WorldWideScience

Sample records for calibration

  1. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types of...

  2. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  3. Calibration Binaries

    Science.gov (United States)

    Drummond, J.

    2011-09-01

    Two Excel Spreadsheet files are offered to help calibrate telescope or camera image scale and orientation with binary stars for any time. One is a personally selected list of fixed position binaries and binaries with well-determined orbits, and the other contains all binaries with published orbits. Both are derived from the web site of the Washington Double Star Library. The spreadsheets give the position angle and separation of the binaries for any entered time by taking advantage of Excel's built in iteration function to solve Kepler's transcendental equation.

  4. ALTEA calibration

    Science.gov (United States)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  5. Trinocular Calibration Method Based on Binocular Calibration

    OpenAIRE

    CAO Dan-Dan; Luo, Chun; GAO Shu-Yuan; Wang, Yun; Li, Wen-Bin; XU Zhen-Ying

    2012-01-01

    In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error) of the global calibration of ...

  6. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  7. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  8. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  9. ORNL calibrations facility

    International Nuclear Information System (INIS)

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  10. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  11. Spiral reader calibration

    International Nuclear Information System (INIS)

    The method to calibrate the spiral reader (SR) is presented. A brief description of the main procedures of the calibration program SCALP, adapted for the IHEP equipment and purposes, is described. The precision characteristics of the IHEP SR have been analysed on the results, presented in the form of diagrams. There is a calibration manual for the user

  12. Residual gas analyzer calibration

    Science.gov (United States)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  13. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  14. The COS Calibration Pipeline

    Science.gov (United States)

    Hodge, Philip E.; Keyes, C.; Kaiser, M.

    2007-12-01

    The COS calibration pipeline (CALCOS) includes three main components: basic calibration, wavelength calibration, and spectral extraction. Calibration of modes using the far ultraviolet (FUV) and near ultraviolet (NUV) detectors share a common structure, although the individual reference files differ and there are some additional steps for the FUV channel. The pipeline is designed to calibrate data acquired in either ACCUM or time-tag mode. The basic calibration includes pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. Wavelength calibration can be done either by using separate lamp exposures or by taking several short lamp exposures concurrently with a science exposure. For time-tag data, the latter mode ("tagflash") will allow better correction of potential drift of the spectrum on the detector. One-dimensional spectra will be extracted and saved in a FITS binary table. Separate columns will be used for the flux-calibrated spectrum, error estimate, and the associated wavelengths. CALCOS is written in Python, with some functions in C. It is similar in style to other HST pipeline code in that it uses an association table to specify which files to be included, and the calibration steps to be performed and the reference files to use are specified by header keywords. Currently, in conjunction with the Instrument Definition Team (led by J. Green), the ground-based reference files are being refined, delivered, and tested with the pipeline.

  15. Energy calibration via correlation

    Science.gov (United States)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  16. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  17. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  18. The GERDA calibration system

    International Nuclear Information System (INIS)

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the 228Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the 228Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  19. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  20. Remote calibration of ionization chambers for radioactivity calibration

    International Nuclear Information System (INIS)

    A new calibration technique, referred to as e-trace, has been developed by the National Institute of Advanced Industrial Science and Technology (AIST). The e-trace technique enables rapid remote calibration of measurement equipment and requires minimal resources. We calibrated radioisotope calibrators of the Japan Radioisotope Association (JRIA) and the Nishina Memorial Cyclotron Center (NMCC) remotely and confirmed that remote calibration provided results that are consistent with the results obtained by existing methods within the limits of uncertainty. Accordingly, e-trace has been approved as the standard calibration method at AIST. We intend to apply remote calibration to radioisotope calibrators in hospitals and isotope facilities. (author)

  1. Calibrations of photomultiplier tubes

    International Nuclear Information System (INIS)

    The experimental methods for calibration photomultiplier tubes used in the multichannel fast-pulse-detection system of Thomson scattering measurements for nuclear fusion devices is reported. The most important parameters of the photomultiplier tubes to be calibrated include: linearity of output electric signals to input light signals, response time of pulsed light, spectral response, absolute responsibility, and sensitivity as a function of the chain voltage. The calibrations of all these parameters are carried out by using EMI 9558 B and RCA 7265 photomultiplier tubes respectively. The experimental methods presented in the paper are common to those quantitative measurements that require phomultiplier tubes as detectors

  2. Equipment for dosemeter calibration

    International Nuclear Information System (INIS)

    The device is used for precise calibration of dosimetric instrumentation, such as used at nuclear facilities. The high precision of the calibration procedure is primarily due to the fact that one single and steady radiation source is used. The accurate alignment of the source and the absence of shielding materials in the beam axis make for high homogeneity of the beam and reproducibility of the measurement; this is also contributed to by the horizontal displacement of the optical bench, which ensures a constant temperature field and the possibility of adjusting the radiation source at a sufficient distance from the instrument to be calibrated. (Z.S.). 3 figs

  3. Lidar Calibration Centre

    Science.gov (United States)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  4. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  5. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  6. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  7. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  8. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  9. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  10. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  11. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  12. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  13. GTC Photometric Calibration

    Science.gov (United States)

    di Cesare, M. A.; Hammersley, P. L.; Rodriguez Espinosa, J. M.

    2006-06-01

    We are currently developing the calibration programme for GTC using techniques similar to the ones use for the space telescope calibration (Hammersley et al. 1998, A&AS, 128, 207; Cohen et al. 1999, AJ, 117, 1864). We are planning to produce a catalogue with calibration stars which are suitable for a 10-m telescope. These sources will be not variable, non binary and do not have infrared excesses if they are to be used in the infrared. The GTC science instruments require photometric calibration between 0.35 and 2.5 microns. The instruments are: OSIRIS (Optical System for Imaging low Resolution Integrated Spectroscopy), ELMER and EMIR (Espectrógrafo Multiobjeto Infrarrojo) and the Acquisition and Guiding boxes (Di Césare, Hammersley, & Rodriguez Espinosa 2005, RevMexAA Ser. Conf., 24, 231). The catalogue will consist of 30 star fields distributed in all of North Hemisphere. We will use fields containing sources over the range 12 to 22 magnitude, and spanning a wide range of spectral types (A to M) for the visible and near infrared. In the poster we will show the method used for selecting these fields and we will present the analysis of the data on the first calibration fields observed.

  14. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a...... inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work....

  15. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  16. The MINOS calibration detector

    International Nuclear Information System (INIS)

    This paper describes the MINOS calibration detector (CalDet) and the procedure used to calibrate it. The CalDet, a scaled-down but functionally equivalent model of the MINOS Far and Near detectors, was exposed to test beams in the CERN PS East Area during 2001-2003 to establish the response of the MINOS calorimeters to hadrons, electrons and muons in the range 0.2-10GeV/c. The CalDet measurements are used to fix the energy scale and constrain Monte Carlo simulations of MINOS

  17. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  18. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  19. Calibration Of Oxygen Monitors

    Science.gov (United States)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  20. Commodity-Free Calibration

    Science.gov (United States)

    2008-01-01

    Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.

  1. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  2. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  3. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  4. Calibration issues for MUSE

    Science.gov (United States)

    Kelz, Andreas; Roth, Martin; Bauer, Svend; Gerssen, Joris; Hahn, Thomas; Weilbacher, Peter; Laux, Uwe; Loupias, Magali; Kosmalski, Johan; McDermid, Richard; Bacon, Roland

    2008-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the VLT for the next decade. Using an innovative field-splitting and slicing design, combined with an assembly of 24 spectrographs, MUSE will provide some 90,000 spectra in one exposure, which cover a simultaneous spectral range from 465 to 930nm. The design and manufacture of the Calibration Unit, the alignment tests of the Spectrograph and Detector sub-systems, and the development of the Data Reduction Software for MUSE are work-packages under the responsibility of the AIP, who is a partner in a European-wide consortium of 6 institutes and ESO, that is led by the Centre de Recherche Astronomique de Lyon. MUSE will be operated and therefore has to be calibrated in a variety of modes, which include seeing-limited and AO-assisted operations, providing a wide and narrow-field-of-view. MUSE aims to obtain unprecedented ultra-deep 3D-spectroscopic exposures, involving integration times of the order of 80 hours at the VLT. To achieve the corresponding science goals, instrumental stability, accurate calibration and adequate data reduction tools are needed. The paper describes the status at PDR of the AIP related work-packages, in particular with respect to the spatial, spectral, image quality, and geometrical calibration and related data reduction aspects.

  5. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  6. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  7. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  8. LOFAR Facet Calibration

    Science.gov (United States)

    van Weeren, R. J.; Williams, W. L.; Hardcastle, M. J.; Shimwell, T. W.; Rafferty, D. A.; Sabater, J.; Heald, G.; Sridhar, S. S.; Dijkema, T. J.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G. A.; Röttgering, H. J. A.; Dawson, W. A.; Forman, W. R.; de Gasperin, F.; Jones, C.; Miley, G. K.; Rudnick, L.; Sarazin, C. L.; Bonafede, A.; Best, P. N.; Bîrzan, L.; Cassano, R.; Chyży, K. T.; Croston, J. H.; Ensslin, T.; Ferrari, C.; Hoeft, M.; Horellou, C.; Jarvis, M. J.; Kraft, R. P.; Mevius, M.; Intema, H. T.; Murray, S. S.; Orrú, E.; Pizzo, R.; Simionescu, A.; Stroe, A.; van der Tol, S.; White, G. J.

    2016-03-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction-dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction-dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ∼ 5\\prime\\prime resolution, meeting the specifications of the LOFAR Tier-1 northern survey.

  9. Radiation monitor calibration technique

    International Nuclear Information System (INIS)

    Reference radiations in the Secondary Standard Dosimetry Laboratory, OAEP have been improved and modified by employing lead attenuators. To identify low-level exposure rate, shadow-cone method has been applied. The secondary standard dosemeter has been used periodically to check the constancy of reference radiations to assure the calibration of dosemeters and dose-ratemeters used for radiation protection

  10. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  11. Pseudo Linear Gyro Calibration

    Science.gov (United States)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    Previous high fidelity onboard attitude algorithms estimated only the spacecraft attitude and gyro bias. The desire to promote spacecraft and ground autonomy and improvements in onboard computing power has spurred development of more sophisticated calibration algorithms. Namely, there is a desire to provide for sensor calibration through calibration parameter estimation onboard the spacecraft as well as autonomous estimation on the ground. Gyro calibration is a particularly challenging area of research. There are a variety of gyro devices available for any prospective mission ranging from inexpensive low fidelity gyros with potentially unstable scale factors to much more expensive extremely stable high fidelity units. Much research has been devoted to designing dedicated estimators such as particular Extended Kalman Filter (EKF) algorithms or Square Root Information Filters. This paper builds upon previous attitude, rate, and specialized gyro parameter estimation work performed with Pseudo Linear Kalman Filter (PSELIKA). The PSELIKA advantage is the use of the standard linear Kalman Filter algorithm. A PSELIKA algorithm for an orthogonal gyro set which includes estimates of attitude, rate, gyro misalignments, gyro scale factors, and gyro bias is developed and tested using simulated and flight data. The measurements PSELIKA uses include gyro and quaternion tracker data.

  12. Pleiades Absolute Calibration : Inflight Calibration Sites and Methodology

    Science.gov (United States)

    Lachérade, S.; Fourest, S.; Gamet, P.; Lebègue, L.

    2012-07-01

    In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station) and Oceans (Calibration over molecular scattering) or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  13. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  14. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this Model Report is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Office of Repository Development (ORD). The UZ contains the unsaturated rock layers overlying the repository and host unit, which constitute a natural barrier to flow, and the unsaturated rock layers below the repository which constitute a natural barrier to flow and transport. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10.8 [under Work Package (WP) AUZM06, Climate Infiltration and Flow], and Section I-1-1 [in Attachment I, Model Validation Plans]). In Section 4.2, four acceptance criteria (ACs) are identified for acceptance of this Model Report; only one of these (Section 4.2.1.3.6.3, AC 3) was identified in the TWP (BSC 2002 [160819], Table 3-1). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, and drift-scale and mountain-scale coupled-process models from the UZ Flow, Transport and Coupled Processes Department in the Natural Systems Subproject of the Performance Assessment (PA) Project. The Calibrated Properties Model output will also be used by the Engineered Barrier System Department in the Engineering Systems Subproject. The Calibrated Properties Model provides input through the UZ Model and other process models of natural and engineered systems to the Total System Performance Assessment (TSPA) models, in accord with the PA Strategy and Scope in the PA Project of the Bechtel SAIC Company, LLC (BSC). The UZ process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions. UZ flow is a TSPA model component

  15. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten;

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve the...... statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited for...

  16. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  17. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  18. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  19. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  20. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  1. Optical Calibration of SNO+

    Science.gov (United States)

    Maneira, J.; Peeters, S.; Sinclair, J.

    2015-04-01

    SNO is being upgraded to SNO+, which has as its main goal the search for neutrinoless double-beta decay. The upgrade is defined by filling with a novel scintillator mixture containing 130Te. With a lower energy threshold than SNO, SNO+ will be sensitive to other exciting new physics. Here we are describing new optical calibration system that meets new, more stringent radiopurity requirements has been developed.

  2. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  3. Program Calibrates Strain Gauges

    Science.gov (United States)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  4. Calibration specimens for microscopy

    Czech Academy of Sciences Publication Activity Database

    Kolařík, Vladimír; Matějka, Milan; Matějka, František; Krátký, Stanislav; Urbánek, Michal; Horáček, Miroslav; Král, Stanislav; Bok, Jan

    Ostrava: TANGER Ltd, 2012, s. 713-716. ISBN 978-80-87294-32-1. [NANOCON 2012. International Conference /4./. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233; GA MPO FR-TI1/576 Institutional support: RVO:68081731 Keywords : E-beam technology * calibration specimen * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  6. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  7. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  8. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  9. Calibration effects on orbit determination

    Science.gov (United States)

    Madrid, G. A.; Winn, F. B.; Zielenbach, J. W.; Yip, K. B.

    1974-01-01

    The effects of charged particle and tropospheric calibrations on the orbit determination (OD) process are analyzed. The calibration process consisted of correcting the Doppler observables for the media effects. Calibrated and uncalibrated Doppler data sets were used to obtain OD results for past missions as well as Mariner Mars 1971. Comparisons of these Doppler reductions show the significance of the calibrations. For the MM'71 mission, the media calibrations proved themselves effective in diminishing the overall B-plane error and reducing the Doppler residual signatures.

  10. Mammography calibration: Factor or fit?

    International Nuclear Information System (INIS)

    Dose measurements in mammography x-ray have become more important and a basic path in quality assurance programmes. It is recognized by the international guidelines that it is necessary to have calibration services offered for mammography beams in order to help the improvement of the clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The indication of a dosimeter, whose reference point is positioned at the point of test, is compared with the conventional true value of the quantity to be measured. The calibration coefficient is then the ratio of the conventional true value to the indicated. The Primary Standard Dosimetry Laboratory - PSDL or the Secondary Standard Dosimetry Laboratory - SSDL provides the calibration coefficient of the dosimeters in reference to the Half Value Layers - HVL implemented in their laboratories. The dosimetry calibration data is enough when the user has the same system as the laboratory where the ionization chamber has been calibrated. However, there are other calibration systems that have different calibration qualities implemented using different combinations of anode and filter and, therefore, there is no direct relation with the calibration coefficient. How to deal with this? There are two different ways to obtain calibration coefficients when the user's implemented qualities are different from the calibration laboratory's qualities. The first is the interpolation of each calibration coefficient stated in the certificate. The second is the fit of all calibration coefficients, separately for non-attenuated and attenuated beam qualities, to obtain a function by which the calibration coefficients can be determined at each beam quality. The second one includes the statistical fluctuation. The dosimetry calibration data must fit an analytical form, as for example a

  11. A variable acceleration calibration system

    Science.gov (United States)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  12. Automatic force balance calibration system

    Science.gov (United States)

    Ferris, Alice T.

    1995-05-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  13. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  14. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter; Hansen, Mikael Sonne; Markvorsen, Steen; Spence, David; Stolpe, Mathias; Sølvason, Dorthe

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise...... geographic and/or site-relative position of a given excavator and its bucket. However, our presentations and solutions to the problems can, nevertheless, be read and studied in any order and independently of each other. This also implies and induces a gentle warning to the reader: The {\\em{notation}} need...

  15. Use of Radiometrically Calibrated Flat-Plate Calibrators in Calibration of Radiation Thermometers

    Science.gov (United States)

    Cárdenas-García, D.; Méndez-Lango, E.

    2015-08-01

    Most commonly used, low-temperature, infrared thermometers have large fields of view sizes that make them difficult to be calibrated with narrow aperture blackbodies. Flat-plate calibrators with large emitting surfaces have been proposed for calibrating these infrared thermometers. Because the emissivity of the flat plate is not unity, its radiance temperature is wavelength dependent. For calibration, the wavelength pass band of the device under test should match that of the reference infrared thermometer. If the device under test and reference radiometer have different pass bands, then it is possible to calculate the corresponding correction if the emissivity of the flat plate is known. For example, a correction of at is required when calibrating a infrared thermometer with a "" radiometrically calibrated flat-plate calibrator. A method is described for using a radiometrically calibrated flat-plate calibrator that covers both cases of match and mismatch working wavelength ranges of a reference infrared thermometer and infrared thermometers to be calibrated with the flat-plate calibrator. Also, an application example is included in this paper.

  16. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  17. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  18. Calibration procedure for zenith plummets

    Directory of Open Access Journals (Sweden)

    Jelena GUČEVIĆ

    2013-09-01

    Full Text Available Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and some selected results.

  19. Calibration procedure for zenith plummets

    OpenAIRE

    Jelena GUČEVIĆ; Delčev, Siniša; Vukan OGRIZOVIĆ

    2013-01-01

    Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and som...

  20. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  1. Calibration Techniques for VERITAS

    CERN Document Server

    Hanna, David

    2007-01-01

    VERITAS is an array of four identical telescopes designed for detecting and measuring astrophysical gamma rays with energies in excess of 100 GeV. Each telescope uses a 12 m diameter reflector to collect Cherenkov light from air showers initiated by incident gamma rays and direct it onto a `camera' comprising 499 photomultiplier tubes read out by flash ADCs. We describe here calibration methods used for determining the values of the parameters which are necessary for converting the digitized PMT pulses to gamma-ray energies and directions. Use of laser pulses to determine and monitor PMT gains is discussed, as are measurements of the absolute throughput of the telescopes using muon rings.

  2. TOD to TTP calibration

    Science.gov (United States)

    Bijl, Piet; Reynolds, Joseph P.; Vos, Wouter K.; Hogervorst, Maarten A.; Fanning, Jonathan D.

    2011-05-01

    The TTP (Targeting Task Performance) metric, developed at NVESD, is the current standard US Army model to predict EO/IR Target Acquisition performance. This model however does not have a corresponding lab or field test to empirically assess the performance of a camera system. The TOD (Triangle Orientation Discrimination) method, developed at TNO in The Netherlands, provides such a measurement. In this study, we make a direct comparison between TOD performance for a range of sensors and the extensive historical US observer performance database built to develop and calibrate the TTP metric. The US perception data were collected doing an identification task by military personnel on a standard 12 target, 12 aspect tactical vehicle image set that was processed through simulated sensors for which the most fundamental sensor parameters such as blur, sampling, spatial and temporal noise were varied. In the present study, we measured TOD sensor performance using exactly the same sensors processing a set of TOD triangle test patterns. The study shows that good overall agreement is obtained when the ratio between target characteristic size and TOD test pattern size at threshold equals 6.3. Note that this number is purely based on empirical data without any intermediate modeling. The calibration of the TOD to the TTP is highly beneficial to the sensor modeling and testing community for a variety of reasons. These include: i) a connection between requirement specification and acceptance testing, and ii) a very efficient method to quickly validate or extend the TTP range prediction model to new systems and tasks.

  3. Tectonic calibrations in molecular dating

    Institute of Scientific and Technical Information of China (English)

    Ullasa KODANDARAMAIAH

    2011-01-01

    Molecular dating techniques require the use of calibrations, which are usually fossil or geological vicariance-based.Fossil calibrations have been criticised because they result only in minimum age estimates. Based on a historical biogeographic perspective, Ⅰ suggest that vicariance-based calibrations are more dangerous. Almost all analytical methods in historical biogeography are strongly biased towards inferring vicariance, hence vicariance identified through such methods is unreliable. Other studies, especially of groups found on Gondwanan fragments, have simply assumed vicariance. Although it was previously believed that vicariance was the predominant mode of speciation, mounting evidence now indicates that speciation by dispersal is common, dominating vicariance in several groups. Moreover, the possibility of speciation having occurred before the said geological event cannot be precluded. Thus, geological calibrations can under- or overestimate times, whereas fossil calibrations always result in minimum estimates. Another major drawback of vicariant calibrations is the problem of circular reasoning when the resulting estimates are used to infer ages of biogeographic events. Ⅰ argue that fossil-based dating is a superior alternative to vicariance, primarily because the strongest assumption in the latter, that speciation was caused by the said geological process, is more often than not the most tenuous. When authors prefer to use a combination of fossil and vicariant calibrations, one suggestion is to report results both with and without inclusion of the geological constraints. Relying solely on vicariant calibrations should be strictly avoided.

  4. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.;

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions...

  5. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  6. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  7. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  8. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  9. Requirements for gamma radiation survey meter calibration

    International Nuclear Information System (INIS)

    This guide describes the minimum requirements for calibrating a portable analog gamma radiation survey meter by means of a beam calibrator, with a known calibration source. If an alternative method of calibration is to be used the licensee should make a written request to the Atomic Energy Control Board that describes the calibration method to be used, and request the Board's permission to use that method in place of the requirements contained in this guide. This guide explains: the responsibility for survey meter calibration if licensees calibrate their own survey meters, use the services of a Canadian calibration agency, and use the services of a non-Canadian calibration agency; the requirements for survey meter calibration and the supporting documentation; the requirements for record-keeping; and, a calibration certificate, a calibration sticker, and a notification of failure to calibrate form, with examples

  10. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  11. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben;

    1998-01-01

    magnetometer readings in each position were related to the field magnitudes from the Observatory, and a least squares fit for the 9 magnetometer calibration parameters was performed (3 offsets, 3 scale values and 3 inter-axes angles). After corrections for the magnetometer digital-to-analogue converters...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  12. The calibration of radioprotection hardware

    International Nuclear Information System (INIS)

    After having recalled recent recommendations on dose limits on the basis of two radioprotection values (the equivalent and the efficient dose), this document indicates some characteristics of these values, and discusses how they are applied for individual monitoring and for area or ambient monitoring. It presents conventions aimed at simplifying radiation fields. Then, the author gives a precise overview of some general aspects concerning calibration operations: legal requirements, radioprotection hardware controls, calibration loop organisation (calibration definition, general physical values, reference radiation, conversion factors, and metrology), comparison between operational values and the protection value (irradiation geometries, conversion factors with respect to the geometries, comparison between efficient dose and operational values). He finally describes the calibration procedures: dosemeter location, energy response, angular response, flow rate response, uncertainties

  13. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the...

  14. Calibration of "Babyline" RP instruments

    CERN Document Server

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  15. Rotary mode system initial instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  16. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  17. Beam Imaging and Luminosity Calibration

    CERN Document Server

    AUTHOR|(CDS)2081126; Klute, Markus; Medlock, Catherine Aiko

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The x-y correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1%.

  18. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields

  19. The Third VLBA Calibrator Survey

    OpenAIRE

    Petrov, L.; Kovalev, Y. Y.; Fomalont, E.; Gordon, D

    2004-01-01

    This paper presents the third extension to the Very Large Baseline Array (VLBA) Calibrator Survey, containing 360 new sources not previously observed with very long baseline interferometry (VLBI). The survey, based on three 24 hour VLBA observing sessions, fills the areas on the sky above declination -45 degrees where the calibrator density is less than one source within a 4 degrees radius disk at any given direction. The positions were derived from astrometric analysis of the group delays de...

  20. Pressures Detector Calibration and Measurement

    CERN Document Server

    Kumara, I Made Gita

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  1. WFC3: UVIS Dark Calibration

    Science.gov (United States)

    Bourque, Matthew; Biretta, John A.; Anderson, Jay; Baggett, Sylvia M.; Gunning, Heather C.; MacKenty, John W.

    2014-06-01

    Wide Field Camera 3 (WFC3), a fourth-generation imaging instrument on board the Hubble Space Telescope (HST), has exhibited excellent performance since its installation during Servicing Mission 4 in May 2009. The UVIS detector, comprised of two e2v CCDs, is one of two channels available on WFC3 and is named for its ultraviolet and visible light sensitivity. We present the various procedures and results of the WFC3/UVIS dark calibration, which monitors the health and stability of the UVIS detector, provides characterization of hot pixels and dark current, and produces calibration files to be used as a correction for dark current in science images. We describe the long-term growth of hot pixels and the impacts that UVIS Charge Transfer Efficiency (CTE) losses, postflashing, and proximity to the readout amplifiers have on the population. We also discuss the evolution of the median dark current, which has been slowly increasing since the start of the mission and is currently ~6 e-/hr/pix, averaged across each chip. We outline the current algorithm for creating UVIS dark calibration files, which includes aggressive cosmic ray masking, image combination, and hot pixel flagging. Calibration products are available to the user community, typically 3-5 days after initial processing, through the Calibration Database System (CDBS). Finally, we discuss various improvements to the calibration and monitoring procedures. UVIS dark monitoring will continue throughout and beyond HST’s current proposal cycle.

  2. Evaluation of quality assurance calibration results based on repeated calibrations

    International Nuclear Information System (INIS)

    To ensure quality assurance of the calibration results, as indicated by the UNE-EN ISO / IEC 17025:2005 in paragraph 5.9, the laboratory has established procedures for quality control of its activity. Thus, the laboratory participates in both inter-laboratory intercomparison exercises, cycle through the entire range of radiation qualities reflected in the scope of its accreditation, such as intra-laboratory intercomparison exercises. In this case, repeat quarterly by two different operators both the calibration of an ionization chamber irradiation of a direct reading personal dosimeter.

  3. The KLOE Online Calibration System

    Institute of Scientific and Technical Information of China (English)

    E.Pasqualucci

    2001-01-01

    Based on all the features of the KLOE online software,the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed.Acalibration manager process controls the system,implementing the interface to the online system,receiving information from the run control and translating its state transitions to a separate state machine.It acts as a " calibration run controller"and performs failure recovery when requested by a set of process checkers.The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms.A client library and C,fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an bool-like interface.Several calibration processes running in parallel in a destributed,multiplatform environment can fill the same histograms,allowing fast external information check.A monitor thread allow remote browsing for visual inspection,Pre-filtered data are read in nonprivileged spy mode from the data acquisition system via the Kloe Integrated Dataflow,privileged spy mode from the data acquisiton system via the Kole Integrated Dataflow.The main characteristics of the system are presented.

  4. Facility for dosimetric instrument calibration

    International Nuclear Information System (INIS)

    A structure is designed consisting of a rotary support of containers with radiation sources and of a rotary plug mounted above the sources. A support post with a slide rest and arms rotating around the post longitudinal axis is mounted in the centre of the container support. THe arms support instruments to be calibrated. The colimation cone of the respective source is directed to the tensor of the instrument being calibrated. The slide rest is balanced using a counterpoise mounted in the support post. Sources are not removed from the containers in source change during measurement. The support can hold more containers and the slide rest can support more instruments to be calibrated than the existing configurations. (M.D.). 2 figs

  5. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  6. Optimal calibration of nuclear instrumentation

    International Nuclear Information System (INIS)

    Accurate knowledge of core power level is essential for the safe and efficient operation of nuclear power plants. Ionization chambers located outside the reactor core have the necessary reliability and response time characteristics and have been used extensively to indicate power level. The calibration of the ion chamber, and associated nuclear instrumentation (NI), has traditionally been based on the thermal power in the secondary coolant system. The usual NI calibration procedure consists of establishing steady-state operating conditions, calorimetrically determining the power at the secondary side of the steam generator, and adjusting the NI output to correspond to the measured thermal power. This study addresses certain questions including; (a) what sampling rate should be employed, (b) how many measurements are required, and (c) how can additional power level related information such as primary coolant loop measurements and knowledge of plant dynamics be included in the calibration procedure

  7. The Third VLBA Calibrator Survey

    CERN Document Server

    Petrov, L A; Fomalont, E; Gordon, D

    2005-01-01

    This paper presents the third extension to the Very Large Baseline Array (VLBA) Calibrator Survey, containing 360 new sources not previously observed with very long baseline interferometry (VLBI). The survey, based on three 24 hour VLBA observing sessions, fills the areas on the sky above declination -45 deg where the calibrator density is less than one source within a 4 deg radius disk at any given direction. The positions were derived from astrometric analysis of the group delays determined at 2.3 and 8.4 GHz frequency bands using the Calc/Solve package. The VCS3 catalogue of source positions, plots of correlated flux density versus the length of projected baseline, contour plots and fits files of naturally weighted CLEAN images as well as calibrated visibility function files are available on the Web at http://gemini.gsfc.nasa.gov/vcs3

  8. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  9. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  10. Uniformity calibration for ICT image

    International Nuclear Information System (INIS)

    The uniformity of ICT image is impaired by beam hardening and the inconsistency of detector units responses. The beam hardening and the nonlinearity of the detector's output have been analyzed. The correction factors are determined experimentally by the detector's responses with different absorption length. The artifacts in the CT image of a symmetrical aluminium cylinder have been eliminated after calibration. (author)

  11. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  12. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  13. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz;

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  14. Autonomous Attitude Sensor Calibration (ASCAL)

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1998-01-01

    In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  15. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values...

  16. Recommended Inorganic Chemicals for Calibration.

    Science.gov (United States)

    Moody, John R.; And Others

    1988-01-01

    All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to instrumental parameters. Discusses the preparation of standard solutions and provides a critical evaluation of available materials. Lists elements by group and discusses the purity and uses of each. (MVL)

  17. Calibration of personnel dose meters

    International Nuclear Information System (INIS)

    Methods of calibrating both film and thermoluminescent dose meters (TLD) to photon and electron radiations are described. K fluorescent X-rays, heavily filtered X-ray beams, and isotope gamma rays are used at the Los Alamos calibration facility to measure the energy and angular response of radiation detectors over a photon energy range of 10 to 1000keV. Beam spectra, alignment, size and uniformity are discussed. The energy and angular response of dose meters to electrons is measured with beta-emitting isotopes varying in maximum energy from 770 to 2300keV. A free-air ionization chamber is the primary standard used in the measurement of photon radiation. Thimble-sized ionization chambers, calibrated to the free-air chamber, serve as secondary standards. Electron radiation is measured with an end-window ionization chamber having a 7mg/cm2 approximately tissue-equivalent plastic wall. Photon calibrations are performed with personnel dose meters in air, on a phantom, and in a phantom. If the personnel dose meter and secondary chamber are both in air, or both on or both in a phantom, the response of the LiF TLD chip, relative to the secondary chamber, is the same. However, the film dose meter shows a larger relative response on or in the phantom than in air. With beta sources, personnel dose meters are calibrated by exposing the dose meter either in air to a high-dose-rate 90Sr (90Y) source, or in contact with a low-dose-rate uranium source. The differences in personnel dose meter response observed between the two methods are discussed. The personnel dose meters are calibrated to determine penetrating doses by placing the secondary chamber 1cm deep in a phantom and the personnel dose meter on the surface, with a filter over the TLD to simulate 1cm depth. Non-penetrating dose calibrations are measured by placing both chamber and dose meter on the surface of the phantom. (author)

  18. Mathematical efficiency calibration in gamma spectroscopy

    CERN Document Server

    Kaminski, S; Wilhelm, C

    2003-01-01

    Mathematical efficiency calibration with the LabSOCS software was introduced for two detectors in the measurement laboratory of the Central Safety Department of Forschungszentrum Karlsruhe. In the present contribution, conventional efficiency calibration of gamma spectroscopy systems and mathematical efficiency calibration with LabSOCS are compared with respect to their performance, uncertainties, expenses, and results. It is reported about the experience gained, and the advantages and disadvantages of both methods of efficiency calibration are listed. The results allow the conclusion to be drawn that mathematical efficiency calibration is a real alternative to conventional efficiency calibration of gamma spectroscopy systems as obtained by measurements of mixed gamma ray standard sources.

  19. Sources of uncertainty in vicarious calibration: understanding calibration target reflectance

    OpenAIRE

    Anderson, K.; Milton, E. J.; Rollin, E.M.

    2003-01-01

    A field experiment investigated the hypothesis that the nadir reflectance of calibration surface substrates (asphalt and concrete) remains stable over a range of time-scales. Measurable differences in spectral reflectance factors were found over periods as short as 30 minutes. Multi-date reflectance measurements were compared using ANOVA and found to differ significantly (p = 0.001). Surface reflectance showed a relationship with the relative proportion of diffuse irradiance, over periods ...

  20. Extracting the MESA SR4000 calibrations

    Science.gov (United States)

    Charleston, Sean A.; Dorrington, Adrian A.; Streeter, Lee; Cree, Michael J.

    2015-05-01

    Time-of-flight range imaging cameras are capable of acquiring depth images of a scene. Some algorithms require these cameras to be run in `raw mode', where any calibrations from the off-the-shelf manufacturers are lost. The calibration of the MESA SR4000 is herein investigated, with an attempt to reconstruct the full calibration. Possession of the factory calibration enables calibrated data to be acquired and manipulated even in "raw mode." This work is motivated by the problem of motion correction, in which the calibration must be separated into component parts to be applied at different stages in the algorithm. There are also other applications, in which multiple frequencies are required, such as multipath interference correction. The other frequencies can be calibrated in a similar way, using the factory calibration as a base. A novel technique for capturing the calibration data is described; a retro-reflector is used on a moving platform, which acts as a point source at a distance, resulting in planar waves on the sensor. A number of calibrations are retrieved from the camera, and are then modelled and compared to the factory calibration. When comparing the factory calibration to both the "raw mode" data, and the calibration described herein, a root mean squared error improvement of 51:3mm was seen, with a standard deviation improvement of 34:9mm.

  1. Radiometric Calibration of Osmi Imagery Using Solar Calibration

    Science.gov (United States)

    Lee, Dong-Han; Kim, Yong-Seung

    2000-12-01

    OSMI (Ocean Scanning Multi-Spectral Imager) raw image data (Level 0) were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function) and the solar incidence angle (¥â,¥è) of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  2. Calibration and Validation of Measurement System

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Riemann, Sven; Knapp, Wilfried

    The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype.......The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype....

  3. Attitude Sensor and Gyro Calibration for Messenger

    Science.gov (United States)

    O'Shaughnessy, Daniel; Pittelkau, Mark E.

    2007-01-01

    The Redundant Inertial Measurement Unit Attitude Determination/Calibration (RADICAL(TM)) filter was used to estimate star tracker and gyro calibration parameters using MESSENGER telemetry data from three calibration events. We present an overview of the MESSENGER attitude sensors and their configuration is given, the calibration maneuvers are described, the results are compared with previous calibrations, and variations and trends in the estimated calibration parameters are examined. The warm restart and covariance bump features of the RADICAL(TM) filter were used to estimate calibration parameters from two disjoint telemetry streams. Results show that the calibration parameters converge faster with much less transient variation during convergence than when the filter is cold-started at the start of each telemetry stream.

  4. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  5. Automatic calibration system for pressure transducers

    Science.gov (United States)

    1968-01-01

    Fifty-channel automatic pressure transducer calibration system increases quantity and accuracy for test evaluation calibration. The pressure transducers are installed in an environmental tests chamber and manifolded to connect them to a pressure balance which is uniform.

  6. Quality control for dose calibrators

    International Nuclear Information System (INIS)

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  7. Spinning angle optical calibration apparatus

    Science.gov (United States)

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  8. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  9. Binary Classifier Calibration: Non-parametric approach

    OpenAIRE

    Naeini, Mahdi Pakdaman; Cooper, Gregory F.; Hauskrecht, Milos

    2014-01-01

    Accurate calibration of probabilistic predictive models learned is critical for many practical prediction and decision-making tasks. There are two main categories of methods for building calibrated classifiers. One approach is to develop methods for learning probabilistic models that are well-calibrated, ab initio. The other approach is to use some post-processing methods for transforming the output of a classifier to be well calibrated, as for example histogram binning, Platt scaling, and is...

  10. WCDMA User Equipment Output Power Calibration

    OpenAIRE

    Folkeson, Tea

    2003-01-01

    To save time in Flextronics high volume production, the time for test and calibration of mobile telephones need to be as short and accurate as possible. In the wideband code division multiple access (WCDMA) case, the output power calibration is the most critical calibration concerning accuracy. The aim with this thesis was to find a faster calibration method than the one that exists today and still retain accuracy. The Third Generation Partnership Project (3GPP) outlines the requirements of ...

  11. GREAT/SOFIA atmospheric calibration

    OpenAIRE

    Guan, Xin; Stutzki, Jürgen; Graf, Urs U.; Güsten, Rolf; Okada, Yoko; Torres, Miguel Angel Requena; Simon, Robert; Wiesemeyer, Helmut

    2012-01-01

    The GREAT observations need frequency-selective calibration across the passband for the residual atmospheric opacity at flight altitude. At these altitudes the atmospheric opacity has both narrow and broad spectral features. To determine the atmospheric transmission at high spectral resolution, GREAT compares the observed atmospheric emission with atmospheric model predictions, and therefore depends on the validity of the atmospheric models. We discusse the problems identified in this compari...

  12. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  13. Colour calibration for colour reproduction

    OpenAIRE

    Emmel, P.; R. D. Hersch

    2000-01-01

    Due to the proliferation of low-cost colour devices (digital colour cameras, scanners, printers etc.) during the last few years, colour calibration has become an important issue. Such devices should faithfully reproduce colour images, but experience shows they don't. Among the main reasons, we note the diversity of acquisition, display and printing technologies which makes standardization difficult. Each device has a different gamut, i.e. a different set of colours that it can acquire or repr...

  14. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239Pu, 187Re, and 238U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  15. ASCAL: Autonomous Attitude Sensor Calibration

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1999-01-01

    Abstract In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  16. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  17. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  18. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  19. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  20. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  1. A Numerical Simulator for Noise Calibration Studies

    OpenAIRE

    Racette, Paul; Clune, Tom; Wong, Mark; Walker, David; Coakley, Kevin; Splett, Jolene; Rivers, Derick; Leonard, Robert; Boone, Ed

    2012-01-01

    Frequent calibration using noise references is used to reduce the effects of time varying fluctuations that naturally occur within sensitive radiometer receivers. Over the years, calibration architectures and processing algorithms have become more sophisticated. Predicting the performance of a given calibration architecture often requires expensive prototyping of hardware; optimizing processing algorithms for nonstationary fluctuations is a challenge. Measurement uncertainty is a figure of me...

  2. 48 CFR 908.7113 - Calibration services.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Calibration services. 908... ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7113 Calibration services. Orders for calibration services may be placed with the National Institute of...

  3. MODIS Radiometric Calibration and Uncertainty Assessment

    Science.gov (United States)

    Xiong, Xiaoxiong; Chiang, Vincent; Sun, Junqiang; Wu, Aisheng

    2011-01-01

    Since launch, Terra and Aqua MODIS have collected more than II and 9 years of datasets for comprehensive studies of the Earth's land, ocean, and atmospheric properties. MODIS observations are made in 36 spectral bands: 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration and uncertainty requirements. As a result, MODIS was designed and built with a set of state of the art on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated if necessary. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and discusses details of its on-orbit calibration uncertainties. It assesses uncertainty contributions from individual components and differences between Terra and Aqua MODIS due to their design characteristics and on-orbit periormance. Also discussed in this paper is the use of MODIS LIB uncertainty index CUI) product.

  4. New method for calibration of sun photometers

    Institute of Scientific and Technical Information of China (English)

    H.H.Asadov; I.G.Chobanzadeh

    2009-01-01

    A new method for calibration of sun photometers based on Bouguer-Beer law is proposed.The developed basic equation of calibration makes it possible to formulate the derivative methods of calibration on the basis of photometric measurements upon optical air masses,the ratio of which is an integer number.

  5. Net analyte signal calculation for multivariate calibration

    NARCIS (Netherlands)

    Ferre, J.; Faber, N.M.

    2003-01-01

    A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the

  6. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  7. Borexino calibrations: Hardware, Methods, and Results

    CERN Document Server

    Back, H; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Avanzini, M Buizza; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; von Feilitzsch, F; Fernandes, G; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kayunov, A; Kidner, S; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Rountree, D; Sabelnikov, A; Saldanha, R; Salvo, C; Schonert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2012-01-01

    Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements.

  8. Calibration of detector sensitivity in positron cameras

    International Nuclear Information System (INIS)

    An improved method for calibrating detector sensitivities in a positron camera has been developed. The calibration phantom is a cylinder of activity placed near the center of the camera and fully within the field of view. The calibration data is processed in such a manner that the following two important properties are achieved. The estimate of a detector sensitivity is unaffected by the sensitivities of the other detectors. The estimates are insensitive to displacements of the calibrating phantom from the camera center. Both of these properties produce a more accurate detector calibration

  9. ATLAS calorimeters energy calibration for jets

    International Nuclear Information System (INIS)

    The calibration of ATLAS barrel calorimeters (including pre shower system, electromagnetic Liquid Argon calorimeter and scintillating hadron tile calorimeter) was done by standard calibration and weighting technique approaches. The standard calibration gives the bad linearity for hadron non compensated calorimeter. The calibration with weighting technique, in comparison with standard calibration, restores linearity and improves energy resolution up to (σ/E)2 = (38.6%/√E)2 + (1.5%)2 for η 0.6. 6 refs., 4 figs., 1 tab

  10. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  11. MODIS Instrument Operation and Calibration Improvements

    Science.gov (United States)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  12. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  13. Multi-Axis Accelerometer Calibration System

    Science.gov (United States)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  14. Laser Calibration of an Impact Disdrometer

    Science.gov (United States)

    Lane, John E.; Kasparis, Takis; Metzger, Philip T.; Jones, W. Linwood

    2014-01-01

    A practical approach to developing an operational low-cost disdrometer hinges on implementing an effective in situ adaptive calibration strategy. This calibration strategy lowers the cost of the device and provides a method to guarantee continued automatic calibration. In previous work, a collocated tipping bucket rain gauge was utilized to provide a calibration signal to the disdrometer's digital signal processing software. Rainfall rate is proportional to the 11/3 moment of the drop size distribution (a 7/2 moment can also be assumed, depending on the choice of terminal velocity relationship). In the previous case, the disdrometer calibration was characterized and weighted to the 11/3 moment of the drop size distribution (DSD). Optical extinction by rainfall is proportional to the 2nd moment of the DSD. Using visible laser light as a means to focus and generate an auxiliary calibration signal, the adaptive calibration processing is significantly improved.

  15. The Palomar Testbed Interferometer Calibrator Catalog

    CERN Document Server

    Van Belle, G T; Creech-Eakman, M J; Coyne, J; Boden, A F; Akeson, R L; Ciardi, D R; Rykoski, K M; Thompson, R R; Lane, B F

    2007-01-01

    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional $\\approx 1...

  16. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel...

  17. Protocols for calibrating multibeam sonar

    OpenAIRE

    Foote, Kenneth G.; Chu, Dezhang; Hammar, Terence R.; Baldwin, Kenneth C.; Mayer, Larry A.; Hufnagle, Lawrence C. jr.; Jech, J. Michael

    2005-01-01

    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University o...

  18. Calibration of TOB+ Thermometer's Cards

    CERN Document Server

    Banitt, Daniel

    2014-01-01

    Motivation - Under the new upgrade of the CMS detector the working temperature of the trackers had been reduced to -27 Celsius degrees. Though the thermal sensors themselves (Murata and Fenwal thermistors) are effective at these temperatures, the max1542 PLC (programmable logic controller) cards, interpreting the resistance of the thermal sensors into DC counts usable by the DCS (detector control system), are not designed for these temperatures in which the counts exceed their saturation and therefor had to be replaced. In my project I was in charge of handling the emplacement and calibration of the new PLC cards to the TOB (tracker outer barrel) control system.

  19. Scintillation camera brightness calibration apparatus

    International Nuclear Information System (INIS)

    Circuitry is described for calibrating the brightness of a cathode ray tube display and recording apparatus comprising: 1) intensity control means for adjusting the intensity of the cathode ray tube beam; 2) light sensitive means disposed to receive light emitted from the cathode ray tube and generating a first electrical signal having a magnitude dependent upon the intensity of the emitted light; 3) reference signal generating means for generating a second electrical signal of predetermined magnitude; and 4) electrical signal comparison means coupled to the light sensitive means and the reference signal generating means for comparing the magnitude of the first and second electrical signals. (author)

  20. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz; Petersen, Jan Raagaard; Nielsen, Otto V

    2000-01-01

    uniquely the parameters for a given data set. Therefore, a magnetometer may be characterized inexpensively in the Earth's magnetic-field environment. This procedure has been used successfully in the pre-flight calibration of the state-of-the-art magnetometers on board the magnetic mapping satellites Orsted...... of a magnetic field, three scale factors for normalization of the axes and three non-orthogonality angles which build up an orthogonal system intrinsically in the sensor. The advantage of this method compared with others lies in its linear least squares estimator, which finds independently and...

  1. Percutaneous transhepatic fine calibre cholangioscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klose, K.J.; Thelen, M.; Schild, H.H.

    1988-07-01

    Percutaneous transhepatic fine calibre cholangioscopy is described. A specially developed transparent instrument is used, which makes it unnecessary to have a steerable endoscope; visualisation of the biliary tree is of diagnostic value for assessing biliary stenoses due to tumours (choice of biopsy site, extent of intraductal radiation therapy) and for the assessment of anastomoses between the biliary system and the gut (condition of the mucosa, stenoses). In the presence of percutaneous biliary drainage, the method has little utility. Extension of the method for treating intraductal stones may be possible if in future a useful lumen can be added to the fine endoscope.

  2. MODIS Solar Reflective Calibration Traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  3. MODIS solar reflective calibration traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  4. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    Science.gov (United States)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  5. Herschel SPIRE FTS Relative Spectral Response Calibration

    CERN Document Server

    Fulton, Trevor; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan

    2014-01-01

    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose n...

  6. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  7. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  8. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  9. Calibration of beta dosimeter and personal dosimeter

    International Nuclear Information System (INIS)

    This paper introduces ISO standard ISO 6980 which prepared especially for the calibration of beta dosimeter and personal dosimeter. The standard has three aspects including method of production of reference beta particle radiations, calibration fundamentals related to basic quantities characterizing the radiation field, and calibration of area and personal dosemters and the determination of their response as a function of beta radiation energy and angle of incidence. Here particular emphasis is placed on the determination of basic quantity of tissue absorbed dose at a depth of 0.07 mm in the tissue slab phantom and calibration procedure by mean of the calibration quantity of directional dose equivalent H'(0.07, Ω) and personal dose equivalent Hp (0.07, Ω). Finally, combined standard uncertainty for the determination of absorbed dose rate and component uncertainties of calibration is given as examples. (authors)

  10. Calibration biases in logical reasoning tasks

    OpenAIRE

    Guillermo Macbeth; Alfredo López Alonso; Eugenia Razumiejczyk; Rodrigo Sosa; Carolina Pereyra; Humberto Fernández

    2013-01-01

    The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are...

  11. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  12. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  13. Camera calibration from surfaces of revolution

    OpenAIRE

    Wong, KYK; Mendonça, PRS; Cipolla, R.

    2003-01-01

    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. ...

  14. Calibration metrology for fixed irradiation sensors

    International Nuclear Information System (INIS)

    After having recalled the regulatory and technical framework of the calibration of radioprotection measurement instruments, and outlined some technical and operational constraints, the authors report the development of an in situ calibration methodology, i.e. without displacement of the sensor. After the presentation of the calibration chain (from the measurement given by a fixed sensor to the reference value given by a primary standard), they indicate the definition and calculation of the different calibration coefficients allowing the linking up of the different levels, and also the taking of uncertainties into account. They finally report the validation of results

  15. The calibration system for the GERDA experiment

    International Nuclear Information System (INIS)

    The GERDA experiment uses the neutrinoless double beta decay to probe three fundamental questions in neutrino physics - Are they Dirac or Majorana particles? What is their absolute mass? What is the mass hierarchy of the three generations? In my talk I present the calibration system for the Ge semiconductor diodes enriched in Ge-76. The system is used to set the energy scale and calibrate the pulse shapes which will be used to further reject background events. The lowest possible background is crucial for the whole experiment and therefore the calibration system must not interfere with the data acquisition phase while at the same time operate efficiently during the calibration runs.

  16. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  17. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  18. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li-dars......-ters pertaining in the different calibration periods. This is supported by sliding-window analyses of one lidar at one location where the same order of variation is observed as between pre-service and post-service calibrations....

  19. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  20. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  1. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  2. Tool calibration system for micromachining system

    Science.gov (United States)

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  3. Efficiency calibration of low background gamma spectrometer

    International Nuclear Information System (INIS)

    A method of efficiency calibration is described. The authors used standard ores of U, Ra and Th (power form), KCl and Cs-137 sources to do calibration volume-sources which were directly placed on the detector end cap. In such a measuring geometry, it is not necessary to make coincidence-summing correction. The efficiency calibration curve obtained by the method were compared with results measured by Am-241, Cd-109 and Eu-152 calibration sources. The agree in the error of about 5%

  4. FY2008 Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  5. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  6. Clustered Calibration: An Improvement to Radio Interferometric Direction Dependent Self-Calibration

    CERN Document Server

    Kazemi, Sanaz; Zaroubi, Saleem

    2013-01-01

    The new generation of radio synthesis arrays, such as LOFAR and SKA, have been designed to surpass existing arrays in terms of sensitivity, angular resolution and frequency coverage. This evolution has led to the development of advanced calibration techniques that ensure the delivery of accurate results at the lowest possible computational cost. However, the performance of such calibration techniques is still limited by the compact, bright sources in the sky, used as calibrators. It is important to have a bright enough source that is well distinguished from the background noise level in order to achieve satisfactory results in calibration. We present "clustered calibration" as a modification to traditional radio interferometric calibration, in order to accommodate faint sources that are almost below the background noise level into the calibration process. The main idea is to employ the information of the bright sources' measured signals as an aid to calibrate fainter sources that are nearby the bright sources...

  7. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  8. The physical principles of XRF calibrations

    International Nuclear Information System (INIS)

    Full text: XRF Control and calibration software has come a long way in recent years. Advances in the multiple regression software sophistication and speed of computers have provided an essential resource to the XRF analyst. Over recent years there has been a trend amongst some analysts to develop XRF calibrations based exclusively on the statistical information given by calibration software. Multiple regression statistics are designed for non-correlated data sets but give unpredictable results if there are significant correlations in the standards used. This is typical for calibrations weighted towards certified reference materials (CRM's) which, being natural materials, contain correlated concentrations. Purely statistical methods in calibration development have applicability only over very short concentration ranges and for materials whose composition varies little. Beyond these ranges, the calibration has the potential to be unstable and has been known to produce significant deviations in analysis of unknown samples. The statistical information generated during XRF calibrations can be a very useful tool when used in conjunction with knowledge of the physics behind the correction factors applied. The matrix coefficients represent physical absorption/enhancement effects within the sample and are not arbitrary numbers used to get a good fit to the calibration line. Inappropriate use of matrix factors and overlap factors can produce low RMS values but erroneous results in unknown samples. This talk will contain examples to demonstrate hazards with different calibration strategies and will include coverage of the following topics: physical effects occurring within the sample as a result of X-ray irradiation; use of multiple regression statistics and what role it plays in the calibration; calibration strategies using synthetic and CRM standards; determining appropriate theoretical and semi-empirical matrix corrections and line overlap factors. Copyright (1999

  9. Energy calibration by silicon resonance: Completing system calibration with one reference material

    Energy Technology Data Exchange (ETDEWEB)

    Healy, M.J.F. [Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)]. E-mail: m.j.f.healy@cranfield.ac.uk

    2006-08-15

    Accelerator energy calibration is seldom a swift process. A rapid calibration method using the proton elastic scattering resonances of silicon was compared to the gamma resonance method. The silicon method proved rapid and convenient given that silicon is also being explored as a means of solid angle calibration, but only moderately accurate. {sup 13}C was identified as a particularly good material for calibration by the superior and established method of gamma resonance.

  10. Radiological standards and calibration laboratory capabilities

    International Nuclear Information System (INIS)

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29

  11. An operational analysis of system calibration

    OpenAIRE

    Gaver, Donald Paul; Mutlu, Hasan B.

    1988-01-01

    Mathematical models are proposed for studying the impact of mis-calibration upon operational effectiveness. Methodology for assessing the system effectiveness and an approach for optimizing the effectiveness of a calibration program are examined. The theory and application are discussed, and the results of some specific and convenient models are presented.

  12. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  13. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques;

    2011-01-01

    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity...

  14. Microfabricated field calibration assembly for analytical instruments

    Science.gov (United States)

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.; Rodacy, Philip J.; Simonson, Robert J.

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  15. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results at...

  16. Self-calibration and biconvex compressive sensing

    Science.gov (United States)

    Ling, Shuyang; Strohmer, Thomas

    2015-11-01

    The design of high-precision sensing devises becomes ever more difficult and expensive. At the same time, the need for precise calibration of these devices (ranging from tiny sensors to space telescopes) manifests itself as a major roadblock in many scientific and technological endeavors. To achieve optimal performance of advanced high-performance sensors one must carefully calibrate them, which is often difficult or even impossible to do in practice. In this work we bring together three seemingly unrelated concepts, namely self-calibration, compressive sensing, and biconvex optimization. The idea behind self-calibration is to equip a hardware device with a smart algorithm that can compensate automatically for the lack of calibration. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations {\\boldsymbol{y}}={\\boldsymbol{D}}{\\boldsymbol{A}}{\\boldsymbol{x}}, where both {\\boldsymbol{x}} and the diagonal matrix {\\boldsymbol{D}} (which models the calibration error) are unknown. By ‘lifting’ this biconvex inverse problem we arrive at a convex optimization problem. By exploiting sparsity in the signal model, we derive explicit theoretical guarantees under which both {\\boldsymbol{x}} and {\\boldsymbol{D}} can be recovered exactly, robustly, and numerically efficiently via linear programming. Applications in array calibration and wireless communications are discussed and numerical simulations are presented, confirming and complementing our theoretical analysis.

  17. Calibration biases in logical reasoning tasks

    Directory of Open Access Journals (Sweden)

    Guillermo Macbeth

    2013-08-01

    Full Text Available The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are distinguished in their cognitive processing. Results suggests that monotonous compound propositions are prone to underconfi dence. An heuristic approach to this phenomenon is proposed. The activation of a monotony heuristic would produce an illusion of simplicity that generates the calibration bias. These evidence is analysed in the context of the metacognitive modeling of calibration phenomena.

  18. DECal: A Spectrophotometric Calibration System For DECam

    CERN Document Server

    Marshall, J L; DePoy, D L; Prochaska, Travis; Allen, Richard; Behm, Tyler W; Martin, Emily C; Veal, Brannon; Villanueva,, Steven; Williams, Patrick; Wise, Jason

    2013-01-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (about 1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 < lambda < 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determ...

  19. Calibration concepts for the MUSE integral field

    Science.gov (United States)

    Kelz, Andreas; Bauer, Svend M.; Roth, Martin M.

    2006-06-01

    The phase-A design study of the Calibration Unit (CU) for the Multi-Unit Spectroscopic Explorer (MUSE) is presented. MUSE is an integral-field spectrograph for the 2nd generation of VLT instruments and offers a relative wide integral-field, adaptive-optics assisted spatial resolution, and a wavelength coverage between 465 and 930 nm. MUSE is a project of seven European institutes and is led by the Centre de Recherche Atronomique de Lyon (CRAL). Amongst other work-packages, the Astrophysical Institute Potsdam (AIP) is responsible for the Calibration Unit. The paper describes the calibration requirements, including issues related to spectral, image quality, and geometrical calibration. The opto-mechanical layout of the calibration unit is presented and the use of focal plane masks to evaluate image distortions and PSF degradations is explained.

  20. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  1. Assessing students' metacognitive calibration with knowledge surveys

    Science.gov (United States)

    Lindsey, Beth A.; Nagel, Megan

    2013-01-01

    "Calibration" is an aspect of metacognition that describes how well students assess their own knowledge. One tool that can help to assess student calibration is the knowledge survey (KS). On a KS, students rate their confidence in their ability to answer questions related to course content. A comparison of a student's confidence level with their actual performance on course exams gives an indication of the student's metacognitive calibration. We report on a study that explores students' responses to a KS in introductory physics and chemistry courses serving both STEM and non-STEM populations. In many courses, Delta (the difference between KS-score and final exam score, a measure of calibration) was anti-correlated with final exam performance. No relationship was found between Delta and students' scientific reasoning abilities. We also report preliminary findings on how calibration differs for questions of a quantitative nature vs. those of a more conceptual nature.

  2. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  3. Parallel Calibration for Sensor Array Radio Interferometers

    CERN Document Server

    Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J

    2016-01-01

    In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.

  4. Systems and methods of eye tracking calibration

    DEFF Research Database (Denmark)

    2014-01-01

    parameters relate to a calibration of a calculation of gaze information of a user of the device, where the gaze information indicates where the user is looking. While the one or more objects are displayed, eye movement information associated with the user is determined, which indicates eye movement of one...... or more eye features associated with at least one eye of the user. The eye movement information is associated with a first object location of the one or more objects. The one or more calibration parameters are calculated based on the first object location being associated with the eye movement information.......Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  5. Absolute sensitivity calibration of extreme ultraviolet photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  6. Calibration of phase detector using IQ modulator

    International Nuclear Information System (INIS)

    The beam energy of the J-PARC Linac is calculated by TOF (Time-of-Flight) method with the flight distance and beam phases at the two of measurement points. Because the accuracy of the beam energy measurement is directly depending on the errors in the phase measurement system, all 111 beam phase monitors are calibrated annually. Here, we adopted a calibration method using the IQ modulator as a method for carrying out more simply and accurately, calibration of the phase detection circuit is provided to the phase detection system. In the calibration, we have used the trombone circuit for the adjustment of the reference frequency, but it is thought that the procedure using an IQ modulator is more simple and accurate, and it reduces the time for the calibration. We describe the procedure of the phase detection system and the method of energy calculation. In addition, the general descriptions of the IQ modulation specification and its performances are introduced. (author)

  7. Calibration of Sr-90 ophthalmic applicators

    International Nuclear Information System (INIS)

    The purpose of this paper is to alert users of Sr-90 ophthalmic applicators about potential large errors in calibration of these devices. A discrepancy of more than 50% in calibration of Sr-90 ophthalmic applicators between the US National Institute of Standards and Technology (NIST) and one foreign manufacturer (the world's only remaining supplier) has been reported. A single-plane Sr-90 ophthalmic applicator was calibrated by the manufacturer, by NIST, and by the University of Wisconsin. The manufacturer's close rate calibration is confined to a 3-mm-diameter active area, while NIST measures all beta radiation emitted into a 2-PI solid angle. The discrepancy was verified by means of a technique based on that of NIST. Reports of calibrations at NIST of applicators made by several American manufacturers (no longer available) indicate that large discrepancies exist for other manufacturers as well

  8. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  9. Selection of stars to calibrate Gaia

    Science.gov (United States)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  10. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR

    International Nuclear Information System (INIS)

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba

  11. SMAP Radar Processing and Calibration

    Science.gov (United States)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  12. A Cryogenic Infrared Calibration Target

    CERN Document Server

    Wollack, Edward J; Rinehart, Stephan A

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, $R \\le 0.003$, from $800-4,800\\,{\\rm cm}^{-1}$ $(12-2\\,\\mu$m). Upon expanding the spectral range under consideration to $400-10,000\\,{\\rm cm}^{-1}$ $(25-1\\,\\mu$m) the observed performance gracefully degrades to $R \\le 0.02$ at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to $\\sim4\\,$K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials -- Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder -- are character...

  13. Fabrication and Calibration of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-01-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z approximately 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (approximately 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the micro shutter arrays.

  14. HIBP calibration on WEGA stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Podoba, Yuriy; Otte, Matthias; Wagner, Friedrich [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Zhezhera, Alexander; Chmyga, Alexander; Kozachok, Alexander; Komarov, Alexander; Bondarenko, Ivan; Deshko, Galina; Khrebtov, Sergey; Krupnik, Ludmila [Kharkov Institute of Plasma Physics, Kharkov (Ukraine)

    2009-07-01

    The heavy ion beam probe (HIBP) is an established non-perturbing diagnostic for determining spatial distributions of plasma potential, density, temperature and poloidal magnetic field of magnetically confined plasmas. These quantities can be determined from the change in the ion beam parameters (charge, intensity and trajectory) passing through a plasma volume due to collisions with electrons and interactions with the confining magnetic field. The WEGA HIBP operates with a Na{sup +} with an energy of 39.5 keV and beam current 35 {mu}A. Conventionally the coordinate mapping of the HIBP is provided by ray tracing calculations of the ion beam in the magnetic field. However, it is very difficult to include all physical effects in the model, thus the result of the calculations may significantly differ from the real probing position. In order to improve the mapping precision an additional measurements of the beam position have been provided using a beam detector array inside the vacuum vessel. This allows to compare the measured and calculated ion beam position in order to find out the reasons for the coordinate mismatch and include adjustments in the calculation code. Results of this calibration are presented in this work.

  15. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  16. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities

    International Nuclear Information System (INIS)

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  17. Preliminary evaluation of a Neutron Calibration Laboratory

    International Nuclear Information System (INIS)

    In the past few years, Brazil and several other countries in Latin America have experimented a great demand for the calibration of neutron detectors, mainly due to the increase in oil prospection and extraction. The only laboratory for calibration of neutron detectors in Brazil is localized at the Institute for Radioprotection and Dosimetry (IRD/CNEN), Rio de Janeiro, which is part of the IAEA SSDL network. This laboratory is the national standard laboratory in Brazil. With the increase in the demand for the calibration of neutron detectors, there is a need for another calibration services. In this context, the Calibration Laboratory of IPEN/CNEN, Sao Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new calibration laboratory for neutron detectors. In this work, the ambient equivalent dose rate (H⁎(10)) was evaluated in several positions inside and around this laboratory, using Monte Carlo simulation (MCNP5 code), in order to verify the adequateness of the shielding. The obtained results showed that the shielding is effective, and that this is a low-cost methodology to improve the safety of the workers and evaluate the total staff workload. (author)

  18. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  19. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...... measurements are given for information only....

  20. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for the ultimate and the serviceability limit states. Finally the paper describes a procedure for the practical implementation of...... reliability based code calibration of LRFD based design codes....

  1. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  2. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  3. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  4. Calibration of personal dosimeters: Quantities and terminology

    International Nuclear Information System (INIS)

    The numerical results obtained in the interpretation of individual monitoring of external radiation depend not only on the accurate calibration of the radiation measurement instruments involved, but also on the definition of the quantities in term of which these instruments are calibrated The absence of uniformity in terminology not only makes it difficult to understand properly the scientific and technical literature but can also lead to incorrect interpretation of particular concepts and recommendations. In this paper, brief consideration is given to definition of radiation quantities and terminology used in calibration procedures. (author)

  5. Calibration boards for the ATLAS LAr calorimeters

    International Nuclear Information System (INIS)

    In order to calibrate the ATLAS Liquid Argon (LAr) calorimeters to an accuracy better than 1%, over 16 bit dynamic range, chips have been designed in DMILL technology. The design and performance of a 16 bit DAC, a static low offset operational amplifier and a digital chip to control the calibration boards are presented. A 8 channels board using these chips has also been realised and carefully measured as this module will be replicated 16 times to design the final 128 channels calibration board. (authors)

  6. Global analysis of the phase calibration operation

    Science.gov (United States)

    Lannes, André

    2005-04-01

    A global approach to phase calibration is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory (spanning tree of maximal weight, cycles) and algebraic number theory (lattice, nearest lattice point). The traditional approach can thereby be better understood. In radio imaging and in optical interferometry, the self-calibration procedures must often be conducted with much care. The analysis presented should then help in finding a better compromise between the coverage of the calibration graph (which must be as complete as possible) and the quality of the solution (which must of course be reliable).

  7. Design of a neutron source for calibration

    International Nuclear Information System (INIS)

    The neutron spectra produced by an isotopic neutron source located at the center of moderating media were calculated using Monte Carlo method in the aim to design a neutron source for calibration purposes. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices with calibrated neutron sources whose neutron spectra being similar to those met in practice. Here, a 239Pu-Be neutron source was inserted in H2O, D2O and polyethylene cylindrical moderators in order to produce neutron spectra that resembles spectra found in workplaces

  8. Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration

    Directory of Open Access Journals (Sweden)

    W. Jessen

    2015-10-01

    Full Text Available Resource assessment for Concentrated Solar Power (CSP needs accurate Direct Normal Irradiance (DNI measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.

  9. Calibration of routine dosimeters in radiation processing: Validation procedure for in-plant calibration

    Directory of Open Access Journals (Sweden)

    Šećerov Bojana Lj.

    2011-01-01

    Full Text Available The essential prerequisite of radiation dosimetry is to provide quality assurance and documentation that the irradiation procedure has been carried out according to the specification requirement of correct calibration of the chosen dosimetry system. At the Radiation Plant of the Vinča Institute of Nuclear Sciences we compared two recommended protocols of irradiation procedures in the calibration of dosimetry systems in radiation processing: (1 by irradiation of routine dosimeters (ethanol-chlorobenzene - ECB at the calibration laboratory and (2, by in-plant calibration with alanine transfer - dosimeters. The critical point for in-plant calibration is irradiation geometry, so we carefully positioned the phantom carrying both dosimeters in order to minimize dose gradients across the sample. The analysis of results obtained showed that the difference among determined absorbed doses for the construction of calibration curves between these two methods, (alanine vs. ECB, is less than 1%. The difference in combined standard uncertainty for each calibration procedure is 0.1%. These results demonstrate that our in-plant calibration is as good as calibration by irradiation at the calibration laboratory and validates our placement of the irradiation phantom during irradiation.

  10. Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration

    Science.gov (United States)

    Jessen, W.; Wilbert, S.; Nouri, B.; Geuder, N.; Fritz, H.

    2015-10-01

    Resource assessment for Concentrated Solar Power (CSP) needs accurate Direct Normal Irradiance (DNI) measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs) with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA) in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May) show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.

  11. A taxonomy of camera calibration and video projection correction methods

    OpenAIRE

    Radhwan Ben Madhkour; Matei Mancas; Thierry Dutoit

    2015-01-01

    This paper provides a classification of calibration methods for cameras and projectors. From basic homography to complex geometric calibration methods, this paper aims at simplifying the choice of the methods to perform a calibration regarding the complexity of the setup. The classical camera calibration methods are presented. A comparison gives the pros and cons for each method. For the projector calibration, the homography, the structured light methods and the geometric calibration are pres...

  12. Bartolome Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  13. Champion Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W....

  14. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  15. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  16. Calibration device for ultrasonic inspection equipment

    International Nuclear Information System (INIS)

    The inspection equipment is introduced into the reactor vessel and deposited there. The real inspection of the vessel is performed by means of a manipulator arm carrying an ultrasonic transducer field and being desplaceable along nine axes of motion for the inspection of welds. In order to be sure of adequate testing the origin of the field must exactly be known. This is achieved by means of a calibration unit by which the exact zero position in the vessel is fixed, the position of the ultrasonic transducer is calibrated and its angular position can be determined. It has got a spherical calibration body and at least one inlined reflection surface (tuncated cone surface) that can take a fixed position with respect to the ultrasonic transducer. The calibration body and/or the reflection surface are moved with respect to the ultrasonic transducer until the maximum amplitude of the reflected signal is obtained. (DG)

  17. A transmission calibration method for superconducting resonators

    CERN Document Server

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop

    2014-01-01

    A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...

  18. Entry tank calibration in TOR pilot plant

    International Nuclear Information System (INIS)

    The objective of this communication is the description of calibration measurements used for determining the uranium and plutonium mass entry in the fast neutron fuel reprocessing pilot plant (TOR) of Marcoule

  19. Construction of calibration curve for accountancy tank

    International Nuclear Information System (INIS)

    Tanks are equipped in a reprocessing plant for accounting solution of nuclear material. The careful measurement of volume in tanks is very important to implement rigorous accounting of nuclear material. The calibration curve relating the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes. Several calibration curves are usually employed, but it's not explicitly decided how many segment are used, where to select segment, or what should be the degree of polynomial curve. These parameters, i.e., segment and degree of polynomial curve are mutually interrelated to give the better performance of calibration curve. Here we present the construction technique of giving optimum calibration curves and their characteristics. (author)

  20. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  1. Laboratory calibration and characterization of video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Shortis, M. R.; Goad, W. K.

    1990-01-01

    Some techniques for laboratory calibration and characterization of video cameras used with frame grabber boards are presented. A laser-illuminated displaced reticle technique (with camera lens removed) is used to determine the camera/grabber effective horizontal and vertical pixel spacing as well as the angle of nonperpendicularity of the axes. The principal point of autocollimation and point of symmetry are found by illuminating the camera with an unexpanded laser beam, either aligned with the sensor or lens. Lens distortion and the principal distance are determined from images of a calibration plate suitably aligned with the camera. Calibration and characterization results for several video cameras are presented. Differences between these laboratory techniques and test range and plumb line calibration are noted.

  2. Non-iterative method for camera calibration.

    Science.gov (United States)

    Hong, Yuzhen; Ren, Guoqiang; Liu, Enhai

    2015-09-01

    This paper presents a new and effective technique to calibrate a camera without nonlinear iteration optimization. To this end, the centre-of-distortion is accurately estimated firstly. Based on the radial distortion division model, point correspondences between model plane and its image were used to compute the homography and distortion coefficients afterwards. Once the homographies of calibration images are obtained, the camera intrinsic parameters are solved analytically. All the solution techniques applied in this calibration process are non-iterative that do not need any initial guess, with no risk of local minima. Moreover, estimation of the distortion coefficients and intrinsic parameters could be successfully decoupled, yielding the more stable and reliable result. Both simulative and real experiments have been carried out to show that the proposed method is reliable and effective. Without nonlinear iteration optimization, the proposed method is computationally efficient and can be applied to real-time online calibration. PMID:26368490

  3. The twisted cubic and camera calibration

    OpenAIRE

    Buchanan, Thomas

    1988-01-01

    We state a uniqueness theorem for camera calibration in terms of the twisted cubic. The theorem assumes the general linear model and is essentially a reformulation of Seydewitz's star generation theorem.

  4. The PREMOS/PICARD instrument calibration

    Science.gov (United States)

    Schmutz, Werner; Fehlmann, André; Hülsen, Gregor; Meindl, Peter; Winkler, Rainer; Thuillier, Gérard; Blattner, Peter; Buisson, François; Egorova, Tatiana; Finsterle, Wolfgang; Fox, Nigel; Gröbner, Julian; Hochedez, Jean-François; Koller, Silvio; Meftah, Mustapha; Meisonnier, Mireille; Nyeki, Stephan; Pfiffner, Daniel; Roth, Hansjörg; Rozanov, Eugene; Spescha, Marcel; Wehrli, Christoph; Werner, Lutz; Wyss, Jules U.

    2009-08-01

    PREMOS is a space experiment scheduled to fly on the French solar mission PICARD. The experiment comprises filter radiometers and absolute radiometers to measure the spectral and total solar irradiance. The aim of PREMOS is to contribute to the long term monitoring of the total solar irradiance, to use irradiance observations for 'nowcasting' the state of the terrestrial middle atmosphere and to provide long term sensitivity calibration for the solar imaging instrument SODISM on PICARD. In this paper we describe the calibration of the instruments. The filter radiometer channels in the visible and near IR were characterized at PMOD/WRC and the UV channels were calibrated at PTB Berlin. The absolute radiometers were compared with the World Radiometric Reference at PMOD/WRC and a power calibration relative to a primary cryogenic radiometer standard was performed in vacuum and air at NPL.

  5. Strain Gauges Mounted To Retain Calibration

    Science.gov (United States)

    Butler, Barry L.

    1993-01-01

    Silicon-based semiconductor strain gauges mounted in such way they retain original calibration for several years instead of few months. Improvement effected by bonding gauges to ceramic substrates with glasses instead of epoxies as adhesives.

  6. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  7. Calibration system of fiber bragg gratings measurement

    OpenAIRE

    Jelínek, M. (Martin)

    2015-01-01

    This work deals with design of the calibration part of the nuclear power plant containment shape monitoring system. The design and implementation system of the optical filter thermal compensation is described. The control system was implemented in LabVIEW.

  8. Computer Vision Assisted Virtual Reality Calibration

    Science.gov (United States)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  9. Low Power, Self Calibrated Vector Magnetometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project investigates a novel approach to vector magnetometry based on high precision measurements of the total magnetic field. The calibration is...

  10. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. Calibration of the JEM-EUSO detector

    Directory of Open Access Journals (Sweden)

    Gorodetzky P.

    2013-06-01

    Full Text Available In order to unveil the mystery of ultra high energy cosmic rays (UHECRs, JEM-EUSO (Extreme Universe Space Observatory on-board Japan Experiment Module will observe extensive air showers induced by UHECRs from the International Space Station orbit with a huge acceptance. Calibration of the JEM-EUSO instrument, which consists of Fresnel optics and a focal surface detector with 5000 photomultipliers, is very important to discuss the origin of UHECRs precisely with the observed results. In this paper, the calibration before launch and on-orbit is described. The calibration before flight will be performed as precisely as possible with integrating spheres. In the orbit, the relative change of the performance will be checked regularly with on-board and on-ground light sources. The absolute calibration of photon detection efficiency may be performed with the moon, which is a stable light source in the nature.

  12. Low radioactivity spectral gamma calibration facility

    International Nuclear Information System (INIS)

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The 222Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones

  13. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  14. HPS instrument calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory

  15. Commissioning the CMS alignment and calibration framework

    International Nuclear Information System (INIS)

    The CMS experiment has developed a powerful framework to ensure the precise and prompt alignment and calibration of its components, which is a major prerequisite to achieve the optimal performance for physics analysis. The prompt alignment and calibration strategy harnesses computing resources both at the Tier-0 site and the CERN Analysis Facility (CAF) to ensure fast turnaround for updating the corresponding database payloads. An essential element is the creation of dedicated data streams concentrating the specific event information required by the various alignment and calibration workflows. The resulting low latency is required for feeding the resulting constants into the prompt reconstruction process, which is essential for achieving swift physics analysis of the LHC data. This report discusses the implementation and the computational aspects of the alignment and calibration framework. Recent commissioning campaigns with cosmic muons, beam halo and simulated data have been used to gain detailed experience with this framework, and results of this validation are reported.

  16. Absolute calibration of JET ELE system

    International Nuclear Information System (INIS)

    The first Michelson channel of the JET ECE system has been calibrated absolutely using a new high temperature source. The estimated uncertainties are of order +- 20% in the absolute spectral response and +- 10% in the relative spectral shape

  17. Regional Location Calibration in Asia

    Science.gov (United States)

    Steck, L. K.; Hartse, H.; Aprea, C.; Franks, J.; Velasco, A.; Randall, G.; Bradley, C.; Begnaud, M.; Aguilar-Chang, J.

    2002-12-01

    This paper presents a spectrum of issues and efforts involved in improving seismic location performance worldwide. Our efforts are largely designed around providing validated, rigorously calibrated travel times, azimuths, and slownesses along with accurate error estimates. To do so entails a significant effort that includes data mining, data integration, database management, developing optimal 1-, 2-, and 3-D Earth models, using the Earth models to predict wave propagation, developing corrections and errors for travel times, azimuths, and slownesses, and validation of all products. Results presented here will focus on Asia. For the region around station MAKZ in north-central Asia we have looked at several tens of published 1-D velocity models. For each model, travel time calculations were performed, predictions for P and S arrivals were established, and the predicted times were compared to the observed. We will present best-fit models for tectonic provinces out to regional distances from MAKZ. Previous work has shown that Non-stationary Modified Bayesian Kriging of travel time residuals successfully improves regional seismic event location, and this method is being extended to calculate corrections for azimuth and slowness. The ability to krig over 3-D Earth models is also being implemented. In order to produce the most useful corrections, we require accurate ground truth. For this we are continuing efforts to create a location database consisting of the best available seismic event locations and the most accurate and precise travel times. Building this database relies on participation from universities, other NNSA laboratories, and contacts in private industry. Through the kriging procedure we are able to stabilize location algorithms, but the ultimate usefulness of the corrections themselves is directly related to the quality of the ground truth from which the corrections are derived. Indeed, epicentral mislocations from EvLoc using travel time correction

  18. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... temperature-equilibrated and temperature-monitored calibration salt solutions in containers that...

  19. Automatic colorimetric calibration of human wounds

    Directory of Open Access Journals (Sweden)

    Meert Theo

    2010-03-01

    Full Text Available Abstract Background Recently, digital photography in medicine is considered an acceptable tool in many clinical domains, e.g. wound care. Although ever higher resolutions are available, reproducibility is still poor and visual comparison of images remains difficult. This is even more the case for measurements performed on such images (colour, area, etc.. This problem is often neglected and images are freely compared and exchanged without further thought. Methods The first experiment checked whether camera settings or lighting conditions could negatively affect the quality of colorimetric calibration. Digital images plus a calibration chart were exposed to a variety of conditions. Precision and accuracy of colours after calibration were quantitatively assessed with a probability distribution for perceptual colour differences (dE_ab. The second experiment was designed to assess the impact of the automatic calibration procedure (i.e. chart detection on real-world measurements. 40 Different images of real wounds were acquired and a region of interest was selected in each image. 3 Rotated versions of each image were automatically calibrated and colour differences were calculated. Results 1st Experiment: Colour differences between the measurements and real spectrophotometric measurements reveal median dE_ab values respectively 6.40 for the proper patches of calibrated normal images and 17.75 for uncalibrated images demonstrating an important improvement in accuracy after calibration. The reproducibility, visualized by the probability distribution of the dE_ab errors between 2 measurements of the patches of the images has a median of 3.43 dE* for all calibrated images, 23.26 dE_ab for all uncalibrated images. If we restrict ourselves to the proper patches of normal calibrated images the median is only 2.58 dE_ab! Wilcoxon sum-rank testing (p Conclusion The investigators proposed an automatic colour calibration algorithm that ensures reproducible colour

  20. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  1. First results from the MINOS calibration detector

    CERN Document Server

    Vahle, P; Alner, J; Anderson, B; Attree, D; Barker, M; Belias, A; Crone, G; Durkin, T J; Felt, N; Falk, E; Harris, P; Jenner, L; Kordosky, M; Lang, K; Lebedev, A; Lee, R; Longley, N P; Marshak, M; Miyagawa, P; Michael, D G; Morse, R; Musser, J; Nichol, R; Nicholls, T; Oliver, J; Pearce, G; Petyt, D; Proga, M; Rebel, B; Saakyan, R; Smith, C; Sullivan, P; Thomas, J; Weber, A; Wojcicki, S G

    2002-01-01

    The MINOS calibration detector (CalDet) is a small version of the MINOS Near and Far neutrino detectors. A program of exposure to beams of muons, electrons, pions and protons at the CERN PS will provide calibration of the calorimetric and topological response of the Near and Far detectors. In this talk, we briefly discuss the goals and design of the CalDet and present first results from the initial beam exposure. (3 refs).

  2. Camera calibration from road lane markings

    OpenAIRE

    Fung, GSK; Yung, NHC; Pang, GKH

    2003-01-01

    Three-dimensional computer vision techniques have been actively studied for the purpose of visual traffic surveillance. To determine the 3-D environment, camera calibration is a crucial step to resolve the relationship between the 3-D world coordinates and their corresponding image coordinates. A novel camera calibration using the geometry properties of road lane markings is proposed. A set of equations that computes the camera parameters from the image coordinates of the road lane markings a...

  3. Adaptive visual servoing by simultaneous camera calibration

    OpenAIRE

    Pomares, J.; Chaumette, François; Torres, F.

    2007-01-01

    Calibration techniques allow the estimation of the intrinsic parameters of a camera. This paper describes an adaptive visual servoing scheme which employs the visual data measured during the task to determine the camera intrinsic parameters. This approach is based on the virtual visual servoing approach. However, in order to increase the robustness of the calibration several aspects have been introduced in this approach with respect to the previous developed virtual vi...

  4. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  5. Projector Calibration Using a Markerless Plane

    OpenAIRE

    Draréni, Jamil; Roy, Sébastien; Sturm, Peter

    2009-01-01

    In this paper we address the problem of geometric video projector calibration using a markerless planar surface (wall) and a partially calibrated camera. Instead of using control points to infer the camera-wall orientation, we find such relation by efficiently sampling the hemisphere of possible orientations. This process is so fast that even the focal of the camera can be estimated during the sampling process. Hence, physical grids and full knowledge of camera parameters are no longer necess...

  6. Identifiable parameters for parallel robots kinematic calibration

    OpenAIRE

    Besnard, Sébastian; Khalil, Wisama

    2001-01-01

    This paper presents a numerical method for the determination of the identifiable parameters of parallel robots. The special case of Stewart-Gough 6 degrees-offreedom parallel robots is studied for classical and self calibration methods, but this method can be generalized to any kind of parallel robot. The method is based on QR decomposition of the observation matrix of the calibration system. Numerical relations between the identifiable and non identifiable parameters can be obtained.

  7. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  8. Hydraulic Calibrator for Strain-Gauge Balances

    Science.gov (United States)

    Skelly, Kenneth; Ballard, John

    1987-01-01

    Instrument for calibrating strain-gauge balances uses hydraulic actuators and load cells. Eliminates effects of nonparallelism, nonperpendicularity, and changes of cable directions upon vector sums of applied forces. Errors due to cable stretching, pulley friction, and weight inaccuracy also eliminated. New instrument rugged and transportable. Set up quickly. Developed to apply known loads to wind-tunnel models with encapsulated strain-gauge balances, also adapted for use in calibrating dynamometers, load sensors on machinery and laboratory instruments.

  9. Procedures for calibration of brachytherapy sources

    International Nuclear Information System (INIS)

    Brachytherapy source strength verification is a responsibility of the user of these source, in fact of the Medical Physicists in charge of this issue in a Radiotherapy Service. The calibration procedures in the users conditions are shown. Specifics methods for source strength determination are recommended, both for High Dose Rate (HDR) sources with Remote Afterloading equipment and for Low Dose Rate sources. The The results of the calibration of HDR Remote After loaders are indicated

  10. Virtual Calibration Chamber CPT on Ticino sand

    OpenAIRE

    Butlanska, Joanna; Arroyo Alvarez de Toledo, Marcos; Gens Solé, Antonio

    2010-01-01

    The following paper surnmarizes results of CPT's performed in virtual calibration chamber (VCC) built with a 3D model based on the distinct element method (DEM). A discrete material tailored to mimic Ticino sand is tested at different densities, stress and stress history. The limit cone tip resistance from the numerical experiments shows quantitative agreement with different empirical curves summarizing previous tests on Ticino sand in physical calibration chambers (ENEL and ISMES).

  11. Calibration of the Super-Kamiokande Detector

    OpenAIRE

    Abe, K.; Hayato, Y.; Iida, T; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Koshio, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Nakano, Y.; Nakayama, S.; Obayashi, Y.; Sekiya, H.

    2013-01-01

    Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics have been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon count...

  12. Down force calibration stand test report

    International Nuclear Information System (INIS)

    The Down Force Calibration Stand was developed to provide an improved means of calibrating equipment used to apply, display and record Core Sample Truck (CST) down force. Originally, four springs were used in parallel to provide a system of resistance that allowed increasing force over increasing displacement. This spring system, though originally deemed adequate, was eventually found to be unstable laterally. For this reason, it was determined that a new method for resisting down force was needed

  13. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  14. The Fifth VLBA Calibrator Survey: VCS5

    OpenAIRE

    Kovalev, Y. Y.; Petrov, L.; Fomalont, E. B.; Gordon, D

    2006-01-01

    This paper presents the fifth part of the Very Long Baseline Array (VLBA) Calibrator Survey (VCS), containing 569 sources not observed previously with very long baseline interferometry in geodetic or absolute astrometry programs. This campaign has two goals: (i) to observe additional sources which, together with previous survey results, form a complete sample, (ii) to find new strong sources suitable as phase calibrators. This VCS extension was based on three 24-hour VLBA observing sessions i...

  15. The Sixth VLBA Calibrator Survey: VCS6

    OpenAIRE

    Petrov, L.; Kovalev, Y. Y.; Fomalont, E. B.; Gordon, D

    2008-01-01

    This paper presents the sixth part to the Very Long Baseline Array (VLBA) Calibrator Survey. It contains the positions and maps of 264 sources of which 169 were not previously observed with very long baseline interferometry (VLBI). This survey, based on two 24 hour VLBA observing sessions, was focused on 1) improving positions of 95 sources from previous VLBA Calibrator surveys that were observed either with very large a priori position errors or were observed not long enough to get reliable ...

  16. PFN tool test and calibration system

    International Nuclear Information System (INIS)

    A system has been developed for the functional testing and neutron output calibration of the PFN (Prompt Fission Neutron) Uranium Logging Tool. The system was designed primarily for field work and consists of a special vehicle as well as test apparatus. Only the pertinent instrumentation is described. This document will serve as an Instruction and Test Equipment service manual for those involved with calibration of the neutron output of the PFN tool

  17. Automatic Calibration Of Manual Machine Tools

    Science.gov (United States)

    Gurney, Rex D.

    1990-01-01

    Modified scheme uses data from multiple positions and eliminates tedious positioning. Modification of computer program adapts calibration system for convenient use with manually-controlled machine tools. Developed for use on computer-controlled tools. Option added to calibration program allows data on random tool-axis positions to be entered manually into computer for reduction. Instead of setting axis to predetermined positions, operator merely sets it at variety of arbitrary positions.

  18. MINERνA neutrino detector calibration

    International Nuclear Information System (INIS)

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks

  19. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  20. Increased Automation in Stereo Camera Calibration Techniques

    OpenAIRE

    Brandi House; Kevin Nickels

    2006-01-01

    Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This r...

  1. Automated Calibration of Multi-Projector Arrays

    OpenAIRE

    Nordbryhn, Ola

    2009-01-01

    Setting up large multi-projector arrays today usually come at a cost; manual calibration of each projector requires time. The orientation of the image from each projector must be correctly aligned in six axes to make the final projected output fit the screen. Not all aspects of calibrating projectors are possible to correct, consumer hardware usually only covers two or three of the axes, the remainder are often corrected using clever projector placement. Also, the degree of which it is possib...

  2. Calibration facility for environment dosimetry instruments

    Energy Technology Data Exchange (ETDEWEB)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin [Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului St, Magurele, Jud Ilfov, P.O.B. MG-6, RO-077125 (Romania)

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  3. Calibration facility for environment dosimetry instruments

    International Nuclear Information System (INIS)

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10−9 - 10−8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe

  4. Is Your System Calibrated? MRI Gradient System Calibration for Pre-Clinical, High-Resolution Imaging

    OpenAIRE

    James O'Callaghan; Jack Wells; Simon Richardson; Holly Holmes; Yichao Yu; Simon Walker-Samuel; Bernard Siow; Lythgoe, Mark F

    2014-01-01

    High-field, pre-clinical MRI systems are widely used to characterise tissue structure and volume in small animals, using high resolution imaging. Both applications rely heavily on the consistent, accurate calibration of imaging gradients, yet such calibrations are typically only performed during maintenance sessions by equipment manufacturers, and potentially with acceptance limits that are inadequate for phenotyping. To overcome this difficulty, we present a protocol for gradient calibration...

  5. NuSTAR ground calibration: The Rainwater Memorial Calibration Facility (RaMCaF)

    OpenAIRE

    Brejnholt, Nicolai; Christensen, Finn Erland; Jakobsen, Anders Clemen; Hailey, Charles J.; Koglin, Jason E.; Blaedel, Kenneth L.; Stern, Marcela; Thornhill, Doug; Sleator, Clio; Zhang, Shuo; Craig, William W.; Madsen, Kristin K.; Decker, Todd; Pivovaroff, Michael J.; Vogel, Julia K.

    2011-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5-80 keV ) telescope to orbit. The ground calibration of the three flight optics was carried out at the Rainwater Memorial Calibration Facility (RaMCaF) built for this purpose. In this article we present the facility and its use for the ground calibration of the three optics.

  6. NuSTAR ground calibration: The Rainwater Memorial Calibration Facility (RaMCaF)

    DEFF Research Database (Denmark)

    Brejnholt, Nicolai; Christensen, Finn Erland; Jakobsen, Anders Clemen;

    2011-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5-80 keV ) telescope to orbit. The ground calibration of the three flight optics was carried out at the Rainwater Memorial Calibration Facility (RaMCaF) built for this...... purpose. In this article we present the facility and its use for the ground calibration of the three optics....

  7. Slit-lamp calibration, crucial but neglected

    Directory of Open Access Journals (Sweden)

    Lutfah Rif’ati

    2013-05-01

    Full Text Available AbstrakLatar belakang: Kalibrasi berkala alat diagnostik sangat esensial untuk diagnosis yang akurat. Riset fasilitas kesehatan (Rifaskes 2011 mengumpulkan data termasuk kalibrasi lampu celah (slit-lamp pada sampel rumah sakit (RS di Indonesia. Tujuan analisis ialah untuk mengidentifikasi faktor dominan yang berpengaruh terhadap pelaksanaan kalibrasi berkala lampu celah di RS.Metode: Analisis memakai sebagian data Rifaskes 2011 di antara 442 RS yang menyediakan layanan kesehatan mata. Risiko relatif dipergunakan untuk menilai kemungkinan tidak dilakukannya kalibrasi lampu celah di RS.Hasil: Di antara 248 RS sampel yang memenuhi kriteria inklusi, hanya 25,8% RS yang melakukan kalibrasi lampu celah tepat waktu. Dibandingkan dengan rumah sakit yang dimiliki oleh Badan Usaha Milik Negara (BUMN, rumah sakit yang dimiliki lembaga lain memiliki risiko yang lebih tinggi tidak mengkalibrasi lampu celah. Menurut tipe RS, RS non-pendidikan dibandingkan dengan RS -pendidikan berisiko 40% lebih tinggi tidak mengkalibrasi lampu [risiko relatif suaian (RRa = 1,40; 95% interval kepercayaan (CI = 1,02-1,91].Kesimpulan: Kalibrasi tepat waktu lampu-celah masih menjadi masalah di sebagian besar RS. Dibandingkan dengan rumah sakit yang dimiliki oleh BUMN, rumah sakit yang dimiliki oleh instansi lain berisiko yang lebih tinggi tidak mengkalibrasi lampu celah. (Health Science Indones 2012;2:xx-xxKata kunci:kalibrasi, lampu celah, rumah sakitAbstractBackground: Periodical diagnostic tool calibration is essential for accurate diagnosis. Health Facilities Research (Rifaskes in 2011 collected data on the slit-lamp calibration of all registered general hospitals in Indonesia.Methods: Analysis using a part Rifaskes 2011 data among 442 hospitals that provide eye health services. Relative risk was used to assess the risk of performing calibration slit lamp.Results: Out of 442 hospitals, 248 hospitals met the inclusion study criteria, and only 25.8% calibrating the slit

  8. LINEAR AND NON-LINEAR CAMERA CALIBRATION TECHNIQUES

    OpenAIRE

    Manoj Gupta

    2011-01-01

    This Paper deals with calibrate a camera to find out the intrinsic and extrinsic camera parameters which are necessary to recover the depth estimation of an object in stereovision system. Keywords: Camera Calibration, Tsai’s algorithm, Stereovision, Linear Calibration, Non-Linear Calibration, Depth estimation

  9. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    Science.gov (United States)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  10. Ørsted Pre-Flight Magnetometer Calibration Mission

    DEFF Research Database (Denmark)

    Risbo, T.; Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V; Petersen, Jan Raagaard; Primdahl, Fritz

    2003-01-01

    overall calibration results are given. The temperature calibrations are explained and reported on. The overall calibration model standard deviation is about 100 pT rms. Comparisons with the later in-flight calibrations show that, except for the unknown satellite offsets, an agreement within 4 nT was...

  11. 40 CFR 1065.330 - Exhaust-flow calibration.

    Science.gov (United States)

    2010-07-01

    ... recommend that you use a calibration subsonic venturi or ultrasonic flow meter and simulate exhaust... ultrasonic flow meter for raw exhaust flow measurement, we recommend that you calibrate it as described in... Exhaust-flow calibration. (a) Calibrate exhaust-flow meters upon initial installation. Follow...

  12. Programmable and automatic calibrator for radio sources at 45 MHz

    Science.gov (United States)

    Aparici, J.; May, J.; Salas, F.; Ventura, J.

    1981-12-01

    The design, construction and operation of a standard calibrator is presented. The calibrator consists of saturated diodes controlled by an indirect feed-back system and a digital-to-analog converter. The advantages over similar designs are described, as for instance, high-resolution in the calibration scale, good stability, very fast calibrations, use of balanced electronic switches, etc.

  13. 21 CFR 874.1080 - Audiometer calibration set.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Audiometer calibration set. 874.1080 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1080 Audiometer calibration set. (a) Identification. An audiometer calibration set is an electronic reference device that is intended to calibrate...

  14. Adaptable Multivariate Calibration Models for Spectral Applications

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,EDWARD V.

    1999-12-20

    Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

  15. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    Science.gov (United States)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  16. Evolution of Altimetry Calibration and Future Challenges

    Science.gov (United States)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  17. Computerized 50 liter volume calibration system

    International Nuclear Information System (INIS)

    A system has been designed for the Savannah River Site that will be used to calibrate product shipping containers. For accountability purposes, it is necessary that these containers be calibrated to a very high precision. The Computerized 50 Liter Volume Calibration System (CVCS), which is based on the Ideal Gas Law (IGL), will use reference volumes with precision of no less ±0.03%, and helium to calibrate the containers to have a total error of no greater than ±0.10%. A statistical interpretation of the system has given a theoretical total calculated error of ±0.08%. Tests with the system will be performed once fabrication is complete to experimentally verify the calculated error. Since the total error was calculated using the worst case scenario, the actual error should be significantly less than the calculated value. The computer controlled, totally automated system is traceable to the National Institute of Standards and Technology. The design, calibration procedure, and statistical interpretation of the system will be discussed. 1 ref

  18. PERSONALISED BODY COUNTER CALIBRATION USING ANTHROPOMETRIC PARAMETERS.

    Science.gov (United States)

    Pölz, S; Breustedt, B

    2016-09-01

    Current calibration methods for body counting offer personalisation for lung counting predominantly with respect to ratios of body mass and height. Chest wall thickness is used as an intermediate parameter. This work revises and extends these methods using a series of computational phantoms derived from medical imaging data in combination with radiation transport simulation and statistical analysis. As an example, the method is applied to the calibration of the In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Technology (KIT) comprising four high-purity germanium detectors in two partial body measurement set-ups. The Monte Carlo N-Particle (MCNP) transport code and the Extended Cardiac-Torso (XCAT) phantom series have been used. Analysis of the computed sample data consisting of 18 anthropometric parameters and calibration factors generated from 26 photon sources for each of the 30 phantoms reveals the significance of those parameters required for producing an accurate estimate of the calibration function. Body circumferences related to the source location perform best in the example, while parameters related to body mass show comparable but lower performances, and those related to body height and other lengths exhibit low performances. In conclusion, it is possible to give more accurate estimates of calibration factors using this proposed approach including estimates of uncertainties related to interindividual anatomical variation of the target population. PMID:26396263

  19. Numerical calibration of a Lorentz force flowmeter

    International Nuclear Information System (INIS)

    Numerical simulation of complex-shaped devices for contactless electromagnetic flow measurement in metallurgy is a challenge for computational magnetohydrodynamics. We report a series of numerical simulations which demonstrate for the first time that it is possible to predict the calibration constant of a generic Lorentz force flowmeter (LFF) with an uncertainty close to the requirements of real-life industrial applications. Our simulations involve both magnetostatic computations of a complex-shaped magnet system and magnetohydrodynamic computations of the flow of a liquid metal in a nozzle under the influence of a predominantly transverse magnetic field. In order to assess the role of turbulence, the simulations have been performed both for laminar and for turbulent flows using Reynolds-averaged Navier–Stokes equations in the latter case. In addition to the numerical simulations we have measured the calibration constant of the considered LFF using room-temperature liquid metal instead of liquid aluminum. A comparison between the numerically predicted and the measured values of the calibration constant shows that they differ by only 3.4%. This result suggests that numerical calibration of a LFF may become an economic alternative to expensive full-scale experimental calibration. (paper)

  20. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σcal, where σcal is the calibration error. One of the tools to minimize σcal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σcal below 2%. (orig.)

  1. WFC3: Improved WFC3 Calibration Products

    Science.gov (United States)

    Gunning, Heather C.; Sosey, M. L.; Anderson, J.; Lee, J. C.; Pirzkal, N.; MacKenty, J. W.; Kozhurina-Platais, V.; Deustua, S. E.; Hammer, D.; Dahlen, T.; Sabbi, E.; Mack, J.; Baggett, S. M.; WFC3 Team

    2014-01-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation UV/visible and IR imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, during HST servicing mission 4, both channels have been performing very well on-orbit. To provide optimum calibrated data, the WFC3 team routinely updates and refines the calibration software and associated files, designated as calibration products. We present some of the recently improved calibration products that will be of interest to current and future users of WFC3, including information on the chip-dependent zeropoints and flat fields, post-flash calibrations, and detector-to-image distortion corrections. The latter results in four new extensions (two per chip and dimension), in all UVIS FLTs retrieved from MAST after September 10, 2013. The D2IMFILE contains astrometric corrections for shifts of the raw X and Y positions induced by the lithographic-mask pattern. We discuss the migration of CALWF3 from the STSDAS package to HSTCAL, a package independent of IRAF; as a consequence, the IRAF/STSDAS version of CALWF3 is no longer being updated. Finally, we summarize recent improvements to aXe, a PyRAF/IRAF software package that enables automated extraction of spectra from WFC3 slitless spectral (grism) images. Updated versions of aXe are made available as part of the STSDAS testing environment (SSBX).

  2. Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points

    Science.gov (United States)

    Gennery, D. B.

    1998-01-01

    A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.

  3. An Optimal Calibration Method for a MEMS Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2014-02-01

    Full Text Available An optimal calibration method for a micro-electro-mechanical inertial measurement unit (MIMU is presented in this paper. The accuracy of the MIMU is highly dependent on calibration to remove the deterministic errors of systematic errors, which also contain random errors. The overlapping Allan variance is applied to characterize the types of random error terms in the measurements. The calibration model includes package misalignment error, sensor-to-sensor misalignment error and bias, and a scale factor is built. The new concept of a calibration method, which includes a calibration scheme and a calibration algorithm, is proposed. The calibration scheme is designed by D-optimal and the calibration algorithm is deduced by a Kalman filter. In addition, the thermal calibration is investigated, as the bias and scale factor varied with temperature. The simulations and real tests verify the effectiveness of the proposed calibration method and show that it is better than the traditional method.

  4. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    Science.gov (United States)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  5. e-Calibrations: using the Internet to deliver calibration services in real time at lower cost

    International Nuclear Information System (INIS)

    The National Institute of Standards and Technology (NIST) is expanding into a new frontier in the delivery of measurement services. The Internet will be employed to provide industry with electronic traceability to national standards. This is a radical departure from the traditional modes of traceability and presents many new challenges. The traditional mail-based calibration service relies on sending artifacts to the user, who then mails them back to NIST for evaluation. The new service will deliver calibration results to the industry customer on-demand, in real-time, at a lower cost. The calibration results can be incorporated rapidly into the production process to ensure the highest quality manufacturing. The service would provide the US radiation processing industry with a direct link to the NIST calibration facilities and its expertise, and provide an interactive feedback process between industrial processing and the national measurement standard. Moreover, an Internet calibration system should contribute to the removal of measurement-related trade barriers

  6. Syringe calibration factors and volume correction factors for the NPL secondary standard radionuclide calibrator

    CERN Document Server

    Tyler, D K

    2002-01-01

    The activity assay of a radiopharmaceutical administration to a patient is normally achieved via the use of a radionuclide calibrator. Because of the different geometries and elemental compositions between plastic syringes and glass vials, the calibration factors for syringes may well be significantly different from those for the glass containers. The magnitude of these differences depends on the energies of the emitted photons. For some radionuclides variations have been observed of 70 %, it is therefore important to recalibrate for syringes or use syringe calibration factors. Calibration factors and volume correction factors have been derived for the NPL secondary standard radionuclide calibrator, for a variety of commonly used syringes and needles, for the most commonly used medical radionuclide.

  7. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. Calibration of fisheye lenses for hemispherical photography

    International Nuclear Information System (INIS)

    Hemispherical photography represents one of the most appropriate methods of estimating averages of solar radiation over extended periods of time. This method is based upon the use of extremely wide-angle fisheye lenses, which produce large projection distortion. To correctly interpret hemispherical photography we have to know the projection characteristics of the fisheye lens in combination with a camera body. This can be achieved through lens calibration. The first part of the article explains in detail the calibration method for fisheye lenses which are used to assess the solar radiation in forest ecology research. In the second part the results of calibration for fisheye lens Sigma 8 mm, f/4 (MF, N) are presented. The lens was used on a Nikon F50 camera body

  10. Oregon State TRIGA reactor power calibration study

    International Nuclear Information System (INIS)

    As a result of a recent review of the Oregon State TRIGA Reactor (OSTR) power calibration procedure, an investigation was performed on the origin and correctness of the OSTR tank factor and the calibration method. It was determined that there was no clear basis for the tank factor which was being used (0.0525 deg. C/kwh) and therefore a new value was calculated (0.0493 deg. C/kwh). The calculational method and likely errors are presented in the paper. In addition, a series of experimental tests were conducted to decide if the power calibration was best performed with or without a mixer, at 100 KW or at 1 MW. The results of these tests along with the final recommendation are presented. (author)

  11. Ion Beam Energy Calibration Method for Accelerator

    International Nuclear Information System (INIS)

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  12. The Calibration of the FACT Camera

    International Nuclear Information System (INIS)

    Full text: The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera for an Imaging Atmospheric Cherenkov Telescope which is based on G-APDs and a readout using the Domino Ring Sampling (DRS4) chip. The amplitude calibration of the readout chain must account for a wide variety of effects specific to this design of the camera, eg. the strong temperature dependence of the G-APDs, the quality of the gluing between the optical components as well as the characteristics of the DRS4 chip. The basis for this calibration are an online feedback system to stabilize the gain of the G-APDs, laboratory measurements and special runs during data taking. In this talk, the calibration system for FACT is presented including the current experience with the camera in laboratory measurements. (author)

  13. Muon Calibration at SoLid

    CERN Document Server

    Saunders, Daniel

    2016-01-01

    The SoLid experiment aims to make a measurement of very short distance neutrino oscillations using reactor antineutrinos. Key to its sensitivity are the experiments high spatial and energy resolution, combined with a very suitable reactor source and efficient background rejection. The fine segmentation of the detector (cubes of side 5cm), and ability to resolve signals in space and time, gives SoLid the capability to track cosmic muons. In principle a source of background, these turn into a valuable calibration source if they can be cleanly identified. This work presents the first energy calibration results, using cosmic muons, of the 288kg SoLid prototype SM1. This includes the methodology of tracking at SoLid, cosmic ray angular analyses at the reactor site, estimates of the time resolution, and calibrations at the cube level.

  14. Photometric Calibrations for 21st Century Science

    CERN Document Server

    Kent, Stephen; Deustua, Susana E; Smith, J Allyn; Adelman, Saul; Allam, Sahar; Baptista, Brian; Bohlin, Ralph C; Clem, James L; Conley, Alex; Edelstein, Jerry; Elias, Jay; Glass, Ian; Henden, Arne; Howell, Steve; Kimble, Randy A; Kruk, Jeffrey W; Lampton, Michael; Magnier, Eugene A; McCandliss, Stephan R; Moos, Warren; Mostek, Nick; Mufson, Stuart; Oswalt, Terry D; Perlmutter, Saul; Prieto, Carlos Allende; Rauscher, Bernard J; Riess, Adam; Saha, Abhijit; Sullivan, Mark; Suntzeff, Nicholas; Tokunaga, Alan; Tucker, Douglas; Wing, Robert; Woodgate, Bruce; Wright, Edward L

    2009-01-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. We stress the need for a program to improve upon and expand the current networks of spectrophotometrically calibrated stars to provide precise calibration with an accuracy of equal to and better than 1% in the ultraviolet, visible and near-infrared portions of the spectrum, with excellent sky coverage and large dynamic range.

  15. Calibration of mixed-polarization interferometric observations

    CERN Document Server

    Marti-Vidal, Ivan; Conway, John; Zensus, Anton J

    2016-01-01

    Heterodyne receivers register the sky signal on either a circular polarization basis (where it is split into left-hand and right-hand circular polarization) or a linear polarization basis (where it is split into horizontal and vertical linear polarization). We study the problem of interferometric observations performed with telescopes that observe on different polarization bases, hence producing visibilities that we call "mixed basis" (i.e., linear in one telescope and circular in the other). We present novel algorithms for the proper calibration and treatment of such interferometric observations and test our algorithms with both simulations and real data. The use of our algorithms will be important for the optimum calibration of forthcoming observations with the Atacama Large mm/submm Array (ALMA) in very-long-baseline interferometry (VLBI) mode. Our algorithms will also allow us to optimally calibrate future VLBI observations at very high data rates (i.e., wide bandwidths), where linear-polarization feeds w...

  16. Multichannel radiometer calibration: a new approach

    Science.gov (United States)

    Diaz, Susana; Booth, Charles R.; Armstrong, Roy; Brunat, Claudio; Cabrera, Sergio; Camilion, Carolina; Casiccia, Claudio; Deferrari, Guillermo; Fuenzalida, Humberto; Lovengreen, Charlotte; Paladini, Alejandro; Pedroni, Jorge; Rosales, Alejandro; Zagarese, Horacio; Vernet, Maria

    2005-09-01

    The error in irradiance measured with Sun-calibrated multichannel radiometers may be large when the solar zenith angle (SZA) increases. This could be particularly detrimental in radiometers installed at mid and high latitudes, where SZAs at noon are larger than 50° during part of the year. When a multiregressive methodology, including the total ozone column and SZA, was applied in the calculation of the calibration constant, an important improvement was observed. By combining two different equations, an improvement was obtained at almost all the SZAs in the calibration. An independent test that compared the irradiance of a multichannel instrument and a spectroradiometer installed in Ushuaia, Argentina, was used to confirm the results.

  17. The Fourth VLBA Calibrator Survey - VCS4

    CERN Document Server

    Petrov, L A; Fomalont, E B; Gordon, D

    2006-01-01

    This paper presents the fourth extension to the Very Long Baseline Array (VLBA) Calibrator Survey, containing 262 new sources not previously observed with very long baseline interferometry (VLBI). This survey, based on three 24 hour VLBA observing sessions, fills remaining areas on the sky above declination -40 degrees where the calibrator density is less than one source within a 4 degree radius disk at any given direction. The share of these area was reduced from 4.6% to 1.9%. Source positions were derived from astrometric analysis of group delays determined at 2.3 and 8.6 GHz frequency bands using the Calc/Solve software package. The VCS4 catalogue of source positions, plots of correlated flux density versus projected baseline length, contour plots and fits files of naturally weighted CLEAN images, as well as calibrated visibility function files are available on the Web at http://gemini.gsfc.nasa.gov/vcs4 .

  18. MAGNETIC GRADIOMETRY: Instrumentation, Calibration and Applications

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia

    The description of the single axis magnetic gradiometer based on two Compensation Detector Coil (CDC) fluxgate ringcore sensors separated 20cm introduces the subject of magnetic gradiometry. Despite its good properties and high precision of less than 1nT, the calibration procedures...... absolute accuracy of 93pT/m.The scalar calibration of a vector magnetometer is explained thoroughly. The novel method is simple and it represents the most robust and unique way to estimate the characterizing 9 parameters of a vector magnetometer. Its power relies on the linearization of the parametrization...... by comparing the square of the intensities of the reference and of the uncalibrated magnetometers in the Earth's magnetic field. Using this method a CSC magnetometer can be absolutely calibrated with 0.2nT of accuracy.The absolute alignment of a vector magnetometer is also described. After the scalar...

  19. Implementing new recommendations for calibrating personal dosemeters

    International Nuclear Information System (INIS)

    This paper analyses the differences between the calibration procedures for personal dosemeters recommended by ICRU 47 and ISO 4037-3. The tissue equivalence of the PMMA and the ISO water slab phantoms are analysed by means of the Penelope Monte Carlo code for monoenergetic and filtered X ray photon beams and compared with the results of two other independent codes. The influence of the calibration method is also verified experimentally, both on a thermoluminescence and an electronic personal dosemeter. Good consistency between both calibration procedures is shown provided that a correction factor for backscatter differences between the PMMA and the ICRU phantom is introduced. The Monte Carlo simulation is used to determine this correction to a greater accuracy. (author)

  20. Control console of the gamma calibration room

    International Nuclear Information System (INIS)

    The Nuclear Centre of Mexico has a Ionizing Radiation Metrology Center (CMRI). This is in charge of the calibration in Mexico and Latin America of equipment dedicated to radiation measurement as industrial, medical as other fields. The importance to ensure that the equipment stay justly calibrated, it is imposed the necessity of automating the different rooms which the CMRI has. in this case it will be exposed the Calibration room for gamma radiation type. The operation of this application was carried out with the LabVIEW development platform and also in C language. The hardware associated is: personal computer with two cards using the 8255 device, 16 channels with optical isolation to manage input/output TTL type, 16 channels with optical isolation to management of charges to 127 V a.c., and 2 channels for 90V d.c. motors. (Author)

  1. Kinematic calibration of orthoglide-type mechanisms

    CERN Document Server

    Pashkevich, Anatoly; Wenger, Philippe

    2006-01-01

    The paper proposes a novel calibration approach for the Orthoglide-type mechanisms based on observations of the manipulator leg parallelism during mo-tions between the prespecified test postures. It employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be adjusted. The sensitivity of the meas-urement methods and the calibration accuracy are also studied. Experimental re-sults are presented that demonstrate validity of the proposed calibration technique

  2. Mobile Camera Array Calibration for Light Field Acquisition

    OpenAIRE

    Xu, Yichao; Maeno, Kazuki; Nagahara, Hajime; Taniguchi, Rin-ichiro

    2014-01-01

    The light field camera is useful for computer graphics and vision applications. Calibration is an essential step for these applications. After calibration, we can rectify the captured image by using the calibrated camera parameters. However, the large camera array calibration method, which assumes that all cameras are on the same plane, ignores the orientation and intrinsic parameters. The multi-camera calibration technique usually assumes that the working volume and viewpoints are fixed. In ...

  3. The cryogenic balance design and balance calibration methods

    Science.gov (United States)

    Ewald, B.; Polanski, L.; Graewe, E.

    1992-07-01

    The current status of a program aimed at the development of a cryogenic balance for the European Transonic Wind Tunnel is reviewed. In particular, attention is given to the cryogenic balance design philosophy, mechanical balance design, reliability and accuracy, cryogenic balance calibration concept, and the concept of an automatic calibration machine. It is shown that the use of the automatic calibration machine will improve the accuracy of calibration while reducing the man power and time required for balance calibration.

  4. Local Volatility Calibration Using An Adjoint Proxy

    Directory of Open Access Journals (Sweden)

    Gabriel TURINICI

    2008-11-01

    Full Text Available We document the calibration of the local volatility in a framework similar to Coleman, Li and Verma. The quality of a surface is assessed through a functional to be optimized; the specificity of the approach is to separate the optimization (performed with any suitable optimization algorithm from the computation of the functional where we use an adjoint (as in L. Jiang et. al. to obtain an approximation; moreover our main calibration variable is the implied volatility (the procedure can also accommodate the Greeks. The procedure performs well on benchmarks from the literature and on FOREX data.

  5. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed and...... calibrated by using the European Space Agency (ESA) transponders at Flevoland. The resulting accuracy of the slant range images corresponds to 10 m horizontally on the ground. The results are verified by using runway intersections and corner reflectors surveyed with differential GPS techniques. Based on a...

  6. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  7. Electrical Calibration for Calvet Type Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The deyjce construction and working principle of Calvet type heat conductive microcalorimetry are generally ineroduced in this paper. Based on previous work, we design a reactor vessel and its electrical calibration equipment according to our special study systems. The heat constant of our improved microalorimetry is gotten by means of electrical calibration on the basis of Tian's equation. The results gotten by in tegration method are identical with ones gotten by peak method. It shows that our improved device works well enough to develop further studies.``

  8. Time calibration of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of 1 ns. The methods developed to attain this level of precision are described. (authors)

  9. Compact optical technique for streak camera calibration

    International Nuclear Information System (INIS)

    To produce accurate data from optical streak cameras requires accurate temporal calibration sources. We have reproduced an older technology for generating optical timing marks that had been lost due to component availability. Many improvements have been made which allow the modern units to service a much larger need. Optical calibrators are now available that produce optical pulse trains of 780 nm wavelength light at frequencies ranging from 0.1 to 10 GHz, with individual pulse widths of approximately 25 ps full width half maximum. Future plans include the development of single units that produce multiple frequencies to cover a wide temporal range, and that are fully controllable via an RS232 interface

  10. Short on camera geometry and camera calibration

    OpenAIRE

    Magnusson, Maria

    2010-01-01

    We will present the basic theory for the camera geometry. Our goal is camera calibration and the tools necessary for this. We start with homogeneous matrices that can be used to describe geometric transformations in a simple manner. Then we consider the pinhole camera model, the simplified camera model that we will show how to calibrate. A camera matrix describes the mapping from the 3D world to a camera image. The camera matrix can be determined through a number of corresponding points measu...

  11. Calibrating Images from the MINERVA Cameras

    Science.gov (United States)

    Mercedes Colón, Ana

    2016-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) consists of an array of robotic telescopes located on Mount Hopkins, Arizona with the purpose of performing transit photometry and spectroscopy to find Earth-like planets around Sun-like stars. In order to make photometric observations, it is necessary to perform calibrations on the CCD cameras of the telescopes to take into account possible instrument error on the data. In this project, we developed a pipeline that takes optical images, calibrates them using sky flats, darks, and biases to generate a transit light curve.

  12. Calibration of radiation protection monitoring equipment

    International Nuclear Information System (INIS)

    The facilities and equipment required for calibrating radiation protection monitoring equipment are both complex and expensive. The staff required to operate the equipment and perform the standardization have to be experienced, well trained and technically competent in the use of secondary or primary radiation standards and equipment. Thus an organization cannot commit considerable resources to perform calibration work purely for academic or scientific reasons. In most cases it must be justified by legal requirements pertaining within the country. These legal requirements on measuring devices for radiation protection purposes may be broadly divided into those relating to instruments intended for area monitoring and to those intended for individual monitoring

  13. New volumetric technique for calibrating neutron probes

    International Nuclear Information System (INIS)

    Studies in laboratory conditions were carried out to determine neutron calibration curves. Soils were packer in barrels to attain values of bulk density similar to those in the field. A mariotte reservoir supplies water to the barels in a way that keeps a water table of 10 cm. A water flow is established from this saturated region to the top of the barrel. The water depth is correlated to the numerical integration of the count rate with depth during the process of capillary tise. The coefficient of determination was 0.999. The calibration curve was independent of the initial misture contents of the soil profile. (author)

  14. The TileCal Laser Calibration System

    Science.gov (United States)

    Giangiobbe, Vincent; On Behalf Of The Atlas Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  15. Planck 2013 results. V. LFI calibration

    Science.gov (United States)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the orbital dipole plus the solar dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the solar system with respect to the cosmic microwave background (CMB) rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data releasewe rely on the characterization of the solar dipole as measured by WMAP. We also present preliminary results (at 44 GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the solar system speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which considers the full beam response in estimating the signal generated by the dipole. Moreover, in order to further reduce the impact of residual systematics due to sidelobes, we estimated time variations in the calibration constant of the 30 GHz radiometers (the ones with the largest sidelobes) using the signal of an internal reference load at 4 K instead of the CMB dipole. We have estimated the accuracy of the LFI calibration following two strategies: (1) we have run a set of simulations to assess the impact of statistical errors and systematic effects in the instrument and in the calibration procedure; and (2) we have performed a number of internal consistency checks on the data and on the brightness temperature of Jupiter. Errors in the calibration of this Planck/LFI data release are expected to be about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz. Both these preliminary results at low and high ℓ are consistent with WMAP results

  16. Time Calibration of the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J L; Galata, S; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2010-01-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.

  17. Photometric calibrations for 21st century science

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen; /Fermilab; Kaiser, Mary Elizabeth; /Johns Hopkins U.; Deustua, Susana E.; /Baltimore, Space Telescope Sci.; Smith, J.Allyn; /Austin Peay State U.; Adelman, Saul; /Citadel Military Coll.; Allam, Sahar S.; /Fermilab; Baptista, Brian; /Indiana U.; Bohlin, Ralph C.; /Baltimore, Space Telescope Sci.; Clem, James L.; /Louisiana State U.; Conley, Alex; /Colorado U.; Edelstein, Jerry; /UC, Berkeley, Space Sci. Dept. /NOAO, Tucson

    2009-02-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of

  18. The Fourth VLBA Calibrator Survey - VCS4

    OpenAIRE

    Petrov, L.; Kovalev, Y. Y.; Fomalont, E.; Gordon, D

    2005-01-01

    This paper presents the fourth extension to the Very Long Baseline Array (VLBA) Calibrator Survey, containing 258 new sources not previously observed with very long baseline interferometry (VLBI). This survey, based on three 24 hour VLBA observing sessions, fills remaining areas on the sky above declination -40 degrees where the calibrator density is less than one source within a 4 degree radius disk at any given direction. The share of these area was reduced from 4.6% to 1.9%. Source positio...

  19. On Calibration of pH Meters

    OpenAIRE

    Da-Ming Zhu; Cheng, K. L.

    2005-01-01

    The calibration of pH meters including the pH glass electrode, ISE electrodes, buffers, and the general background for calibration are reviewed. Understanding of basic concepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH, as well as critical examination of activity, and activity coefficients are given. The emergence of new solid state pH electrodes and replacement of the salt bridge with a conducting wire have opened up a new horizon for pH measurements. A pH bu...

  20. Consumption Model Calibration and Related Statistical Problems

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Malý, Marek; Pelikán, Emil; Konár, Ondřej

    Athens: WSEAS Press, 2009 - (Perlovsky, L.; Dionysiou, D.; Kostic, L.; Gonzalez-Concepcion, C.; Jaberg, H.; Mastorakis, N.; Zaharim, A.; Sopian, K.), s. 141-146 ISBN 978-960-474-091-8. [AEBD '09. World Multiconference on Applied Economics, Business and Development . Tenerife (ES), 01.07.2009-03.07.2009] R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear calibration * natural gas consumption modeling * Bayesian approach * statistical model * time-varying calibration * state-space model Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  1. Calibration source for electron cyclotron emission measurements

    International Nuclear Information System (INIS)

    A high temperature radiation source has been developed for the absolute calibration of diagnostic instruments for measuring electron cyclotron emission from high temperature plasmas. The source has a radiation area of φ150 mm and can be heated up to 500degC. The measured emissivity of the source is close to unity in the wavelength region between 0.5 and 5 mm. The grating polychromator has been calibrated using the radiation source developed. The obtained temperatures agree with those by the pulse height analysis of soft X-rays and Thomson scattering measurement within 10%. (author)

  2. Medical color displays and their calibration

    Science.gov (United States)

    Fan, Jiahua; Roehrig, Hans; Dallas, W.; Krupinski, Elizabeth

    2009-08-01

    Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.

  3. E-book Management with Calibre Software

    OpenAIRE

    N P, Jamsheer

    2013-01-01

    Keeping pace with the technology is a big challenge for modern libraries. Reading habits and requirements of the library users are changing. Libraries have to provide access to the varying forms of information available. In addition to the conventional book lending, users should be given access to e-books. This artcle examines how to manage e-books in a library using calibre e-book management software. Calibre is a highly user friendly personal e-book manager. This free software can be used i...

  4. Summary of KOMPSAT-5 Calibration and Validation

    Science.gov (United States)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities

  5. Calibration Procedures on Oblique Camera Setups

    Science.gov (United States)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of

  6. ``Calibration-on-the-spot'': How to calibrate an EMCCD camera from its images

    Science.gov (United States)

    Mortensen, Kim I.; Flyvbjerg, Henrik

    In localization-based microscopy, super-resolution is obtained by analyzing isolated diffraction-limited spots imaged, typically, with EMCCD cameras. To compare experiments and calculate localization precision, the photon-to-signal amplification factor is needed but unknown without a calibration of the camera. Here we show how this can be done post festum from just a recorded image. We demonstrate this (i) theoretically, mathematically, (ii) by analyzing images recorded with an EMCCD camera, and (iii) by analyzing simulated EMCCD images for which we know the true values of parameters. In summary, our method of calibration-on-the-spot allows calibration of a camera with unknown settings from old images on file, with no other info needed. Consequently, calibration-on-the-spot also makes future camera calibrations before and after measurements unnecessary, because the calibration is encoded in recorded images during the measurement itself, and can at any later time be decoded with calibration-on-the-spot. This work was supported by the Lundbeck Foundation and the Danish Council for Strategic Research Grant No. 10-092322 (PolyNano).

  7. Signal inference with unknown response: calibration uncertainty renormalized estimator

    CERN Document Server

    Dorn, Sebastian; Greiner, Maksim; Selig, Marco; Böhm, Vanessa

    2014-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of CURE is starting with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify CURE by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov Chain Monte Carlo sampling. We conclude that the...

  8. WIM calibration and data quality management

    Directory of Open Access Journals (Sweden)

    D P G de Wet

    2010-10-01

    Full Text Available Weigh-in-motion (WIM scales are installed on various higher order roads in South Africa to provide traffic loading information for pavement design, strategic planning and law enforcement. Some WIM systems produce anomalies that cannot be satisfactorily explained even by highly experienced professionals. Much of the problem relates to the difficulty in determining the appropriate calibration factors to correct systematic measurement error for WIM systems and the inadequacy of data quality management methods. The author has developed a post-calibration method for WIM data, called the Truck Tractor (TT method, to correct the magnitude of recorded axle loads in retrospect. In addition, it incorporates a series of data quality checks. The TT method is robust, accurate and adequately simple for use on a routine basis for a wide variety of South African WIM systems. The calibration module of the TT method (i.e. the procedure to determine the calibration factor, kTT has been accepted by SANRAL and incorporated into the model it uses to quantify the cost of overloading on toll concessions. Some of the data quality checking concepts are also being considered for further use and threshold values for tests are being refined by SANRAL for this purpose.

  9. Developments in radiocarbon calibration for archaeology

    NARCIS (Netherlands)

    Ramsey, Christopher Bronk; Buck, Caitlin E.; Manning, Sturt W.; Reimer, Paula; van der Plicht, Hans

    2006-01-01

    This update on radiocarbon calibration results from the 19th International Radiocarbon Conference at Oxford in April 2006, and is essential reading for all archaeologists. The way radiocarbon dates and absolute dates relate to each other differs in three periods: back to 12400 cal BR radiocarbon dat

  10. Calibration of the MACHO photometry database

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, A

    1998-10-23

    The MACHO Project is a microlensing survey that monitors the brightnesses of ~60 million stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Galactic bulge. The database presently contains more photometric measurements than previously recorded in the history of astronomy. We describe the calibration of the MACHO two-color photometry and transformation to the standard Kron-Cousins V and R system. This allows for proper comparison with all other observations on the Kron-Cousins standard system. The highest precision calibrations are for ~9 million stars in the LMC bar. For these stars, independent photometric measurements in field-overlap regions indicate standard deviations δvR = 0.020 mag. Calibrated MACHO photometry data are compared with published photometric sequences and with new Hubble Space Telescope observations. We additionally describe the first application of these calibrated data: the construction of the "efficiency" color-magnitude diagram which will be used to calculate our experimental sensitivity for detecting microlensing in the LMC.

  11. Lunar International Science Coordination/Calibration Targets

    Science.gov (United States)

    Head, J. W.; Issacson, P.; Petro, N.; Runyon, C.; Ohtake, M.; Foing, B.; Grande, M.

    2007-01-01

    A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments.

  12. Power calibration study at the Musashi reactor

    International Nuclear Information System (INIS)

    The Musashi reactor (TRIGA-II,100 kW) initially went critical in January of 1963. The reactor had been used for training, isotope production and medical irradiation for boron neutron capture therapy (1). The initial power calibration was based on the use of a calibrated electrical heater in a calorimetric procedure where the rate of rise of the bulk pit water temperature was measured using 2 kW heaters x 6 pieces. The rate of rise of water temperature was determined to be 0.0474 C/kWh. The reactor was then operated to give the same rate of rise of water temperature. Thus the reactor power was established at the value produced by the electrical heaters. A stirrer for tank water mixing was not used. Recent communications (2)(3) indicated that power calibrations using a stirrer provided a much more uniform mixing, and heating in the reactor tank water which was essential for an accurate calibration. In this paper, the effect of mixing using a stirrer was investigated considering the physical factors such as room temperature, humidity, tank water temperature and it's distributions. The room temperature and humidity around the reactor varies 6-30 and 30-80 %, respectively, depending on four seasons. The heat flow through the surface of the pool was also evaluated because the reactor usually operates without cover on the surface of the pool. (orig.)

  13. Analysis and calibration techniques for superconducting resonators

    Science.gov (United States)

    Cataldo, Giuseppe; Wollack, Edward J.; Barrentine, Emily M.; Brown, Ari D.; Moseley, S. Harvey; U-Yen, Kongpop

    2015-01-01

    A method is proposed and experimentally explored for in-situ calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response is analyzed in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microstrip and coplanar-waveguide resonator devices were investigated and a recovery within 1% of the observed complex transmission amplitude was achieved with both analysis approaches. The experimental configuration used in microwave characterization of the devices and self-consistent constraints for the electromagnetic constitutive relations for parameter extraction are also presented.

  14. Teaching Camera Calibration by a Constructivist Methodology

    Science.gov (United States)

    Samper, D.; Santolaria, J.; Pastor, J. J.; Aguilar, J. J.

    2010-01-01

    This article describes the Metrovisionlab simulation software and practical sessions designed to teach the most important machine vision camera calibration aspects in courses for senior undergraduate students. By following a constructivist methodology, having received introductory theoretical classes, students use the Metrovisionlab application to…

  15. SENSITIVITY ANALYSIS IN A LIDARCAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    Angel-Iván García-Moreno

    2015-11-01

    Full Text Available In this paper, variability analysis was performed on the model calibration methodology between a multi-camera system and a LiDAR laser sensor (Light Detection and Ranging. Both sensors are used to digitize urban environments. A practical and complete methodology is presented to predict the error propagation inside the LiDAR-camera calibration. We perform a sensitivity analysis in a local and global way. The local approach analyses the output variance with respect to the input, only one parameter is varied at once. In the global sensitivity approach, all parameters are varied simultaneously and sensitivity indexes are calculated on the total variation range of the input parameters. We quantify the uncertainty behaviour in the intrinsic camera parameters and the relationship between the noisy data of both sensors and their calibration. We calculated the sensitivity indexes by two techniques, Sobol and FAST (Fourier amplitude sensitivity test. Statistics of the sensitivity analysis are displayed for each sensor, the sensitivity ratio in laser-camera calibration data

  16. Solutions to the linear camera calibration problem

    Science.gov (United States)

    Grosky, William I.; Tamburino, Louis A.

    1987-01-01

    The general linear camera calibration problem is formulated and several classification schemes for various subcases of this problem are developed. For each subcase, simple solutions are found that satisfy all necessary constraints. The results improve those already in the literature with respect to simplicity, efficiency, and coverage. However, the classification scheme is not exhaustive.

  17. In situ calibration of acoustic emission sensors

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    Brno: University of Technology, Brno, 2015 - (Mazal, P.), s. 93-97 ISBN 978-80-214-5262-6. [International Workshop NDT in Progress /8./. Praha (CZ), 12.10.2015-14.10.2015] Institutional support: RVO:61388998 Keywords : standardisation * Acoustic Emission (AE) * time reversal * calibration * requency response Subject RIV: BI - Acoustics

  18. 21 CFR 862.1150 - Calibrator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator. 862.1150 Section 862.1150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1150...

  19. A Calibrated Index of Human Development

    Science.gov (United States)

    Lind, Niels

    2010-01-01

    The weightings of the four component indicators of the UNDP's Human Development Index HDI appear to be arbitrary and have not been given justification. This paper develops a variant of the HDI, calculated to reflect peoples' revealed evaluations of education and the productivity of work. The resulting Calibrated human Development Index CDI has a…

  20. Planck 2013 results. V. LFI calibration

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.;

    2014-01-01

    WMAP value of the Solar System speed to 0.2%. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution...

  1. Computerized Techniques for Calibrating Pressure Balances

    Science.gov (United States)

    Simpson, D. I.

    1994-01-01

    Pressure balances are generally calibrated by the cross-floating technique, where the forces acting on two similar devices in hydrostatic equilibrium are compared. It is a skilled and time-consuming process which has not previously lent itself to significant automation; computers have mostly been used only to calculate results after measurements have been taken. The objective of the present work was to develop real-time computerized measurement techniques to ease the calibration task, which would fully integrate into a single package with versatile software for calculating and displaying results. The calibration process is now conducted by studying graphical computer displays which derive their inputs from differential-pressure transducers and capacitance or optical displacement sensors. The mass imbalance between oil-operated pressure balances is calculated by interpolating between changes in piston rate-of-fall. Differential-pressure transducers are used to estimate mass imbalances between gas-operated balances, and a quick in situ method for determining their sensitivity has been developed. The new techniques have been successfully applied to a variety of pressure balance designs and substantial reductions in calibration times have been achieved. Reduced levels of scatter have revealed small systematic differences between gauge and absolute modes of operation.

  2. Calibration of sound velocimeter in pure water

    Science.gov (United States)

    Li, Zhiwei; Zhang, Baofeng; Li, Tao; Zhu, Junchao; Xie, Ziming

    2016-01-01

    Accurate measurement of sound speed is important to calibrate a sound velocity profiler which provides real-time sound velocity to the sonar equipment in oceanographic survey. The sound velocity profiler calculates the sound speed by measuring the time-of-flight of a 1 MHz single acoustic pulse to travel over about 300 mm path. A standard sound velocimeter instrument was invited to calibrate the sound velocity profiler in pure water at temperatures of 278,283, 288, 293, 298, 303 and 308K in a thermostatic vessel at one atmosphere. The sound velocity profiler was deployed in the thermostatic vessel alongside the standard sound velocimeter instrument and two platinum resistance thermometers (PRT) which were calibrated to 0.002k by comparison with a standard PRT. Time of flight circuit board was used to measure the time-of-flight to 22 picosecond precision. The sound speed which was measured by the sound velocity profiler was compared to the standard sound speed calculated by UNESCO to give the laboratory calibration coefficients and was demonstrated agreement with CTD-derived sound speed using Del Grosso's seawater equation after removing a bias.

  3. Tanks for liquids: calibration and errors assessment

    International Nuclear Information System (INIS)

    After a brief reference to some of the problems raised by tanks calibration, two methods, theoretical and experimental are presented, so as to achieve it taking into account measurement errors. The method is applied to the transfer of liquid from one tank to another. Further, a practical example is developed. (author)

  4. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully autom...

  5. VLBA Calibrator Survey: Astrometric and Image Results

    OpenAIRE

    Petrov, Leonid; Grodon, David; Beasley, Anthony; Fomalont, Ed

    2003-01-01

    Positions and maps of 1608 new compact sources were obtained in twelve sessions observed during 1994--2002 at the VLBA network at 8.4/2.3 GHz. These sources are recommended for use as calibrators for phase reference imaging and as geodetic sources for astrometric/geodetic VLBI applications.

  6. Optimal Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, M. H.

    1994-01-01

    Calibration of partial safety factors is considered in general, including classes of structures where no code exists beforehand. The partial safety factors are determined such that the difference between the reliability for the different structures in the class considered and a target reliability...

  7. Bayesian calibration of car-following models

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.

    2010-01-01

    Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p

  8. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  9. Calibrating Gyrochronology using Kepler Asteroseismic targets

    CERN Document Server

    Angus, Ruth; Foreman-Mackey, Daniel; McQuillan, Amy

    2015-01-01

    Among the available methods for dating stars, gyrochronology is a powerful one because it requires knowledge of only the star's mass and rotation period. Gyrochronology relations have previously been calibrated using young clusters, with the Sun providing the only age dependence, and are therefore poorly calibrated at late ages. We used rotation period measurements of 310 Kepler stars with asteroseismic ages, 50 stars from the Hyades and Coma Berenices clusters and 6 field stars (including the Sun) with precise age measurements to calibrate the gyrochronology relation, whilst fully accounting for measurement uncertainties in all observable quantities. We calibrated a relation of the form $P=A^n\\times(B-V-c)^b$, where $P$ is rotation period in days, $A$ is age in Myr, $B$ and $V$ are magnitudes and $a$, $b$ and $n$ are the free parameters of our model. We found $a = 0.40^{+0.3}_{-0.05}$, $b = 0.31^{+0.05}_{-0.02}$ and $n = 0.55^{+0.02}_{-0.09}$. Markov Chain Monte Carlo methods were used to explore the posteri...

  10. The MINOS light-injection calibration system

    International Nuclear Information System (INIS)

    A description is given of the light-injection calibration system that has been developed for the MINOS long-baseline neutrino oscillation experiment. The system is based upon pulsed blue LEDs monitored by PIN photodiodes. It is designed to measure non-linearities in the PMT gain curves, as well as monitoring any drifts in PMT gain, at the 1% level

  11. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  12. Beam Calibration of Radio Telescopes with Drones

    Science.gov (United States)

    Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-11-01

    We present a multifrequency far-field beam map for the 5-m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single-dish radio telescope in the far-field. The high signal-to-noise ratio data allows us to characterize the beam pattern with high accuracy out to at least the fourth side-lobe. The resulting two-dimensional beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  13. Space Power Facility Reverberation Chamber Calibration Report

    Science.gov (United States)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  14. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5 and...

  15. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  16. The LOFAR long baseline snapshot calibrator survey

    CERN Document Server

    Moldón, J; Wucknitz, O; Jackson, N; Drabent, A; Carozzi, T; Conway, J; Kapińska, A D; McKean, P; Morabito, L; Varenius, E; Zarka, P; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bregman, J; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; de Gasperin, F; de Geus, E; Duscha, S; Eislöffel, J; Engels, D; Falcke, H; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Hamaker, J P; Hassall, T E; Heald, G; Hoeft, M; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; Morganti, R; Munk, H; Norden, M J; Offringa, A R; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Scaife, A M M; Schwarz, D; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, M C; Vermeulen, R; Vocks, C; van Weeren, R J; White, S; Wise, M W; Yatawatta, S; Zensus, A

    2014-01-01

    Aims. An efficient means of locating calibrator sources for International LOFAR is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full International LOFAR array. Sources were pre-selected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators. Results. Over 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to sho...

  17. Planck 2015 results. V. LFI calibration

    CERN Document Server

    Ade, P A R; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaglia, P; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Christensen, P R; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Pierpaoli, E; Pietrobon, D; Pointecouteau, E; Polenta, G; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Romelli, E; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vassallo, T; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering 4 years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the CMB dipole, exploiting both the orbital and solar components. Our 2015 LFI analysis provides an independent Solar dipole estimate in excellent agreement with that of HFI and within $1\\sigma$ (0.3 % in amplitude) of the WMAP value. This 0.3 % shift in the peak-to-peak dipole temperature from WMAP and a global overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45 % (30 GHz), 0.64 % (44 GHz), and 0.82 % (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is at the level of 0.20 % for the 70 GHz map, 0.26 % for the 44 GHz...

  18. Beam calibration of radio telescopes with drones

    CERN Document Server

    Chang, Chihway; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-01-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  19. Self-Calibration of a Moving Camera by Pre-Calibration

    OpenAIRE

    Sturm, Peter

    1996-01-01

    We consider the problem of self-calibrating a moving camera which is equipped with a zoom lens. This consists essentially in estimating the 5 intrinsic parameters of the pinhole camera model. However, these parameters are not independent. Thus, we propose to do a pre-calibration of the camera, with the aim to model the interdependence of the intrinsic parameters. We show that self-calibration then comes down to the estimation of only 1 intrinsic parameter. We propose a method which exploits t...

  20. Robust calibration of a global aerosol model

    Science.gov (United States)

    Lee, L.; Carslaw, K. S.; Pringle, K. J.; Reddington, C.

    2013-12-01

    Comparison of models and observations is vital for evaluating how well computer models can simulate real world processes. However, many current methods are lacking in their assessment of the model uncertainty, which introduces questions regarding the robustness of the observationally constrained model. In most cases, models are evaluated against observations using a single baseline simulation considered to represent the models' best estimate. The model is then improved in some way so that its comparison to observations is improved. Continuous adjustments in such a way may result in a model that compares better to observations but there may be many compensating features which make prediction with the newly calibrated model difficult to justify. There may also be some model outputs whose comparison to observations becomes worse in some regions/seasons as others improve. In such cases calibration cannot be considered robust. We present details of the calibration of a global aerosol model, GLOMAP, in which we consider not just a single model setup but a perturbed physics ensemble with 28 uncertain parameters. We first quantify the uncertainty in various model outputs (CCN, CN) for the year 2008 and use statistical emulation to identify which of the 28 parameters contribute most to this uncertainty. We then compare the emulated model simulations in the entire parametric uncertainty space to observations. Regions where the entire ensemble lies outside the error of the observations indicate structural model error or gaps in current knowledge which allows us to target future research areas. Where there is some agreement with the observations we use the information on the sources of the model uncertainty to identify geographical regions in which the important parameters are similar. Identification of regional calibration clusters helps us to use information from observation rich regions to calibrate regions with sparse observations and allow us to make recommendations for

  1. Development of calibration procedures for the electron beam calibration of plane parallel ionization chambers

    International Nuclear Information System (INIS)

    In Finland, plane parallel (pp) ionization chambers have been used more than ten years for absolute dose measurements in electron beams of radiation therapy accelerators, for energies below 15 MeV. Before 1997 all pp chambers were calibrated in a 60Co gamma beam at the Finnish SSDL (STUK) for air kerma. Since 1999 all pp chambers have been calibrated by STUK in accelerator electron beams. The local absolute dose measurements (beam calibrations) at hospitals are verified every second year by independent comparative dose measurements by STUK, carried out by ionization chambers during a site visit. All absolute dose measurements are done in a water phantom. The acceptable conditions of the beam for the calibration are always verified by the measurement of beam profiles and depth doses. In regular site visits at the time of 60Co beam calibrations, discrepancies larger than 3% in comparative dose measurements between STUK and the hospitals were constantly observed with some of the hospitals' chambers, despite the chambers had had recalibrations at a 60Co beam. Based on further studies and preliminary electron beam calibrations of those problematic chambers, it became clear that pp chambers had individual characteristics as for the 60Co beam calibration. Therefore, it was decided to introduce an electron beam calibration as the routine method for the pp chambers. By the help of the electron beam calibrations, discrepancies in the comparative dose measurements between STUK and hospitals generally diminished to less than 1 %. The first electron beam calibrations were made by manual construction and it was not sure if repeatability was good enough. Therefore, a high precision jig for pp chamber calibration was constructed. In the precision jig, all chambers are in fixed positions and the only movement in the calibration process is to slide a sledge to change the reference cylindrical chamber (0,6 cm3) to the pp chamber to be calibrated. The depths of the chambers in water

  2. Photometric Calibration of Consumer Video Cameras

    Science.gov (United States)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to

  3. Enhancing Seismic Calibration Research Through Software Automation

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S; Dodge, D; Elliott, A; Ganzberger, M; Hauk, T; Matzel, E; Ryall, F

    2004-07-09

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration with automation tools. We present an overview of our software automation efforts and framework to address the problematic issues of very large datasets and varied formats utilized during seismic calibration research. The software and scientific automation initiatives directly support the rapid collection of raw and contextual seismic data used in research, provide efficient interfaces for researchers to measure/analyze data, and provide a framework for research dataset integration. The automation also improves the researcher's ability to assemble quality controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks provide the robust foundation upon which synergistic and efficient development of, GNEM R&E Program, seismic calibration research may be built. The task of constructing many seismic calibration products is labor intensive and complex, hence expensive. However, aspects of calibration product construction are susceptible to automation and future economies. We are applying software and scientific automation to problems within two distinct phases or 'tiers' of the seismic calibration process. The first tier involves initial collection of waveform and parameter (bulletin) data that comprise the 'raw materials' from which signal travel-time and amplitude correction surfaces are derived and is highly suited for software automation. The second tier in seismic research content development activities include development of correction surfaces and other calibrations. This second tier is less susceptible to complete automation, as these activities require the judgment of scientists skilled in the interpretation of often highly

  4. Calibration of the MEDUSA neutron spectrometer (abstract)

    International Nuclear Information System (INIS)

    The MEDUSA array is a multielement, scintillator-based neutron time-of-flight spectrometer designed primarily to measure primary and secondary neutron production from indirect drive DD and DT capsule implosions at the Omega Laser in Rochester, NY. The array consists of 824 identical scintillator-photomultiplier tube detectors coupled to analog signal discriminators and high resolution, multihit time-to-digital converters, and is located 19.4 m from the center of the Omega target chamber. It is possible to accurately measure the neutron energy spectrum by simply measuring an adequate sample of neutron flight times to the array (the burn time width is negligible). However it is essential to understand the response of the array detectors to the fusion neutrons before an energy spectrum can be deduced from the data. This array response function is generally given in terms of a calibration constant that relates the expected number of detector hits in the array to the number of source neutrons. The calibration constant is a function of the individual detector gains, the thresholds of the discriminators, and the amount of neutron attenuating material between the array and the target. After gain matching the detectors, a calibration constant can be generated by comparing the array response against a known yield of neutrons (this requires dozens of implosions) or from a first principles measurement of the individual detector efficiencies. In this article, we report on the results of both calibrations of the MEDUSA array. In particular, we will focus on the issues and errors associated with the very different measurements required and discuss a new technique being considered for rapid in situ future calibrations

  5. Calibrating ensemble reliability whilst preserving spatial structure

    Directory of Open Access Journals (Sweden)

    Jonathan Flowerdew

    2014-03-01

    Full Text Available Ensemble forecasts aim to improve decision-making by predicting a set of possible outcomes. Ideally, these would provide probabilities which are both sharp and reliable. In practice, the models, data assimilation and ensemble perturbation systems are all imperfect, leading to deficiencies in the predicted probabilities. This paper presents an ensemble post-processing scheme which directly targets local reliability, calibrating both climatology and ensemble dispersion in one coherent operation. It makes minimal assumptions about the underlying statistical distributions, aiming to extract as much information as possible from the original dynamic forecasts and support statistically awkward variables such as precipitation. The output is a set of ensemble members preserving the spatial, temporal and inter-variable structure from the raw forecasts, which should be beneficial to downstream applications such as hydrological models. The calibration is tested on three leading 15-d ensemble systems, and their aggregation into a simple multimodel ensemble. Results are presented for 12 h, 1° scale over Europe for a range of surface variables, including precipitation. The scheme is very effective at removing unreliability from the raw forecasts, whilst generally preserving or improving statistical resolution. In most cases, these benefits extend to the rarest events at each location within the 2-yr verification period. The reliability and resolution are generally equivalent or superior to those achieved using a Local Quantile-Quantile Transform, an established calibration method which generalises bias correction. The value of preserving spatial structure is demonstrated by the fact that 3×3 averages derived from grid-scale precipitation calibration perform almost as well as direct calibration at 3×3 scale, and much better than a similar test neglecting the spatial relationships. Some remaining issues are discussed regarding the finite size of the output

  6. A calibration free vector network analyzer

    Science.gov (United States)

    Kothari, Arpit

    Recently, two novel single-port, phase-shifter based vector network analyzer (VNA) systems were developed and tested at X-band (8.2--12.4 GHz) and Ka-band (26.4--40 GHz), respectively. These systems operate based on electronically moving the standing wave pattern, set up in a waveguide, over a Schottky detector and sample the standing wave voltage for several phase shift values. Once this system is fully characterized, all parameters in the system become known and hence theoretically, no other correction (or calibration) should be required to obtain the reflection coefficient, (Gamma), of an unknown load. This makes this type of VNA "calibration free" which is a significant advantage over other types of VNAs. To this end, a VNA system, based on this design methodology, was developed at X-band using several design improvements (compared to the previous designs) with the aim of demonstrating this "calibration-free" feature. It was found that when a commercial VNA (HP8510C) is used as the source and the detector, the system works as expected. However, when a detector is used (Schottky diode, log detector, etc.), obtaining correct Gamma still requires the customary three-load calibration. With the aim of exploring the cause, a detailed sensitivity analysis of prominent error sources was performed. Extensive measurements were done with different detection techniques including use of a spectrum analyzer as power detector. The system was tested even for electromagnetic compatibility (EMC) which may have contributed to this issue. Although desired results could not be obtained using the proposed standing-wave-power measuring devices like the Schottky diode but the principle of "calibration-free VNA" was shown to be true.

  7. SWIR calibration of Spectralon reflectance factor

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Catherine; Ding, Leibo; Thome, Kurtis J.

    2011-11-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near InfraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475 nm to 1625 nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 50.8 mm (2 in) diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6°directional-hemispherical spectral reflectance factors from 900 nm to 2500 nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475 nm to 1625 nm at an incident angle of 0° and at viewing angle of 45°. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions.

  8. LIDAR Velodyne HDL-64E Calibration Using Pattern Planes

    Directory of Open Access Journals (Sweden)

    Gerardo Atanacio-Jiménez

    2011-11-01

    Full Text Available This work describes a method for calibration of the Velodyne HDL‐64E scanning LIDAR system. The principal contribution was expressed by a pattern calibration signature, the mathematical model and the numerical algorithm for computing the calibration parameters of the LIDAR. In this calibration pattern the main objective is to minimize systematic errors due to geometric calibration factor. It describes an algorithm for solution of the intrinsic and extrinsic parameters. Finally, its uncertainty was calculated from the standard deviation of calibration result errors.

  9. BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning

    2004-01-01

    The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.

  10. Laboratory implantation for well type ionization chambers calibration

    International Nuclear Information System (INIS)

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  11. Sensor Calibration Design Based on D-Optimality Criterion

    Directory of Open Access Journals (Sweden)

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  12. A digital calibration method for synthetic aperture radar systems

    Science.gov (United States)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  13. Calibrating Historical IR Sensors Using GEO, and AVHRR Infrared Tropical Mean Calibration Models

    Science.gov (United States)

    Scarino, Benjamin; Doelling, David R.; Minnis, Patrick; Gopalan, Arun; Haney, Conor; Bhatt, Rajendra

    2014-01-01

    Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth's radiant energy. Therefore, by making historical satellite calibrations consistent with those of today's imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorological satellites rely on an onboard blackbody and space looks to provide on-orbit IR calibration, but neither target is traceable to absolute standards. The IR channels can also be affected by ice on the detector window, angle dependency of the scan mirror emissivity, stray-light, and detector-to-detector striping. Being able to quantify and correct such degradations would mean IR data from any satellite imager could contribute to a CDR. Recent efforts have focused on utilizing well-calibrated modern hyper-spectral sensors to intercalibrate concurrent operational IR imagers to a single reference. In order to consistently calibrate both historical and current IR imagers to the same reference, however, another strategy is needed. Large, well-characterized tropical-domain Earth targets have the potential of providing an Earth-view reference accuracy of within 0.5 K. To that effort, NASA Langley is developing an IR tropical mean calibration model in order to calibrate historical Advanced Very High Resolution Radiometer (AVHRR) instruments. Using Meteosat-9 (Met-9) as a reference, empirical models are built based on spatially/temporally binned Met-9 and AVHRR tropical IR brightness temperatures. By demonstrating the stability of the Met-9 tropical models, NOAA-18 AVHRR can be calibrated to Met-9 by matching the AVHRR monthly histogram averages with the Met-9 model. This method is validated with ray-matched AVHRR and Met-9 biasdifference time series. Establishing the validity of this empirical model will allow for the calibration of historical AVHRR sensors to within 0.5 K, and thereby

  14. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    International Nuclear Information System (INIS)

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  15. Calibrated griz magnitudes of Tycho stars: All-sky photometric calibration using bright stars

    OpenAIRE

    Ofek, E.O.

    2008-01-01

    Photometric calibration to ~5% level is frequently needed at arbitrary celestial location. However, existing all-sky astronomical catalogs do not reach this accuracy, and time consuming photometric calibration procedures are required. I fitted the Hipparcos B-T and V-T magnitudes, along with the 2MASS J, H, and K magnitudes of Tycho-2-catalog stars with stellar spectral templates. From the best-fit spectral template derived for each star, I calculated its synthetic SDSS griz magnitudes and co...

  16. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  17. Compact Radar Transceiver with Included Calibration

    Science.gov (United States)

    McLinden, Matthew; Rincon, Rafael

    2013-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is an eight-channel phased array radar system that employs solid-state radar transceivers, a microstrip patch antenna, and a reconfigurable waveform generator and processor unit. The original DBSAR transceiver design utilizes connectorized electronic components that tend to be physically large and heavy. To achieve increased functionality in a smaller volume, PCB (printed circuit board) transceivers were designed to replace the large connectorized transceivers. One of the most challenging problems designing the transceivers in a PCB format was achieving proper performance in the calibration path. For a radar loop-back calibration path, a portion of the transmit signal is coupled out of the antenna feed and fed back into the receiver. This is achieved using passive components for stability and repeatability. Some signal also leaks through the receive path. As these two signal paths are correlated via an unpredictable phase, the leakage through the receive path during transmit must be 30 dB below the calibration path. For DBSAR s design, this requirement called for a 100-dB isolation in the receiver path during transmit. A total of 16 solid-state L-band transceivers on a PCB format were designed. The transceivers include frequency conversion stages, T/R switching, and a calibration path capable of measuring the transmit power-receiver gain product during transmit for pulse-by-pulse calibration or matched filtering. In particular, this calibration path achieves 100-dB isolation between the transmitted signal and the low-noise amplifier through the use of a switching network and a section of physical walls achieving attenuation of radiated leakage. The transceivers were designed in microstrip PCBs with lumped elements and individually packaged components for compactness. Each transceiver was designed on a single PCB with a custom enclosure providing interior walls and compartments to isolate transceiver

  18. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  19. High performance grid for the metric calibration of thermographic cameras

    International Nuclear Information System (INIS)

    The metric calibration of thermographic cameras would make possible the acquisition of geometric data if the principles of photogrammetry are followed. Both the distortion effects introduced in the images by the lens and the perspective effect can be corrected if the calibration parameters are known. This paper presents a calibration grid that allows the automatic metric calibration of thermographic cameras. This calibration grid is made of light and easy-to-find materials to guarantee its portability and handling. The calibration parameters obtained with the presented calibration grid are verified and compared with those obtained with a temperature-based calibration grid through the evaluation of the accuracy and repeatability in the modelling of a standard artefact previously certified

  20. Self-Calibrating Vector Helium Magnetometer (SVHM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase 2 SBIR proposal describes the design, fabrication and calibration of a brass-board Self-Calibrating Vector Helium Magnetometer (SVHM). The SVHM...

  1. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  2. Instrument calibration architecture of Radar Imaging Satellite (RISAT-1)

    Science.gov (United States)

    Misra, T.; Bhan, R.; Putrevu, D.; Mehrotra, P.; Nandy, P. S.; Shukla, S. D.; Rao, C. V. N.; Dave, D. B.; Desai, N. M.

    2016-05-01

    Radar Imaging Satellite (RISAT-1) payload system is configured to perform self-calibration of transmit and receive paths before and after imaging sessions through a special instrument calibration technique. Instrument calibration architecture of RISAT-1 supported ground verification and validation of payload including active array antenna. During on-ground validation of 126 beams of active array antenna which needed precise calibration of boresight pointing, a unique method called "collimation coefficient error estimation" was utilized. This method of antenna calibration was supported by special hardware and software calibration architecture of RISAT-1. This paper concentrates on RISAT-1 hardware and software architecture which supports in-orbit and on-ground instrument calibration. Efforts are also put here to highlight use of special calibration scheme of RISAT-1 instrument to evaluate system response during ground verification and validation.

  3. Experience with a factory-calibrated HPGe detector

    Science.gov (United States)

    Bossus, D. A. W.; Swagten, J. J. J. M.; Kleinjans, P. A. M.

    2006-08-01

    For k0-based analysis, an HPGe detector has to be used. This detector has to be absolutely calibrated in a reference position and with a defined geometry so that, using SOLCOI/KAYZERO software package, for example, efficiencies of other positions and sample geometries can be calculated. This reference calibration is a time-consuming procedure during which the detector is not available for analyses. Therefore, DSM Resolve decided to purchase a "factory-calibrated" detector. Efficiency calibrations were ordered for a point-source geometry at a coincidence-free distance from the detector and for two additional distances closer to the detector. After delivery, the factory calibration was checked at DSM Resolve using a limited set of PTB-calibrated reference sources. At the end, we decided nevertheless to perform a standard and full calibration of the detector, because it turned out that the factory-calibrated detector was not accurate enough to be used for quantitative analyses.

  4. Weed Control Sprayers: Calibration and Maintenance. Special Circular 81.

    Science.gov (United States)

    Myers, Arthur L.

    This manual covers aspects of calibration and maintenance of weed control sprayers including variables affecting application rate, the pre-calibration check, calculations, band spraying, nozzle tip selection, agitation, and cleaning. (BB)

  5. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  6. FY07 Final Report for Calibration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A

  7. FY07 Final Report for Calibration Systems

    International Nuclear Information System (INIS)

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  8. Viscometry for liquids calibration of viscometers

    CERN Document Server

    Gupta, S V

    2014-01-01

    This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles of  tuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the u...

  9. Calibration of personnel radiation measurement instruments

    International Nuclear Information System (INIS)

    Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six-month period in 1979 on four TLA's located in the Department of Energy Radiological and Environmental Sciences Laboratory at the INEL. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses from future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control

  10. The VLBA Calibrator Survey - VCS1

    CERN Document Server

    Beasley, A J; Peck, A B; Petrov, L A; MacMillan, D S; Fomalont, E B; Ma, C

    2002-01-01

    A catalog containing milliarcsecond--accurate positions of 1332 extragalactic radio sources distributed over the northern sky is presented - the Very Long Baseline Array Calibrator Survey (VCS1). The positions have been derived from astrometric analysis of dual-frequency 2.3 and 8.4 GHz VLBA snapshot observations; in a majority of cases, images of the sources are also available. These radio sources are suitable for use in geodetic and astrometric experiments, and as phase-reference calibrators in high-sensitivity astronomical imaging. The VCS1 is the largest high-resolution radio survey ever undertaken, and triples the number of sources available to the radio astronomy community for VLBI applications. In addition to the astrometric role, this survey can be used in active galactic nuclei, Galactic, gravitational lens and cosmological studies. The VCS1 catalog will soon be available at www.nrao.edu/vlba/VCS1 .

  11. A Survey of Catadioptric Omnidirectional Camera Calibration

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-02-01

    Full Text Available For dozen years, computer vision becomes more popular, in which omnidirectional camera has a larger field of view and widely been used in many fields, such as: robot navigation, visual surveillance, virtual reality, three-dimensional reconstruction, and so on. Camera calibration is an essential step to obtain three-dimensional geometric information from a two-dimensional image. Meanwhile, the omnidirectional camera image has catadioptric distortion, which need to be corrected in many applications, thus the study of such camera calibration method has important theoretical significance and practical applications. This paper firstly introduces the research status of catadioptric omnidirectional imaging system; then the image formation process of catadioptric omnidirectional imaging system has been given; finally a simple classification of omnidirectional imaging method is given, and we discussed the advantages and disadvantages of these methods.

  12. ACCESS: Design, Calibration Strategy, and Status

    Science.gov (United States)

    Kaiser, M. E.; Access Team

    2016-05-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35–1.7μm bandpass. Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with problems such as dark energy now compete with the statistical errors and thus limit our ability to answer fundamental questions in astrophysics.

  13. Calibration and flight qualification of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Redwine, Keith; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2013-09-01

    The Johns Hopkins University sounding rocket group has completed the assembly and calibration of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of up to 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. FORTIS is capable of selecting the far-UV brightest regions of the target area by utilizing an autonomous targeting system. Medium resolution (R ~ 400) spectra are recorded in redundant dual-order spectroscopic channels with ~40 cm2 of effective area at 1216 Å. The maiden launch of FORTIS occurred on May 10, 2013 out of the White Sands Missile Range, targeting the extended spiral galaxy M61 and nearby companion NGC 4301. We report on the final flight calibrations of the instrument, as well as the flight results.

  14. Kappa symmetry, generalized calibrations and spinorial geometry

    International Nuclear Information System (INIS)

    We extend the spinorial geometry techniques developed for the solution of supergravity Killing spinor equations to the kappa symmetry condition for supersymmetric brane probe configurations in any supergravity background. In particular, we construct the linear systems associated with the kappa symmetry projector of M- and type II branes acting on any Killing spinor. As an example, we show that static supersymmetric M2-brane configurations which admit a Killing spinor representing the SU(5) orbit of Spin(10,1) are generalized almost hermitian calibrations and the embedding map is pseudo-holomorphic. We also present a bound for the Euclidean action of M- and type II branes embedded in a supersymmetric background with non-vanishing fluxes. This leads to an extension of the definition of generalized calibrations which allows for the presence of non-trivial Born-Infeld type of fields in the brane actions

  15. The Fifth VLBA Calibrator Survey: VCS5

    CERN Document Server

    Kovalev, Y Y; Fomalont, E B; Gordon, D

    2006-01-01

    This paper presents the fifth extension to the Very Long Baseline Array (VLBA) Calibrator Survey (VCS), containing 569 sources not observed previously with very long baseline interferometry. The main goal of this campaign is to observe additional sources supplementing previous survey results to construct a statistically complete sample of extragalactic flat-spectrum radio sources. This VCS extension, based on three 24 hour VLBA observing sessions, detected almost all remaining extragalactic flat-spectrum sources with correlated flux density greater than 200 mJy at 8.6 GHz above declination -30 degrees. It also increases the number of known sources suitable as phase calibrators. Source positions with milliarcsecond accuracy were derived from astrometric analysis of ionosphere free combinations of group delays determined at 2.3 and 8.6 GHz frequency bands. The VCS5 catalogue of source positions, plots of correlated flux density versus projected baseline length, contour plots and fits files of naturally weighted...

  16. Long-term monitoring of Molonglo calibrators

    CERN Document Server

    Gaensler, B M

    1999-01-01

    Before and after every 12 hour synthesis observation, the Molonglo Observatory Synthesis Telescope (MOST) measures the flux densities of ~5 compact extragalactic radio sources, chosen from a list of 55 calibrators. From 1984 to 1996, the MOST made some 58 000 such measurements. We have developed an algorithm to process this dataset to produce a light curve for each source spanning this thirteen year period. We find that 18 of the 55 calibrators are variable, on time scales between one and ten years. There is the tendency for sources closer to the Galactic Plane to be more likely to vary, which suggests that the variability is a result of refractive scintillation in the Galactic interstellar medium. The sources with the flattest radio spectra show the highest levels of variability, an effect possibly resulting from differing orientations of the radio axes to the line of sight.

  17. Guidelines for the calibration of personnel dosimeters

    International Nuclear Information System (INIS)

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  18. Self Calibrated Wireless Distributed Environmental Sensory Networks

    Science.gov (United States)

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-04-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art.

  19. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  20. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  1. Adaptive calibration method with on-line growing complexity

    OpenAIRE

    Šika Z.; Skopec T.

    2011-01-01

    This paper describes a modified variant of a kinematical calibration algorithm. In the beginning, a brief review of the calibration algorithm and its simple modification are described. As the described calibration modification uses some ideas used by the Lolimot algorithm, the algorithm is described and explained. Main topic of this paper is a description of a synthesis of the Lolimot-based calibration that leads to an adaptive algorithm with an on-line growing complexity. The paper contains ...

  2. Calibrating a depth camera but ignoring it for SLAM

    OpenAIRE

    Castro, Daniel Herrera

    2014-01-01

    Recent improvements in resolution, accuracy, and cost have made depth cameras a very popular alternative for 3D reconstruction and navigation. Thus, accurate depth camera calibration a very relevant aspect of many 3D pipelines. We explore what are the limits of a practical depth camera calibration algorithm: how to accurately calibrate a noisy depth camera without a precise calibration object and without using brightness or depth discontinuities. We present an algorithm that uses an external ...

  3. Camera Self-Calibration for the ARToolKit

    OpenAIRE

    Martinez, Kirk; Abdullah, J.

    2002-01-01

    Camera calibration is an essential and important part of an Augmented Reality (AR) system. The use of a planebased calibration technique can give a good accuracy, which can be important for AR applications. The calibration technique used in the current ARToolKit requires user intervention, which is prone to error and involves a lengthy calibration time. The camera has to be recalibrated every time the focal length changes which is cumbersome and less suitable for applications where a more aut...

  4. Calibration of a Stereo Radiation Detection Camera Using Planar Homography

    OpenAIRE

    Seung-Hae Baek; Pathum Rathnayaka; Soon-Yong Park

    2016-01-01

    This paper proposes a calibration technique of a stereo gamma detection camera. Calibration of the internal and external parameters of a stereo vision camera is a well-known research problem in the computer vision society. However, few or no stereo calibration has been investigated in the radiation measurement research. Since no visual information can be obtained from a stereo radiation camera, it is impossible to use a general stereo calibration algorithm directly. In this paper, we develop ...

  5. Calibration of CES functions for real-world multisectoral modeling

    OpenAIRE

    Sancho, Ferrán

    2007-01-01

    We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To o...

  6. Calibrating pen dosimeters with and without a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Cescon, Claudinei T.; Caldas, Linda V.E., E-mail: fbnonato@ipen.b, E-mail: ctcescon@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thirty one direct reading dosimeters (pen dosimeters) were calibrated and tested in standard beams of gamma radiation, with and without the use of a phantom. The calibration was performed with a Co-60 source and tested with a Cs-137 source. The dose-response curves of the pen dosimeters and their calibration factors for a Co-60 source, with and without the use of a phantom were obtained. The results show the need to calibrate the pen dosimeters with a phantom. (author)

  7. MultiMet temperature sensor maintenance and calibration

    OpenAIRE

    Birch, K.G.; Smith, P.K.

    1992-01-01

    The report details the procedures for MultiMet air temperature sensor preparation, maintenance, and calibration. New sensors must be prepared for marine environment. with careful attention being paid to minimising the environmental effects both to the mechanical and electrical effects caused by corrosion. Sensor calibration methods are described and the software tools to check the calibration by use of the database named MetDb are outlined. Re-calibration and maintenance of senso...

  8. Static and dynamic calibration of radar data for hydrological use

    OpenAIRE

    Wood, S. J.; Jones, D. A.; Moore, R. J.

    2000-01-01

    International audience The HYREX dense raingauge network over the Brue catchment in Somerset, England is used to explore the accuracy of calibrated (raingauge-adjusted) weather radar data. Calibration is restricted to the use of any single gauge within the catchment so as to simulate the conditions in a typical rainfall monitoring network. Combination of a single gauge and a radar estimate is used to obtain calibrated radar estimates, with the "calibration factor" varying dynamically from ...

  9. Static and dynamic calibration of radar data for hydrological use

    OpenAIRE

    Wood, S. J.; Jones, D. A.; Moore, R. J.

    2000-01-01

    The HYREX dense raingauge network over the Brue catchment in Somerset, England is used to explore the accuracy of calibrated (raingauge-adjusted) weather radar data. Calibration is restricted to the use of any single gauge within the catchment so as to simulate the conditions in a typical rainfall monitoring network. Combination of a single gauge and a radar estimate is used to obtain calibrated radar estimates, with the 'calibration factor' varying dynamically from one time-frame to the next...

  10. WIM calibration and data quality management

    OpenAIRE

    D P G de Wet

    2010-01-01

    Weigh-in-motion (WIM) scales are installed on various higher order roads in South Africa to provide traffic loading information for pavement design, strategic planning and law enforcement. Some WIM systems produce anomalies that cannot be satisfactorily explained even by highly experienced professionals. Much of the problem relates to the difficulty in determining the appropriate calibration factors to correct systematic measurement error for WIM systems and the inadequacy of data quality man...

  11. Operational Land Imager relative radiometric calibration

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.

    2015-09-01

    The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.

  12. Two Approaches to Calibration in Metrology

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark

    2014-04-01

    Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.

  13. Omnidirectional Underwater Camera Design and Calibration

    OpenAIRE

    Josep Bosch; Nuno Gracias; Pere Ridao; David Ribas

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing i...

  14. Calibration of multi-camera photogrammetric systems

    OpenAIRE

    I. Detchev; M. Mazaheri; Rondeel, S.; Habib, A

    2014-01-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. ...

  15. Calibration of a leak detection spectrometer

    International Nuclear Information System (INIS)

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author)

  16. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE)hourly from −5.6% to 7.5% and CV(RMSE)hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  17. Calibration Plans for the SMAP Radar

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.

    2012-12-01

    This presentation will describe the calibration and validation plans for the Soil Moisture Active Passive (SMAP) radar. The SMAP radar will supply high resolution backscatter measurements using synthetic aperture (SAR) processing that will aid higher resolution soil moisture retrievals in combination with coincident passive radiometry measurements. Science requirements lead to a backscatter accuracy requirement of 1-dB (one-sigma) at a resolution of 3 km. The errors in backscatter come from speckle noise which can be averaged down in time and/or space, and from calibration errors. Calibration errors are expected due to uncertainties in measuring and modeling of internal performance parameters and external effects. Internal performance parameters include the antenna gain pattern, pointing knowledge, receiver gain, and transmit power. Variations in these are expected due to temperature variation and component aging. External effects include Faraday rotation, and radio frequency interference (RFI). Short term variations in instrument parameters will be tracked by internal calibration measurements that are expected to be stable on a time scale up to one month. Long term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, the oceans and possibly the ice sheets. Faraday rotation effects will be modeled using GPS based total electron content measurements and a forward model of the SMAP radar. These data will be compared with Faraday rotation estimates obtained directly from the SMAP radiometer using the third stokes parameter. RFI will be detected with a threshold technique applied right before range compression. RFI contaminated data are removed and replaced by neighboring uncontaminated data. Discarding contaminated data degrades resolution and increases speckle noise, but avoids the larger errors associated with RFI. In this presentation, we will discuss the expected performance of these

  18. Optimal calibration of directional velocity probes

    OpenAIRE

    McParlin, S; Ward, S; Birch, DM

    2013-01-01

    A novel approach has been considered for the formal process of calibrating multiple hole pressure probes for use in wind tunnels. Rather than determining the attitude angles of a probe and subsequently flow angularity for a fixed probe, either by linear interpolation between sample points or through the use of piecewise functional fits, the outputs from the probe are mapped as continuous functions across the angular test space, using a set of sample points derived from Optimal Design of Exper...

  19. Radiometric Calibration for AgCam

    OpenAIRE

    Edward Hildum; Lianbo Hu; Hojin Kim; Xiaodong Zhang; Changyong Dou; Doug Olsen

    2010-01-01

    The student-built Agricultural Camera (AgCam) now onboard the International Space Station observes the Earth surface through two linescan cameras with Charge-Coupled Device (CCD) arrays sensitive to visible and near-infrared wavelengths, respectively. The electro-optical components of the AgCam were characterized using precision calibration equipment; a method for modeling and applying these measurements was derived. Correction coefficients to minimize effects of optical vignetting, CCD non-u...

  20. Absolute Radiometric Calibration of KOMPSAT-3A

    Science.gov (United States)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  1. The temporal dynamics of calibration target reflectance

    OpenAIRE

    Anderson, K.; Milton, E. J.; Rollin, E.M.

    2003-01-01

    A field experiment investigated the hypothesis that the nadir reflectance of calibration surface substrates (asphalt and concrete) remains stable over a range of time-scales. Measurable differences in spectral reflectance factors were found over periods as short as 30 minutes. Surface reflectance factors measured using a dual-field-of-view GER1500 spectroradiometer system showed a relationship with the relative proportion of diffuse irradiance, over periods when solar zenith changes were m...

  2. Variable Acceleration Force Calibration System (VACS)

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  3. Hadronic calibration of D0 calorimetry

    International Nuclear Information System (INIS)

    The D null detector is used to study p anti p collisions at the 1.8 TeV center-of-momentum energies available at the Fermilab Tevatron. The heart of the detector is a hermetic calorimeter employing uranium absorber and liquid argon as the ionization sampling medium. Several analyses require a well-understood jet energy scale. This paper describes how this calibration is obtained

  4. Electroweak Calibration of the Higgs Characterization Model

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will present the preliminary results of histogram fits using the Higgs Combine histogram fitting package. These fits can be used to estimate the effects of electroweak contributions to the p p -> H mu+ mu- Higgs production channel and calibrate Beyond Standard Model (BSM) simulations which ignore these effects. I will emphasize my findings' significance in the context of other research here at CERN and in the broader world of high energy physics.

  5. Calibration of waveguide beam position monitors

    CERN Document Server

    Kamps, T

    2000-01-01

    To ensure overlap between the photon beam and electron beam at the SASE-FEL at the TESLA Test Facility, several position-sensitive diagnostics components are installed along the beamline of the FEL. For the undulator part, a new type of waveguide beam position monitors (BPMs) is designed, tested, and installed inside the beam pipe of one undulator module. This paper proposes a method to calibrate these monitors with beam-based measurements

  6. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  7. Global irradiance calibration of multifilter UV radiometers

    Science.gov (United States)

    Piedehierro, A. A.; Cancillo, M. L.; Serrano, A.; Antón, M.; Vilaplana, J. M.

    2016-01-01

    It is well known that the amount of ultraviolet solar radiation (UV) reaching the Earth's surface is governed by stratospheric ozone, which has exhibited notable variations since the late 1970s. A thorough monitoring of UV radiation requires long-term series of accurate measurements worldwide, and to keep track of its evolution, it is essential to use high-quality instrumentation with an excellent long-term performance capable of detecting low UV signal. There are several UV monitoring networks worldwide based on multifilter UV radiometers; however, there is no general agreement about the most suitable methodology for the global irradiance calibration of these instruments. This paper aims to compare several calibration methods and to analyze their behavior for different ranges of solar zenith angle (SZA). Four methods are studied: the two currently most frequently used methods referred to in the literature and two new methods that reduce systematic errors in calibrated data at large solar zenith angles. The results evidence that proposed new methods show a clear improvement compared to the classic approaches at high SZA, especially for channels 305 and 320 nm. These two channels are of great interest for calculating the total ozone column and other products such as dose rates of biological interest in the UV range (e.g., the erythemal dose).

  8. Space environment's effect on MODIS calibration

    Science.gov (United States)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  9. Establishing a NORM based radiation calibration facility.

    Science.gov (United States)

    Wallace, J

    2016-05-01

    An environmental radiation calibration facility has been constructed by the Radiation and Nuclear Sciences unit of Queensland Health at the Forensic and Scientific Services Coopers Plains campus in Brisbane. This facility consists of five low density concrete pads, spiked with a NORM source, to simulate soil and effectively provide a number of semi-infinite uniformly distributed sources for improved energy response calibrations of radiation equipment used in NORM measurements. The pads have been sealed with an environmental epoxy compound to restrict radon loss and so enhance the quality of secular equilibrium achieved. Monte Carlo models (MCNP),used to establish suitable design parameters and identify appropriate geometric correction factors linking the air kerma measured above these calibration pads to that predicted for an infinite plane using adjusted ICRU53 data, are discussed. Use of these correction factors as well as adjustments for cosmic radiation and the impact of surrounding low levels of NORM in the soil, allows for good agreement between the radiation fields predicted and measured above the pads at both 0.15 m and 1 m. PMID:26921707

  10. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10-17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  11. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  12. A novel PET camera calibration method

    International Nuclear Information System (INIS)

    Reconstructed time-of-flight PET images must be corrected for differences in the sensitivity of detector pairs, variations in the TOF gain between groups of detector pairs, and for shifts in the detector-pair timing windows. These calibration values are measured for each detector-pair coincidence line using a positron emitting ring source. The quality of the measured value for a detector pair depends on its statistics. To improve statistics, algorithms are developed which derive individual detector calibration values for efficiency, TOF offsets, and TOF fwhm from the raw detector-pair measurements. For the author's current TOFPET system there are 162,000 detector pairs which are reduced to 720 individual detector values. The data for individual detectors are subsequently recombined, improving the statistical quality of the resultant detector-pair values. In addition, storage requirements are significantly reduced by saving the individual detector values. These parameters are automatically evaluated on a routine basis and problem detectors reported for adjustment or replacement. Decomposing the detector-pair measurements into individual detector values significantly improves the calibration values used to correct camera artifacts in PET imaging

  13. Linear accelerator calibration monitor with a memory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.L.; Ekstrand, K.E.

    1979-09-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility.

  14. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  15. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  16. Planck 2013 results. V. LFI calibration

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cappellini, B; Cardoso, J -F; Catalano, A; Chamballu, A; Chen, X; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leach, S; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, D; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the Orbital Dipole plus the Solar Dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the Solar System with respect to the CMB rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data release we rely on the characterization of the Solar Dipole as measured by WMAP. We also present preliminary results (at 44GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the Solar System speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which ...

  17. Calibrating the PAU Survey's 46 Filters

    Science.gov (United States)

    Bauer, A.; Castander, F.; Gaztañaga, E.; Serrano, S.; Sevilla, N.; Tonello, N.; PAU Team

    2016-05-01

    The Physics of the Accelerating Universe (PAU) Survey, being carried out by several Spanish institutions, will image an area of 100-200 square degrees in 6 broad and 40 narrow band optical filters. The team is building a camera (PAUCam) with 18 CCDs, which will be installed in the 4 meter William Herschel Telescope at La Palma in 2013. The narrow band filters will each cover 100Å, with the set spanning 4500-8500Å. The broad band set will consist of standard ugriZy filters. The narrow band filters will provide low-resolution (R˜50) photometric "spectra" for all objects observed in the survey, which will reach a depth of ˜24 mag in the broad bands and ˜22.5 mag (AB) in the narrow bands. Such precision will allow for galaxy photometric redshift errors of 0.0035(1+z), which will facilitate the measurement of cosmological parameters with precision comparable to much larger spectroscopic and photometric surveys. Accurate photometric calibration of the PAU data is vital to the survey's science goals, and is not straightforward due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and coaddition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the tools we are developing to test the quality of the reduction and calibration.

  18. A webcam photogrammetric method for robot calibration

    Science.gov (United States)

    Sargeant, Ben; Hosseininaveh, Ali A.; Erfani, Tohid; Robson, Stuart; Boehm, Jan

    2013-04-01

    This paper describes a strategy for accurate robot calibration using close range photogrammetry. A 5-DoF robot has been designed for placement of two web cameras relative to an object. To ensure correct camera positioning, the robot is calibrated using the following strategy. First, a Denavit-Hartenberg method is used to generate a general kinematic robot model. A set of reference frames are defined relative to each joint and each of the cameras, transformation matrices are then produced to represent change in position and orientation between frames in terms of joint positions and unknown parameters. The complete model is extracted by multiplying these matrices. Second, photogrammetry is used to estimate the postures of both cameras. A set of images are captured of a calibration fixture from different robot poses. The camera postures are then estimated using bundle adjustment. Third, the kinematic parameters are estimated using weighted least squares. For each pose a set of equations are extracted from the model and the unknown parameters are estimated in an iterative procedure. Finally these values are substituted back into the original model. This final model is tested using forward kinematics by comparing the model's predicted camera postures for given joint positions to the values obtained through photogrammetry. Inverse kinematics is performed using both least squares and particle swarm optimisation and these techniques are contrasted. Results demonstrate that this photogrammetry approach produces a reliable and accurate model of the robot that can be used with both least squares and particle swarm optimisation for robot control.

  19. Multimodality vascular imaging phantom for calibration purpose

    Science.gov (United States)

    Cloutier, Guy; Soulez, Gilles; Teppaz, Pierre; Qanadli, Salah D.; Qin, Zhao; Durand, Louis-Gilles

    2003-05-01

    The objective of the project was to design a vascular phantom compatible with X-ray, ultrasound and MRI. Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from the 3D reconstructed images. They also allowed optimizing image fusion and calibration. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, complex realistic geometries of normal and pathological vessels were modeled. The fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRI for 5h of scan. The potential use of the phantom for calibration, rescaling, and fusion of 3D images obtained from the different modalities as well as its use for the evaluation of intra and inter-modality comparative studies of imaging systems were recently demonstrated by our group (results published in SPIE-2003). Endovascular prostheses were also implanted into the lumen of the phantom to evaluate the extent of metallic imaging artifacts (results submitted elsewhere). In conclusion, the phantom can allow accurate calibration of radiological imaging devices and quantitative comparisons of the geometric accuracy of each radiological imaging method tested.

  20. Calibration of Galileo signals for time metrology.

    Science.gov (United States)

    Defraigne, Pascale; Aerts, Wim; Cerretto, Giancarlo; Cantoni, Elena; Sleewaegen, Jean-Marie

    2014-12-01

    Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent. PMID:25474773

  1. Calibrating the Prominence Magnetometer (ProMag)

    Science.gov (United States)

    Fox, Lewis; Casini, R.

    2013-07-01

    The Prominence Magnetometer (ProMag) is a dual-channel, dual-beam, slit-scanning, full Stokes spectro-polarimeter designed by the High Altitude Observatory at the National Center for Atmospheric Research (HAO/NCAR) for the study of the magnetism of solar prominences and filaments. It was deployed in August 2009 at the 40 cm coronagraph of the Evans Solar Facility (ESF) of the National Solar Observatory on Sacramento Peak (NSO/SP). In its standard mode of operation it acquires spectro-polarimetric maps of solar targets simultaneously in the two chromospheric lines of He I at 587.6 nm and 1083.0 nm. Since August 2011 ProMag has operated in “patrol mode” with a dedicated observer. We aim to routinely measure the vector magnetic field in prominences. The electro-optic modulator and polarization analyzer are integrated into a single mechanical unit located at the coude feed of the telescope. This location was necessary for proper co-alignment of the dual beams, but complicates the precise polarimeter calibration necessary to achieve the sensitivity required for prominence measurements (calibration method for ProMag, using a polarizer and retarder at coronagraph prime focus. Calibrations are recorded before and after observations. We discuss the success of this method and its limitations.

  2. Optical tweezers calibration with Bayesian inference

    Science.gov (United States)

    Türkcan, Silvan; Richly, Maximilian U.; Le Gall, Antoine; Fiszman, Nicolas; Masson, Jean-Baptiste; Westbrook, Nathalie; Perronet, Karen; Alexandrou, Antigoni

    2014-09-01

    We present a new method for calibrating an optical-tweezer setup that is based on Bayesian inference1. This method employs an algorithm previously used to analyze the confined trajectories of receptors within lipid rafts2,3. The main advantages of this method are that it does not require input parameters and is insensitive to systematic errors like the drift of the setup. Additionally, it exploits a much larger amount of the information stored in the recorded bead trajectory than standard calibration approaches. The additional information can be used to detect deviations from the perfect harmonic potential or detect environmental influences on the bead. The algorithm infers the diffusion coefficient and the potential felt by a trapped bead, and only requires the bead trajectory as input. We demonstrate that this method outperforms the equipartition method and the power-spectrum method in input information required (bead radius and trajectory length) and in output accuracy. Furthermore, by inferring a higher order potential our method can reveal deviations from the assumed second-order potential. More generally, this method can also be used for magnetic-tweezer calibration.

  3. Timing calibration of the NEutrino Mediterranean Observatory

    International Nuclear Information System (INIS)

    This paper describes the timing calibration system for the NEutrino Mediterranean Observatory (NEMO) underwater neutrino telescope. The NEMO Project aims at the construction of a km3 detector, equipped with a large number of photomultipliers, in the Mediterranean Sea. We foresee a redundant system to perform the time calibration of our apparatus: (1) A two-step procedure for measuring the offsets in the time measurements of the NEMO optical sensors, so as to measure separately the time delay for the synchronization signals to reach the offshore electronics and the response time of the photomultipliers to calibration signals delivered from a pulser through an optical fibre distribution system; (2) An all-optical procedure for measuring the differences in the time offsets of the different optical modules by means of common light sources. Such a system can be extended to work for a very large apparatus, even for complex arrangements of widely spaced sensors. The NEMO prototyping activities ongoing at a test site off the coast of Sicily will allow the system described in this work to be operated and tested in situ this year

  4. Swift/BAT Calibration and Spectral Response

    Science.gov (United States)

    Parsons, A.

    2004-01-01

    The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.

  5. Studies Concerning the ATLAS IBL Calibration Architecture

    CERN Document Server

    Kretz, Moritz; Kugel, Andreas

    With the commissioning of the Insertable B-Layer (IBL) in 2013 at the ATLAS experiment 12~million additional pixels will be added to the current Pixel Detector. While the idea of employing pairs of VME based Read-Out Driver (ROD) and Back of Crate (BOC) cards in the read-out chain remains unchanged, modifications regarding the IBL calibration procedure were introduced to overcome current hardware limitations. The analysis of calibration histograms will no longer be performed on the RODs, but on an external computing farm that is connected to the RODs via Ethernet. This thesis contributes to the new IBL calibration procedure and presents a concept for a scalable software and hardware architecture. An embedded system targeted to the ROD FPGAs is realized for sending data from the RODs to the fit farm servers and benchmarks are carried out with a Linux based networking stack, as well as a standalone software stack. Furthermore, the histogram fitting algorithm currently being employed on the Pixel Detector RODs i...

  6. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon monoxide analyzer calibration... Test Equipment Provisions § 89.320 Carbon monoxide analyzer calibration. (a) Calibrate the NDIR carbon... introduction into service and annually thereafter, the NDIR carbon monoxide analyzer shall be checked...

  7. 40 CFR 86.1325-94 - Methane analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Methane analyzer calibration. 86.1325... Procedures § 86.1325-94 Methane analyzer calibration. Prior to introduction into service and monthly thereafter, the methane analyzer shall be calibrated: (a) Follow the manufacturer's instructions...

  8. 40 CFR 86.125-94 - Methane analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Methane analyzer calibration. 86.125... Complete Heavy-Duty Vehicles; Test Procedures § 86.125-94 Methane analyzer calibration. Prior to introduction into service and monthly thereafter, the methane analyzer shall be calibrated: (a) Follow...

  9. Test surfaces useful for calibration of surface profilometers

    Science.gov (United States)

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  10. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86....331-79 Hydrocarbon analyzer calibration. The following steps are followed in sequence to calibrate the hydrocarbon analyzer. It is suggested, but not required, that efforts be made to minimize relative...

  11. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    Science.gov (United States)

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  12. Research on digital calibration method for optical surface defect dimension

    Science.gov (United States)

    Chen, Xiaoyu; Liu, Dong; Wang, Shitong; Cao, Pin; Gao, Xin; Yang, Yongying

    2012-10-01

    A digital calibration method for defect dimension of the optical surface is put forward to get the correspondence between the actual scale of defect on optical surface and the number of pixels of the defect image captured by CCD. Standard scratches, with their width ranging from 0.5μm to 40μm, are fabricated by electron beam exposure and reactive ion beam etching on two kinds of standard calibration board, quartz calibration board with and without chromium film. Calibration experiments are accomplished in five different microscope magnifications. Threshold segmentation, morphological operation and feature extraction are carried out in the images of calibration board to obtain the width of standard scratches in pixels. Interpret the theoretic trend of the calibration function as well as the linear range of it, and fit the calibration function based on the experimental results. According to the analysis and comparing of the calibration results in different microscope magnifications, error source and the factors limiting the resolving accuracy of the calibration system are analyzed. Ultimately, a standardization process including fabrication of the standard scratch, establishment of the standard calibration library for different microscope magnifications and the rapid calibration of actual detect is established. The calibration of the defects on the optical element in the size of 450mm× 450mm is successfully realized.

  13. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ..., and calibration test procedures specified in 40 CFR part 1065, subpart D, may be used in lieu of the... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Emission Test Equipment Provisions § 90.318 Oxides of nitrogen analyzer calibration. (a) Calibrate...

  14. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... check, and calibration test procedures specified in 40 CFR part 1065, subparts C and D, may be used in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Provisions § 91.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the chemiluminescent oxides...

  15. In-situ calibration and certification of high dc voltage

    International Nuclear Information System (INIS)

    A technical calibration service developed by an electrical standards laboratory to support a production facility in the calibration and certification of electron beam welder is described. The in-situ certification process utilizing standards traceable to NBS, documented procedures, applicable error analyses, and certified tolerances assigned to the calibration results are discussed

  16. 40 CFR 1065.325 - Intake-flow calibration.

    Science.gov (United States)

    2010-07-01

    ... recommend using a calibration subsonic venturi, ultrasonic flow meter or laminar flow element. We recommend... within 0.5% uncertainty. (c) If you use a subsonic venturi or ultrasonic flow meter for intake flow... Intake-flow calibration. (a) Calibrate intake-air flow meters upon initial installation. Follow...

  17. Experimental comparison between total calibration factors and components calibration factors of reference dosemeters used in secondary standard laboratory dosemeters

    International Nuclear Information System (INIS)

    A quantitative comparison of component calibration factors with the corresponding overall calibration factor was used to evaluate the adopted component calibration procedure in regard to parasitic elements. Judgement of significance is based upon the experimental uncertainty of a well established procedure for determination of the overall calibration factor. The experimental results obtained for different ionization chambers and different electrometers demonstrate that for one type of electrometer the parasitic elements have no influence on its sensitivity considering the experimental uncertainty of the calibration procedures. In this case the adopted procedure for determination of component calibration factors is considered to be equivalent to the procedure of determination of the overall calibration factor and thus might be used as a strong quality control measure in routine calibration. (Author)

  18. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    Science.gov (United States)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  19. Calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Modern radiotherapy relies on accurate dose delivery to the prescribed target volume. The ICRU has recommended an overall accuracy in tumour dose delivery of (+-5)%, based on an analysis of dose response data and on an evaluation of errors in dose delivery in a clinical setting. Considering all uncertainties involved in the dose delivery to the patient, the ±5% accuracy recommendation is by no means easy to attain. Before clinical use, the output of photon and electron beams produced by external beam radiotherapy machines must be calibrated. This basic output calibration is but one, albeit very important, of the links constituting the chain representing an accurate dose delivery to the patient. The other links refer to: the procedures for measurement of relative dose data, equipment commissioning and quality assurance; treatment planning; and the actual patient set-up on the treatment machine. The basic output for a radiotherapy machine is usually stated as the dose rate for a point P at a reference depth zref (often the depth of dose maximum zmax) in a water phantom for a nominal source to surface distance (SSD) or source to axis distance (SAD) and a reference field size (often 10 x 10 cm2) on the phantom surface or the isocentre. The output for kilovoltage X ray generators and teletherapy units is usually given in Gy/min, while for clinical accelerators it is given in Gy/MU. For superficial and orthovoltage beams and occasionally for beams produced by teletherapy radioisotope machines, the basic beam output may also be stated as the air kerma rate in air (Gy/min) at a given distance from the source and for a given nominal collimator or applicator setting. The basic output calibration of photon and electron beams is carried out with radiation dosimeters and special radiation dosimetry techniques. Radiation dosimetry refers to a determination by measurement and/or calculation of the absorbed dose or some other physically relevant quantity, such as air kerma

  20. Evaluation of instrument calibration monitoring using artificial neural networks

    International Nuclear Information System (INIS)

    Traditional approaches to sensor validation involve periodic instrument calibrations. These calibrations are expensive both in labor and process downtime. Many periodic sensor calibration techniques require the process to be shut down, the instrument taken out of service, and the instrument loaded and calibrated. This method can lead to damaged equipment, incorrect calibrations due to adjustments made under nonservice conditions, and loss of product due to unnecessarily shutting down a process. A less invasive technique of determining sensor status using data from nuclear and chemical process systems is described in this paper

  1. European intercomparison of diagnostic dosemeters: calibration of the reference dosemeters

    International Nuclear Information System (INIS)

    The paper describes both the organisational and technical steps taken in the calibration of the reference dosemeters used in the intercomparison of diagnostic dosemeters carried out in Europe in 1990. A brief account is given on the activities by the coordinating centres in the 19 countries and by the calibrating institution to establish the operational framework necessary for carrying out the calibration. The second part describes the calibration of the dosemeters against PTB's primary standards in terms of the equipment used and of the individual steps of measurement taken. An assessment of the uncertainties associated with the calibration is presented

  2. Improved Calibration of Instruments for Small Direct Currents

    CERN Document Server

    Scherer, Hansjörg; Krause, Christian

    2016-01-01

    We report on new calibration methods for picoammeters and low-current sources. The "Ultrastable Low-noise Current Amplifier" (ULCA) was used for the exemplary calibration of commercial state-of-the-art ammeter and current source instruments in the current range between 1 femtoampere and 1 microampere. The uncertainties achieved are compared with results obtained from two other calibration methods for small direct currents. It is shown that using the ULCA as calibrator allows achieving lower uncertainties together with the benefit of easier handling compared to alternative techniques. Also, the ULCA allows performing current meter and source calibrations between 1 femtoampere and 1 microampere with a single method.

  3. The new camera calibration system at the US Geological Survey

    Science.gov (United States)

    Light, D.L.

    1992-01-01

    Modern computerized photogrammetric instruments are capable of utilizing both radial and decentering camera calibration parameters which can increase plotting accuracy over that of older analog instrumentation technology from previous decades. Also, recent design improvements in aerial cameras have minimized distortions and increased the resolving power of camera systems, which should improve the performance of the overall photogrammetric process. In concert with these improvements, the Geological Survey has adopted the rigorous mathematical model for camera calibration developed by Duane Brown. An explanation of the Geological Survey's calibration facility and the additional calibration parameters now being provided in the USGS calibration certificate are reviewed. -Author

  4. Calibration of PIXE yields using binary thin films on Si

    International Nuclear Information System (INIS)

    We describe the use of binary thin films on Si to calibrate the yields in proton-induced X-ray emission (PIXE) measurements. Besides of the element to be calibrated, the standards also contain a common reference element. The incorporation of a common reference element allows one to eliminate errors in the accumulated beam charge during the calibration of the PIXE set-up. The binary calibration standards allow us to determine the response function with an accuracy close to 1%. As an example, we will perform the calibration for Fe and Co, and we will determine the Co concentration in Fe1−xCox thin films

  5. Method for Ground-to-Space Laser Calibration System

    Science.gov (United States)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  6. Requirements for the accreditation of a calibration laboratory

    International Nuclear Information System (INIS)

    CNEA's activity in calibration is recent but it has a significant development. To assure high quality results, activity must be sustained and improved from day to day. The calibrations laboratory was accredited before Laboratories Qualification Committee, thus adding reliability to its results and making it more competitive when compared to other laboratories not accredited. Among other services given are supervision and follow up of calibrations in laboratories, participation in interlaboratory assays together with other calibration laboratories and assessments on calibration aspects of measuring equipment. (author)

  7. Was the Scanner Calibration Slide used for its intended purpose?

    Directory of Open Access Journals (Sweden)

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  8. Improvement of gamma calibration procedures with commercial management software

    International Nuclear Information System (INIS)

    In this work, the gamma calibration procedure of the Instruments Calibration Laboratory (LCI) of the IPEN-CNEN-SP was improved with the use of the commercial management software AutolabTM from Automa Company. That software was adapted for our specific use in the calibration procedures. The evaluation of the uncertainties in gamma calibration protocol was improved by the LCI staff and yet the all worksheets and final calibration report lay-out was developed in commercial software like ExcellTM and WordTM from MicrosftTM. (author)

  9. Calibrating the neutron moisture meter: Precision and economy

    International Nuclear Information System (INIS)

    Established laboratory and field calibration procedures for the neutron moisture meter are demonstrated on a uniform soil and alternative, low cost procedures on a duplex, less uniform soil. The effect of field variability on the calibration methodology is discussed with the aim of optimising calibration reliability at minimal cost. The difference between calibration for a soil material, or for a field (a range of soil materials) is considered. In particular, calibration for the estimation of water content change is shown to be a different problem from calibration for the estimation of water content in a variable field. Techniques aimed at detecting field variability problems during calibration are suggested, and methods for optimising the results for the intended use of the instrument are outlined. Pairing of calibration tubes, alternative methods of analysis of calibration data, and use of other information from the field to measure its variability, can improve the precision of calibration procedures to the point where minimal calibration effort, with careful analysis, can provide reliable results. (author)

  10. Calibration of Local Area Weather Radar-Identifying significant factors affecting the calibration

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth; Jensen, Niels Einar; Madsen, Henrik

    2010-01-01

    A Local Area Weather Radar (LAWR) is an X-band weather radar developed to meet the needs of high resolution rainfall data for hydrological applications. The LAWR system and data processing methods are reviewed in the first part of this paper, while the second part of the paper focuses on...... calibration. The data processing for handling the partial beam filling issue was found to be essential to the calibration. LAWR uses a different calibration process compared to conventional weather radars, which use a power-law relationship between reflectivity and rainfall rate. Instead LAWR uses a linear...... relationship of reflectivity and rainfall rate as result of the log transformation carried out by the logarithmic receiver as opposed to the linear receiver of conventional weather radars. Based on rain gauge data for a five month period from a dense network of nine gauges within a 500 x 500 m area and data...

  11. An automated linearity test for direct voltage calibrators

    Science.gov (United States)

    Endsley, Ross

    1990-04-01

    The complete calibration of direct voltage calibrators should include a linearity calibration. The method described uses a string of thermally lagged resistors in series across a stable voltage source to provide fixed reference points for the calibration. A high-resolution digital multimeter is used to compare voltage increments in the output of the calibrator. The calibrator and the instruments in the linearity test system are controlled by computer via the IEEE-488 bus. The measured linearity is the result of standard ration techniques. The test is suggested not only as a general purpose technique, but also as a source of assistance in dealing with traceability questions arising over instruments employing international calibration routines.

  12. Laboratory geometric calibration of areal digital aerial camera

    International Nuclear Information System (INIS)

    Digital aerial camera is non-metric camera. Geometric calibration, including the determination of interior orientation elements and distortion parameters, is the base of high precision photogrammetry. In this paper, a laboratory geometric calibration system of areal digital aerial cameras is developed. This system uses a collimator and a star tester as the target generator. After measurement of the coordinates of targets on the CCD plane and corresponding angles of parallel lights, the geometric calibration of digital aerial camera can be realized according to the geometric calibration model of this paper. Geometric calibration experiments are taken out based on this system using two kinds of mainstream digital aerial cameras, Cannon EOS 5D Mark II and Hasselblad H3D. Experiment results show that this system can satisfy the calibration requirements of aerial photogrammetric application and prove the correctness and the reliability of this calibration method

  13. Flexible calibration method for telecentric fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng; Kong, Weiqi; Huang, Heming

    2016-01-25

    A newly developed flexible calibration algorithm for telecentric 3D measurement systems is presented in this paper. We theoretically analyzed the similarities and differences between the telecentric and entocentric system. The telecentric system can be calibrated with the aid of the traditional 2D planar calibration method. An additional two-step refining process is proposed to improve the calibration accuracy effectively. With the calibration and refining algorithm, an affine camera can be calibrated with a reprojection error of 0.07 pixel. A projector with small field of view (FOV) is applied to achieve a full 3D reconstruction in our profilometry system. Experiments with a prototype demonstrate the validation and accuracy of the proposed calibration algorithm and system configuration. The reconstruction accuracy can achieve 5 µm with a measurement FOV of 28.43 mm×21.33 mm and a working distance of 110 mm. PMID:26832505

  14. Development for calibration target for infrared thermal imaging camera

    International Nuclear Information System (INIS)

    Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

  15. Autonomous On-Board Calibration of Attitude Sensors and Gyros

    Science.gov (United States)

    Pittelkau, Mark E.

    2007-01-01

    This paper presents the state of the art and future prospects for autonomous real-time on-orbit calibration of gyros and attitude sensors. The current practice in ground-based calibration is presented briefly to contrast it with on-orbit calibration. The technical and economic benefits of on-orbit calibration are discussed. Various algorithms for on-orbit calibration are evaluated, including some that are already operating on board spacecraft. Because Redundant Inertial Measurement Units (RIMUs, which are IMUs that have more than three sense axes) are almost ubiquitous on spacecraft, special attention will be given to calibration of RIMUs. In addition, we discuss autonomous on board calibration and how it may be implemented.

  16. Calibration of two 90Sr+90Y dermatological applicators

    International Nuclear Information System (INIS)

    The 90Sr+90Y applicators need to be periodically calibrated, but in Brazil the service it not offered yet. The recommended method for the calibration of this kind of applicators is the use of extrapolation chambers. An alternative method for the calibration of clinical applicators is the use of thermoluminescent dosimeters. A dosimetric method of these applicators was already developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN) and several types of thermoluminescent dosimeters were studied in previous works. The aim of this work was the application of this method to calibrate two dermatological applicators. Thin CaSO4:Dy pellets, with and without 10% of graphite were utilized. The reproducibility of these pellets was studied, and calibration curves were obtained using a standard applicator calibrated at the National Institute of Standards and Technology (NIST), USA. Both applicators showed similar results. The TL materials tested showed usefulness for dosimetry and calibration of this kind of applicators. (author)

  17. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bertincourt, B; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Filliard, C; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Jeune, M Le; Lellouch, E; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Maurin, L; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Moreno, R; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Techene, S; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric calibration schemes have to be used. The 545 and 857 \\GHz\\ data are calibrated using Uranus and Neptune flux density measurements, compared with models of their atmospheric emissions to calibrate the data. The lower frequencies (below 353 GHz) are calibrated using the cosmological microwave background dipole.One of the components of this anisotropy results from the orbital motion of the satellite in the Solar System, and is therefore time-variable. Photometric calibration is thus tightly linked to mapmaking, which also addresses low frequency noise removal. The 2013 released HFI data show some evidence for apparent gain variations of the HFI bolometers' detection chain. These variations were identified by comparing obse...

  18. Bayesian Calibration of Generalized Pools of Predictive Distributions

    Directory of Open Access Journals (Sweden)

    Roberto Casarin

    2016-03-01

    Full Text Available Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.

  19. Wind Tunnel Force Balance Calibration Study - Interim Results

    Science.gov (United States)

    Rhew, Ray D.

    2012-01-01

    Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.

  20. A Novel Calibrator for Electronic Transformers Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Baoxiang PAN

    2013-01-01

    Full Text Available It is necessary for electronic transformer to make calibration before putting it into practice. To solve the problems in actual calibration process, a novel electronic transformer calibrator is designed. In principle, this system adopts both the direct method and the difference method, which are two popular methods for electronic transformer calibration, by this way the application of the system is extended with its reliability improved. In the system design, based on virtual instrument technology, LabVIEW and WinPCap toolkit are used to develop the application software, and it is able to calibrate those electronic transformers following the standard of IEC 61850. In the calculation of ratio and phase error based on fast Fourier transform, a new window function is introduced, and thus the accuracy of calibration, influenced by the frequency vibration, is improved. This research provides theoretic support and practical reference to the development of intelligent calibrator for electronic transformers.