    Full Text Available Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels and the vehicle environment (meters depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  9. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  10. World Calibration Center for SF6 - supporting the quality system of the global atmosphere observation

    Science.gov (United States)

    Lee, J.; Moon, D.; Min, D.; Yun, W.

    2012-10-01

    According to the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Strategic Plan: 2008-2015 (WMO, 2009a) WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different laboratories around the world as well as to establish a quality control system. Sulfur hexafluoride (SF6), is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr-1. Development of a working (or transfer) standard with very low concentration of SF6 requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO), the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS), which is the National Metrology Institute in South Korea. So long as the Central Calibration Laboratory (CCL) for SF6 was established, the Korea Meteorological Administration (KMA) is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF6, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF6, which is one of GAW facilities, KMA will contribute to harmonization of the global SF6 observations in the long run. This work performed to demonstrate some measurement results on SF6 which complies with the DQOs and is traceable to the WMO mole fraction scale for SF6. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD) calibrated against the five cylinders (from NOAA, 2011) of the WMO scale. For all analysis the measurement

  11. World Calibration Center for SF6 – supporting the quality system of the global atmosphere observation

    Directory of Open Access Journals (Sweden)

    W. Yun

    2012-10-01

    Full Text Available According to the World Meteorological Organization (WMO Global Atmosphere Watch (GAW Strategic Plan: 2008–2015 (WMO, 2009a WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different laboratories around the world as well as to establish a quality control system. Sulfur hexafluoride (SF6, is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr−1. Development of a working (or transfer standard with very low concentration of SF6 requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO, the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS, which is the National Metrology Institute in South Korea. So long as the Central Calibration Laboratory (CCL for SF6 was established, the Korea Meteorological Administration (KMA is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF6, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF6, which is one of GAW facilities, KMA will contribute to harmonization of the global SF6 observations in the long run. This work performed to demonstrate some measurement results on SF6 which complies with the DQOs and is traceable to the WMO mole fraction scale for SF6. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD calibrated against the five cylinders (from NOAA, 2011 of the WMO scale. For all analysis the

  12. Development and calibration of a MFM-based system for local hysteresis loops measurements

    Science.gov (United States)

    Coïsson, M.; Barrera, G.; Celegato, F.; Tiberto, P.

    2016-10-01

    A measurement technique derived from a field-dependent magnetic force microscope (MFM) is presented for the measurement of local hysteresis loops on patterned micrometric and sub-micrometric magnetic structures. The technique exploits the synchronisation of the applied field variations with the end-of-line signal of the microscope, while keeping the slow scan axis disabled. In this way, a single MFM image contains the whole field evolution of the magnetisation processes in the sample along a user-defined profile. An analysis procedure is presented for the subsequent determination of local hysteresis loops on magnetic dots. The system has been calibrated for what concerns the applied field values. No significant artifacts induced in the measurements by the applied field have been observed up to applied fields of ≈ 1000 Oe.

  13. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    Directory of Open Access Journals (Sweden)

    Yong Ren

    2014-05-01

    Full Text Available This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  14. A measuring system for well logging attitude and a method of sensor calibration.

    Science.gov (United States)

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  15. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    CERN Document Server

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  16. Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis

    DEFF Research Database (Denmark)

    Ruano, MV; Ribes, J; de Pauw, DJW

    2007-01-01

    to describe nitrogen and phosphorus removal in the Haaren WWTP (The Netherlands). The parameter significance ranking shows that the temperature correction coefficients are among the most influential parameters on the model output. This outcome confronts the previous identifiability studies and the experience...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast......, although the experience-based approach is computationally affordable, it is unable to take into account the information content issue and therefore can be either too optimistic (giving poorly identifiable sets) or pessimistic (small size of sets while much more can be estimated from the data...

  17. In-flight calibration of STEREO-B/WAVES antenna system

    CERN Document Server

    Panchenko, M; Rucker, H O; Fischer, G; Oswald, T H; Cecconi, B; Maksimovic, M

    2015-01-01

    The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft (Solar Terrestrial Relations Observatory) launched on 25 October 2006 is dedicated to the measurement of the radio spectrum at frequencies between a few kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal monopoles designed to measure the electric component of the radio waves. With this configuration direction finding of radio sources and polarimetry (analysis of the polarization state) of incident radio waves is possible. For the evaluation of the SWAVES data the receiving properties of the antennas, distorted by the radiation coupling with the spacecraft body and other onboard devices, have to be known accurately. In the present context, these properties are described by the antenna effective length vectors. We present the results of an in-flight calibration of the SWAVES antennas using the observations of the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO roll maneuvers in an early s...

  18. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  19. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    Directory of Open Access Journals (Sweden)

    Shu Zhifeng

    2016-01-01

    Full Text Available Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP.It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder

  20. Modeling and calibration of pulse-modulation based ToF imaging systems

    Science.gov (United States)

    Süss, Andreas; Varga, Gabor; Marx, Michael; Fürst, Peter; Gläsener, Stefan; Tiedke, Wolfram; Jung, Melanie; Spickermann, Andreas; Hosticka, Bedrich J.

    2016-03-01

    Conversely to the continuous wave indirect time-of-flight (CW-iToF) imaging scheme, pulsed modulation ToF (PM-iToF) imaging is a promising depth measurement technique for operation at high ambient illumination. It is known that non-linearity and finite charge-transfer speed impact trueness and precision of ToF systems.1-3 As pulses are no Eigenfunctions to the shutter system, this issue is especially pronounced in pulsed modulation.2, 3 Despite these effects, it is possible to find analytical expressions founded on physical observations that map scenery parameters such as depth information, reflectance and ambient light level to sensor output.3, 4 In the application, the inverse of this map has to be evaluated. In PM-iToF, an inverse function cannot be yielded in a direct manner, as models proposed in the literature were transcendental.3, 4 For a limited range an approximating linearization can be performed to yield depth information.5 To extend the usable range, recently, an alternative approach that indirectly approximates the inverse function was presented.6 This method was founded on 1D doping concentration profiles, which, however, are typically not made available to end users. Also, limitations of the 1D approximation as well as stability are yet to be explored. This work presents a calibration methodology that copes with detector insufficiencies such as finite charge transfer speed. Contrarily to the state of the art, no prior knowledge on details of the underlying devices is required. The work covers measurement setup, a benchmark of various calibration schemes and deals with issues such as overfitting or defect pixels.

  1. Modified calibration procedures for a Yankee Environmental System UVB-1 biometer based on spectral measurements with a brewer spectrophotometer.

    Science.gov (United States)

    Vilaplana, José M; Cachorro, Victoria E; Sorribas, Mar; Luccini, Eduardo; de Frutos, Angel M; Berjón, Alberto; de la Morena, Benito

    2006-01-01

    The calibration of the erythemal irradiance measured by a Yankee Environmental System (YES) UVB-1 biometer is presented using two methods of calibration with a wide range of experimental solar zenith angles (SZAs) and ozone values. The calibration is performed through simultaneous spectral measurements by a calibrated double-monochromator Brewer MK-III spectrophotometer at "El Arenosillo" station, located in southwestern Spain. Because the range of spectral measurements of the Brewer spectrophotometer is 290-363 nm, a previously validated radiative transfer model was used to account for the erythemal contribution between 363 and 400 nm. Both methods are recommended by the World Meteorological Organization and we present and discuss here a wide range of results and features given by modified procedures applied to these two general methods. As is well established, the calibration factor for this type of radiometric system is dependent on atmospheric conditions, the most important of which are the ozone content and the SZA. Although the first method is insensitive to these two factors, we analyze this behavior in terms of the range used for the SZA and the use of two different mathematical approaches for its determination. The second method shows the dependence on SZA and ozone content and, thus, a polynomial as a function of SZA or a matrix including SZA and ozone content were determined as general calibration factors for the UV radiometric system. We must note that the angular responses of the YES radiometer and Brewer spectroradiometer have not been considered, because of the difficulty in correcting them. The results show in detail the advantages and drawbacks (and the corresponding associated error) given by the different approaches used for the determination of these calibration coefficients.

  2. Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays

    Science.gov (United States)

    Shin, Kahee; Yoo, Ji-Beom; Park, Jong Hyeok

    2013-03-01

    The present work reports fabrication of vertically aligned CdS sensitized TiO2 nanorod arrays grown on transparent conducting oxide substrate with high transparency as a photoanode in photoelectrochemical cell for water splitting. To realize an unassisted water splitting system, the photoanode and dye-sensitized solar cell tandem structures are tried and their electrochemical behaviors are also investigated. The hydrothermally grown TiO2 nanorod arrays followed by CdS nanoparticle decoration can improve the light absorption of long wavelength light resulting in increased photocurrent density. Two different techniques (electrodeposition and spray pyrolysis deposition) of CdS nanoparticle sensitization are carried out and their water splitting behaviors in the tandem cell are compared.

  3. PCR typing of DNA fragments of the two short tandem repeat (STR) systems upstream of the human myelin basic protein (MBP) gene in Danes and Greenland Eskimos

    DEFF Research Database (Denmark)

    Nellemann, L J; Frederiksen, J; Morling, N

    1996-01-01

    DNA from the double short tandem repeat (STR) system MBP (locus 18q23-pter) was amplified by the polymerase chain reaction (PCR) and the two polymorphic repeat systems were separated by cutting with the restriction enzyme NlaIII. The lengths of the DNA fragments of the two MBP STR systems MBP......-A and MBP-B were analyzed by vertical electrophoresis in polyacrylamide gels followed by silver staining. DNA samples from 112 unrelated Danes, 140 unrelated Greenland Eskimos, and 88 Danish mother/child pairs were analyzed. The distributions of MBP phenotypes were in Hardy-Weinberg equilibrium in both...

  4. [Research on On-Line Calibration Based Photoacoustic Spectrometry System for Monitoring the Concentration of CO2 in Atmosphere].

    Science.gov (United States)

    Zhang, Jian-feng; Pan, Sun-qiang; Lin, Xiao-lu; Hu, Peng-bing; Chen, Zhe-min

    2016-01-01

    Resonate frequency and cell constant of photoacoustic spectrum system are usually calibrated by using standard gas in laboratory, whereas the resonate frequency and cell constant will be changed in-situ, leading to measurement accuracy errors, caused by uncertainties of standard gas, differences between standard and measured gas components and changes in environmental condition, such as temperature and humidity. As to overcome the above problems, we have proposed an on-line atmospheric oxygen-based calibration technology for photoacoustic spectrum system and used in measurement of concentration of carbon dioxide in atmosphere. As the concentration of atmospheric oxygen is kept as constant as 20.96%, the on-line calibration for the photoacoustic spectrum system can be realized by detecting the swept-frequency and peak signal at 763.73 nm. The cell of the PAS has a cavity with length of 100 mm and an inner diameter of 6 mm, and worked in a first longitudinal resonant mode. The influence of environmental temperature and humidity, gas components on the photoacoustic cell's performance has been theoretically analyzed, and meanwhile the resonant frequencies and cell constants were calibrated and acquired respectively using standard gas, indoor air and outdoor air. Compared with calibrated gas analyzer, concentration of carbon dioxide is more accurate by using the resonant frequency and cell constant calculated by oxygen in tested air, of which the relative error is less than 1%, much smaller than that calculated by the standard gas in laboratory. The innovation of this paper is that using atmospheric oxygen as photoacoustic spectrum system's calibration gas effectively reduces the error caused by using standard gas and environmental condition changes, and thus improves the on-line measuring accuracy and reliability of the photoacoustic spectrum system.

  5. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as results on their performance in terms of calibration factors, linearity and stability will be given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  6. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability are given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  7. A Training Program Using an Audience Response System to Calibrate Dental Faculty Members Assessing Student Clinical Competence.

    Science.gov (United States)

    Metz, Michael J; Metz, Cynthia J; Durski, Marcelo T; Aiken, Sean A; Mayfield, Theresa G; Lin, Wei-Shao

    2016-09-01

    The aim of this study was to assess the effectiveness of calibration training of departmental faculty and competency graders using an audience response system on operative dentistry concepts across 12 months. The training sessions were designed to further solidify the process and equilibration of clinical opinions among faculty members and provide a more calibrated grading assessment during patient care for student performance feedback. Four (quarterly) calibration sessions occurred over 12 months in 2015. The first session was considered the baseline (control value) for this study. Pre- and post-calibration interrater agreement was assessed. Additionally, a pre and post assessment with ten Likert-scale questions was used to measure students' perceptions of instructional consistency. The results showed that a statistically significant increase in conceptual knowledge scores occurred for both departmental faculty members and competency graders across each of the four sessions (one-factor ANOVA; paudience response system for departmental and competency graders was found to be effective in facilitating a discussion forum, calibrating clinical assessments, and improving student perceptions. The positive results from this study support the value of dental schools' introducing faculty development programs to ensure consistent instruction for assessing dental student competence.

  8. The uBVI Photometric System. I. Motivation, Implementation, and Calibration

    CERN Document Server

    Bond, H E

    2005-01-01

    This paper describes the design principles for a CCD-based photometric system that is highly optimized for ground-based measurement of the size of the Balmer jump in stellar energy distributions. It is shown that, among ultraviolet filters in common use, the Thuan-Gunn u filter is the most efficient for this purpose. This filter is combined with the standard Johnson-Kron-Cousins B, V, and I bandpasses to constitute the uBVI photometric system. Model stellar atmospheres are used to calibrate color-color diagrams for the uBVI system in terms of the fundamental stellar parameters of effective temperature, surface gravity, and metallicity. The u-B index is very sensitive to log g, but also to [Fe/H]. It is shown that an analog of the Str\\"omgren c_1 index, defined as (u-B)-(B-V), is much less metallicity dependent, but still sensitive to log g. The effect of interstellar reddening on u-B is determined through synthetic photometric calculations, and practical advice is given on dealing with flat fields, atmospheri...

  9. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    Science.gov (United States)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  10. Evaluation of Instrument Landing System DDM (Difference in Depth of Modulation) Calibration Accuracies.

    Science.gov (United States)

    1983-12-01

    provided invaluable help in the development and completion of this thesis project. Sincere appreciation is expressed to Mr. William E. Herod , Chief of...0.01728 :I ; Fig. IV-13. Calibration Hierarchy & Accuracies. IV-18 L Ley ’ ! It is clear that if the calibration accuracies of figure IV-13 can be

  11. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  12. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    Science.gov (United States)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters

  13. Infrared fluorescent automated detection of thirteen short tandem repeat polymorphisms and one gender-determining system of the CODIS core system.

    Science.gov (United States)

    Ricci, U; Sani, I; Guarducci, S; Biondi, C; Pelagatti, S; Lazzerini, V; Brusaferri, A; Lapini, M; Andreucci, E; Giunti, L; Giovannucci Uzielli, M L

    2000-11-01

    We used an infrared (IR) automated fluorescence monolaser sequencer for the analysis of 13 autosomal short tandem repeat (STR) systems (TPOX, D3S1358, FGA, CSF1PO, D5S818, D7S820, D8S1179, TH01, vWA, D13S317, D16S359, D18S51, D21S11) and the X-Y homologous gene amelogenin system. These two systems represent the core of the combined DNA index systems (CODIS). Four independent multiplex reactions, based on the polymerase chain reaction (PCR) technique and on the direct labeling of the forward primer of every primer pair, with a new molecule (IRDye800), were set up, permitting the exact characterization of the alleles by comparison with ladders of specific sequenced alleles. This is the first report of the whole analysis of the STRs of the CODIS core using an IR automated DNA sequencer. The protocol was used to solve paternity/maternity tests and for population studies. The electrophoretic system also proved useful for the correct typing of those loci differing in size by only 2 bp. A sensibility study demonstrated that the test can detect an average of 10 pg of undegraded human DNA. We also performed a preliminary study analyzing some forensic samples and mixed stains, which suggested the usefulness of using this analytical system for human identification as well as for forensic purposes.

  14. Three-dimensional surface imaging by multi-frequency phase shift profilometry with angle and pattern modeling for system calibration

    Science.gov (United States)

    Wang, Zhenzhou

    2016-08-01

    In this paper, we present a 3D surface imaging system based on the well-known phase shift profilometry. To yield the analytical solutions, four shifted phases and three high carrier frequencies are used to compute the phase map and reduce the noises that are caused by the inherent optical aberrations and external influences, e.g. different illumination light sources, uneven intensity distribution and automatic image processing algorithms. To reduce the system noise, we propose to model the pattern of the calibration grid in a virtual space. To obtain the modeled pattern, we use a plane to intercept the rays that are modeled by the proposed angle modeling method. In the world coordinate system, the angle and the pattern are computed based on the calibration data. A registration method is used to transform the modeled pattern in the virtual space to the ideal pattern in the world coordinate system by computing the least squared errors between the true points in the modeled pattern and the measured points in the practical pattern. The modeled (true) points are used for re-calibration of the 3D imaging system. Experimental results showed that the measurement accuracy increases considerably and the MSE is reduced from 0.95 mm to 0.65 mm (32% average error decrease) after replacing the measured points with the true points for calibration.

  15. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  16. Cortisol profiles: A test for adaptive calibration of the stress response system in maltreated and nonmaltreated youth

    Science.gov (United States)

    PECKINS, MELISSA K.; SUSMAN, ELIZABETH J.; NEGRIFF, SONYA; NOLL, JENNIE; TRICKETT, PENELOPE K.

    2017-01-01

    Throughout the life span, exposure to chronic stress such as child maltreatment is thought to contribute to future dysfunction of the stress response system (SRS) through the process of adaptive calibration. Dysfunction of the SRS is associated with numerous health and behavior problems, so it is important to understand under what conditions and what time frame adaptive calibration occurs. The present study tested for adaptive calibration of the SRS in a sample of maltreated (n = 303) and nonmaltreated (n = 151) youth during the important developmental period of adolescence. Data were used from Waves 2, 3, and 4 of a larger study of the consequences of maltreatment on health and well-being. At each time point, participants underwent the Trier Social Stress Test for Children and provided a baseline and four poststressor saliva samples to measure cortisol reactivity. Adaptive calibration was tested by performing a latent profile analysis using the five samples of salivary cortisol provided at each time point, and testing whether maltreatment status predicted the likelihood of profile membership at Time 2, Time 3, and Time 4. Three cortisol profiles emerged from the data at each time point (blunted, moderate, and elevated), and results indicated that maltreated youth were more likely than nonmaltreated youth to present with the blunted cortisol profile compared to the moderate and elevated profiles at Time 2 and Time 3, even after controlling for recent exposure to violence and trauma. At Time 4, there was no longer a difference in profile membership between maltreated and nonmaltreated youth, suggesting adaptive calibration may be a lengthy process requiring a period of years to become evident. Overall, the findings provide support for adaptive calibration and offer insight into the conditions under which adaptive calibration occurs. PMID:26535937

  17. STUDY ON THE LINE SCAN CCD CAMERA CALIBRATION OF VEHICLE-BORNE 3D DATA ACQUISITION SYSTEM

    OpenAIRE

    Han, Y; Yang, B.; F. Zhang

    2012-01-01

    Based on the characters of the line scan CCD camera and the Vehicle-borne 3D data acquisition system, it presented a novel method to calibrate the line Scan Camera (LSC) based on the laser scanner. Using the angle information in the original laser scanner data, combing the principle of the line scan camera, it built a calibration model for LSC and designed some experiment methods to implement that. Using the new model and the special experiment methods it computed out high precision ...

  18. Short tandem repeat sequences in the Mycoplasma genitalium genome and their use in a multilocus genotyping system

    Directory of Open Access Journals (Sweden)

    Lillis Rebecca

    2008-07-01

    Full Text Available Abstract Background Several methods have been reported for strain typing of Mycoplasma genitalium. The value of these methods has never been comparatively assessed. The aims of this study were: 1 to identify new potential genetic markers based on an analysis of short tandem repeat (STR sequences in the published M. genitalium genome sequence; 2 to apply previously and newly identified markers to a panel of clinical strains in order to determine the optimal combination for an efficient multi-locus genotyping system; 3 to further confirm sexual transmission of M. genitalium using the newly developed system. Results We performed a comprehensive analysis of STRs in the genome of the M. genitalium type strain G37 and identified 18 loci containing STRs. In addition to one previously studied locus, MG309, we chose two others, MG307 and MG338, for further study. Based on an analysis of 74 unrelated patient specimens from New Orleans and Scandinavia, the discriminatory indices (DIs for these three markers were 0.9153, 0.7381 and 0.8730, respectively. Two other previously described markers, including single nucleotide polymorphisms (SNPs in the rRNA genes (rRNA-SNPs and SNPs in the MG191 gene (MG191-SNPs were found to have DIs of 0.5820 and 0.9392, respectively. A combination of MG309-STRs and MG191-SNPs yielded almost perfect discrimination (DI = 0.9894. An additional finding was that the rRNA-SNPs distribution pattern differed significantly between Scandinavia and New Orleans. Finally we applied multi-locus typing to further confirm sexual transmission using specimens from 74 unrelated patients and 31 concurrently infected couples. Analysis of multi-locus genotype profiles using the five variable loci described above revealed 27 of the couples had concordant genotype profiles compared to only four examples of concordance among the 74 unrelated randomly selected patients. Conclusion We propose that a combination of the MG309-STRs and MG191-SNPs is

  19. Basic calibrations of the photographic RGU system. III - Intermediate and extreme Population II dwarf stars

    Science.gov (United States)

    Buser, R.; Fenkart, R. P.

    1990-11-01

    This paper presents an extended calibration of the color-magnitude and two-color diagrams and the metal-abundance parameter for the intermediate Population II and the extreme halo dwarfs observed in the Basel Palomar-Schmidt RGU three-color photometric surveys of the galaxy. The calibration covers the metallicity range between values +0.50 and -3.00. It is shown that the calibrations presented are sufficiently accurate to be useful for the future analyses of photographic survey data.

  20. A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model

    Science.gov (United States)

    Zhang, Yongyong; Shao, Quanxi; Taylor, John A.

    2016-07-01

    Due to the high interactions among multiple processes in integrated water system models, it is extremely difficult, if not impossible, to achieve reasonable solutions for all objectives by using the traditional step-by-step calibration. In many cases, water quantity and quality are equally important but their objectives in model calibration usually conflict with each other, so it is not a good practice to calibrate one after another. In this study, a combined auto-calibration multi-process approach was proposed for the integrated water system model (HEQM) using a multi-objective evolutionary algorithm. This ensures that the model performance among inseparable or interactive processes could be balanced by users based on the Pareto front. The Huai River Basin, a highly regulated and heavily polluted region of China, was selected as a case study. The hydrological and water quality parameters of HEQM were calibrated simultaneously based on the observed series of runoff and ammonia-nitrogen (NH4-N) concentrations. The results were compared with those of the step-by-step calibration to demonstrate the rationality and feasibility of the multi-objective approach. The results showed that a Pareto optimal front was formed and could be divided into three clear sections based on the elastic coefficient of model performance between NH4-N and runoff, i.e., the dominated section for NH4-N improvement, the trade-off section between NH4-N and runoff, and the dominated section for runoff improvement. The trade-off of model performance between runoff and NH4-N concentration was clear. The results of the step-by-step calibration fell in the dominated section for NH4-N improvement, where just the optimum of the runoff simulation was achieved with a large potential to improve NH4-N simulation without a significant degradation of the runoff simulation. The overall optimal solutions for all the simulations appeared in the trade-off section. Therefore, the Pareto front provided different

  1. Calibration of robot tool centre point using camera-based system

    Directory of Open Access Journals (Sweden)

    Gordić Zaviša

    2016-01-01

    Full Text Available Robot Tool Centre Point (TCP calibration problem is of great importance for a number of industrial applications, and it is well known both in theory and in practice. Although various techniques have been proposed for solving this problem, they mostly require tool jogging or long processing time, both of which affect process performance by extending cycle time. This paper presents an innovative way of TCP calibration using a set of two cameras. The robot tool is placed in an area where images in two orthogonal planes are acquired using cameras. Using robust pattern recognition, even deformed tool can be identified on images, and information about its current position and orientation forwarded to control unit for calibration. Compared to other techniques, test results show significant reduction in procedure complexity and calibration time. These improvements enable more frequent TCP checking and recalibration during production, thus improving the product quality.

  2. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    Science.gov (United States)

    Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  3. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...

  4. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    Science.gov (United States)

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  5. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.

    Science.gov (United States)

    Pai, Praful P; Sanki, Pradyut K; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  6. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation

    Science.gov (United States)

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small deterioration of the detector performance.

  7. A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.

    Science.gov (United States)

    Ramsson, Eric S

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.

  8. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system.

    Science.gov (United States)

    Heitzer, Markus; Zschoernig, Barbara

    2007-09-01

    The successful expression of foreign genes mainly depends on both a reliable method for transformation and a suitable promoter sequence. We created a series of modular plasmids that facilitate the rapid construction of large tandem vectors for transgene expression under the control of different promoter sequences in Chlamydomonas reinhardtii. Tandem vectors carrying expression cassettes for Renilla luciferase and a metabolic selection marker (ARG7) were manufactured by fusing two plasmids in vitro using Cre/lox site-specific recombination. Supercoiled and linear plasmids were used to transform an arginine auxotrophic Chlamydomonas strain, and rates of co-expression as well as levels of luciferase activity were monitored for frequently used promoters (HSP70A, LHCB1, PSAD, and the chimeric HSP70A/RBCS2). Linearized tandem vectors generally increased the co-expression frequency (up to 77%) compared with standard cotransformation protocols. Most transformants showed a single and complete integration event confirming the close linkage of active selectable marker and reporter gene within the nuclear genome. The analysis of luciferase activity showed expression levels within three orders of magnitude for the promoters used, with the artificial HSP70A/RRBCS2 being the most active. For 69% of all luminescent transformants carrying the HSP70A promoter luciferase expression was enhanced by heatshock, indicating physiological promoter function in a transgenic context.

  9. Haptic information provided by the "anchor system" reduces trunk sway acceleration in the frontal plane during tandem walking in older adults.

    Science.gov (United States)

    Costa, Andréia Abud da Silva; Manciopi, Priscila Abbári Rossi; Mauerberg-deCastro, Eliane; Moraes, Renato

    2015-11-16

    This study assessed whether the use of an "anchor system" benefited older adults who performed a tandem walking task. Additionally, we tested the effects of practice with the anchor system during walking on trunk stability, in the frontal plane, of older adults. Forty-four older adults were randomly assigned to three groups: control group, 0g anchor group, and 125g anchor group. Individuals in each group performed a tandem walking task on the GaitRite system with an accelerometer placed on the cervical region. The participants in the 125g anchor group held, in each hand, a flexible cable with a light mass attached at the end of the cable, which rested on the ground. While the participants walked, they pulled on the cables just enough to keep them taut as the masses slid over the ground. The 0g anchor group held an anchor tool without any mass attached to the end portion. The results of this study demonstrated that the use of the anchor system contributed to the reduction of trunk acceleration in the frontal plane. However, this effect did not persist after removal of the anchors, which suggests that the amount of practice with this tool was insufficient to generate any lasting effect, or that the task was not sufficiently challenging, or both.

  10. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Directory of Open Access Journals (Sweden)

    P. Veres

    2010-01-01

    Full Text Available We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs. The Mobile Organic Carbon Calibration System (MOCCS combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC conversion on a palladium surface to CO2 in the presence of oxygen, and the subsequent CO2 measurement. MOCCS was validated using three different comparisons: (1 TOC of high accuracy methane standards compared well to expected concentrations (3% relative error, (2 a gas-phase benzene standard was generated using a permeation source and measured by TOC and gas chromatography mass spectrometry (GC-MS with excellent agreement (<4% relative difference, and (3 total carbon measurement of 4 known gas phase mixtures were performed and compared to a calculated carbon content to agreement within the stated uncertainties of the standards. Measurements from laboratory biomass burning experiments of formic acid by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS and formaldehyde by proton transfer reaction-mass spectrometry (PTR-MS, both calibrated using MOCCS, were compared to open path Fourier transform infrared spectroscopy (OP-FTIR to validate the MOCCS calibration and were found to compare well (R2 of 0.91 and 0.99 respectively.

  11. Automatic In Situ Calibration of a Spinning Beam LiDAR System in Static and Kinematic Modes

    Directory of Open Access Journals (Sweden)

    Ting On Chan

    2015-08-01

    Full Text Available The Velodyne LiDAR series is one of the most popular spinning beam LiDAR systems currently available on the market. In this paper, the temporal stability of the range measurements of the Velodyne HDL-32E LiDAR system is first investigated as motivation for the development of a new automatic calibration method that allows quick and frequent recovery of the inherent time-varying errors. The basic principle of the method is that the LiDAR’s internal systematic error parameters are estimated by constraining point clouds of some known and automatically detected cylindrical features such as lamp poles to fit to the 3D cylinder models. This is analogous to the plumb-line calibration method in which the lens distortion parameters are estimated by constraining the image points of straight lines to fit to the 2D line model. The calibration can be performed at every measurement epoch in both static and kinematic modes. Four real datasets were used to verify the method, two of which were captured in static mode and the other two in kinematic mode. The overall results indicate that up to approximately 72% and 41% accuracy improvement were realized as a result of the calibration for the static and kinematic datasets, respectively.

  12. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Directory of Open Access Journals (Sweden)

    P. Veres

    2010-06-01

    Full Text Available We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs. The Mobile Organic Carbon Calibration System (MOCCS combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC conversion on a palladium surface to CO2 in the presence of oxygen, and the subsequent CO2 measurement. MOCCS was validated using three different comparisons: (1 TOC of high accuracy methane standards compared well to expected concentrations (3% relative error, (2 a gas-phase benzene standard was generated using a permeation source and measured by TOC and gas chromatography mass spectrometry (GC-MS with excellent agreement (<4% relative difference, and (3 total carbon measurement of 4 known gas phase mixtures were performed and compared to a calculated carbon content to agreement within the stated uncertainties of the standards. Measurements from laboratory biomass burning experiments of formic acid by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS and formaldehyde by proton transfer reaction-mass spectrometry (PTR-MS, both calibrated using MOCCS, were compared to open path Fourier transform infrared spectroscopy (OP-FTIR to validate the MOCCS calibration and were found to compare well (R2 of 0.91 and 0.99, respectively.

  13. Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1

    Directory of Open Access Journals (Sweden)

    J. O. Pepke Pedersen

    2008-11-01

    Full Text Available A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and

  14. Presentation, calibration and validation of the low-order, DCESS Earth System Model

    Directory of Open Access Journals (Sweden)

    J. O. P. Pedersen

    2008-06-01

    Full Text Available A new, low-order Earth system model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and

  15. A quasi-online distributed data processing on WAN: the ATLAS muon calibration system

    CERN Document Server

    De Salvo, A; The ATLAS collaboration

    2013-01-01

    In the Atlas experiment, the calibration of the precision tracking chambers of the muon detector is very demanding, since the rate of muon tracks required to get a complete calibration in homogeneous conditions and to feed prompt reconstruction with fresh constants is very high (several hundreds Hz for 8-10 hours runs). The calculation of calibration constants is highly CPU consuming. In order to fulfill the requirement of completing the cycle and having the final constants available within 24 hours, distributed resources at Tier-2 centers have been allocated. The best place to get muon tracks suitable for detector calibration is the second level trigger, where the pre-selection of data sitting in a limited region by the first level trigger via the Region of Interest mechanism allows selecting all the hits from a single track in a limited region of the detector. Online data extraction allows calibration data collection without performing special runs. Small event pseudo-fragments (about 0.5 kB) built at the m...

  16. A High Precision Approach to Calibrate a Structured Light Vision Sensor in a Robot-Based Three-Dimensional Measurement System.

    Science.gov (United States)

    Wu, Defeng; Chen, Tianfei; Li, Aiguo

    2016-08-30

    A robot-based three-dimensional (3D) measurement system is presented. In the presented system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement accuracy is one of the most important aspects of any 3D measurement system. To improve the measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric circles manufactured in a calibration target. The concentric circle is employed to determine the real projected centres of the circles. Then, a calibration point generation procedure is used with the help of the calibrated robot. When enough calibration points are ready, the radial alignment constraint (RAC) method is adopted to calibrate the camera model. A multilayer perceptron neural network (MLPNN) is then employed to identify the calibration residuals after the application of the RAC method. Therefore, the hybrid pinhole model and the MLPNN are used to represent the real camera model. Using a standard ball to validate the effectiveness of the presented technique, the experimental results demonstrate that the proposed novel calibration approach can achieve a highly accurate model of the structured light vision sensor.

  17. A High Precision Approach to Calibrate a Structured Light Vision Sensor in a Robot-Based Three-Dimensional Measurement System

    Directory of Open Access Journals (Sweden)

    Defeng Wu

    2016-08-01

    Full Text Available A robot-based three-dimensional (3D measurement system is presented. In the presented system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement accuracy is one of the most important aspects of any 3D measurement system. To improve the measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric circles manufactured in a calibration target. The concentric circle is employed to determine the real projected centres of the circles. Then, a calibration point generation procedure is used with the help of the calibrated robot. When enough calibration points are ready, the radial alignment constraint (RAC method is adopted to calibrate the camera model. A multilayer perceptron neural network (MLPNN is then employed to identify the calibration residuals after the application of the RAC method. Therefore, the hybrid pinhole model and the MLPNN are used to represent the real camera model. Using a standard ball to validate the effectiveness of the presented technique, the experimental results demonstrate that the proposed novel calibration approach can achieve a highly accurate model of the structured light vision sensor.

  18. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system

    Science.gov (United States)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Joshi, H.; Saunderson, J. R.; Beavis, A. W.

    2016-11-01

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQm and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  19. Asymmetric tandem organic solar cells

    Science.gov (United States)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells

  20. A simple method for calibration of Lucas scintillation cell counting system for measurement of 226Ra and 222Rn

    Directory of Open Access Journals (Sweden)

    N.K. Sethy

    2014-10-01

    Full Text Available Known quantity of radium from high grade ore solution was chemically separated and carefully kept inside the cavity of a Lucas Cell (LC. The 222Rn gradually builds up and attain secular equilibrium with its parent 226Ra. This gives a steady count after a suitable buildup period (>25 days. This secondary source was used to calibrate the radon counting system. The method is validated in by comparison with identical measurement with AlphaGuard Aquakit. The radon counting system was used to evaluate dissolved radon in ground water sample by gross alpha counting in LC. Radon counting system measures the collected radon after a delay of >180 min by gross alpha counting. Simultaneous measurement also carried out by AlphaGuard Aquakit in identical condition. AlphaGuard measures dissolved radon from water sample by constant aeration in a closed circuit without giving any delay. Both the methods are matching with a correlation coefficient of >0.9. This validates the calibration of Lucas scintillation cell counting system by designed encapsulated source. This study provides an alternative for calibration in absence of costly Radon source available in the market.

  1. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2014-02-01

    Full Text Available Combinations of unmanned aerial platforms and multispectral sensors are considered low-cost tools for detailed spatial and temporal studies addressing spectral signatures, opening a broad range of applications in remote sensing. Thus, a key step in this process is knowledge of multi-spectral sensor calibration parameters in order to identify the physical variables collected by the sensor. This paper discusses the radiometric calibration process by means of a vicarious method applied to a high-spatial resolution unmanned flight using low-cost artificial and natural covers as control and check surfaces, respectively.

  2. Automated Calibration System for a High-Precision Measurement of Neutrino Mixing Angle $\\theta_{13}$ with the Daya Bay Antineutrino Detectors

    CERN Document Server

    Liu, J; Carr, R; Dwyer, D A; Gu, W Q; Li, G S; Qian, X; McKeown, R D; Tsang, R H M; Wang, W; Wu, F F; Zhang, C

    2013-01-01

    We describe the automated calibration system for the antineutrino detectors in the Daya Bay Neutrino Experiment. This system consists of 24 identical units instrumented on 8 identical 20-ton liquid scintillator detectors. Each unit is a fully automated robotic system capable of deploying an LED and various radioactive sources into the detector along given vertical axes. Selected results from performance studies of the calibration system are reported.

  3. Automated calibration system for a high-precision measurement of neutrino mixing angle θ{sub 13} with the Daya Bay antineutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: jianglai.liu@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Cai, B.; Carr, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gu, W.Q.; Li, G.S. [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Qian, X. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States); McKeown, R.D. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics, College of William and Mary, Williamsburg, VA (United States); Tsang, R.H.M. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Wang, W. [Department of Physics, College of William and Mary, Williamsburg, VA (United States); Wu, F.F. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Zhang, C. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States)

    2014-06-01

    We describe the automated calibration system for the antineutrino detectors in the Daya Bay Neutrino Experiment. This system consists of 24 identical units instrumented on 8 identical 20-ton liquid scintillator detectors. Each unit is a fully automated robotic system capable of deploying an LED and various radioactive sources into the detector along given vertical axes. Selected results from performance studies of the calibration system are reported.

  4. Near-infrared calibration systems for precise radial-velocity measurements

    Science.gov (United States)

    Redman, Stephen L.; Kerber, Florian; Nave, Gillian; Mahadevan, Suvrath; Ramsey, Lawrence W.; Smoker, Jonathan; Käufl, Hans-Ulrich; Figueira, P. R. L.

    2012-09-01

    We present work done to prepare two new near-infrared calibration sources for use on high-precision astrophysical spectrographs. Uranium-neon is an atomic calibration source, commercially available as a hollow-cathode lamp, with over 10 000 known emission lines between 0.85 and 4 μm. Four gas cells — containing C2H2, H13CN, 12CO, and 13CO, respectively—are available as National Institute of Standards and Technology (nist) Standard Reference Materials (SRMs), and provide narrow absorption lines between 1.5 and 1.65 μm. These calibration sources may prove useful for wavelength-calibrating the future near-infrared high-precision radial-velocity spectrometers, including the Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph (CARMENES),1 the SpectroPolarimetre InfraROUge (SPIRou)∗, and the Habitable-Zone Planet Finder (HPF).2

  5. Non-Metric CCD Camera Calibration Algorithm in a Digital Photogrammetry System

    Institute of Scientific and Technical Information of China (English)

    YANG Hua-chao; DENG Ka-zhong; ZHANG Shu-bi; GUO Guang-li; ZHOU Ming

    2006-01-01

    Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectively, which can meet the requirements of close-range photogrammetry with high accuracy.

  6. The INES System; 2, Ripple Correction and Absolute Calibration for IUE High Resolution Spectra

    CERN Document Server

    Cassatella, A; González-Riestra, R; Ponz, J D; Barbero, J F G; Talavera, A; Wamsteker, W

    1999-01-01

    In this paper we document the results of the study which led to the ripple correction and absolute calibration algorithms applied to the high resolution spectra processed with the NEWSIPS software for the Final Archive of the IUE Project. In this analysis, based on a very large number of spectra, we find that both K and the alpha parameters (not only the former as previously believed) vary with order number. This fact, together with the finding that the central peaks of the blaze function vary also as a function of the THDA temperature (for the SWP camera) and of the date of observations (for the LWP and LWR cameras), makes the ripple correction algorithm more complex than previously considered but, at the same time, considerably more reliable. As for the high resolution absolute calibration, the method followed is similar to the one implemented in IUESIPS. The internal accuracy of the high resolution calibration is about 4%. We note that the ripple correction and absolute calibration algorithms here describe...

  7. Photogrammetric calibration of a C-arm X-ray system as a verification tool for orthopaedic navigation systems

    Science.gov (United States)

    Broers, H.; Hemken, H.; Luhmann, T.; Ritschl, P.

    For the total replacement of the knee joint, the precise reconstruction of the mechanical axis is significantly determined by the alignment of the cutting tool with respect to the rotation centre of the femur head. Operation techniques supported by navigation allow for the precise three-dimensional location of the hip centre by cinematic analysis. Recent results permit the reconstruction of the femur axis to be better than 0.7°. Therefore, conventional verification methods such as the post-operative recording of the complete leg are not suitable due to their limited system accuracy of about 2°. As the femur head cannot be accessed directly during the operation, an X-ray method has been used to verify alignment. The paper presents a method and the results achieved for the calibration of a C-arm system by introducing photogrammetric parameters. Since the method is used during operation, boundary conditions such as minimal invasive surgical intervention and sterility have been considered for practical applications of patients.

  8. Power-Budget Equations and Calibration Factors for Fish Abundance Estimation Using Scientific Echo Sounder and Sonar Systems

    Directory of Open Access Journals (Sweden)

    Per Lunde

    2016-07-01

    Full Text Available Acoustic methods used in fish abundance estimation constitute a key part of the analytic assessment that makes the basis for abundance estimation of marine resources. The methods rely on power-budget equations and calibrated systems. Different formulations of power-budget equations and calibration factors have been proposed for use in scientific echo sounder and sonar systems. There are unresolved questions and apparent inconsistencies in prior literature related to this field. A generic (instrument independent and unifying theory is presented that attempts to explain the different power-budget and calibration factor formulations proposed and used in prior literature, and how these are mutually related. Deviations and apparent inconsistencies in this literature appear to be explained and corrected. This also includes different (instrument specific formulations employed in important modern scientific echo sounder systems, and their relationship to the generic theory of abundance estimation. Prior literature is extended to provide more complete power-budget equations for fish abundance estimation and species identification, by accounting for echo integration, electrical termination, and the full range of electrical and acoustical echo sounder parameters. The expressions provide a consistent theoretical basis for improved understanding of conventional methods and instruments used today, also enabling improved sensitivity and error analyses, and correction possibilities.

  9. Self-Calibration Approach for Mixed Signal Circuits in Systems-on-Chip

    Science.gov (United States)

    Jung, In-Seok

    MOSFET scaling has served industry very well for a few decades by proving improvements in transistor performance, power, and cost. However, they require high test complexity and cost due to several issues such as limited pin count and integration of analog and digital mixed circuits. Therefore, self-calibration is an excellent and promising method to improve yield and to reduce manufacturing cost by simplifying the test complexity, because it is possible to address the process variation effects by means of self-calibration technique. Since the prior published calibration techniques were developed for a specific targeted application, it is not easy to be utilized for other applications. In order to solve the aforementioned issues, in this dissertation, several novel self-calibration design techniques in mixed-signal mode circuits are proposed for an analog to digital converter (ADC) to reduce mismatch error and improve performance. These are essential components in SOCs and the proposed self-calibration approach also compensates the process variations. The proposed novel self-calibration approach targets the successive approximation (SA) ADC. First of all, the offset error of the comparator in the SA-ADC is reduced using the proposed approach by enabling the capacitor array in the input nodes for better matching. In addition, the auxiliary capacitors for each capacitor of DAC in the SA-ADC are controlled by using synthesized digital controller to minimize the mismatch error of the DAC. Since the proposed technique is applied during foreground operation, the power overhead in SA-ADC case is minimal because the calibration circuit is deactivated during normal operation time. Another benefit of the proposed technique is that the offset voltage of the comparator is continuously adjusted for every step to decide one-bit code, because not only the inherit offset voltage of the comparator but also the mismatch of DAC are compensated simultaneously. Synthesized digital

  10. In-situ calibration of nonuniformity in infrared staring and modulated systems

    Science.gov (United States)

    Black, Wiley T.

    Infrared cameras can directly measure the apparent temperature of objects, providing thermal imaging. However, the raw output from most infrared cameras suffers from a strong, often limiting noise source called nonuniformity. Manufacturing imperfections in infrared focal planes lead to high pixel-to-pixel sensitivity to electronic bias, focal plane temperature, and other effects. The resulting imagery can only provide useful thermal imaging after a nonuniformity calibration has been performed. Traditionally, these calibrations are performed by momentarily blocking the field of view with a at temperature plate or blackbody cavity. However because the pattern is a coupling of manufactured sensitivities with operational variations, periodic recalibration is required, sometimes on the order of tens of seconds. A class of computational methods called Scene-Based Nonuniformity Correction (SBNUC) has been researched for over 20 years where the nonuniformity calibration is estimated in digital processing by analysis of the video stream in the presence of camera motion. The most sophisticated SBNUC methods can completely and robustly eliminate the high-spatial frequency component of nonuniformity with only an initial reference calibration or potentially no physical calibration. I will demonstrate a novel algorithm that advances these SBNUC techniques to support all spatial frequencies of nonuniformity correction. Long-wave infrared microgrid polarimeters are a class of camera that incorporate a microscale per-pixel wire-grid polarizer directly affixed to each pixel of the focal plane. These cameras have the capability of simultaneously measuring thermal imagery and polarization in a robust integrated package with no moving parts. I will describe the necessary adaptations of my SBNUC method to operate on this class of sensor as well as demonstrate SBNUC performance in LWIR polarimetry video collected on the UA mall.

  11. A quasi-rigorous model based on improved ICP algorithm in the application of auto-calibration of airborne LiDAR system

    Science.gov (United States)

    Li, Lelin; Jiang, San

    2015-12-01

    The purpose of the airborne LiDAR system calibration is to eliminate the influence of system error and improve the precision of the original point cloud data. In certain hypothesis of flight conditions, the directly positioning model for LiDAR can be reduced to a quasi-rigorous model, and the dependence on the original observation data for the system calibration model is reduced too. In view of the shortcoming of human interaction way to establish corresponding relationship between strips, an improved ICP method which considering the object features in point clouds is proposed to get the transform relationship between strips, and the automatic calibration procedures of LiDAR system is established in this paper. Taking with the real LiDAR data in Baotou test field, experiment results show that the proposed system calibration procedures can greatly eliminate the influence of system error.

  12. Construction and calibration of the laser alignment system for the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Adolphi, R.

    2006-11-28

    A robust and reliable optical system able to measure and control the large CMS tracker geometry with high accuracy has been developed and validated. The construction and integration of the LAS fulfilling the requirements, as well as its calibration and performance are described in this thesis. The working principle is based on the partial transparency of silicon for light wavelengths in the near infrared region. The absorbed part of the laser beam generates a signal in the corresponding silicon strip module serving to reconstruct its position. The transmitted part reaches the subsequent module layer generating an optical link between the two layers. Investigation of the light generation and distribution led to a definition of the optical components and their optimization for Laser Alignment purposes. Laser diodes have been qualified as light sources and singlemode optical fibres, terminated by special connectors, distribute the light to the CMS tracker detector. The beamsplitting device, a key component of the LAS light distribution inside the CMS tracker, has been studied in detail. The challenge of splitting one collimated beam into two back-to-back beams inside a small available volume has been solved by using the polarization principle. Special test setups were developed to determine the collinearity of the two outgoing beams with a precision better than 50 {mu}rad and it has been shown that their relative orientation remains constant under working conditions. The interface between the tracker and the LAS is given by the silicon sensors which are responsible both for particle detection and for the determination of the position of the laser spot. An anti-reflex-coating has been applied on the backside of all alignment sensors to improve their optical properties without deterioration of their tracking performance. A test setup has been developed to simultaneously study the transmission and reflection properties of the alignment sensors. The working principle of

  13. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    Science.gov (United States)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  14. A High Precision Approach to Calibrate a Structured Light Vision Sensor in a Robot-Based Three-Dimensional Measurement System

    OpenAIRE

    2016-01-01

    A robot-based three-dimensional (3D) measurement system is presented. In the presented system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement accuracy is one of the most important aspects of any 3D measurement system. To improve the measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric circles manufactured in...

  15. 压力仪表校验系统设计研究%Pressure gauge calibration system design research

    Institute of Scientific and Technical Information of China (English)

    刘玺

    2012-01-01

    首先介绍了当前行业内压力表校验系统的研究现状,并分析了当前压力仪表检定的发展方向,最后重点对压力仪表校验系统设计,从系统的需求分析出发进行了分析和研究.%This paper firstly introduces the current status of industry within pressure gauge calibration system application, through literature methodology, and analyzed the current pressure gauge verification research situation and developing direction. The research content is discussed on the basis of research of main purpose and topic research. With related system design theory of pressure gauge calibration system design, from the system of needs analysis, this paper summarized the system based on the basic function requirement. Through system design, this paper expounds the basic theory of system design should meet the basic principles.

  16. Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations

    Science.gov (United States)

    Jablonski, Joseph; Durell, Christopher; Slonecker, Terrence; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob

    2016-05-01

    Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user's task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.

  17. Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations

    Science.gov (United States)

    Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob

    2016-01-01

    Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.

  18. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  19. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  20. Measurements of b-hadron lifetimes and the calibration and performance of the LHCb tracking system

    CERN Document Server

    Dupertuis, Frédéric Guillaume

    The LHCb experiment was designed to perform high precision measurements. The LHCb detector has excellent vertexing, momentum measurement and particle identification capabilities, with a detector geometry and trigger strategy specially adapted for the study of rare decays and $CP$ violation of $b$- and $c$-quarks. For accurate measurements, the detector needs to be perfectly calibrated and its performance monitored to achieve the required performance. The LHCb TELL1 boards are responsible for the acquisition and the pre-processing of the raw data. New effects on signals emitted by the front-end chip, the Beetle, of the Inner Tracker (IT) and Tracker Turicensis (TT) due to the different header configurations are discovered. Strategies to correct for these her effects are proposed and are implemented in the firmware of the IT and TT TELL1 boards. In addition, faster algorithms are developed to perform the calibration of the TELL1 boards and software is developed to perform the full calibration and a monitoring ...

  1. QconCAT standard for calibration of ion mobility-mass spectrometry systems.

    Science.gov (United States)

    Chawner, Ross; McCullough, Bryan; Giles, Kevin; Barran, Perdita E; Gaskell, Simon J; Eyers, Claire E

    2012-11-01

    Ion mobility-mass spectrometry (IM-MS) is a useful technique for determining information about analyte ion conformation in addition to mass/charge ratio. The physical principles that govern the mobility of an ion through a gas in the presence of a uniform electric field are well understood, enabling rotationally averaged collision cross sections (Ω) to be directly calculated from measured drift times under well-defined experimental conditions. However, such "first principle" calculations are not straightforward for Traveling Wave (T-Wave) mobility separations due to the range of factors that influence ion motion through the mobility cell. If collision cross section information is required from T-Wave mobility separations, then calibration of the instruments using known standards is essential for each set of experimental conditions. To facilitate such calibration, we have designed and generated an artificial protein based on the QconCAT technology, QCAL-IM, which upon proteolysis can be used as a universal ion mobility calibration standard. This single unique standard enables empirical calculation of peptide ion collision cross sections from the drift time on a T-Wave mobility instrument.

  2. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    Science.gov (United States)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV.

  3. Use of TANDEM methodology for quality control in radiation protection; Aplicacao de metodologia TANDEM para controle de qualidade em radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Mello, O.A.; Oliveira, I.R.; Leyton, F.; Nogueira, M.S., E-mail: mnogueira@cdtn.br [Centro de Desenvolvimeto da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Borges, F.L.S., E-mail: flavialuizaborges@yahoo.com.br [Vigilancia Sanitaria de Minas Gerais, Belo Horizonte, MG (Brazil); Joana, G.S., E-mail: georgia.joana@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil)

    2014-07-01

    Recent studies have indicated the increase of the incidence of lens opacities for low radiation doses. Considering epidemiological data, the International Commission on Radiological Protection (ICRP) issued a statement that changed the absorbed dose threshold for the eye lens. The statement also recommends a reduction in the dose limits to the eye lens for occupationally exposed persons; now it is considered to be 20 mSv in a year averaged over five years. For this research two types of thermoluminescent dosimeters TL were used in the construction of the curve tandem. (LiF-100H e LiF-200). For system calibration three monitors were irradiated for each radiation beam. The monitors were irradiated with 4 mGy kerma at 1.5 m from the focal point. The Tandem curve was obtained by the ratio between the values of the energy dependence curves of each dosimeter. Data obtained for the corresponding x-ray beams to radiation reference N60 to N120 are more accurate for determining the energy - steepest part of the curve. The results are shown similar to similar studies and confirm the possibility of using the method for determining the unknown energy radiation fields. (author)

  4. Improved 3D displacement measurements method and calibration of a combined fringe projection and 2D-DIC system

    Science.gov (United States)

    Siegmann, Philip; Felipe-Sese, Luis; Diaz-Garrido, Francisco

    2017-01-01

    An improved measurement method and an automatic calibration procedure are proposed for a combined 2D Digital Image Correlation and Fringe Projection system that allows measuring in- and out-of-plane displacement maps with only one image at each deformation stage of a specimen. The proposed method increases the accuracy and range of the out-of-plane displacements by taking into account the divergences of both the projected fringes (uncollimated) and the camera (with non-zero FOV). The calibration is performed automatically by acquiring a sequence of images of a reference plane by displacing perpendicular to it the camera and fringe projector with a motorized translation stage. The acquired images are then used to obtain a fringe function for each pixel and the necessary parameters required for the correction of the in-plane displacements. Furthermore, a closed form expression is obtained that relates the out-of-plane displacements with the shifted phase at each pixel for a given experimental set-up. This expression is in good agreement with the fringe function obtained by fitting a simple 2nd order polynomial to the experimental obtained calibration data. Finally, the polynomial approach is proposed as a fringe function because it avoids the errors in the determination of the required parameters of the theoretical expression as well as some small misalignment or aberration effects.

  5. Four-position heading effect calibration algorithm for rotation inertial navigation system based on fiber optic gyro

    Science.gov (United States)

    Gao, Pengyu; Li, Kui; Wang, Lei; Zhang, Qian

    2016-07-01

    Fiber optic gyros (FOGs) are sensitive to the environment fields where they are mounted, and their drifts are easily affected when surrounding temperature field or magnetic field changes. In FOG strapdown inertial navigation system (INS), gyro drifts caused by environmental fields are stable mostly, thus they could be calibrated and compensated beforehand and would not cause obvious alignment and navigation errors. However, in rotation INS (RINS), although navigation errors caused by the constant components of FOG drifts could be well attenuated, the gyro sensing axes are changing relative to the environmental fields in the RINS, which would lead to periodically changing gyro drift components when inertial measurement unit is pointing to different headings, thus producing serious alignment and navigation errors in FOG RINS. To solve this problem, a four-position heading effect calibration algorithm was proposed, and its effectiveness and validity were verified through a dual-axis FOG RINS by turntable experiments. The experimental results show that the azimuth alignment accuracy of the FOG RINS improves from 0.2 deg to about 0.04 deg, increasing five times approximately, which illustrates that the proposed heading effect calibration algorithm could further improve the navigation performance of FOG RINS significantly.

  6. The nuclear resonance scattering calibration technique for the EuroGammaS gamma characterisation system at ELI-NP-GBS

    Science.gov (United States)

    Pellegriti, M. G.; Albergo, S.; Adriani, O.; Andreotti, M.; Berto, D.; Borgheresi, R.; Cappello, G.; Cardarelli, P.; Consoli, E.; Di Domenico, G.; Evangelisti, F.; Gambaccini, M.; Graziani, G.; Lenzi, M.; Marziani, M.; Palumbo, L.; Passaleva, G.; Paternò, G.; Serban, A.; Squerzanti, S.; Starodubtsev, O.; Tricomi, A.; Variola, A.; Veltri, M.; Zerbo, B.

    2017-03-01

    A Gamma Beam System (GBS), designed by the EuroGammaS collaboration, will be implemented for the ELI-NP facility in Magurele, Romania. The facility will deliver an intense gamma beam, obtained by collimatio of the emerging radiation from inverse Compton interaction. Gamma beam energy range will span from 0.2 up to 19.5 MeV with unprecedented performances in terms of brilliance, photon flux and energy bandwidth. For the characterisation of the gamma beam during the commissioning and normal operation, a full detection system has been designed to measure energy spectrum, beam intensity, space and time profiles. The gamma-beam characterisation system consists of four elements: a Compton spectrometer, to measure and monitor the photon energy spectrum, in particular the energy bandwidth; a sampling calorimeter, for a fast combined measurement of the beam average energy and its intensity; a nuclear resonant scattering spectrometer, for absolute beam energy calibration and inter-calibration of the other detector elements; and finally a beam profile imager to be used for alignment and diagnostics purposes. In this paper, a general overview of the ELI-NP gamma characterisation system will be given and the NRSS system will be in particular discussed.

  7. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    Science.gov (United States)

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  8. Calibration of a Plastic Classification System with the CCW Model; Calibracion de un Sistema de Clasification de Plasticos segun el Modelo CCW

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-07-01

    This document describes the calibration of a plastic Classification system with the CCW model (Classification by Quaternions built Wavelet Coefficients). The method is applied to spectra of plastics usually present in domestic wastes. Obtained results are showed. (Author) 16 refs.

  9. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

    Science.gov (United States)

    Zielcke, Johannes; Horbanski, Martin; Pöhler, Denis; Frieß, Udo; Platt, Ulrich

    2013-04-01

    Absorption Spectroscopy has been employed for several decades now to study the earth's atmosphere. While the focus has been on remote sensing for a long time, lately there has been a renewed interest in in-situ methods, as point measurements allow an easier interpretation for highly inhomogeneous distributions of gases of interest compared to the integration approach of most remote sensing methods. One comparatively new method offering both advantages of in-situ measurements as well as being contactless is open-path Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS). Broadband open-path CE-DOAS instruments have been used for ten years now, and in the meantime allow the measurement of numerous atmospheric trace gases (e.g. NO2, NO3, IO, CHOCHO, HCHO). While those instruments were bulky and not very mobile at first, recent developments resulted in relatively lightweight (< 30 kg) instruments with a relatively low power consumption allowing mobile open-path measurements at remote field locations. An important operational issue has been the path length calibration in the field, necessary for the determination of the concentration of measured gases. Until now, often calibration gases were used with different scattering properties than air or known concentrations. However this methods has several major shortcomings, being rather inconvenient and cumbersome in the field with the need for compressed gas cylinders, as well as time consuming, preventing a quick check of the state of the instrument in the field after changing measurement locations. Here we present a new wavelength-resolved method for broadband CE-DOAS path length calibration. A small, custom made ring-down system is employed with a pulsed LED as light source. The wavelength is then resolved by tilting a narrow band interference filter. The system not only allows quick, automated path length calibrations without physical interaction on the instrument, but also saves weight, space and the

  10. Source spectra, moment, and energy for recent eastern mediterranean earthquakes: calibration of international monitoring system stations

    Energy Technology Data Exchange (ETDEWEB)

    Mayeda, K M; Hofstetter, A; Rodgers, A J; Walter, W R

    2000-07-26

    In the past several years there have been several large (M{sub w} > 7.0) earthquakes in the eastern Mediterranean region (Gulf of Aqaba, Racha, Adana, etc.), many of which have had aftershock deployments by local seismological organizations. In addition to providing ground truth data (GT << 5 km) that is used in regional location calibration and validation, the waveform data can be used to aid in calibrating regional magnitudes, seismic discriminants, and velocity structure. For small regional events (m{sub b} << 4.5), a stable, accurate magnitude is essential in the development of realistic detection threshold curves, proper magnitude and distance amplitude correction processing, formation of an M{sub s}:m{sub b} discriminant, and accurate yield determination of clandestine nuclear explosions. Our approach provides a stable source spectra from which M{sub w} and m{sub b} can be obtained without regional magnitude biases. Once calibration corrections are obtained for earthquakes, the coda-derived source spectra exhibit strong depth-dependent spectral peaking when the same corrections are applied to explosions at the Nevada Test Site (Mayeda and Walter, 1996), chemical explosions in the recent ''Depth of Burial'' experiment in Kazahkstan (Myers et al., 1999), and the recent nuclear test in India. For events in the western U.S. we found that total seismic energy, E, scales as M{sub o}{sup 0.25} resulting in more radiated energy than would be expected under the assumptions of constant stress-drop scaling. Preliminary results for events in the Middle East region also show this behavior, which appears to be the result of intermediate spectra fall-off (f{sup 1.5}) for frequencies ranging between {approx}0.1 and 0.8 Hz for the larger events. We developed a Seismic Analysis Code (SAC) coda processing command that reads in an ASCII flat file that contains calibration information specific for a station and surrounding region, then outputs a coda

  11. 连轧机组换辊控制系统的研究与应用%Study and Application of Roll Change Control System in Cold Tandem Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    王亮

    2013-01-01

      介绍某1420 mm 五机架冷连轧生产线换辊控制系统的结构与控制方式。%The article describes the structure and control mode of the roll change control system for a 1420 mm five-stand cold tandem rolling mill.

  12. The MeqTrees software system and its use for third-generation calibration of radio interferometers

    Science.gov (United States)

    Noordam, J. E.; Smirnov, O. M.

    2010-12-01

    Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. Aims: The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their parameters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and exchange of ideas (and scripts). Methods: MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results: MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on

  13. Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems.

    Science.gov (United States)

    Gao, Song; Du, Weiliang; Balter, Peter; Munro, Peter; Jeung, Andrew

    2014-05-08

    The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a simplified Winston-Lutz (WL)-based system and with a Varian cubic phantom (VC)-based system. The maximum IsoCal corrections ranged from 0.7 mm to 1.5 mm for MV and 0.9 mm to 1.8 mm for kV imagers across the five linacs. The variations in the three calibrations for each linac were less than 0.2 mm. Without IsoCal correction, the WL results showed discrepancies between the treatment isocenter and the imager center of 0.9 mm to 1.6 mm (for the MV imager) and 0.5 mm to 1.1 mm (for the kV imager); with IsoCal corrections applied, the differences were reduced to 0.2 mm to 0.6 mm (MV) and 0.3 mm to 0.6 mm (kV) across the five linacs. The VC system was not as precise as the WL system, but showed similar results, with discrepancies of less than 1.0 mm when the IsoCal corrections were applied. We conclude that IsoCal is an accurate and consistent method for calibration and periodic quality assurance of MV and kV imaging systems.

  14. Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska

    Science.gov (United States)

    Richters, Lindsey K.; Pope, Kevin L.

    2011-01-01

    Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.

  15. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  16. System for calibrating the energy-dependent response of an elliptical Bragg-crystal spectrometer.

    Science.gov (United States)

    Marrs, R E; Brown, G V; Emig, J A; Heeter, R F

    2014-11-01

    A multipurpose spectrometer (MSPEC) with elliptical crystals is in routine use to obtain x-ray spectra from laser produced plasmas in the energy range 1.0-9.0 keV. Knowledge of the energy-dependent response of the spectrometer is required for an accurate comparison of the intensities of x-ray lines of different energy. The energy-dependent response of the MSPEC has now been derived from the spectrometer geometry and calibration information on the response of its components, including two different types of detectors. Measurements of the spectrometer response with a laboratory x-ray source are used to test the calculated response and provide information on crystal reflectivity and uniformity.

  17. Structural calibration of the rates of amino acid evolution in a search for Darwin in drifting biological systems.

    Science.gov (United States)

    Toft, Christina; Fares, Mario A

    2010-10-01

    In the last two decades, many reports of proteins under positive selection have brought the neutral theory into question. However, the methods used to detect selection have ignored the evolvability of amino acids within proteins, which is fundamental to distinguishing positive selection from the relaxed constraints caused by genetic drift. Disentangling these two counterbalancing forces is essential to test the neutral theory. Here, we calibrate rates of amino acid divergence by using structural information from the full set of crystallized proteins in bacteria. In agreement with previous reports, we show that rates of amino acid evolution correlate negatively with the number of per-amino acid atomic interactions. Calibration of the rates of evolution allows identifying signatures of selection in biological systems that evolve under strong genetic drift, such as endosymbiotic bacteria. Application of this method identifies different rates and dynamics of evolution for highly connected amino acids in the structure compared with sparsely connected ones. We also unearth patterns of Darwinian selection in fundamental cellular proteins in endosymbiotic bacteria including the cochaperonin GroES, ribosomal proteins, proteins involved in cell cycle control, DNA-binding proteins, and proteins involved in DNA replication and repair. This is, to our knowledge, the first attempt to distinguish adaptive evolution from relaxed constraints in biological systems under genetic drift.

  18. Challenges for the Sequential Interaction Between Optimal Design of Field Campaigns and Model Calibration for Non-Linear Systems

    Science.gov (United States)

    Geiges, A.; Nowak, W.; Rubin, Y.

    2013-12-01

    Stochastic models of sub-surface systems generally suffer from parametric and conceptual uncertainty. To reduce the model uncertainty, model parameters are calibrated using additional collected data. These data often come from costly data acquisition campaigns that need to be optimized to collect the data with the highest data utility (DU) or value of information. In model-based approaches, the DU is evaluated based on the uncertain model itself and is therefore uncertain as well. Additionally, for non-linear models, data utility depends on the yet unobserved measurement values and can only be estimated as an expected value over an assumed distribution of possible measurement values. Both factors introduce uncertainty into the optimization of field campaigns. We propose and investigate a sequential interaction scheme between campaign optimization, data collection and model calibration. The field campaign is split in individual segments. Each segment consists of optimization, segment-wise data collection, and successive model calibration or data assimilation. By doing so, (1) the expected data utility for the newly collected data is replaced by their actual one, (2) the calibration restricts both conceptual and parametric model uncertainty, and thus (3) the distribution of possible future data values for the subsequent campaign segments also changes. Hence, the model to describe the real system improves successively with each collected data segment, and so does the estimate of the yet remaining data requirements to achieve the overall investigation goals. We will show that using the sequentially improved model for the optimal design (OD) of the remaining field campaign leads to superior and more targeted designs.However, this traditional sequential OD optimizes small data segments one-by-one. In such a strategy, possible mutual dependencies with the possible data values and the optimization of data values collection in later segments are neglected. This allows a

  19. Feasibility of a tandem photocatalytic oxidation-adsorption system for removal of monoaromatic compounds at concentrations in the sub-ppm-range.

    Science.gov (United States)

    Jo, Wan-Kuen; Yang, Chang-Hee

    2009-09-01

    Unlike previous photocatalytic oxidation (PCO) studies incorporated with adsorption, this study investigates the feasibility of applying a tandem PCO-adsorption hybrid technique regarding low-level monoaromatic compound removal. The PCO efficiencies decreased as the hydraulic diameter (HD) increased. A PCO reactor of a medium HD size was selected for further experiments. Under conditions relevant to the use of the PCO system, the CO level measured during the PCO process was minimal in comparison to indoor CO levels. Trace level formations of formaldehyde and acetaldehyde were observed during the photocatalytic process, but these compounds were undetectable at the activated carbon unit outlet. The degradation efficiencies, obtained from the PCO unit, exhibited a dependence on both the inlet concentration (IC) and relative humidity (RH), whereas those from the PCO-adsorption hybrid system did not. Under specific conditions, the PCO unit presented a high degradation efficiency of close to, or exceeding 90%, in regards to ethyl benzene, o-xylene, and m,p-xylene. However, the benzene air concentrations, after being treated by the PCO unit, substantially exceeded the USEPA inhalation reference concentration guideline of 30microgm(-3) (corresponding to 0.01ppm). In contrast, the PCO-adsorption hybrid system presented a high removal efficiency of close to 100% regarding all compounds, regardless of the IC or RH range. Consequently, it is suggested that the PCO-adsorption hybrid system has a synergistic advantage of photocatalysis and adsorption in regards to the BTEX elimination process.

  20. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions.

    Science.gov (United States)

    Lockerbie, N A; Tokmakov, K V

    2014-10-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  1. Internet-based calibration of a multifunction calibrator

    Energy Technology Data Exchange (ETDEWEB)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  2. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    Science.gov (United States)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation

  3. Calibration and start-up of the system of radiotherapy extract image-guided; Calibracion y puesta en marcha del sistema de radioterpia guiada por la imagen exactrac

    Energy Technology Data Exchange (ETDEWEB)

    Clemente Gutierrez, I.; Perez Vara, C.; Prieto Villacorta, M.

    2013-07-01

    The accuracy in the administration of external radiotherapy treatments may be increased through the use of guidance systems by image. Constitute a particular case x-rays teams independent of the treatment unit. Among them is the ExacTrac (Brainlab) system. The objective of this work is to briefly introduce the procedure followed in the calibration and implementation of such a system. (Author)

  4. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    Science.gov (United States)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  5. Calibration of the MEarth Photometric System: Optical Magnitudes and Photometric Metallicity Estimates for 1802 Nearby M-dwarfs

    CERN Document Server

    Dittmann, Jason A; Charbonneau, David; Newton, Elisabeth R

    2015-01-01

    The MEarth Project is a photometric survey systematically searching the smallest stars nearest to the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the $MEarth$ system, identify photometric nights, and obtain an optical magnitude with $1.5\\%$ precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color-magnitude-metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitude...

  6. A flexible calibration method using the planar target with a square pattern for line structured light vision system.

    Science.gov (United States)

    Sun, Qiucheng; Hou, Yueqian; Tan, Qingchang; Li, Guannan

    2014-01-01

    A flexible calibration approach for line structured light vision system is proposed in this paper. Firstly a camera model is established by transforming the points from the 2D image plane to the world coordinate frame, and the intrinsic parameters of camera can be obtained accurately. Then a novel calibration method for structured light projector is presented by moving a planar target with a square pattern randomly, and the method mainly involves three steps: first, a simple linear model is proposed, by which the plane equation of the target at any orientations can be determined based on the square's geometry information; second, the pixel coordinates of the light stripe center on the target images are extracted as the control points; finally, the points are projected into the camera coordinate frame with the help of the intrinsic parameters and the plane equations of the target, and the structured light plane can be determined by fitting these three-dimensional points. The experimental data show that the method has good repeatability and accuracy.

  7. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    Science.gov (United States)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  8. Competitiveness Level of Photovoltaic Solar Systems in Ouagadougou (Burkina Faso: Study Based on the Domestic Electric Meters Calibration

    Directory of Open Access Journals (Sweden)

    Konan Lambert Amani

    2016-01-01

    Full Text Available The mean cost price of electricity in Burkina Faso at the end of the last quarter of 2012 was 158 FCFA/kWh for a country where more than 46% of the population lives below the national poverty threshold. To look for solution to that problem, the resort to photovoltaic solar energy is justified for that country. The purpose of this study is to promote the integration of both technical and economical surveys in solar energy preliminary projects in Ouagadougou. To reach that, investigations were carried out in some households and attention was paid from the calibration of the domestic electric meters. Energy demands collected within each household allow us to design a corresponding solar kit through optimization rules. An estimate was edited and financial viability study for each household was also carried out thereafter. In this study, only households using the national electricity network calibration meter on their disadvantage favorably answered to all financial indicators and appear as the only one that could profit from such project. This work is helpful to note that photovoltaic solar energy still stays at a primitive level of competitiveness compared to conventional energy resources for small systems in Ouagadougou.

  9. The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and its Application to Mapping the Ultraluminous Galaxy Arp 193

    CERN Document Server

    Zauderer, B Ashley; Vogel, Stuart N; Carpenter, John M; Peréz, Laura M; Lamb, James W; Woody, David P; Bock, Douglas C -J; Carlstrom, John E; Culverhouse, Thomas L; Curley, Roger; Leitch, Erik M; Plambeck, Richard L; Pound, Marc W; Marrone, Daniel P; Muchovej, Stephen J; Mundy, Lee G; Teng, Stacy H; Teuben, Peter J; Volgenau, Nikolaus H; Wright, Melvyn C H; Wu, Dalton

    2014-01-01

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009-2010 winter observing season where we utilize CARMA's eight 3.5-m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1-m and 10.4-m antennas on baselines ranging from a few hundred meters to ~2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator locate...

  10. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  11. Combining the least correlation design, wavelet packet transform and correlation coefficient test to reduce the size of calibration set for NIR quantitative analysis in multi-component systems.

    Science.gov (United States)

    Cai, Chen-Bo; Xu, Lu; Han, Qing-Juan; Wu, Hai-Long; Nie, Jin-Fang; Fu, Hai-Yan; Yu, Ru-Qin

    2010-05-15

    The paper focuses on solving a common and important problem of NIR quantitative analysis in multi-component systems: how to significantly reduce the size of the calibration set while not impairing the predictive precision. To cope with the problem orthogonal discrete wavelet packet transform (WPT), the least correlation design and correlation coefficient test (r-test) have been combined together. As three examples, a two-component carbon tetrachloride system with 21 calibration samples, a two-component aqueous system with 21 calibration samples, and a two-component aqueous system with 41 calibration samples have been treated with the proposed strategy, respectively. In comparison with some previous methods based on much more calibration samples, the results out of the strategy showed that the predictive ability was not obviously decreased for the first system while being clearly strengthened for the second one, and the predictive precision out of the third one was even satisfactory enough for most cases of quantitative analysis. In addition, all important factors and parameters related to our strategy are discussed in detail.

  12. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  13. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    Science.gov (United States)

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  14. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    Science.gov (United States)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  15. Pollution load modelling in sewer systems: an approach of combining long term online sensor data with multi-objective auto-calibration schemes.

    Science.gov (United States)

    Gamerith, V; Muschalla, D; Könemann, P; Gruber, G

    2009-01-01

    Pollutant load modelling for sewer systems is state-of-the-art, especially for the estimation of discharged pollutant loads and development of sewer management strategies. However, conventionally obtained calibration data sets are often not exhaustive and have significant drawbacks. In the Graz West catchment area (Graz, Austria), continuous high-resolution long-term online measurements for discharge and pollutant concentration have been carried out since 2002.In this paper, the application of single- and multi-objective auto-calibration schemes based on evolution strategies for a deterministic hydrological pollutant load model will be discussed. Three approaches for pollutant load modelling are examined and compared: using a constant storm weather concentration and two surface accumulation-wash-off approaches with basic respectively extended wash-off equations. It is shown that the applied auto-calibration method leads to very satisfying results for both the calibration and the validation data set, and also for the dry and the storm weather runoff. Results from multi-objective calibration show better robustness in validation events than single-objective calibration. The build-up wash-off approach using the basic wash-off equation gives the best correlations between measured data and simulation results.

  16. 2.7-4.0 GHz PLL with dual-mode auto frequency calibration for navigation system on chip

    Institute of Scientific and Technical Information of China (English)

    陈志坚; 蔡敏; 贺小勇; 徐肯

    2016-01-01

    A 2.7−4.0 GHz dual-mode auto frequency calibration (AFC) fast locking PLL was designed for navigation system on chip (SoC). The SoC was composed of one radio frequency (RF) receiver, one baseband and several system control parts. In the proposed AFC block, both analog and digital modes were designed to complete the AFC process. In analog mode, the analog part sampled and detected the charge pump output tuning voltage, which would give the indicator to digital part to adjust the voltage control oscillator (VCO) capacitor bank. In digital mode, the digital part counted the phase lock loop (PLL) divided clock to judge whether VCO frequency was fast or slow. The analog and digital modes completed the auto frequency calibration function independently by internal switch. By designing a special switching algorithm, the switch of the digital and analog mode could be realized anytime during the lock and unlock detecting process for faster and more stable locking. This chip is fabricated in 0.13μm RF complementary metal oxide semiconductor (CMOS) process, and the VCO supports the frequency range from 2.7 to 4.0 GHz. Tested 3.96 GHz frequency phase noise is−90 dBc/Hz@100 kHz frequency offset and−120 dBc/Hz@1 MHz frequency offset. By using the analog mode in lock detection and digital mode in unlock detection, tested AFC time is less than 9μs and the total PLL lock time is less than 19μs. The SoC acquisition and tracking sensitivity are about−142 dBm and−155 dBm, respectively. The area of the proposed PLL is 0.35 mm2 and the total SoC area is about 9.6 mm2.

  17. M/G/∞ tandem queues

    NARCIS (Netherlands)

    Boxma, O.J.

    1984-01-01

    We consider a series of queues with Poisson input. Each queueing system contains an infinite number of service channels. The service times in each channel have a general distribution. For this M/G∞ tandem model we obtain the joint time-dependent distribution of queue length and residual service tim

  18. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    Science.gov (United States)

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  19. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  20. ACA-Pro: calibration protocol for quantitative diffuse reflectance spectroscopy. Validation on contact and noncontact probe- and CCD-based systems

    Science.gov (United States)

    Sorgato, Veronica; Berger, Michel; Emain, Charlotte; Vever-Bizet, Christine; Dinten, Jean-Marc; Bourg-Heckly, Geneviève; Planat-Chrétien, Anne

    2016-06-01

    We have developed an adaptive calibration algorithm and protocol (ACA-Pro) that corrects from the instrumental response of various spatially resolved diffuse reflectance spectroscopy (DRSsr) systems to enable the quantification of absorption and scattering properties based on a Monte Carlo-based look-up-table approach. The protocol involves the use of a calibration reference base built with measurements of a range of different diffusive intralipid phantoms. Moreover, an advanced strategy was established to take into account the experimental variations with an additional measurement of a common solid material, allowing the use of a single calibration reference base for all experiments. The ACA-Pro is validated in contact and noncontact probe-based DRSsr systems. Furthermore, the first results of a setup replacing the probe with a CCD detector are shown to confirm the robustness of the approach.

  1. A proficiency test system to improve performance of milk analysis methods and produce reference values for component calibration samples for infrared milk analysis.

    Science.gov (United States)

    Wojciechowski, Karen L; Melilli, Caterina; Barbano, David M

    2016-08-01

    Our goal was to determine the feasibility of combining proficiency testing, analytical method quality-assurance system, and production of reference samples for calibration of infrared milk analyzers to achieve a more efficient use of resources and reduce costs while maximizing analytical accuracy within and among milk payment-testing laboratories. To achieve this, we developed and demonstrated a multilaboratory combined proficiency testing and analytical method quality-assurance system as an approach to evaluate and improve the analytical performance of methods. A set of modified milks was developed and optimized to serve multiple purposes (i.e., proficiency testing, quality-assurance and method improvement, and to provide reference materials for calibration of secondary testing methods). Over a period of years, the approach has enabled the group of laboratories to document improved analytical performance (i.e., reduced within- and between-laboratory variation) of chemical reference methods used as the primary reference for calibration of high-speed electronic milk-testing equipment. An annual meeting of the laboratory technicians allows for review of results and discussion of each method and provides a forum for communication of experience and techniques that are of value to new analysts in the group. The monthly proficiency testing sample exchanges have the added benefit of producing all-laboratory mean reference values for a set of 14 milks that can be used for calibration, evaluation, and troubleshooting of calibration adjustment issues on infrared milk analyzers.

  2. Estimation and calibration of observation impact signals using the Lanczos method in NOAA/NCEP data assimilation system

    Directory of Open Access Journals (Sweden)

    M. Wei

    2012-09-01

    Full Text Available Despite the tremendous progress that has been made in data assimilation (DA methodology, observing systems that reduce observation errors, and model improvements that reduce background errors, the analyses produced by the best available DA systems are still different from the truth. Analysis error and error covariance are important since they describe the accuracy of the analyses, and are directly related to the future forecast errors, i.e., the forecast quality. In addition, analysis error covariance is critically important in building an efficient ensemble forecast system (EFS.

    Estimating analysis error covariance in an ensemble-based Kalman filter DA is straightforward, but it is challenging in variational DA systems, which have been in operation at most NWP (Numerical Weather Prediction centers. In this study, we use the Lanczos method in the NCEP (the National Centers for Environmental Prediction Gridpoint Statistical Interpolation (GSI DA system to look into other important aspects and properties of this method that were not exploited before. We apply this method to estimate the observation impact signals (OIS, which are directly related to the analysis error variances. It is found that the smallest eigenvalue of the transformed Hessian matrix converges to one as the number of minimization iterations increases. When more observations are assimilated, the convergence becomes slower and more eigenvectors are needed to retrieve the observation impacts. It is also found that the OIS over data-rich regions can be represented by the eigenvectors with dominant eigenvalues.

    Since only a limited number of eigenvectors can be computed due to computational expense, the OIS is severely underestimated, and the analysis error variance is consequently overestimated. It is found that the mean OIS values for temperature and wind components at typical model levels are increased by about 1.5 times when the number of eigenvectors is doubled

  3. Calibration of the Hall Measurement System for a 6-DOF Precision Stage Using Self-Adaptive Hybrid TLBO.

    Science.gov (United States)

    Chen, Zhenyu; Liu, Yang; Fu, Zhenxian; Song, Shenmin; Tan, Jiubin

    2016-06-14

    To determine the planar motion of a 6-DOF precision stage, a measurement system based on three Hall sensors is adopted to obtain the X, Y, Rz motions of the stage. The machining and assembly errors in the actual mechanical system, which are difficult to measure directly, cause the parameters in the model of the Hall measurement system to deviate from their designed values. Additionally, the vertical movement of the stage will render the measurement model nonlinear. To guarantee the accuracy of the measurement, the parameters in the measurement model should be estimated and the nonlinearity compensated. In this paper, a novel approach based on self-adaptive hybrid TLBO (teaching-learning-based-optimization) is proposed to estimate the parameters in the Hall measurement model. The influences of zero deviations and vertical movements on the measurement accuracy are analyzed and compensated. The effectiveness of the proposed method is validated by experimental results obtained on a 6-DOF precision stage. Thanks to parameter estimation and calibration, the measurement error of the Hall sensor array is reduced to 6 micrometers.

  4. Calibration of the Hall Measurement System for a 6-DOF Precision Stage Using Self-Adaptive Hybrid TLBO

    Directory of Open Access Journals (Sweden)

    Zhenyu Chen

    2016-06-01

    Full Text Available To determine the planar motion of a 6-DOF precision stage, a measurement system based on three Hall sensors is adopted to obtain the X, Y, Rz motions of the stage. The machining and assembly errors in the actual mechanical system, which are difficult to measure directly, cause the parameters in the model of the Hall measurement system to deviate from their designed values. Additionally, the vertical movement of the stage will render the measurement model nonlinear. To guarantee the accuracy of the measurement, the parameters in the measurement model should be estimated and the nonlinearity compensated. In this paper, a novel approach based on self-adaptive hybrid TLBO (teaching-learning-based-optimization is proposed to estimate the parameters in the Hall measurement model. The influences of zero deviations and vertical movements on the measurement accuracy are analyzed and compensated. The effectiveness of the proposed method is validated by experimental results obtained on a 6-DOF precision stage. Thanks to parameter estimation and calibration, the measurement error of the Hall sensor array is reduced to 6 micrometers.

  5. A versatile and reproducible automatic injection system for liquid standard introduction: application to in-situ calibration

    Directory of Open Access Journals (Sweden)

    G. Isaacman

    2011-05-01

    Full Text Available The quantitation of trace organic compounds in ambient organic aerosol is difficult due to the chemical complexity of these mixtures, but is needed to provide insight into their sources and formation processes. Compound-level characterization of organic aerosols is typically performed through sample collection followed by gas or liquid chromatography. With these methods, introduction of liquid standards has long been used as an effective means of quantifying trace compounds, but automating this technique for use with in-situ instrumentation has not previously been achieved. Here we develop an automatic injection system (AutoInject for the introduction of liquids into a custom collection and analysis cell for improved quantitation in chromatographic measurements. The system consists of chilled reservoirs containing liquid standards from which a sample loop is loaded and then injected into the cell. The AutoInject is shown to have reproducibility over 106 injections with a relative standard deviation of 1.5 %, and have negligible injection-to-injection carryover. A 6-port selector allows injection of different liquid standards separately or simultaneously. Additionally, automatic injection of multiple sample loops is shown to generate a linear multi-point calibration curve. Tests conducted in this work focus on use with the Thermal desorption Aerosol Gas chromatograph (TAG, but the flexibility of the system allows it to be used for a variety of applications.

  6. In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems.

    Science.gov (United States)

    Gabrielson, Thomas B

    2011-09-01

    A worldwide network of more than 40 infrasound monitoring stations has been established as part of the effort to ensure compliance with the Comprehensive Nuclear Test Ban Treaty. Each station has four to eight individual infrasound elements in a kilometer-scale array for detection and bearing determination of acoustic events. The frequency range of interest covers a three-decade range-roughly from 0.01 to 10 Hz. A typical infrasound array element consists of a receiving transducer connected to a multiple-inlet pipe network to average spatially over the short-wavelength turbulence-associated "wind noise." Although the frequency response of the transducer itself may be known, the wind-noise reduction system modifies that response. In order to understand the system's impact on detection and identification of acoustical events, the overall frequency response must be determined. This paper describes a technique for measuring the absolute magnitude and phase of the frequency response of an infrasound element including the wind-noise-reduction piping by comparison calibration using ambient noise and a reference-microphone system. Measured coherence between the reference and the infrasound element and the consistency between the magnitude and the phase provide quality checks on the process.

  7. Iterative Magnetometer Calibration

    Science.gov (United States)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  8. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  9. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Newborn screening test system for amino acids... carnitine, and acyl-carnitine metabolism. (b) Classification. Class II (special controls). The...

  10. Model calibration and parameter estimation for environmental and water resource systems

    CERN Document Server

    Sun, Ne-Zheng

    2015-01-01

    This three-part book provides a comprehensive and systematic introduction to the development of useful models for complex systems. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get famili...

  11. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  12. The Advanced LIGO photon calibrators

    Science.gov (United States)

    Karki, S.; Tuyenbayev, D.; Kandhasamy, S.; Abbott, B. P.; Abbott, T. D.; Anders, E. H.; Berliner, J.; Betzwieser, J.; Cahillane, C.; Canete, L.; Conley, C.; Daveloza, H. P.; De Lillo, N.; Gleason, J. R.; Goetz, E.; Izumi, K.; Kissel, J. S.; Mendell, G.; Quetschke, V.; Rodruck, M.; Sachdev, S.; Sadecki, T.; Schwinberg, P. B.; Sottile, A.; Wade, M.; Weinstein, A. J.; West, M.; Savage, R. L.

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 1 0-18m /√{Hz } with accuracy and precision of better than 1%.

  13. 42 CFR 493.1255 - Standard: Calibration and calibration verification procedures.

    Science.gov (United States)

    2010-10-01

    ..., if possible, traceable to a reference method or reference material of known value; and (ii) Including... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Calibration and calibration verification... for Nonwaived Testing Analytic Systems § 493.1255 Standard: Calibration and calibration...

  14. Calibration of indium response functions in an Au-In-BSE system up to 800 MeV.

    Science.gov (United States)

    Wang, Zhonglu; Howell, Rebecca M; Burgett, Eric A; Kry, Stephen F; Hertel, Nolan E; Salehpour, Mohammad

    2010-06-01

    Calibration of the response functions of a gold (Au)-indium (In) dual foil Bonner sphere extended (BSE) system was described. The response of the In and Au foil of the system was calculated using MCNPX code with different activation cross-sectional libraries: (ACTL and ENDF VI for gold and ACTL and 532DOS2 for In). To verify and correct the calculated response functions the Bonner sphere set (BSS) was irradiated using (252)Cf and (241)AmBe sources of known neutron strengths for neutrons ranging from thermal to 20 MeV, and was irradiated at the 800-MeV neutron beam of the Los Alamos Neutron Science Center. The neutron spectrum of the 800 MeV beam was determined using time-of-flight (TOF) technique. We observed that the uncertainty of activation cross section in the resonance region can result in great uncertainty in the MCNPX-calculated response functions of activation foil-based BSS. The MCNPX-calculated response functions must be corrected using neutron sources of known spectrum and strength.

  15. Construction and Calibration of the Laser Alignment System for the CMS Tracker

    CERN Document Server

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 m and a length of 5.4 m representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 m2 to detect charged particles from proton collisions. They are placed on a rigid carbon fibre structure, providing stability within the working conditions of a 4 T solenoid magnetic field at −10oC. Knowledge of the position of the silicon detectors at the level of 100 μm is needed for an efficient pattern recognition of charged particle tracks. Metrology methods are used to survey tracker subdetectors and the integrated Laser Alignment System (LAS) provides absolute positioning of support structure elements to better than 100 μm. Rela...

  16. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  17. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    Science.gov (United States)

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  18. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  19. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com [Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada)

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An

  20. Absorbed dose determination in photon fields using the tandem method

    CERN Document Server

    Marques-Pachas, J F

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF sub 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with sup 9 sup 0 Sr- sup 9 sup 0 Y, calibrated with the energy of sup 6 sup 0 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than ...

  1. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall

    Science.gov (United States)

    Yucel, I.; Onen, A.; Yilmaz, K. K.; Gochis, D. J.

    2015-04-01

    A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall-runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall-runoff events, the calibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the calibrated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully reproducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simulations where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were reduced by

  2. 头戴式视线跟踪系统的一点标定方法%ONE-POINT CALIBRATION METHOD FOR HEAD-MOUNTED EYE TRACKING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    侯树卫; 李斌; 夏小宝

    2014-01-01

    标定方法是视线跟踪技术中的关键环节,直接影响跟踪精度和用户体验。目前头戴式跟踪系统所使用标定方法,需要多个标定点进行标定。为更快、更方便地进行标定,提出一种方法,只需一个标定点,便可提取足够的标定信息完成标定过程。该方法可适用于目前的多种映射方法,如DLT方法、多项式方法、神经网络方法等,标定时间仅需10 s,精度可达1°,与多点标定相比,效率显著提高,而精度无明显差异。此外,使用一种新的神经网络模型:ELM(极端学习机)实现了神经网络标定方法,ELM的快速学习性能,显著缩短了神经网络训练时间。%The calibration method affects the tracking accuracy and user experience directly,so it is a key link in gaze tracking technolo-gy.Current calibration method used by the head-mounted tracking system requires multiple calibration points to accomplish this process.Inorder to calibrate faster and more convenient,we present a method which only requires one calibration point for extracting sufficient calibrationinformation to complete the calibration process.This method can be applied to a variety of mapping methods used at present,such as the DLTmethod,the polynomial method,and the neural network method,etc.The calibration time takes only 10 s,and the precision reaches 1°.Compared with multi-point calibration,it significantly improves the efficiency with no noticeable difference in precision.In addition,we usea new neural network model,the ELM (extreme learning machine),to realise the neural network calibration.ELM’s fast learningperformance remarkably shortens the training time of the neural network.

  3. Optimization, Synchronization, Calibration and Diagnostic of the RPC PAC Muon Trigger System for the CMS detector

    CERN Document Server

    Bunkowski, Karol

    2009-01-01

    The Compact Muon Solenoid is one of the four experiments that will analyse the results of the collisions of the protons accelerated by the Large Hadron Collider (LHC). The collisions of proton bunches occur in the middle of the CMS detector every 25 ns, i.e. with a frequency of 40 MHz. Such a high collision frequency is needed because the probability of interesting processes, which we hope to discover at the LHC (such as production of Higgs bosons or supersymmetric particles) is very small. The objects that are the results of the proton-proton collisions are detected and measured by the CMS detector. Out of each bunch crossing the CMS produces about 1 MB of data; 40 millions of bunch collisions per second give the data stream of 40 terabytes (1013) per second. Such a stream of data is practically not possible to record on mass storage, therefore the first stage of the analysis of the detector data is performed in real time by the dedicated trigger system. Its task is to select potentially interesting events (...

  4. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  5. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2016-01-01

    In a robust statistical way, we quantify the uncertainty that affects the calibration of the overshooting efficiency parameter $\\beta$ that is owing to the uncertainty on the observational data in double-lined eclipsing binary systems. We also quantify the bias that is caused by the lack of constraints on the initial helium content and on the efficiencies of the superadiabatic convection and microscopic diffusion. We adopted a modified grid-based SCEPtER pipeline using as observational constraints the effective temperatures, [Fe/H], masses, and radii of the two stars. In a reference scenario of mild overshooting $\\beta = 0.2$ for the synthetic data, we found both large statistical uncertainties and biases on the estimated $\\beta$. For the first 80% of the MS evolution, $\\beta$ is biased and practically unconstrained in the whole explored range [0.0; 0.4]. In the last 5% of the MS the bias vanishes and the $1 \\sigma$ error is about 0.05. For synthetic data computed with $\\beta = 0.0$, the estimated $\\beta$ is ...

  6. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  7. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-02-20

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation.

  8. The LED Beacon prototype system for the on-shore time calibration of the KM3NeT-IT Towers

    Science.gov (United States)

    De Bonis, Giulia; Ameli, Fabrizio; Nicolau, Carlo A.; Simeone, Francesco

    2016-04-01

    The first implementation of the KM3NeT-IT neutrino telescope consists in the installation of 24 Strings and 8 Towers. Focusing on the Towers, the idea behind this work is to exploit the LED sources mounted in the OMs to develop a complementary system, on shore and before the deployment, for the determination of time delays, aiming at the characterizations of the time response of the different elements of the detector. During the assembling of the first tower, a set of measurements has been carried out; the test set-up and the measurement procedure are described, together with preliminary results of the calibration system. Lesson learnt is quite encouraging: uncertainties of the order of 400 ps are reached with very few cautions taken during the short calibration session, and with large room for improvement, making this system feasible and effective for the KM3NeT-IT experiment.

  9. Calibrating E-values for MS2 database search methods

    Directory of Open Access Journals (Sweden)

    Shen Rong-Fong

    2007-11-01

    Full Text Available Abstract Background The key to mass-spectrometry-based proteomics is peptide identification, which relies on software analysis of tandem mass spectra. Although each search engine has its strength, combining the strengths of various search engines is not yet realizable largely due to the lack of a unified statistical framework that is applicable to any method. Results We have developed a universal scheme for statistical calibration of peptide identifications. The protocol can be used for both de novo approaches as well as database search methods. We demonstrate the protocol using only the database search methods. Among seven methods -SEQUEST (v27 rev12, ProbID (v1.0, InsPecT (v20060505, Mascot (v2.1, X!Tandem (v1.0, OMSSA (v2.0 and RAId_DbS – calibrated, except for X!Tandem and RAId_DbS most methods require a rescaling according to the database size searched. We demonstrate that our calibration protocol indeed produces unified statistics both in terms of average number of false positives and in terms of the probability for a peptide hit to be a true positive. Although both the protocols for calibration and the statistics thus calibrated are universal, the calibration formulas obtained from one laboratory with data collected using either centroid or profile format may not be directly usable by the other laboratories. Thus each laboratory is encouraged to calibrate the search methods it intends to use. We also address the importance of using spectrum-specific statistics and possible improvement on the current calibration protocol. The spectra used for statistical (E-value calibration are freely available upon request. Open peer review Reviewed by Dongxiao Zhu (nominated by Arcady Mushegian, Alexey Nesvizhskii (nominated by King Jordan and Vineet Bafna. For the full reviews, please go to the Reviewers' comments section.

  10. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  11. Flexible Calibration of a Portable Structured Light System through Surface Plane%基于平面的便携式结构光系统柔性标定方法

    Institute of Scientific and Technical Information of China (English)

    高伟; 王亮; 胡占义

    2008-01-01

    For a portable structured light system, it must be easy to use and flexible. So the inconvenient and expensive equipment for calibration such as two or three orthogonal planes or extra fixed equipment should not be considered. For the purpose of fast 3D acquisition, the projection matrices of a portable structured light system should be estimated. This paper proposes a flexible calibration method to meet the requirements of the portable structured light system through a surface plane. A calibration board is attached to the surface plane, and a reference pattern is also projected by an LCD projector onto the surface plane. The camerao bserves the surface plane at a few different positions. Then, the world-to-image point pairs for the camera and projector are obtained based on the cross ratio and epipolar geometry, and the system is thus calibrated. The experiments conducted for the proposed calibration method demonstrate its accuracy and robustness.

  12. 基于标准球的显微图像测量系统标定方法%Micro-Image Measuring System Calibration Based on Standard Ball

    Institute of Scientific and Technical Information of China (English)

    聂凯; 刘文耀; 王晋疆

    2013-01-01

    A camera calibration method using standard ball is proposed for micro-image measuring system that has small field of view and small depth of field. The method simplified the computational modeling and reduced calibration parameters. The scale factor can be calculated by means of the ratio of horizontal diameter to vertical diameter of the image of standard ball. According to the point set of silhouettes of standard ball, the distortion coefficient and the position of principal point of imaging system can be calculated by optimization method. The magnification of micro imaging system can be figured out based on the actual diameter of standard ball. Using the feature that the contours of standard ball placed in the common field of view of multiple cameras are always visible from any position,multiple cameras in micro imaging system can be calibrated simultaneously, so the process of calibration will be simplified. The experimental results show that calibration precision is high and the limit error, 3a, of the system calibrated by this method is 2.41 μm.%提出一种利用标准球对显微图像测量系统进行标定的方法.该方法利用显微系统小视场小景深的成像特点简化计算模型,减少标定参数.通过标准球图像在水平和垂直方向上的直径比计算比例因子;利用标准球边缘图像的边缘点集,运用优化的方法来计算成像系统的畸变系数和主点位置.系统的放大倍数由标准球的实际直径来标定得出.利用标准球在多摄像机公共视场内其轮廓在任何位置均可见这一特性,可同时对显微图像测量系统中的多个摄像机进行标定,简化标定过程.实验结果表明,该方法标定精度较高,标定后的测量系统的极限误差3σ为2.41μm.

  13. Improving calibration of two key parameters in Hydrologic Engineering Center hydrologic modelling system, and analysing the influence of initial loss on flood peak flows.

    Science.gov (United States)

    Lin, Musheng; Chen, Xingwei; Chen, Ying; Yao, Huaxia

    2013-01-01

    Parameter calibration is a key and difficult issue for a hydrological model. Taking the Jinjiang Xixi watershed of south-east China as the study area, we proposed methods to improve the calibration of two very sensitive parameters, Muskingum K and initial loss, in the Hydrologic Engineering Center hydrologic modelling system (HEC-HMS) model. Twenty-three rainstorm flood events occurring from 1972 to 1977 were used to calibrate the model using a trial-and-error approach, and a relationship between initial loss and initial discharge for these flood events was established; seven rainstorm events occurring from 1978 to 1979 were used to validate the two parameters. The influence of initial loss change on different return-period floods was evaluated. A fixed Muskingum K value, which was calibrated by assuming a flow wave velocity at 3 m/s, could be used to simulate a flood hydrograph, and the empirical power-function relationship between initial loss and initial discharge made the model more applicable for flood forecasting. The influence of initial loss on peak floods was significant but not identical for different flood levels, and the change rate of peak floods caused by the same initial loss change was more remarkable when the return period increased.

  14. An Implementation of Document Image Reconstruction System on a Smart Device Using a 1D Histogram Calibration Algorithm

    Directory of Open Access Journals (Sweden)

    Lifeng Zhang

    2014-01-01

    Full Text Available In recent years, the smart devices equipped with imaging functions are widely spreading for consumer application. It is very convenient for people to record information using these devices. For example, people can photo one page of a book in a library or they can capture an interesting piece of news on the bulletin board when walking on the street. But sometimes, one shot full area image cannot give a sufficient resolution for OCR soft or for human visual recognition. Therefore, people would prefer to take several partial character images of a readable size and then stitch them together in an efficient way. In this study, we propose a print document acquisition method using a device with a video camera. A one-dimensional histogram based self-calibration algorithm is developed for calibration. Because the calculation cost is low, it can be installed on a smartphone. The simulation result shows that the calibration and stitching are well performed.

  15. Calibration of sound calibrators: an overview

    Science.gov (United States)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  16. 室内移动机器人RFID标定系统开发%Development of Indoor Mobile-robot Calibration System Based on Active RFID

    Institute of Scientific and Technical Information of China (English)

    王殿君

    2013-01-01

    为利用有源RFID信号对室内移动机器人定位,开发了基于有源RFID信号强度的参数标定系统.在阐述RFID的组成及工作原理的基础上,分析信号强度和几何距离的映射关系,确定了RFID参数标定方法.采用有源RFID HR-6020C读写器和WS-HT06电子标签构建RFID标定系统,进行有源RFID的RSSI值采集,计算出机器人定位环境下标定系统参数P(d0)和n,为开发基于RFID信号的室内移动机器人定位系统奠定了基础.%A parameter calibration system based on active RFID ( Radio Frequency Identification) signal strength was developed for indoor mobile-robot localization. On the basis of introducing composition and working principle of RFID system, a parameter calibration method was proposed after analyzing the mapping of signal strength and geometry distance. The parameter calibration system was established with HR-6020C reader and WS-HT06 tags. The system can be used to calculate calibration parameters P(d0) and n by collecting the active tag's signal strength under the mobile-robot environment. It provides foundation for the development of indoor mobile-robot localization system based on RFID signal strength.

  17. A Simple Accelerometer Calibrator

    Science.gov (United States)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  18. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  19. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    Science.gov (United States)

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  20. 航空发动机空气系统验算标定%Calibration of Calculation for Aero-Engine Air System

    Institute of Scientific and Technical Information of China (English)

    呼艳丽; 徐连强; 赵维维

    2014-01-01

    利用流量特性试验得到的相关流路元件的流阻计算模型,和旋转状态下阶梯齿风阻温升计算方法,通过调节封严篦齿间隙等参数,对航空发动机空气系统的压力、温度进行验算标定,并根据验算结果分析发现后续试验中存在和需要注意的问题。验算标定结果表明:通过对发动机试验工况的验算标定,可发现试验中存在的问题,较准确地模拟出后续试验中的问题和试验风险,确保发动机的工作安全,并为空气系统的进一步改进和优化提供依据。%A calibration method for aero-engine air system was presented, with the air system throttle ele-ments flow loss coefficient experiment data and the rotating step labyrinth seal windage temperature rise cal-culation method. The pressure and temperature of air system were calibrated by adjusting the labyrinth seal clearance. Some possible and noteworthy problems in the following tests were found out according to the cal-ibrated results. The results show that through the calibration of experimental conditions, the problems could be revealed and the risk of the following tests can be simulated perfectly to ensure the safety of engine work-ing which could be referential for the further improvements of engine's air system.

  1. Design of Speed Calibration Online System Based on GPS%基于GPS的在线车速检测校准系统设计

    Institute of Scientific and Technical Information of China (English)

    张宝峰; 胡波; 朱均超; 李翠; 杨毅

    2012-01-01

    为解决现有车速检测校准系统由于安装位置差异所产生测量误差,检测装置数量多,拆装调试不便的问题,在了解了在线车速检测的基础上,分析基于多普勒频移算法的GPS测速特点,提出基于GPS的在线车速检测校准,并设计车速校准系统.买验结果表明,在线车速检测系统的测速精度可达0.01 m/s以上,置信度高,满足车速检测校准标准的要求.%In order to resolve the problem about the measurement error due to the installing location differences and the number of detecte devices,disassembling debugging inconvenience of the existing vehicle speed detecting system. Based on the understanding of the method of speed measurement online,analysis the GPS speed characteristics which base on Doppler frequency shift algorithm,put forward the GPS (global position system)speed measurement as vehicle online speed calibration standards and then design the speed calibration system. The results indicate that the precision of the speed was in 0.01 m/s,the degree of confidence was high. Meet the precision requirements of vehicle calibration standards.

  2. 互感器负荷箱智能校验系统设计%Development of Intelligent Transformer Load Box Calibration System

    Institute of Scientific and Technical Information of China (English)

    鲁继业; 王虎军; 李雯; 刘宇鹏; 王桐; 刘雁行; 贾洁

    2014-01-01

    通过对以往互感器负荷箱校验仪的分析,提出了高精度智能型互感器负荷箱校验系统的设计方案,给出了系统软硬件设计框图,详细论述了关键技术的设计方法。经过实验数据分析,互感器负荷箱智能校验系统达到了实用要求,大大提升了生产工作效率。%In this paper , through the analysis of previous transformer load box calibrator , we put forward the design scheme of high precision intelligent calibration system for transformer load box , and give the design diagram of system hardware and software .The design method of the key technology is also discussed in detail .Through the analysis of experimental data , it is shown that the intelligent calibration system for transformer load box meets the practical re-quirement and greatly improves the production efficiency .

  3. TandEM: Titan and Enceladus mission

    Science.gov (United States)

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  4. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  5. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  6. An integrated hydrological, ecological, and economical (HEE) modeling system for assessing water resources and ecosystem production: calibration and validation in the upper and middle parts of the Yellow River Basin, China

    Science.gov (United States)

    Li, Xianglian; Yang, Xiusheng; Gao, Wei

    2006-08-01

    Effective management of water resources in arid and semi-arid areas demands studies that cross over the disciplinaries of natural and social sciences. An integrated Hydrological, Ecological and Economical (HEE) modeling system at regional scale has been developed to assess water resources use and ecosystem production in arid and semi-arid areas. As a physically-based distributed modeling system, the HEE modeling system requires various input parameters including those for soil, vegetation, topography, groundwater, and water and agricultural management at different spatial levels. A successful implementation of the modeling system highly depends on how well it is calibrated. This paper presented an automatic calibration procedure for the HEE modeling system and its test in the upper and middle parts of the Yellow River basin. Previous to calibration, comprehensive literature investigation and sensitivity analysis were performed to identify important parameters for calibration. The automatic calibration procedure was base on conventional Monte Carlo sampling method together with a multi-objective criterion for calibration over multi-site and multi-output. The multi-objective function consisted of optimizing statistics of mean absolute relative error (MARE), Nash-Sutcliffe model efficiency coefficient (E NS), and coefficient of determination (R2). The modeling system was calibrated against streamflow and harvest yield data from multiple sites/provinces within the basin over 2001 by using the proposed automatic procedure, and validated over 1993-1995. Over the calibration period, the mean absolute relative error of simulated daily streamflow was within 7% while the statistics R2 and E NS of daily streamflow were 0.61 and 0.49 respectively. Average simulated harvest yield over the calibration period was about 9.2% less than that of observations. Overall calibration results have indicated that the calibration procedures developed in this study can efficiently calibrate

  7. Design and Calibration of Double Lens 3D Camera System%双镜头3D摄像系统的设计与标定

    Institute of Scientific and Technical Information of China (English)

    梁发云; 何小明; 尤鹏飞; 王婧; 陈志文; 帖志成

    2013-01-01

    Stereo depth and parallax are closely related with the intrinsic parameters and the relation of mutual positions in 3D camera system.In this paper,the combined 3D camera system is designed on the base of the mathematical model of double lens 3D camera system and a new method of stereo calibration based on the imaging chessboard is proposed.It directly adopts LCD monitor to produce dynamic calibration target.Intrinsic and external parameters are calculated with calibration toolbox,and parameters are used to prove the rationality of the design of combined 3D camera system structure.The experimental results show that this calibration method not only acquires high precision,but also its process is convenient and fast,and can be applied to 3D camera system.The combined 3D camera system after calibration is in line with the human eye stereo vision.%3D摄像系统的内参数以及相互位置关系与视差、立体深度密切相关.在双镜头3D摄像系统数学模型的基础上设计了组合式3D摄像系统,提出了一种基于显像棋盘作为标定靶面的新方法,直接利用液晶显示器生成动态标定靶面,运用标定工具箱对双摄像头内外参数进行标定,并利用标定的参数验证组合式3D摄像系统结构设计的合理性.实验表明,该标定方法方便、快捷,操作过程简单,取得了较高的精度,适合3D摄像系统的标定,标定后的组合式3D摄像系统符合人眼立体视觉.

  8. Calibration Error of Robotic Vision System of 3D Laser Scanner%机器人三维激光扫描视觉系统标定误差

    Institute of Scientific and Technical Information of China (English)

    齐立哲; 汤青; 贠超; 王京; 甘中学

    2011-01-01

    The 3D laser scanner is widely applied in industry robot vision system, but the calibration error of positional relationship between the scanner and the robot has important influence on the application of robot vision system. It is presented systematically how the scanning results are influenced by the robotic vision calibration position and orientation errors and how the workpiece positioning process is affected by the scanning result and then it is concluded that the position calibration of vision system is not necessary in the robot workpiece positioning system when there is no variation of robot scanning posture no matter whether the workpiece has posture variation or not. The validity of the theoretical analysis conclusion is verified by tests, thus providing the theoretical basis for explaining the influence of calibration error of vision system on the scanning result and for simplifying the calibration process of the vision system.%基于三维激光扫描仪的工业机器人视觉系统应用越来越广泛,而扫描仪与机器人之间位姿关系标定精度对于机器人视觉系统的应用有重要的影响.介绍基于三维激光扫描仪的机器人视觉系统的相关原理,然后在此基础上系统分析机器人视觉系统位置和姿态标定误差对工件扫描结果和根据扫描结果对工件进行定位过程的影响,得出在工件无姿态变化或有姿态变化但机器人扫描姿态不变情况下的机器人工件定位系统中无须进行视觉系统位置标定的结论,并试验验证了理论分析结论的有效性,为解释视觉系统标定误差对扫描结果的影响情况及简化视觉系统标定过程提供了理论依据.

  9. Confirmatory analysis of acetylgestagens in plasma using liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Mortensen, Sarah Kelly; Pedersen, Mikael

    2007-01-01

    -assisted liquid-liquid extraction (LLE) on Extrelut NT columns followed by C18 solid-phase extraction (SPE). Analytes were analysed using liquid chromatography-tandem mass spectrometry (I-C-MS/MS), and quantification was performed using matrix-matched calibration standards in combination with deuterated internal...

  10. Research of automatic control system for uitralow frequency vibration calibration%超低频振动校准自动控制系统的研究

    Institute of Scientific and Technical Information of China (English)

    王志鹏; 何闻; 于梅; 沈润杰

    2011-01-01

    针对超低频振动校准过程中测试时间长且效率较低的问题,设计了一种基于个人计算机及虚拟仪器技术开发的超低频振动校准自动控制系统.该系统由超低频标准振动台、功率放大器、激光测振仪、位移传感器、信号发生器、频比计数器、数据采集卡、计算机与测控软件等组成.通过线性逼近与逐步移频相结合的算法,精确控制振动台在超低频时迅速到达设定振级.试验结果证明该系统满足超低频振动校准要求,提高了超低频振动传感器的测试精度和自动化程度.%Aiming at the demerits of time-consuming and low efficiency during the process of ultralow frequency vibration calibration, an automatic ultralow frequency vibration calibration system based on personal computer and virtual instrument was presented.The system was consisted of ultralow frequency standard vibrator, power amplifier, laser vibrometer, displacement transducer, signal generator, universal counter, data acquisition card, computer, control software, etc..The strategy which via combining the method of linear approximation and stepby-step frequency shift could make the vibrator reach the pre-set vibration level quickly and precisely.The experiment results show that the system is suitable for the calibrating ultralow frequency vibration transducers very well and improves the automation of ultralow frequency calibrating vibration.

  11. Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data.

    Science.gov (United States)

    Kovanis, Michail; Porcher, Raphaël; Ravaud, Philippe; Trinquart, Ludovic

    Scientific peer-review and publication systems incur a huge burden in terms of costs and time. Innovative alternatives have been proposed to improve the systems, but assessing their impact in experimental studies is not feasible at a systemic level. We developed an agent-based model by adopting a unified view of peer review and publication systems and calibrating it with empirical journal data in the biomedical and life sciences. We modeled researchers, research manuscripts and scientific journals as agents. Researchers were characterized by their scientific level and resources, manuscripts by their scientific value, and journals by their reputation and acceptance or rejection thresholds. These state variables were used in submodels for various processes such as production of articles, submissions to target journals, in-house and external peer review, and resubmissions. We collected data for a sample of biomedical and life sciences journals regarding acceptance rates, resubmission patterns and total number of published articles. We adjusted submodel parameters so that the agent-based model outputs fit these empirical data. We simulated 105 journals, 25,000 researchers and 410,000 manuscripts over 10 years. A mean of 33,600 articles were published per year; 19 % of submitted manuscripts remained unpublished. The mean acceptance rate was 21 % after external peer review and rejection rate 32 % after in-house review; 15 % publications resulted from the first submission, 47 % the second submission and 20 % the third submission. All decisions in the model were mainly driven by the scientific value, whereas journal targeting and persistence in resubmission defined whether a manuscript would be published or abandoned after one or many rejections. This agent-based model may help in better understanding the determinants of the scientific publication and peer-review systems. It may also help in assessing and identifying the most promising alternative systems of peer

  12. 某高炮武器系统自动校射系统设计%Design of Automatic Firing Calibration System of a Certain Antiaircraft Artillery Weapon System

    Institute of Scientific and Technical Information of China (English)

    马志强; 程远增; 孙世宇; 王春平

    2011-01-01

    我国现役高炮火控系统的校射大多采用开环控制,没有自动校射功能,作战效能较低.针对某型高炮设计了一种自动校射系统,该系统采用火控解算参数与数字图像处理技术相结合的方法,火控计算机计算出虚拟弹目偏差,图像处理技术获取置信度较高的弹目偏差,对高炮射击诸元进行实时校正,克服传统校射的不足,从而实现对高炮武器系统的全过程高精度自动校射,实现高炮武器系统的快速射击,提高射击命中率,充分发挥高炮武器系统的作战效能.%China's active antiaircraft artillery fire control system mostly uses open-loop control for fireng calibration, no automatic fire calibration function, only has low operation efficiency. This paper presents a design method of automatic fire calibration system to a certain antiaircraft artillery. Combining fire control system computing parameters with digital image processing technology, automatic fire calibration system uses fire control computer computing the virtual miss distance, uses image processing technology obtaining miss distance with higher reliability in order to correct real-timely all kinds of firing data of antiaircraft artillery and overcome the deficiencies of traditional fire calibration method. For the antiaircraft artillery weapon system, this system could achieve automatic fire calibration with the whole process and high precision, ensure rapid firing and improve hit rate, give full play to the combat effectiveness.

  13. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  14. Informal uncertainty analysis (GLUE) of continuous flow simulation in a hybrid sewer system with infiltration inflow - Consistency of containment ratios in calibration and validation?

    DEFF Research Database (Denmark)

    Breinholt, Anders; Grum, Morten; Madsen, Henrik;

    2013-01-01

    Monitoring of flows in sewer systems is increasingly applied to calibrate urban drainage models used for long-term simulation. However, most often models are calibrated without considering the uncertainties. The generalized likelihood uncertainty estimation (GLUE) methodology is here applied...... to assess parameter and flow simulation uncertainty using a simplified lumped sewer model that accounts for three separate flow contributions: wastewater, fast runoff from paved areas, and slow infiltrating water from permeable areas. Recently GLUE methodology has been critisised for generating prediction...... to spatiooral rain variability during heavy convective rain events, flow measurement errors, possible model deficiencies as well as epistemic uncertainties, it was not possible to obtain an overall CR of more than 80%. However, the GLUE generated prediction limits still proved rather consistent, since...

  15. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  16. Radio Interferometric Calibration Using The SAGE Algorithm

    CERN Document Server

    Kazemi, S; Zaroubi, S; de Bruyn, A G; Koopmans, L V E; Noordam, J

    2010-01-01

    The aim of the new generation of radio synthesis arrays such as LOFAR and SKA is to achieve much higher sensitivity, resolution and frequency coverage than what is available now. To accomplish this goal, the accuracy of the calibration techniques used is of considerable importance. Moreover, since these telescopes produce huge amounts of data, speed of convergence of calibration is a major bottleneck. The errors in calibration are due to system noise (sky and instrumental) as well as the estimation errors introduced by the calibration technique itself, which we call "solver noise". We define solver noise as the "distance" between the optimal solution, the true value of the unknowns corrupted by the system noise, and the solution obtained by calibration. We present the Space Alternating Generalized Expectation Maximization (SAGE) calibration technique, which is a modification of the Expectation Maximization algorithm, and compare its performance with the traditional Least Squares calibration based on the level...

  17. Detection and quantitative characterization of artificial extra peaks following polymerase chain reaction amplification of 14 short tandem repeat systems used in forensic investigations

    DEFF Research Database (Denmark)

    Meldgaard, Michael; Morling, N

    1997-01-01

    Detection on automated DNA sequencers of polymerase chain reaction (PCR) products of tetra- and penta-nucleotide short tandem repeat (STR) loci frequently reveals one or more extra peaks along with the true, major allele peak. The most frequent extra peak pattern is a single smaller peak which......, while Hum-TH01, HumCD4, and D12S391 were virtually unaffected by low-stringency conditions. Replacement of the Taq DNA polymerase with DNA polymerases with lower processivity resulted in higher levels of extra peaks. Our results support the hypothesis that extra peaks are produced due to slipped...

  18. Intragenic tandem repeat variation between Legionella pneumophila strains

    Directory of Open Access Journals (Sweden)

    Jarraud Sophie

    2008-12-01

    Full Text Available Abstract Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs. Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin.

  19. Tandem Cylinder Noise Predictions

    Science.gov (United States)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  20. THE CARMA PAIRED ANTENNA CALIBRATION SYSTEM: ATMOSPHERIC PHASE CORRECTION FOR MILLIMETER WAVE INTERFEROMETRY AND ITS APPLICATION TO MAPPING THE ULTRALUMINOUS GALAXY ARP 193

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Curley, Roger; Pound, Marc W.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 249-17, Pasadena, CA 91125 (United States); Peréz, Laura M. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States); Bock, Douglas C.-J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Carlstrom, John E.; Culverhouse, Thomas L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Plambeck, Richard L. [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Marrone, Daniel P. [Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); and others

    2016-01-15

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ∼2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in {sup 12}CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ∼30% of the dynamical mass in the inner 700 pc of this object with a surface density ∼10{sup 4} M{sub ⊙} pc{sup −2}; we compare these properties to those of the starburst region of NGC 253.

  1. The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and Its Application to Mapping the Ultraluminous Galaxy Arp 193

    Science.gov (United States)

    Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Carpenter, John M.; Peréz, Laura M.; Lamb, James W.; Woody, David P.; Bock, Douglas C.-J.; Carlstrom, John E.; Culverhouse, Thomas L.; Curley, Roger; Leitch, Erik M.; Plambeck, Richard L.; Pound, Marc W.; Marrone, Daniel P.; Muchovej, Stephen J.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J.; Volgenau, Nikolaus H.; Wright, Melvyn C. H.; Wu, Dalton

    2016-01-01

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009-2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ˜2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in 12CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ˜30% of the dynamical mass in the inner 700 pc of this object with a surface density ˜104 M⊙ pc-2 we compare these properties to those of the starburst region of NGC 253.

  2. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  3. Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI System for improved wildland fire danger rating in the UK

    Directory of Open Access Journals (Sweden)

    M. C. De Jong

    2015-11-01

    can periodically place considerable stress upon the resources of Fire and Rescue Services. "Fire danger" rating systems (FDRS attempt to anticipate periods of heightened fire risk, primarily for early-warning purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI is based on the Fire Weather Index (FWI component of the Canadian Forest FWI System. MOFSI currently provides operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian System. Here we explore a climatology of the full set of FWI System components across the entire UK (i.e. extending to Scotland and Northern Ireland, calculated from daily 2 km gridded numerical weather prediction data, supplemented by meteorological station observations. We used this to develop a percentile-based calibration of the FWI System optimised for UK conditions. We find the calibration to be well justified, since for example the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile fire danger situation can vary by up to an order of magnitude across UK regions. Therefore, simple thresholding of the uncalibrated component values (as is currently applied may be prone to large errors of omission and commission with respect to identifying periods of significantly elevated fire danger compared to "routine" variability. We evaluate our calibrated approach to UK fire danger rating against records of wildfire occurrence, and find that the Fine Fuel Moisture Code (FFMC, Initial Spread Index (ISI and final FWI component of the FWI system generally have the greatest predictive skill for landscape fires in Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011, 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile, and for each of the ten most serious wildfire events

  4. The Narrow Pulse Calibration System Based on Hopkinson Bar%基于Hopkinson杆的窄脉冲校准系统∗

    Institute of Scientific and Technical Information of China (English)

    李玺; 范锦彪; 王燕; 徐鹏

    2015-01-01

    针对目前动态校准装置难以安全产生窄脉冲激励信号的问题,基于Hopkinson压杆技术,以压缩空气作为激励源,采用子弹撞击杆的方式,提出了一种可以产生6~10μs窄脉冲校准系统。该系统选用600 mm ×10 mm的钛合金Hopkinson杆,使用应变片和轴向激光干涉仪同时测量获取窄脉冲信号。利用该系统进行了动态校准实验,实验结果表明,该系统产生的窄脉冲可充分激励起8309的谐振频率,通过幅频特性曲线得其工作频带。%present dynamic calibration deviceproduce narrow pulse excitation signal, based on Hopkinson pressure bar technique, com-pressed air as a source of motivationthe way of bullet, a kind of calibration system that can produce 6~10 μs narrow pulse. The system 600 mm × 10 mm titanium alloy Hopkinson bar, strain gauge and axial laser interferometer measurement for narrow pulse signal at the same time. his system dynamic calibration experiment, the experimental results show that the system can fully motivate resonance frequency of the acceleration sensor 8309, its working frequency band obtained through the amplitude-frequency characteristic curve.

  5. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; Ortiz, Joseph; Royce, Anthony; Ruberg, Steve; Sawtell, Reid; Sayers, Michael; Schiller, Stephen; Shuchman, Robert; Simic, Anita; Stuart, Dack; Sullivan, Glenn; Tavernelli, Paul; Tokars, Roger; Vander Woude, Andrea

    2017-01-01

    institutions as well as one in South Dakota and one in Alabama, this effort was able to provide next-day georeferenced estimates of cyanobacteria and scum concentrations. Very prompt processing and analysis of the hyperspectral imagery is necessary for the information to be acted upon. For example, a next-day report of an overflight over the Ohio River indicated that a bloom could be present as far downstream as the Cincinnati intake, but the Ohio EPA had not received visual reports of a bloom that far downstream. Water samples were obtained at the Cincinnati water intake, based on the flight data, and detected microcystins in the source water. The flight data helped State and municipal authorities realize the potential extent of that bloom, and triggered response sampling, before the visual river-wide scums started forming. The present document describes the process that was utilized to take raw remote sensing data and create information products; this includes system calibration and validation, efforts to correct atmospheric effects, and algorithms that produce the data products. Furthermore, successful research into improved algorithms for expanding the capability to delineate in water constituents is included. Finally, comparisons that show expected relationships between ground-based measurements and hyperspectral imager version 2 (HSI2) data results are presented, giving confidence in the remote sensing products.

  6. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  7. Oil Film Compensation Control of Hydraulic AGC System in Tandem Cold Rolling Mill%冷连轧机液压AGC系统油膜补偿控制

    Institute of Scientific and Technical Information of China (English)

    孙孟辉; 王益群

    2011-01-01

    Since the request to the quality of cold rolling sheet strips is higher, the hydraulic AGC ( Automatic Gauge Control) has become the indispensable means which improves the product precision of cold rolling strips. However, to the tandem cold rolling mill which backup roll adopts the oil film bearing, the thickness of oil film changes with different rolling force and rolling velocity, which influences the exit thickness of strips and brings the thickness deviation. Especially for the tandem cold rolling mill, the accumulative deviation of every stand enlarges more the deviation of steel product. The oil film compensation model, which adapted to the practical control, was regressed from the data measured from production locale, aiming at one 5-stand tandem cold rolling mill as object. The control strategy was brought forward, which adapted to the distributed computer control. All of them were applied in the practical rolling process for compensation of changes in thickness of oil film. The experimental result indicates that length of out-toler-ance and value of out-tolerance between head and tail of steel product are reduced notably.%由于对冷轧薄板质量要求的提高,液压AGC已经成为提高冷轧带钢成品精度必不可少的手段.然而对于支撑辊采用油膜轴承的冷连轧机来说,其轴承油膜厚度随着轧制力和轧制速度的变化而变化,这将影响轧件的轧出厚度,造成厚差.尤其对冷连轧机,各机架的累积误差会使成品带的超差更加严重.以某五机架冷连轧机为研究对象,由生产现场实测数据回归出适合于实际控制的油膜补偿模型,提出适合于分布式计算机控制的控制策略,并将其应用于实际轧制过程中对油膜厚度变化进行补偿.实验结果表明:加入油膜补偿控制后,成品带钢厚差带头带尾超差段有较为显著的减少,且超差值也有所降低.

  8. Overview of calibration and validation activities for the EUMETSAT polar system: second generation (EPS-SG) visible/infrared imager (METimage)

    Science.gov (United States)

    Phillips, P.; Bonsignori, R.; Schlüssel, P.; Schmülling, F.; Spezzi, L.; Watts, P.; Zerfowski, I.

    2016-10-01

    The EPS-SG Visible/Infrared Imaging (VII) mission is dedicated to supporting the optical imagery user needs for Numerical Weather Prediction (NWP), Nowcasting (NWC) and climate in the timeframe beyond 2020. The VII mission is fulfilled by the METimage instrument, developed by the German Space Agency (DLR) and funded by the German government and EUMETSAT. Following on from an important list of predecessors such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate resolution Imaging Spectro-radiometer (MODIS), METimage will fly in the mid-morning orbit of the Joint Polar System, whilst the early-afternoon orbits are served by the JPSS (U.S. Joint Polar Satellite System) Visible Infrared Imager Radiometer Suite (VIIRS). METimage itself is a cross-purpose medium resolution, multi-spectral optical imager, measuring the optical spectrum of radiation emitted and reflected by the Earth from a low-altitude sun synchronous orbit over a minimum swath width of 2700 km. The top of the atmosphere outgoing radiance will be sampled every 500 m (at nadir) with measurements made in 20 spectral channels ranging from 443 nm in the visible up to 13.345 μm in the thermal infrared. The three major objectives of the EPS-SG METimage calibration and validation activities are: • Verification of the instrument performances through continuous in-flight calibration and characterisation, including monitoring of long term stability. • Provision of validated level 1 and level 2 METimage products. • Revision of product processing facilities, i.e. algorithms and auxiliary data sets, to assure that products conform with user requirements, and then, if possible, exceed user expectations. This paper will describe the overall Calibration and Validation (Cal/Val) logic and the methods adopted to ensure that the METimage data products meet performance specifications for the lifetime of the mission. Such methods include inter-comparisons with other missions through simultaneous

  9. CCD自准直仪示值漂移的自校准系统%Self-calibration System for the Value Drifts of CCD Autocollimator

    Institute of Scientific and Technical Information of China (English)

    张俊杰; 王震; 李政阳; 张俊秀

    2011-01-01

    When the digital autocollimator is put into use directly, its indications will drift and beat under the influence of environmental conditions such as air streams and the increasing heat of equipment itself, which leads to the measuring errors greatly increased and the measurement results could not return to zero. A fixed mirror which is added as a reference mirror makes the differential measurement with a working mirror and forms a self - calibration system, which could effectively reduce errors. The value of drift is 0. 03" in two hours when working mirror is only used and it reduces to 0. 01" after the adoption of a self- calibration system; the standard deviation of samples is 0. 0911" and it reduces to 0. 0574" after the self - calibration The self - calibration system of differential mirror could effectively reduce the indication errors of CCD autocollimator and plays an efficient role in reducing the indication beat. It is an effective way for the system to reduce the drift and beat of the equipment caused by beth the environmental conditions and the equipment themselves.%数显式自准直仪使用时,气流等环境条件的影响以及仪器本身发热等原因都会引起示值的漂移和跳动,使测量误差增大、测量结果不能回零.采用增加一块固定反光镜作为参考镜,它与工作反光镜以自准直仪进行差动,组成自校准系统,可以有效地进行消减.仅用工作反光镜时2 h内的漂移量为0.03",经自校准系统后为0.0l";样本标准偏差为0.091 1",经自校准后为0.057 4".差动式反光镜自校准系统可以显著减小CCD自准直仪的示值漂移,对减小示值跳动也具有一定作用.且无论是对环境条件还是仪器本身原因引起的漂移和跳动都是有效的.

  10. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  11. The MeqTrees software system and its use for third-generation calibration of radio interferometers

    CERN Document Server

    Noordam, Jan E; 10.1051/0004-6361/201015013

    2011-01-01

    The formulation of the radio interferometer measurement equation (RIME) by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. MeqTrees is designed to implement numerical models such as the RIME, and to solve for arbitrary subsets of their parameters. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool for rapid experimentation and exchange of ideas. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a P...

  12. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully......, but not necessarily from map to map. It is based on natural distributed targets for which no a priori knowledge is needed. In particular, no DEM is required as in calibration techniques based on dedicated calibration scenes. To achieve absolute calibration, i.e. elimination of a constant elevation offset, a single...

  13. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  14. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  15. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  16. Calibrating the Station Biases for the C-Band Transfer Measuring System%C波段转发测轨系统测站偏差的标校

    Institute of Scientific and Technical Information of China (English)

    宋小勇; 毛悦; 贾小林

    2012-01-01

    C波段转发测轨体制在GE~卫星测定轨中有突出优势,但其测量系统偏差的标校精度对定轨结果影响显著。基于L波段载波相位多星定轨结果,提出一种基于标准轨道拟合残差的系统偏差标校方法。该方法能够同时标校测量偏差及时标偏差,有利于弥补激光测距标校方法观测量较少的缺陷。利用国内监测站对中国导航卫星实测数据分析结果表明,经过标校后的C波段转发测轨精度可优于5m,测量偏差及时标偏差具有较好的稳定性。%The C-band transfer measuring system plays an important role in the precise orbit determination (POD) for geostationary satellite. However, the performance of the system was remarkably influenced by the accuracies of the station biases. Based on the orbits from the multi-satellite POD using the carrier observation of L-band, a new method to calibrate the biases from orbit fitting of C-band measurement is presented. This method can not only estimate the ranging biases and time biases simultaneously, but also overcome the shortcoming of too few observa- tions when using the SLR calibrating method. The POD experiment of Compass navigation satellite shows that the satellite~s position error is about 5 m after the station biases is calibrated, and the estimated ranging biases and time biases have higher stability and reliability.

  17. Research of Dynamic Calibrating System of Multicomponent Dynamometer%多维力传感器的动态标定研究

    Institute of Scientific and Technical Information of China (English)

    白文聪; 陈怀海

    2015-01-01

    提出了一套对六维力传感器经行标定的系统,用于动态载荷情况下六维力传感器动态标定。该系统以labVIEW为软件系统,以高精度伺服电机为精确动力源,以高精度砝码作为标准质量,通过伺服电机带动标准质量做匀速圆周运动产生标准动态力。配合有限元分析软件PATRAN对设计工装的强度、刚度及固有频率的分析。实现了在特定频率范围内的传感器的精确动态标定。实验结果表明系统对六维力传感器的标定是合理可靠的。%This paper presents a set of calibration of six axis force sensor with dynamic loads. Based on LabVIEW software system, with a high accuracy servo motor as precise power source and high precision weight as the standard quality, the servo motor is used to drive the uniform circular motion generating standard dynamic force of the quality standard. The finite element analysis software PATRAN is used to analyze the tooling design strength, stiffness and natural frequency. The accurate calibration of the dynamic sen-sor is made within the specified frequency range. The results show that the system calibration of the six axis force sensor is reasona-ble and reliable.

  18. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  19. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  20. Comparison of a Joule effect calibration system using Kanthal wire and a laser diode as heat sources

    Science.gov (United States)

    Maldonado, Blas A.; Bárcena-Soto, Maximiliano; Casillas, Norberto; Flores, Jorge L.

    2009-09-01

    Here it is presented a comparison of two calibration techniques applied to a thermistor element used in a surface microcalorimeter which operates under Isoperibol conditions. Usually surface microcalorimeters employ a thermistor as a temperature sensing element, whose heat capacity requires to be evaluated before they can be used. One alternative method to estimate its heat capacity is by supplying a known amount of energy and detecting its temperature changes. Thus, surface heating can be achieved by different techniques; one of them is by supplying energy to the thermistor by passing current through a Ni-Cr coil wined around the glass bulb thermistor. A rather different and more convenient technique consists of directly illuminating a small well-defined thermistor area with an infrared 1550 nm wavelength laser beam, while detecting the thermistor temperature changes. Both procedures are thoroughly compared and the heat capacities obtained by both methods are presented.