WorldWideScience

Sample records for calibration monitoring activities

  1. Neutron activation procedures used for the calibration of a nitrogen-16 reactor power monitor

    International Nuclear Information System (INIS)

    Jester, W.A.; Daubenspeck, T.

    2000-01-01

    Personnel from the Pennsylvania State University's Breazeale Nuclear Reactor assisted NRC (Nuclear Research Corporation) personnel in calibrating a new MSL/ 16 N Nitrogen-16 Monitor. Neutron flux calibration procedures utilized and the results obtained for the production of a nitrogen-16 source of known activity for a BGO detector calibration are described. (author)

  2. Monitoring and measurement of radon activity in a new design of radon calibration chamber

    International Nuclear Information System (INIS)

    Heidary, S.; Setayeshi, S.; Ghannadi-Maragheh, M.; Negarestani, A.

    2011-01-01

    A new radon calibration chamber has been designed, constructed and tested to set various desired environmental parameters. The chamber is cubic with two trapezoid sides with a total volume size of 0.498 m 3 . The three parameters, temperature, humidity and flow are controlled in the range of 20-45 deg. C (±2 deg. C), 10-70% (±2.5%) and 0.2-10 m 3 /min (±0.1 m 3 /min) respectively. The chamber is equipped with a controllable speed centrifugal fan to achieve a desirably uniform radon flow rate. Many parts of this system are controlled and monitored with a PLC (Programmable Logic Control) and HMI (Human Monitoring Interface) software (Citect Scada). Finally a radon detector (Alpha-Guard) registers the activity parameter.

  3. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  4. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  5. Calibration of moisture monitors

    International Nuclear Information System (INIS)

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  6. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  7. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  10. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  11. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  12. Calibration of alpha surface contamination monitor

    International Nuclear Information System (INIS)

    Freitas, I.S.M. de; Goncalez, O.L.

    1990-01-01

    In this work, the results, as well as the methodology, of the calibration of an alpha surface contamination monitor are presented. The calibration factors are obtained by least-squares fitting with effective variance. (author)

  13. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  14. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  15. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  16. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  17. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  18. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  19. Radioactive contamination in monitors received for calibration

    International Nuclear Information System (INIS)

    Dias, Paulo S.; Santos, Gilvan C. dos; Brunelo, Maria Antonieta G.; Paula, Tiago C. de; Pires, Marina A.; Borges, Jose C.

    2013-01-01

    The Calibration Laboratory - LABCAL, from the Research Center for Metrology and Testing - METROBRAS, MRA Comercio de Instrumentos Eletronicos Ltda., began activities in October 2008 and, in August 2009, decided to establish a procedure for monitoring tests, external and internal, of all packages received from customers, containing instruments for calibration. The aim was to investigate possible contamination radioactive on these instruments. On July 2011, this procedure was extended to packagings of personal thermoluminescent dosemeters - TLD, received by the newly created Laboratory Laboratorio de Dosimetria Pessoal - LDP . In the monitoring procedure were used monitors with external probe, type pancake, MRA brand, models GP - 500 and MIR 7028. During the 37 months in which this investigation was conducted, were detected 42 cases of radioactive contamination, with the following characteristics: 1) just one case was personal dosimeter, TLD type; 2) just one case was not from a packing from nuclear medicine service - was from a mining company; 3) contamination occurred on packs and instruments, located and/or widespread; 4) contamination values ranged from slightly above the level of background radiation to about a thousand fold. Although METROBRAS has facilities for decontamination, in most cases, especially those of higher contamination, the procedure followed was to store the contaminated material in a room used for storage of radioactive sources. Periodically, each package and/or instrument was monitored, being released when the radiation level matched the background radiation. Every contamination detected, the client and/or owner of the instrument was informed. The Brazilian National Energy Commission - CNEN, was informed, during your public consultation for reviewing the standard for nuclear medicine services, held in mid-2012, having received from METROBRAS the statistical data available at the time. The high frequency of contamination detected and the high

  20. Monitoring coordinate measuring machines by calibrated parts

    International Nuclear Information System (INIS)

    Weckenmann, A; Lorz, J

    2005-01-01

    Coordinate measuring machines (CMM) are essential for quality assurance and production control in modern manufacturing. Due to the necessity of assuring traceability during the use of CMM, interim checks with calibrated objects carried out periodically. For this purpose usually special artefacts like standardized ball plates, hole plates, ball bars or step gages are measured. Measuring calibrated series parts would be more advantageous. Applying the substitution method of ISO 15530-3: 2000 such parts can be used. It is less cost intensive and less time consuming than measuring expensive special standardized objects in special programmed measurement routines. Moreover, the measurement results can directly compare with the calibration values; thus, direct information on systematic measurement deviations and uncertainty of the measured features are available. The paper describes a procedure for monitoring horizontal-arm CMMs with calibrated sheet metal series parts

  1. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    Dixon, R.L.; Ekstrand, K.E.

    1979-01-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  2. Calibration through on-line monitoring of instruments channels

    International Nuclear Information System (INIS)

    James, R.W.

    1996-01-01

    Plant technical specifications require periodic calibration of instrument channels, and this has traditionally meant calibration at fixed time intervals for nearly all instruments. Experience has shown that unnecessarily frequent calibrations reduce channel availability and reliability, impact outage durations, and increase maintenance costs. An alternative approach to satisfying existing requirements for periodic calibration consists of on-line monitoring and quantitative comparison of instrument channels during operation to identify instrument degradation and failure. A Utility Working Group has been formed by EPRI to support the technical activities necessary to achieve generic NRC acceptance of on-line monitoring of redundant instrument channels as a basis for determining when to perform calibrations. A topical report proposing NRC acceptance of this approach was submitted in August 1995, and the Working Group is currently resolving NRC technical questions. This paper describes the proposed approach and the current status of the topical report with regard to NRC review. While these activities will not preclude utilities from continuing to use existing calibration approaches, successful acceptance of this performance-based approach will allow utilities to substantially reduce the number of calibrations which are performed. Concurrent benefits will include reduced I ampersand C impact on outage durations and improved sensitivity to instrument channel performance

  3. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, Mario; Gran, Frauke Schmitt; Thunem, Harald P-J.

    2004-04-01

    On-Line Monitoring (OLM) of a channel's calibration state evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. The Halden Reactor Project has developed the signal validation system PEANO, which can be used to assist with the tasks of OLM. To further enhance the PEANO System for use as a calibration reduction tool, the following two additional modules have been developed; HRP Prox, which performs pre-processing and statistical analysis of signal data, Batch Monitoring Module (BMM), which is an off-line batch monitoring and reporting suite. The purpose and functionality of the HRP Prox and BMM modules are discussed in this report, as well as the improvements made to the PEANO Server to support these new modules. The Halden Reactor Project has established a Halden On-Line Monitoring User Group (HOLMUG), devoted to the discussion and implementation of on-line monitoring techniques in power plants. It is formed by utilities, vendors, regulatory bodies and research institutes that meet regularly to discuss implementation aspects of on-line monitoring, technical specification changes, cost-benefit analysis and regulatory issues. (Author)

  4. Monte Carlo calculations of calibrations of calibration coefficients of ATL monitors installed at NPP Temelin

    International Nuclear Information System (INIS)

    Solc, J.; Suran, J.; Novotna, M.; Pavlis, J.

    2008-01-01

    The contribution describes a technique of determination of calibration coefficients of a radioactivity monitor using Monte Carlo calculations. The monitor is installed at the NPP Temelin adjacent to lines with a radioactive medium. The output quantity is the activity concentration (in Bq/m3) that is converted from the number of counts per minute measured by the monitor. The value of this conversion constant, i.e. calibration coefficient, was calculated for gamma photons emitted by Co-60 and compared to the data stated by the manufacturer and supplier of these monitors, General Atomic Electronic Systems, Inc., USA. Results of the comparison show very good agreement between calculations and manufacturer data; the differences are lower than the quadratic sum of uncertainties. (authors)

  5. Calibration, monitoring, and control of complex detector systems

    International Nuclear Information System (INIS)

    Breidenbach, M.

    1981-01-01

    LEP detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e + e - storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: 'passive' histogramming of channel occupancies and other more complex combinations of the data; and 'active' injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches. (Auth.)

  6. Calibration, Monitoring, and Control of Complex Detector Systems

    Science.gov (United States)

    Breidenbach, M.

    1981-04-01

    LEP Detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e+e- storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: "passive" histogramming of channel occupancies and other more complex combinations of the data; and "active" injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches.

  7. A self-calibrating radon monitor with statistical discrimination

    International Nuclear Information System (INIS)

    Valcov, N.; Purghel, L.

    2002-01-01

    A radon monitor, able to perform the measurement of the radon and its progeny volumic activity, in a gamma-ray or natural radiation background field, was developed. The instrument consists of a 10 l ionization chamber, a high voltage source, an integrating preamplifier, a data acquisition system and a personal computer. A new method for self-calibration of Radon volumic activity measurements, based on the alpha counting with an ionization chamber is also presented

  8. Calibration method of radiation monitoring system at TQNPC

    International Nuclear Information System (INIS)

    Liu Zhengshan; Zhang Qingli; Liu Jinjin; Miao Yuxing; Geng Lixin; Zhuang Yun; Dong Jianfeng; He Change

    2009-04-01

    The calibration methods and calibration device for standard monitor of radioactive particulate, iodine, noble gas and so on are not yet set up at home. On consideration of the present situation of the radiation monitoring system at the Third Qinshan Nuclear Power Co. Ltd., we have studied the calibration method of these radiation monitoring instruments used for measuring the waste liquid, particulate, iodine and noble gas produced during the operation of nuclear reactor. Through the check against these instruments during the No. 202 and No. 103 overhaul, we got initially the method of the calibration and obtained the transfer coefficient of calibration when secondary solid sources are used for calibration. Through the testing and calibration, the credibility of the radiation monitoring system is enhanced. And at the same time, the problems existing in the calibration are discussed. (authors)

  9. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  10. The calibration of the MAST neutron yield monitors

    International Nuclear Information System (INIS)

    Stammers, Keith; Loughlin, M.J.

    2006-01-01

    Several neutron detectors have been installed on MAST to monitor the temporal production of neutrons during neutral beam injection. This paper describes the detectors, their calibration and applications of the data. The main neutron diagnostic is a guarded fission chamber, with processing electronics that allow data collection in three modes of operation, and covers the whole range of neutron production rate to be expected from current operations and future upgrades. The scalar mode of operation is calibrated with a 252 Cf source inside the vacuum vessel and then MCNP modelling is used to relate this calibration to an extended plasma source. Plasma neutron data are used to extend the calibration to the Campbell and ion-current modes, with final uncertainties of approximately 8% in each case. Corroborative evidence for the accuracy of the calibration, obtained from neutron activation, indicates that the method is satisfactory. The neutron data are used routinely to keep track of the radio-activation of key components of the MAST tokamak

  11. Calibration of beam position monitor for the SPring-8 synchrotron

    International Nuclear Information System (INIS)

    Aoki, Tsuyoshi; Yonehara, Hiroto; Suzuki, Hiromitsu

    1995-01-01

    Beam position monitors (BPMs) for SPring-8 synchrotron were already designed and manufactured. 80-BPMs were successfully calibrated for the beam position measurement. In this paper, we introduce the structure of BPMs, the electronics of signal detection system and the calibration system, and the results of calibration are reported. (author)

  12. Calibration of neutrons monitors with moderators and application in the calibration factors of albedo dosemeters

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1978-11-01

    The calibration factors and the reproducibility of an Albedo Dosimeter designed for personal neutron monitoring were determined. These factor were obtained simulating the dosimeter reading and the equivalent dose in the locality by a convenient combination of responses of the Bonner Sphere Spectrometer. The results obtained in the simulation were verified experimentally for different spectra employing the Am-Be, bare 252 Cf source and 253 Cf source with graphite sields of varying thickness. Different standards were used in the procedures necessary for the determination of the calibration factors. An Am-Be neutron source, standardized by the activation of a manganese sulphate bath was used as a primary standard. As a secondary standard, for the measurement of the neutron fluence, a De Pangher Long Counter was used and the scattering effects were determined using the shadow cone method. The other monitors such as the Rem-Counter and the Bonner Sphere Spectrometer were also calibrated with reference to the secondary standard with a view to comparing the results obtained with those furnished by the Albedo Dosimeter. (Author) [pt

  13. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  14. Tritium monitor calibration at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bjork, C.J.; Aikin, D.J.; Houlton, T.W.

    1997-08-01

    Tritium in air is monitored at Los Alamos National Laboratory (LANL) with air breathing instruments based on ionization chambers. Stack emissions are continuously monitored from sample tubes which each connect to a Tritium bubble which differentially collects HTO and HT. A set of glass vials of glycol capture the HTO. The HT is oxidized with a palladium catalyst and the resultant HTO is captured in a second set of vials of glycol. The glycol is counted with a liquid scintillation counter. All calibrations are performed with tritium containing gas. The Radiation Instrumentation and Calibration (RIC) Team has constructed and maintains two closed loop gas handling systems based on femto TECH model U24 tritium ion chamber monitors: a fixed system housed in a fume hood and a portable system mounted on two two wheeled hand trucks. The U24 monitors are calibrated against tritium in nitrogen gas standards. They are used as standard transfer instruments to calibrate other ion chamber monitors with tritium in nitrogen, diluted with air. The gas handling systems include a circulation pump which permits a closed circulation loop to be established among the U24 monitor and typically two to four other monitors of a given model during calibration. Fixed and portable monitors can be calibrated. The stack bubblers are calibrated in the field by: blending a known concentration of tritium in air within the known volume of the two portable carts, coupled into a common loop; releasing that gas mixture into a ventilation intake to the stack; collecting oxidized tritium in the bubbler; counting the glycol; and using the stack and bubbler flow rates, computing the bubbler's efficiency. Gas calibration has become a convenient and quality tool in maintaining the tritium monitors at LANL

  15. Application of effective variance method for contamination monitor calibration

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  16. Development of a calibration system for surface contamination monitors

    International Nuclear Information System (INIS)

    Marechal, M.H.H.; Barbosa, M.P.

    1992-01-01

    A calibration system for surface contamination monitors is developed, aiming supply the existence demand of these instruments. A experimental arrangement and a methodology are described. The advantages of use this system for calibration routine optimization are also discussed. (C.G.C.)

  17. Design, development and calibration of a radioactive gas (85Kr) detector for continuous environmental monitoring

    International Nuclear Information System (INIS)

    Janardhanan, S.; Swaminathan, N.; John, Jacob; Kutty, K.N.; Wattamwar, S.B.; Gopalan, C.S.; Menezes, C.M.

    1982-01-01

    Design, development and calibration of a scintillation type detector for environmental monitoring of low levels of 85 Kr activity in off-line effluents or plant areas in presence of gamma background are reported. Calibration of the system was done using NBS 85 Kr standard. (author)

  18. Design, development and calibration of a radioactive gas (/sup 85/Kr) detector for continuous environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, S.; Swaminathan, N.; John, J.; Kutty, K.N.; Wattamwar, S.B. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.); Gopalan, C.S.; Menezes, C.M. (Bhabha Atomic Research Centre, Bombay (India). Electronics Div.)

    Design, development and calibration of a scintillation type detector for environmental monitoring of low levels of /sup 85/Kr activity in off-line effluents or plant areas in presence of gamma background are reported. Calibration of the system was done using NBS /sup 85/Kr standard.

  19. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  20. Onboard calibration and monitoring for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2012-01-01

    The SWIFT (Stratospheric Wind Interferometer for Transport studies) instrument is a proposed space-based field-widened Doppler Michelson interferometer designed to measure stratospheric winds and ozone densities using a passive optical technique called Doppler Michelson imaging interferometry. The onboard calibration and monitoring procedures for the SWIFT instrument are described in this paper. Sample results of the simulations of onboard calibration measurements are presented and discussed. This paper also discusses the results of the derivation of the calibrations and monitoring requirements for the SWIFT instrument. SWIFT's measurement technique and viewing geometry are briefly described. The reference phase calibration and filter monitoring for the SWIFT instrument are two of the main critical design issues. In this paper it is shown that in order to meet SWIFT's science requirements, Michelson interferometer optical path difference monitoring corresponding to a phase calibration accuracy of ∼10 −3 radians, filter passband monitoring corresponding to phase accuracy of ∼5 × 10 −3 radians and a thermal stability of 10 −3 K s −1 are required. (paper)

  1. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  2. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00075913; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  3. Calibration of radiation protection area monitoring instruments in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Youssif, B.E.; Beineen, A.A.; Hassan, M.

    2010-01-01

    This article presents results of measurements for the calibration of radiation protection area monitoring instruments carried out during the period 2006-2008 at Secondary Standard Dosimetry Laboratory of Sudan. The work performed included quality assurance measurements, measurements for the dosimeter calibrations and uncertainty analysis. Calibrations were performed using 137 Cs gamma ray sources produced by OB 85 and OB 34/1 gamma calibrators producing air kerma rate that ranged from 10 μGy/h to 50 mGy/h. Area monitoring instruments were calibrated in terms of ambient dose equivalent, H*(10) derived using air kerma to ambient dose equivalent conversion coefficients. Results are presented for 78 area monitoring instruments representing most commonly used types in Sudan. Radioactive check source measurements for the reference chamber showed deviation within 1% limit. The accuracy in the beam output measurements was within 5% internationally considered as acceptable. The results highlighted the importance of radiation protection calibrations. Regulations are further need to ensure safety aspect really meet the required international standards.

  4. Calibration of the beam-position monitor system for the SLAC PEP-II B factory

    International Nuclear Information System (INIS)

    Johnson, R.; Smith, S.; Kurita, N.

    1997-06-01

    The Beam-Position Monitors (BPM) for the PEP-II B Factory consist of four 1.5-cm diameter button style pickups mounted on the diagonals of the quadrupole vacuum chambers. Before installation of the vacuum chambers in the quadrupole assemblies, the electrical center of the BPMs is measured with respect to the mechanical center in a calibration test stand. In this paper the calibration test stand is described and the precision and accuracy of the calibrations are presented. After installation of the quadrupole assemblies in the PEP-II tunnel, the passive attenuation for each channel of the system is measured to preserve the accuracy of the calibration. Finally, the active electronics includes an onboard calibrator. Results for these portions of the calibration are presented

  5. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  6. Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species

    Science.gov (United States)

    Webster, C. R.

    1982-01-01

    Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.

  7. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    Science.gov (United States)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  8. Radioactive contamination in monitors received for calibration; Contaminacao em monitores de radiacao recebidos para calibracao

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Paulo S.; Santos, Gilvan C. dos; Brunelo, Maria Antonieta G.; Paula, Tiago C. de; Pires, Marina A.; Borges, Jose C. [MRA Comercio de Instrumentos Eletronicos Ltda., Jardinopolis, SP (Brazil). Centro de Ensaios e Pesquisas em Metrologia (METROBRAS)

    2013-10-01

    The Calibration Laboratory - LABCAL, from the Research Center for Metrology and Testing - METROBRAS, MRA Comercio de Instrumentos Eletronicos Ltda., began activities in October 2008 and, in August 2009, decided to establish a procedure for monitoring tests, external and internal, of all packages received from customers, containing instruments for calibration. The aim was to investigate possible contamination radioactive on these instruments. On July 2011, this procedure was extended to packagings of personal thermoluminescent dosemeters - TLD, received by the newly created Laboratory Laboratorio de Dosimetria Pessoal - LDP . In the monitoring procedure were used monitors with external probe, type pancake, MRA brand, models GP - 500 and MIR 7028. During the 37 months in which this investigation was conducted, were detected 42 cases of radioactive contamination, with the following characteristics: 1) just one case was personal dosimeter, TLD type; 2) just one case was not from a packing from nuclear medicine service - was from a mining company; 3) contamination occurred on packs and instruments, located and/or widespread; 4) contamination values ranged from slightly above the level of background radiation to about a thousand fold. Although METROBRAS has facilities for decontamination, in most cases, especially those of higher contamination, the procedure followed was to store the contaminated material in a room used for storage of radioactive sources. Periodically, each package and/or instrument was monitored, being released when the radiation level matched the background radiation. Every contamination detected, the client and/or owner of the instrument was informed. The Brazilian National Energy Commission - CNEN, was informed, during your public consultation for reviewing the standard for nuclear medicine services, held in mid-2012, having received from METROBRAS the statistical data available at the time. The high frequency of contamination detected and the high

  9. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    Science.gov (United States)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  10. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolò; Fabbri, Franco L; Finkel, Alexey; Orfanelli, Stella; Loos, R; Montanari, Alessandro; Rusack, R; Stickland, David P

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the cavern of the Compact Muon Solenoid (CMS) experiment for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing. The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of...

  11. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    Science.gov (United States)

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards. Copyright © 2014. Published by Elsevier GmbH.

  12. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1977-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  13. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1976-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  14. Calibration of alpha-track monitors for measurement of thoron

    International Nuclear Information System (INIS)

    Pearson, M.D.

    1990-03-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) to provide standardization, calibration, verification of data, quality assurance, and cost-effectiveness for environmental measurements associated with the various DOE remedial action programs. The GJPO Radon Laboratory has conducted a number of studies evaluating the precision and accuracy of alpha-track monitors for the measurement of airborne radon (Rn-222) concentration. These studies have demonstrated the usefulness of using alpha-track monitors to measure radon. Alpha-track devices have also been proposed for estimating concentrations of thoron (Rn-220). 9 refs., 7 figs., 4 tabs

  15. Calibration of instrument and personnel monitoring in radiological protection

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamad Ramli; Wan Saffiey Wan Abdullah

    1987-01-01

    It is difficult to choose radioprotection equipments that are not too expensive and suit the purpose. Some of the dosimetric characteristics of good dosemeters outlined by ISO 4071-1978 (E) namely scale linearity, energy dependence, radiation quality dependence and angular dependence for some of the commercially available dosemeters are discussed. The calibration procedures practised at the National Secondary Standard Dosimetry Laboratory (SSDL), of the Nuclear Energy Unit (NEU) is also explained. The radiological equipments for personnel monitoring such as film badge and TLD are widely used to estimate the radiation dose delivered to the whole or partial body of a personnel. Both of the personnel monitoring procedures have been established at the NEU. The objective, use and maintenance of the devices are also discussed in detail. The evaluation of the monthly dose received by a personnel from various establishments in the country are also presented. (author). 17 figs

  16. Calibration of an air monitor prototype for a radiation surveillance network based on gamma spectrometry

    International Nuclear Information System (INIS)

    Baeza, A.; Caballero, J.M.; Corbacho, J.Á.; Ontalba-Salamanca, M.Á.; Vasco, J.

    2014-01-01

    The objective of this work is to present the improvements that have been made in quasi-real-time air radioactivity concentration monitors which were initially based on overall activity determinations, by incorporating gamma spectrometry into the current prototype. To this end it was necessary to develop a careful efficiency calibration procedure for both the particulate and the gaseous fractions of the air being sampled. The work also reports the values of the minimum detectable activity calculated for different isotopes and acquisition times. - Highlights: • Deficiencies of a commercial air monitoring system are detailed. • Gamma spectrometry introduction is the basis of the new prototype. • Efficiency calibration procedure is described for aerosol and gaseous fractions. • MDA is evaluated for different isotopes and acquisition times

  17. MCO Monitoring activity description

    International Nuclear Information System (INIS)

    SEXTON, R.A.

    1998-01-01

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description

  18. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  19. Overview of individual monitoring and calibration of radiation monitors in the country; Panorama da monitoração individual e calibração de monitores de radiação no país

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, M.A.V.; Patrão, K.C.S.; Ferreira, P.R.R.; Matta, L.E.S.C.; Peres, S.S.; Silva, F.C.A. da, E-mail: vallim@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since 1995, the Institute of Radioprotection and Dosimetry (IRD/CNEN-RJ) has been responsible for the certification of instrument calibration laboratories and monitoring of occupationally exposed individuals (IOE), as well as monitoring and auditing the activities of eleven individual monitoring services (SMIE) and six instrument calibration laboratories (LCI) in the country. The work presents an overview of the number of IOE monitored and calibrated radiation monitors, from 2008 to 2016. The data were obtained through a census with the SMIE and LCI. The results show that in this period there was an increase of around 47% in the total number of IOE monitored and approximately 40% in the number of instrument calibrations. It was also observed the reduction of dosimetric film use and the beginning of OSLD monitoring.

  20. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  1. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  2. Calibration of low-cost gas sensors for an urban air quality monitoring network

    Science.gov (United States)

    Scott, A.; Kelley, C.; He, C.; Ghugare, P.; Lehman, A.; Benish, S.; Stratton, P.; Dickerson, R. R.; Zuidema, C.; Azdoud, Y.; Ren, X.

    2017-12-01

    In a warming world, environmental pollution may be exacerbated by anthropogenic activities, such as climate change and the urban heat island effect, as well as natural phenomena such as heat waves. However, monitoring air pollution at federal reference standards (approximately 1 part per billion or ppb for ambient ozone) is cost-prohibitive in heterogeneous urban areas as many expensive devices are required to fully capture a region's geo-spatial variability. Innovation in low-cost sensors provide a potential solution, yet technical challenges remain to overcome possible imprecision in the data. We present the calibrations of ozone and nitrous dioxide from a low-cost air quality monitoring device designed for the Baltimore Open Air Project. The sensors used in this study are commercially available thin film electrochemical sensors from SPEC Sensor, which are amperometric, meaning they generate current proportional to volumetric fraction of gas. The results of sensor calibrations in the laboratory and field are presented.

  3. A theoretical approach to calibrate radiation portal monitor (RPM) systems

    International Nuclear Information System (INIS)

    Nafee, Sherif S.; Abbas, Mahmoud I.

    2008-01-01

    Radiation portal monitor (RPM) systems are widely used at international border crossings, where they are applied to the task of detecting nuclear devices, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, the former being required to rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce [Chambers, W.H., Atwater, H.F., Fehlau, P.E., Hastings, R.D., Henry, C.N., Kunz, W.E., Sampson, T.E., Whittlesey, T.H., Worth, G.M., 1974. Portal Monitor for Diversion Safeguards. LA-5681, Los Alamos Scientific Laboratory, Los Alamos, NM]. In the present work, compact analytical formulae are derived and used to calibrate two RPM systems with isotropic radiating sources: (i) polyvinyltoluene (PVT) or plastic and (ii) thallium-doped crystalline sodium iodide, NaI(Tl), gamma-ray detector materials. The calculated efficiencies are compared to measured values reported in the literatures, showing very good agreement

  4. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  5. Calibration of a large volume argon-41 gas-effluent monitor

    International Nuclear Information System (INIS)

    Wilson, William E.; Lovas, Thomas A.

    1976-01-01

    In September of 1975, a large volume Argon-41 sampler was calibrated using a series connected calibration chamber of known sensitivity and a constant flow of activated Argon gas. The calibration included analysis of the effects of flow rate through the large volume sampler and yielded a calibration constant of 2.34 x 10 -8 μc/cm 3 /CPM. (author)

  6. Construction and calibration of a simple scintillation counter for monitoring radioactive gases in ducts

    International Nuclear Information System (INIS)

    Johnston, M.S.

    1984-07-01

    A report is given of the practical construction, laboratory calibration and simple-in-situ calibration check of scintillation detectors used for monitoring radioactive inert gases in gaseous effluents. The βγ-ray and γ-ray detectors are identical except for an absorber which is placed over the window of the γ-ray detector after calibration. The construction and calibration of both detectors is therefore identical. (author)

  7. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  8. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  9. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    Science.gov (United States)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  10. Activity meters: Calibration and quality assurance measures by the manufacturer

    International Nuclear Information System (INIS)

    Pychlau, P.

    1992-01-01

    A manufacturer of ionisation chambers gives a general idea of such quality assurance programs as may be implemented after an agreement has been reached at the EC level on a guideline for activity meters. Further issues discussed include the final controls, calibration of activity meters by the manufacturer and the advantages that the participation in cooperate tests would offer over a mandatory calibration of activity meters. (orig./DG) [de

  11. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  12. Experiences in troubleshooting of neutron rem monitor electronics and its subsequent calibration

    International Nuclear Information System (INIS)

    Maithani, Atul; Dash, Amit Kumar; Vijayasekaran, P.; Mathews, Geo; Ajoy, K.C.; Dhanasekaran, A.

    2014-01-01

    This paper deals with the troubleshooting of the signal processing and counting electronics of two no's of Neutron Rem monitors and its subsequent calibration. Electronics servicing with respect to detection of fault in the circuit board, replacement of faulty ICs, circuits (Analog and Digital) tracing and installation of new rechargeable battery pack was done. Electronic calibration using Test pulse generator was carried out for dose rate measurements, amplitude measurements and discriminator level setting. Serial communication settings were checked with both HyperTerminal and software for the monitors. Neutron Source calibration was also carried out for both the monitors. (author)

  13. Development of a calibration system for airborne "1"3"1I monitoring devices

    International Nuclear Information System (INIS)

    Zhao, C.; Tang, F.; He, L.; Xu, Y.; Lu, X.

    2016-01-01

    A prototype calibration system for airborne "1"3"1I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous "1"3"1I_2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, "1"3"1I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000 Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. - Highlights: • Original calibration system for airborne "1"3"1I monitoring devices was developed. • Two types of "1"3"1I reference samples was prepared. • The activity of the produced "1"3"1I reference sample could be easily controlled. • The influence of uneven distribution of "1"3"1I in cartridge samples was considered.

  14. Calibration of F-18 activity for PET applications in Cuba

    International Nuclear Information System (INIS)

    León, Yecenia Moreno; Verdecia, Pilar Oropesa; Rodríguez, Lourdes García; Águila, Rolando A. Serra; Magaña, Yoel Jénez; Hechavarría, Ailec Bell; Pérez, Nayla; Cacero, Maray Dubalón; Ruiz, Javier Mas

    2016-01-01

    In the paper we present the results of the calibration of the concentration of F-18 dissolution activity in Cuba. Methods of measurement in a calibrated well ionization chamber, traceable to the UK national standard and gamma spectrometry yielded equivalent results within the limit of the associated uncertainties, respectively. The measurement uncertainties of the F-18 activity of the secondary standard activity activator, CAPINTEC CRCTM 15R, obtained from calibration of the instrument with the calibrated solutions of radionuclide, are also shown for the measurement of samples in the geometries of interest in Nuclear Medicine: glass jars and plastic syringes. The results presented in this paper constitute the necessary metrological support for the use of F-18 radiopharmaceuticals and the new PET and PET / CT technologies in medical practice in Cuba.

  15. Calibration of self-report tools for physical activity research: the Physical Activity Questionnaire (PAQ).

    Science.gov (United States)

    Saint-Maurice, Pedro F; Welk, Gregory J; Beyler, Nicholas K; Bartee, Roderick T; Heelan, Kate A

    2014-05-16

    The utility of self-report measures of physical activity (PA) in youth can be greatly enhanced by calibrating self-report output against objectively measured PA data.This study demonstrates the potential of calibrating self-report output against objectively measured physical activity (PA) in youth by using a commonly used self-report tool called the Physical Activity Questionnaire (PAQ). A total of 148 participants (grades 4 through 12) from 9 schools (during the 2009-2010 school year) wore an Actigraph accelerometer for 7 days and then completed the PAQ. Multiple linear regression modeling was used on 70% of the available sample to develop a calibration equation and this was cross validated on an independent sample of participants (30% of sample). A calibration model with age, gender, and PAQ scores explained 40% of the variance in values for the percentage of time in moderate-to-vigorous PA (%MVPA) measured from the accelerometers (%MVPA = 14.56 - (sex*0.98) - (0.84*age) + (1.01*PAQ)). When tested on an independent, hold-out sample, the model estimated %MVPA values that were highly correlated with the recorded accelerometer values (r = .63) and there was no significant difference between the estimated and recorded activity values (mean diff. = 25.3 ± 18.1 min; p = .17). These results suggest that the calibrated PAQ may be a valid alternative tool to activity monitoring instruments for estimating %MVPA in groups of youth.

  16. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  17. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    OpenAIRE

    Thomas, Felicity Louise; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.; Chase, J. Geoffrey

    2014-01-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia me...

  18. Air alpha monitoring device and system for the calibration of the track detectors

    International Nuclear Information System (INIS)

    Danis, A; Oncescu, M.; Ciubotariu, M.

    2001-01-01

    density). After the etching of the detectors and study of the tracks, using these two track densities, it is possible to determine : - the activity concentrations of the radon in air; - the equilibrium factor for radon and its decay products in air, using the ratio ρ tot /ρ Rn and the Planinic and Faj equation, for the case when the values of the ratio are 1 tot /ρ Rn tot is the track density in the detector mounted in the device without the filter and ρ Rn is the track density in the detector mounted in the device with filter. The system for the calibration of the track detectors and charcoal detectors used in radon measurements ensures: - a constant volume concentration of radon activity, by a continuous generation of the radon, at a constant rate. The radon is generated by a calibrated 226 Ra source of 236 ± 19 kBq activity, which is in radioactive equilibrium with all its decay products; - the radioprotection against the alpha particles of radon and its decay products, the system being an airtight one. For gamma and beta radiations, the radioprotection is ensured by the 5 cm Pb shielding of the source flat bottom flask; - for radon measurements, for the specified etching conditions, the calibration constant is expressed in (tracks cm -2 /kBq m -3 h). Both the air alpha monitoring device and the system for track detector calibration will be used by authors for the radon monitoring in dwelling and working places. For this, we try at present to meet all the requirements for Testing and Approval of Processing Laboratories in compliance with International Radon Metrology Programme. (authors)

  19. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  20. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  1. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar

    International Nuclear Information System (INIS)

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-01-01

    A prototype of a calibration facility for noble gas monitoring using 41 Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive 41 Ar source was obtained by thermal neutron reaction of 40 Ar(n, γ) 41 Ar using a thermal neutron flux of 4.8×10 13 neutrons per cm 2 per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of 41 Ar. The spectrum of the 41 Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of 41 Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for 41 Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%. - Highlights: ► Testing of a calibration facility prototype for noble gas monitor using 41 Ar in PTKMR-BATAN. ► This facility was designed such that a standard radioactive gas source can be used repeatedly. ► Standardization of the 41 Ar is performed using gamma spectrometry. ► The time required for the 41 Ar gas to be distributed evenly throughout the cavity of the facility was 7 min. ► The effectiveness of repeated use was 53%.

  2. Practical Field Calibration of Portable Monitors for Mobile Measurements of Multiple Air Pollutants

    Directory of Open Access Journals (Sweden)

    Chun Lin

    2017-11-01

    Full Text Available To reduce inaccuracies in the measurement of air pollutants by portable monitors it is necessary to establish quantitative calibration relationships against their respective reference analyser. This is usually done under controlled laboratory conditions or one-off static co-location alongside a reference analyser in the field, neither of which may adequately represent the extended use of portable monitors in exposure assessment research. To address this, we investigated ways of establishing and evaluating portable monitor calibration relationships from repeated intermittent deployment cycles over an extended period involving stationary deployment at a reference site, mobile monitoring, and completely switched off. We evaluated four types of portable monitors: Aeroqual Ltd. (Auckland, New Zealand S500 O3 metal oxide and S500 NO2 electrochemical; RTI (Berkeley, CA, USA MicroPEM PM2.5; and, AethLabs (San Francisco, CA, USA AE51 black carbon (BC. Innovations in our study included: (i comparison of calibrations derived from the individual co-locations of a portable monitor against its reference analyser or from all the co-location periods combined into a single dataset; and, (ii evaluation of calibrated monitor estimates during transient measurements with the portable monitor close to its reference analyser at separate times from the stationary co-location calibration periods. Within the ~7 month duration of the study, ‘combined’ calibration relationships for O3, PM2.5, and BC monitors from all co-locations agreed more closely on average with reference measurements than ‘individual’ calibration relationships from co-location deployment nearest in time to transient deployment periods. ‘Individual’ calibrations relationships were sometimes substantially unrepresentative of the ‘combined’ relationships. Reduced quantitative consistency in field calibration relationships for the PM2.5 monitors may have resulted from generally low PM2

  3. Using Active Learning for Speeding up Calibration in Simulation Models.

    Science.gov (United States)

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  4. Exercise of laboratory comparison for contamination monitor calibration between LNMRI/IRD and LCR/UERJ - 2016

    International Nuclear Information System (INIS)

    Cabral, T.S.; David, M.

    2016-01-01

    This work was motivated by the need to decide on the best methodology to be applied in the next contamination monitor calibration comparisons with the Brazilian network of calibration radiation monitors. The calibration factor was chosen as a response calibration performed in the four monitors used in this comparison because it does not require the detector area or probe thereby reducing an important variable. It was observed that the variation of the positioning system may have an influence up to 10% in calibration. The results obtained for the calibration factor showed a difference of up to 31.2%. (author)

  5. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  6. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  7. Calibration of Community-based Coral Reef Monitoring Protocols ...

    African Journals Online (AJOL)

    Coral reef monitoring (CRM) has been recognised as an important management tool and has consequently been incorporated in Integrated Coastal Area Management (ICAM) programmes in the Western Indian Ocean (WIO). Community-based coral reef monitoring (CB-CRM), which uses simplified procedures suitable for ...

  8. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.

    Science.gov (United States)

    Hoss, Udo; Jeddi, Iman; Schulz, Mark; Budiman, Erwin; Bhogal, Claire; McGarraugh, Geoffrey

    2010-08-01

    Commercial continuous subcutaneous glucose monitors require in vivo calibration using capillary blood glucose tests. Feasibility of factory calibration, i.e., sensor batch characterization in vitro with no further need for in vivo calibration, requires a predictable and stable in vivo sensor sensitivity and limited inter- and intra-subject variation of the ratio of interstitial to blood glucose concentration. Twelve volunteers wore two FreeStyle Navigator (Abbott Diabetes Care, Alameda, CA) continuous glucose monitoring systems for 5 days in parallel for two consecutive sensor wears (four sensors per subject, 48 sensors total). Sensors from a prototype sensor lot with a low variability in glucose sensitivity were used for the study. Median sensor sensitivity values based on capillary blood glucose were calculated per sensor and compared for inter- and intra-subject variation. Mean absolute relative difference (MARD) calculation and error grid analysis were performed using a single calibration factor for all sensors to simulate factory calibration and compared to standard fingerstick calibration. Sensor sensitivity variation in vitro was 4.6%, which increased to 8.3% in vivo (P glucose monitoring is feasible with similar accuracy to standard fingerstick calibration. Additional data are required to confirm this result in subjects with diabetes.

  9. Instrument calibration reduction through on-line monitoring in the USA. Annex IV

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2008-01-01

    Nuclear power plants are required to calibrate important instruments once every fuel cycle. This requirement dates back more than 30 years, when commercial nuclear power plants began to operate. Based on calibration data accumulated over this period, it has been determined that the calibration of some instruments, such as pressure transmitters, do not drift enough to warrant calibration as often as once every fuel cycle. This fact, combined with human resources limitations and reduced maintenance budgets, has provided the motivation for the nuclear industry to develop new technologies for identifying drifting instruments during plant operation. Implementing these technologies allows calibration efforts to be focused on the instruments that have drifted out of tolerance, as opposed to current practice, which calls for calibration verification of almost all instruments every fuel cycle. To date, an array of technologies, referred to collectively as 'on-line calibration monitoring', has been developed to meet this objective. These technologies are based on identifying outlier sensors using techniques that compare a particular sensor's output to a calculated estimate of the actual process the sensor is measuring. If on-line monitoring data are collected during plant startup and/or shutdown periods as well as normal operation, the on-line monitoring approach can help verify the calibration of instruments over their entire operating range. Although on-line calibration monitoring is applicable to most sensors and can cover an entire instrument channel, the main application of this approach in nuclear power plants is currently for pressure transmitters (including level and flow transmitters). (author)

  10. Radiation Measurements Laboratory (RML) calibration and assessment of the ATR SPING-3 stack effluent monitor

    International Nuclear Information System (INIS)

    Koeppen, L.D.; Rogers, J.W.; Simpson, O.D.

    1983-12-01

    An evaluation, calibration and assessment of the Eberline SPING-3 ATR stack effluent monitor was conducted. This unit which monitors particulate, iodine and noble gas effluents was producing abnormal results following the initial installation and operational testing. The purposes of this work were to find the causes of the abnormal results and correct them if possible; check the calibrations and adjust them if necessary; and to provide a better in-depth understanding of what the unit is monitoring and how well it performs under this application. Results have shown that there were some problems associated with the unit as initially installed and tested. These problems have been identified and suggested alternatives shown, the monitor was found to be applicable to some extent under the current conditions. The calibrations have been checked and adjustments made. More operation testing and evaluation is needed to assess how well this works under a variety of ATR operating conditions. 2 references, 10 figures, 3 tables

  11. Development and implementation of an automated system for antiquated of the process of gamma radiation monitors calibration

    International Nuclear Information System (INIS)

    Silva Junior, Iremar Alves

    2012-01-01

    In this study it was carried out the development and implementation of a system for the appropriate process of gamma radiation monitors calibration, constituted by a pneumatic dispositive to exchange the attenuators and a positioning table, both actuated through a control panel. We also implemented a System of Caesa-Gammatron Irradiator, which increased the range of the air kerma rates, due to its higher activity comparing with the current system of gamma radiation in use in the calibration laboratory of gamma irradiation. Hence, it was necessary the installation of an attenuator dispositive remotely controlled in this irradiator system. Lastly, it was carried out an evaluation of the reduction in the rates of the occupational dose. This dissertation was developed with the aim of improving the quality of the services of calibration and tests of gamma radiation monitors - provided by the IPEN Laboratory of Instrument Calibration - as well as decreasing the occupational dose of the technicians involved in the process of calibration, following thus the principles of radiation protection. (author)

  12. Calibration of Ga-68 activity for PET applications in Cuba

    International Nuclear Information System (INIS)

    García Rodríguez, Lourdes; Oropesa Verdecia, Pilar; Serra Águila, Rolando A.; Moreno León, Yecenia; Jénez Magaña, Yoel; Pérez LoretdeMola, Nayla; Bell Hechavarría, Ailec; Mas Ruiz, Javier; Cassette, Philippe

    2016-01-01

    A Ga-68 solution was used to calibrate the activity concentration using the double-triple coincidence ratio (TDCR) method of liquid scintillation for the first time in the country. The expanded uncertainty (k = 2) of the concentration of Ga-68 activity in the calibrated solution was equal to 2%. For measurements, the commercial liquid scintillation counter HIDEXTM was used. Samples were prepared by adding between 40 and 50 mg of the radioactive solution to 15 mL of ULTIMAGOLD ™ scintillating cocktail. For the estimation of Ga-68 counting efficiencies in the samples used for the calibration, a FORTRAN program developed by the National Institute of Metrology of France for the magnitudes of ionizing radiation, LNHB, was used. The validation of the method was carried out by the calibration of a standard solution of Na-22, also positronic emitter with similar disintegration scheme to Ga-68. The difference between the concentration of Na-22 activity measured using the TDCR method and the certified reference value traceable to the National Institute of Metrology of the United States (NIST) was 0.15%. With the solution of Ga-68 standardized by the TDCR method the calibration of the secondary standard activity meter, model CAPINTEC CRCTM 15R, was carried out for a geometry of 2R flask with 1mL of radioactive solution. Afterwards, this standard activity meter was calibrated for the measurement of Ga-68 in the geometries of interest in nuclear medicine: Flask 15R with 6 mL of radioactive solution, 2.5 mL syringe with 2 mL of radioactive solution and 5 mL syringe with 2 mL of radioactive solution. The results presented in this paper constitute the necessary metrological support for the introduction of new PET and PET / CT technologies into medical practice in Cuba.

  13. Are BDNF and glucocorticoid activities calibrated?

    Science.gov (United States)

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  14. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    Science.gov (United States)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor

  15. Value activity monitoring

    NARCIS (Netherlands)

    de Alencar Silva, P.

    2013-01-01

    Current value modeling ontologies are grounded on the economic premise that profit sharing is a critical condition to be assessed during the configuration of a value constellation. Such a condition ought to be reinforced through a monitoring mechanism design, since a value model expresses only

  16. Second IRMF comparison of surface contamination monitor calibrations 2001-2002

    CERN Document Server

    Scott, C J

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a second comparison of surface contamination monitor calibrations in which twenty establishments in the UK participated. The exercise involved the circulation of three surface contamination monitors for calibration using large area reference sources available in the participants' laboratories. The instruments used were a Mini Instruments EP15, a Berthold LB122 and an Electra ratemeter with DP6AD probe. The instrument responses were calculated by the individual participants and submitted to the for analysis along with details of the reference sources used. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments.

  17. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. Calibration of the delayed-gamma neutron activation facility

    International Nuclear Information System (INIS)

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-01-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99% of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1%. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. copyright 1996 American Association of Physicists in Medicine

  20. Evaluation of uncertainties in the calibration of radiation personal monitor with Cesium-137 source

    International Nuclear Information System (INIS)

    Mirapalheta, Tatiane; Alexandre, Anderson; Costa, Camila; Batista, Gilmar; Paulino, Thyago; Albuquerque, Marcos; Universidade do Estado do Rio de Janeiro

    2016-01-01

    This work shows the entire calibration process of an individual monitor, focusing on radiation protection, in health, correlating these measures associated uncertainties. The results show an expanded uncertainty of 5.81% for dose rate measurements and an expanded uncertainty of 5.61% for integrated dose measurements, these uncertainties have been evaluated the type A and type B with its components. (author)

  1. The GRAAL high resolution BGO calorimeter and its energy calibration and monitoring system

    International Nuclear Information System (INIS)

    Ghio, F.; Girolami, B.

    1997-07-01

    The authors describe the electromagnetic calorimeter built for the GRAAL apparatus at the ESRF. Its monitoring system is presented in detail. Result from tests and the performance obtained during the first GRAAL experiments are given. The energy calibration accuracy and stability reached is a small fraction of the intrinsic detector resolution

  2. Monitoring and calibration of the ALICE time projection chamber

    CERN Document Server

    Larsen, Dag Toppe

    The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A T eV for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy- ion collisions, and opens the door to a so far unexplored energy domain. A closer look at some of the physics topics of ALICE is given in Chapter 1. ALICE consists of several sub-detectors and other sub-systems. The various sub- detectors are designed for exploring different aspects of the particle production of an heavy-ion collision. Chapter 2 gives some insight into the design. The main tracking detector is the Time Projection Chamber (TPC). It has more than half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex Detector Control System (DCS) is needed for configuration, monitoring and control. The heart of it on the RP side is a small embedded ...

  3. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    Science.gov (United States)

    Sipos, Roland; Govi, Giacomo; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-10-01

    The CMS experiment at CERN LHC has a dedicated infrastructure to handle the alignment and calibration data. This infrastructure is composed of several services, which take on various data management tasks required for the consumption of the non-event data (also called as condition data) in the experiment activities. The criticality of these tasks imposes tights requirements for the availability and the reliability of the services executing them. In this scope, a comprehensive monitoring and alarm generating system has been developed. The system has been implemented based on the Nagios open source industry standard for monitoring and alerting services, and monitors the database back-end, the hosting nodes and key heart-beat functionalities for all the services involved. This paper describes the design, implementation and operational experience with the monitoring system developed and deployed at CMS in 2016.

  4. Active point out-of-plane ultrasound calibration

    Science.gov (United States)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  5. Some problems of calibration technique in charged particle activation analysis

    International Nuclear Information System (INIS)

    Krasnov, N.N.; Zatolokin, B.V.; Konstantinov, I.O.

    1977-01-01

    It is shown that three different approaches to calibration technique based on the use of average cross-section, equivalent target thickness and thick target yield are adequate. Using the concept of thick target yield, a convenient charged particle activation equation is obtained. The possibility of simultaneous determination of two impurities, from which the same isotope is formed, is pointed out. The use of the concept of thick target yield facilitates the derivation of a simple formula for an absolute and comparative methods of analysis. The methodical error does not exceed 10%. Calibration technique and determination of expected sensitivity based on the thick target yield concept is also very convenient because experimental determination of thick target yield values is a much simpler procedure than getting activation curve or excitation function. (T.G.)

  6. Portable and fixed monitoring units for tank calibrations and monitoring of process liquids

    International Nuclear Information System (INIS)

    Landat, D.A.; Hunt, B.A.

    1999-01-01

    The development work stems from safeguards support activities carried out at the JRC Ispra, Italy to the inspectorate agencies. A range of measurement equipment covering the needs of the inspector have been designed, developed and tested in both the laboratory and in nuclear facilities. The instruments comprise four units: (1) a portable pressure measurement device, (2) a volume long term monitoring device, (3) an unattended volume measurement system and (4) a level measurement unit. Utilization of the equipment has proven to give independent measurement checks and confirmation of operator's instrumentation and declarations, ensuring continuity of knowledge. (J.P.N.)

  7. The calibration procedure of the radiation monitoring system installed in radiation controlled area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Kyun; Min, Yi-Sub; Park, Jeong-Min; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The spaces, where these accelerators are installed, are defined as the radiation controlled area and the levels of the radiation in this area are monitored by the radiation monitoring system (RMS) to protect radiation workers and experiment users from the hazards of the ionizing radiation and the surface and air contamination tests are carried out periodically by the radiation secure team. The most of RMS instruments are installed in the accelerator building, where the 100-MeV proton linear accelerator is installed. All detectors of RMS should be calibrated every year to prove the reliability of RMS and almost all instruments for RMS was calibrated during this summer maintenance period of KOMAC this year. Almost all RMS instruments installed in KOMAC is calibrated between 2016-07-13 and 2016-08-24. As the calibration result, if the current reading value are within the 5% of the reference dose rate value, this RMS instrument can be used one more year. Otherwise, the detector of that RMS instrument should be repaired or replaced. The self-calibration certificate for each RMS instrument will be published only for the instrument to satisfy the condition.

  8. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    Science.gov (United States)

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  9. Self-Calibrating Ultrasonic Methods for In-Situ Monitoring of Fatigue Crack Progression

    International Nuclear Information System (INIS)

    Michaels, J.E.; Mi, B.; Cobb, A.C.; Michaels, T.E.; Stobbe, D.M.

    2005-01-01

    Ultrasonic sensors permanently affixed to aluminum coupons are used to monitor progression of damage during fatigue testing with the long term goal of structural health monitoring for diagnostics and prognostics. Necessary for success are proper design of the ultrasonic testing methods, robust transducer mounting techniques, and real-time signal processing for determining the state of the structure. It is also highly desirable for the overall system to be self-calibrating with built-in diagnostics in order to detect and compensate for sensor degradation or failure. Self-calibrating ultrasonic techniques are applied for monitoring of cracks initiating and propagating from the inaccessible inner diameters of rivet holes where the transducers are mounted on the accessible specimen surface. Angle beam ultrasonic methods are utilized that are suitable for detecting small defects in critical local regions of high stress. Results are presented for aluminum coupons subjected to low cycle fatigue and demonstrate ultrasonic tracking of crack growth

  10. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    International Nuclear Information System (INIS)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W.

    2013-01-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  11. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  12. Requirements for the authorization of operation os a calibration laboratory of gamma-ray monitors

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2011-01-01

    This paper describes the process for obtaining the authorization of operation of a laboratory designed to calibrate area and personal monitors with gamma radiation, by using a sealed Cs-137 source. The regulations of Comissao Nacional de Energia Nuclear (CNEN) are deeply analysed and discussed. The authorization for construction, the authorization for modification of items important to safety, the authorization for the acquisition and handling of radiation sources, the authorization for operating, and the authorization for withdrawal of operation of the laboratory are also discussed. The paper also describes the technical and managerial requirements necessary to operate a gamma radiation calibration laboratory in Brazil. . (author)

  13. Eye lens monitoring for interventional radiology personnel: dosemeters, calibration and practical aspects of Hp(3) monitoring. A 2015 review

    International Nuclear Information System (INIS)

    Carinou, Eleftheria; Ferrari, Paolo; Bjelac, Olivera Ciraj; Gingaume, Merce; Merce, Marta Sans; O’Connor, Una

    2015-01-01

    A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended. (review)

  14. Activity monitoring of alpha-bearing wastes

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1980-01-01

    The paper aims at the survey on the actual situation in activity monitoring of alpha-bearing wastes. Homogeneous materials such as liquid-, gaseous- and homogeneous solid wastes are amenable to destructive analyses of representative samples. Available destructive analyses methods are sensitive and precise enough to cope with all requirements in alpha-waste monitoring. The more difficult problems are encountered with alpha-contaminated solids, when representative sampling is not practicable. Non-destructive analysis techniques are applied for monitoring this category of solid wastes. The techniques for nondestructive analysis of alpha-bearing wastes are based on the detection of gamma and/or neutron-emission of actinides. Principles and a theory of non-destructive radiometric assay of plutonium contaminated solid waste streams are explained. Guidelines for the calibration of instruments and interpretation of experimental data are given. Current theoretical and experimental development work in this problem area is reviewed. Evaluations concerning capabilities and limitations of monitoring systems for alpha-bearing solid wastes are very complex and out of the scope of this paper

  15. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  16. Calibration of environmental monitors operating on time integrating principles for radon/thoron decay products

    International Nuclear Information System (INIS)

    Bigu, J.; Grenier, M.

    1982-03-01

    An environmental radiation monitor for radon decay products has been tested under laboratory controlled conditions. The instrument is of a quasi-time-integrating type and was tested in conjunction with a radon 'box' calibration facility. It has been found that the instrument appreciably underestimates the radon daughter Working Level (WL). This is attributed to plate-out of decay products in the monitor sampling head. The difference between monitor reading and the WL by grab-sampling was higher for low aerosol concentrations. Plate-out on the instrument detector and sampling head, and contamination effects have been observed for the thoron case. There is partial agreement between experimental results and theoretical expectation. The monitor is slow to react to sudden changes in radiation level. The instrument should prove quite useful in the routine monitoring of surface and underground environments provided some suggested changes in the instrument are introduced

  17. Temperature calibration formula for activated charcoal radon collectors

    International Nuclear Information System (INIS)

    Cooper, Alexandre; Le, Thiem Ngoc; Iimoto, Takeshi; Kosako, Toshiso

    2011-01-01

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m 3 radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: → The temperature effect on radon adsorption is proportional to αe β/T . → The calibration formula is CF(T,t)=3.1x10 -5 e (2887)/((T+273)) [1-e -0.080t ]. → The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 o C. → The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  18. Temperature calibration formula for activated charcoal radon collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Alexandre, E-mail: alexandre.cooper@gmail.co [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Le, Thiem Ngoc [Institute of Nuclear Science and Technology, Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Iimoto, Takeshi; Kosako, Toshiso [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2011-01-15

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m{sup 3} radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: {yields} The temperature effect on radon adsorption is proportional to {alpha}e{sup {beta}/T}. {yields} The calibration formula is CF(T,t)=3.1x10{sup -5}e{sup (2887)/((T+273))} [1-e{sup -0.080t}]. {yields} The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 {sup o}C. {yields} The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  19. The monitoring and calibration Web system of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Maidantchik, Carmen; Gomes, Andressa Andrea Sivollela; Marroquim, Fernando

    2011-01-01

    Full text: The scintillator tiles hadronic calorimeter (TileCal) of the ATLAS detector measures the energy of resultant particles in a collision. The calorimetry system was designed to absorb the energy of the particles that crosses the detector and is composed by three barrels, each one equally divided into 64 modules. The ionizing particles that cross the tiles induce the production of light, which intensity is proportional to the energy deposited by the fragment. The produced light propagates through the tiles towards the edges, where it is absorbed and displaced until reaching the photomultiplier tubes (PMTs), also known as electronic reading channels. Each module combines till 45 PMTs. For each run, the reconstruction process starts with a data analysis that can comprises different levels of information granularity till arriving to the PMTs level. Following this phase, the Data Quality Monitoring Framework (DQMF) system automatically generates quality indicators associated to the channels. Depending on the configuration that is registered in the DQMF, the channel status can be automatically defined as good, affected or bad. The status of each module is defined by the percentage of existing good, affected or bad channels. At this point, the analysis of modules allows the identification of the ones that are problematic by the examination of graphics that are automatically generated during the data reconstruction stage. Then, an analysis of a module performance by a time period that encompasses different types of runs is performed. In this last step, the list of problematic channels can be modified through the insertion or exclusion of PTMs, as in the case when a channel is substituted. Additionally, during the whole calorimeter operation, it is fundamental to identify the electronic channels that are active, dead (nor working), noisy and the ones that presents saturation in the signal digitalisation process. The Monitoring and Calibration Web System (MCWS) was

  20. The monitoring and calibration Web system of the ATLAS hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maidantchik, Carmen; Gomes, Andressa Andrea Sivollela; Marroquim, Fernando [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: The scintillator tiles hadronic calorimeter (TileCal) of the ATLAS detector measures the energy of resultant particles in a collision. The calorimetry system was designed to absorb the energy of the particles that crosses the detector and is composed by three barrels, each one equally divided into 64 modules. The ionizing particles that cross the tiles induce the production of light, which intensity is proportional to the energy deposited by the fragment. The produced light propagates through the tiles towards the edges, where it is absorbed and displaced until reaching the photomultiplier tubes (PMTs), also known as electronic reading channels. Each module combines till 45 PMTs. For each run, the reconstruction process starts with a data analysis that can comprises different levels of information granularity till arriving to the PMTs level. Following this phase, the Data Quality Monitoring Framework (DQMF) system automatically generates quality indicators associated to the channels. Depending on the configuration that is registered in the DQMF, the channel status can be automatically defined as good, affected or bad. The status of each module is defined by the percentage of existing good, affected or bad channels. At this point, the analysis of modules allows the identification of the ones that are problematic by the examination of graphics that are automatically generated during the data reconstruction stage. Then, an analysis of a module performance by a time period that encompasses different types of runs is performed. In this last step, the list of problematic channels can be modified through the insertion or exclusion of PTMs, as in the case when a channel is substituted. Additionally, during the whole calorimeter operation, it is fundamental to identify the electronic channels that are active, dead (nor working), noisy and the ones that presents saturation in the signal digitalisation process. The Monitoring and Calibration Web System (MCWS) was

  1. Activities on calibration of radiation protection instruments in Indonesia

    International Nuclear Information System (INIS)

    Trijoko, S.

    1995-01-01

    As the use of the ionizing radiation emitted by radionuclides or produced by modern machines in Indonesia has increased significantly in the past two decades, the demand for radiation protection measures has also grown up very rapidly. In the mind of Indonesian people, ionizing radiation is always associated with atomic bombs. Indonesian government has set up National Atomic Energy Agency (BATAN) through the Act No. 31/1964. The BATAN has responsibility in the research and development, implementation and inspection of the safe use of ionizing radiation for peaceful purposes, and always put a great concern on radiation protection matter. The Center for Standardization and Radiation Safety Research (CSRSR) has been founded to implement research and services in the fields of radiation safety, standardization, dosimetry, radiation health, as well as the application of nuclear techniques to medicine. In order to provide the national reference in terms of radiation dosimetry and calibration, the Secondary Standard Dosimetry Laboratory was completely set up in Jakarta by 1984. As available facilities, radiation instruments and radiation sources are described. Calibration and personal monitoring services are reported. (K.I.)

  2. Development and calibration of a portable detection system for in vivo monitoring of {sup 131}I incorporation by humans

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Eder A.; Dantas, Ana Leticia A.; Dantas, Bernardo M. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: eder@ird.gov.br

    2009-07-01

    {sup 131}I is one of the most frequently used radionuclides for diagnosis and therapy of thyroid diseases in nuclear medicine. Its increasing use for medical purposes creates a demand for feasible methodologies applied to the control of internal exposure by workers. In vivo monitoring of {sup 131}I incorporation is of great value for the evaluation of occupational exposure during its medical application and also in the case of accidents and incidents in nuclear power plants for the monitoring of workers and population. This work presents the development of a portable device specially designed for in vivo measurement of {sup 131}I in the thyroid. It is also presented the results of the calibration performed in different nuclear medicine centers where {sup 131}I is routinely manipulated for therapeutic purposes. The equipment consists in a NaI(Tl)3''x3'' detector installed in a lead collimator and assembled on a tripod. The detection system was calibrated with the IRD-Neck-Thyroid phantom for the determination of the calibration factors for direct in vivo quantification of {sup 131}I in the thyroid. In order to evaluate the applicability and limitations of the system, committed effective doses associated to the minimum detectable activities were calculated using current biokinetic and dosimetric models available in the literature. Dose detection limits have shown to be far below 1 mSv for the most likely incorporation scenarios. (author)

  3. ANN-based calibration model of FTIR used in transformer online monitoring

    Science.gov (United States)

    Li, Honglei; Liu, Xian-yong; Zhou, Fangjie; Tan, Kexiong

    2005-02-01

    Recently, chromatography column and gas sensor have been used in online monitoring device of dissolved gases in transformer oil. But some disadvantages still exist in these devices: consumption of carrier gas, requirement of calibration, etc. Since FTIR has high accuracy, consume no carrier gas and require no calibration, the researcher studied the application of FTIR in such monitoring device. Experiments of "Flow gas method" were designed, and spectrum of mixture composed of different gases was collected with A BOMEM MB104 FTIR Spectrometer. A key question in the application of FTIR is that: the absorbance spectrum of 3 fault key gases, including C2H4, CH4 and C2H6, are overlapped seriously at 2700~3400cm-1. Because Absorbance Law is no longer appropriate, a nonlinear calibration model based on BP ANN was setup to in the quantitative analysis. The height absorbance of C2H4, CH4 and C2H6 were adopted as quantitative feature, and all the data were normalized before training the ANN. Computing results show that the calibration model can effectively eliminate the cross disturbance to measurement.

  4. Calibration and operation of continuous air monitors for alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1993-01-01

    Spectrometer-based continuous air monitors have improved our capabilities for detecting aerosols of alpha-emitting radionuclides. This paper describes basic requirements and statistical limitations in the sensitivity of alpha continuous air monitors, and presents a technical basis for selecting the energy window for detection of uranium and plutonium aerosols, correcting for interference from airborne dust, selecting filters with low pressure drop and good front surface collection characteristics, and properly using electroplated calibration sources. Sensitivity limits are described for detecting uranium or plutonium aerosols in the presence of increased concentrations of naturally occurring, alpha-emitting radon progeny radionuclides. Decreasing the lower energy boundary of the detection window from 4.3 MeV to 2.7 MeV improves by a factor of three the detection of plutonium in the presence of dust, while causing minimal additional interference from ambient radon progeny. Selection of the Millipore Fluoropore teflon membrane filter reduces both pressure drop and interference from ambient radon progeny by up to a factor of two. Field collection of ambient radon progeny can be used to verify the proper energy of alpha emissions from electroplated calibration sources. In the absence of energy verification, errors in instrument calibration may result from solid state diffusion of the electroplated calibration radionuclide into the substrate plate

  5. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The

  6. In-flight calibration system for the INTEGRAL x-ray monitor

    DEFF Research Database (Denmark)

    Costa, E.; Feroci, M.; Barbanera, L.

    1996-01-01

    of Amptek Cool-X15 X-ray generators. The latter is a novel product, based on a pyroelectric crystal used to generate energetic electrons that produce fluorescence lines by hitting a metallic target. We plan to use the four low intensity radioactive sources for monitoring the four independent anode chains......JEM-X is the x-ray monitor serving the two gamma-ray experiments imager and spectrometer onboard the ESA's INTEGRAL satellite. Due to the intrinsic weakness of the celestial sources in the gamma energy range they will need very long integration times. During these long pointings JEM-X will be able...... to detect very small variations on most x-ray sources, but only if accurately calibrated. The in- flight calibration system of the JEM-X experiment is devoted to measure the response of the detection chain (detector plus electronics) in a small set of positions and energies. The data from this system...

  7. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  8. Contamination monitoring activities in Kanupp

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S S [Karachi Nuclear Power Plant (Pakistan)

    1997-06-01

    The Karachi Nuclear Power Plant (Kanupp) is a 137 MWe pressurized heavy water reactor, designed and erected by the Canadian General Electric Company as a turn key project. The plant is in operation since it was commissioned in the year 1972. It is located at the Arabian Sea Coast about 15 miles to the west of Karachi. During its more than two decades of operation, the plant has generated about 8 billion units of electricity with an average life time availability factor of 60%. In Kanupp, radioactive contamination may exit due to the release of fission product, activation products etc., which may somehow escape from its confinement and may contaminate surface or other media such as air, water etc. In this paper, following items are described: main aspects of contamination, status of contamination monitoring, need of contamination monitoring, radiation protection activity, instruments, contamination, current status of contamination survey materials and their disposal, and environmental monitoring. (G.K.)

  9. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  10. Usability of Calibrating Monitor for Soft Proof According to CIE CAM02 Colour Appearance Model

    Directory of Open Access Journals (Sweden)

    Dragoljub Novakovic

    2010-06-01

    Full Text Available Colour appearance models describe viewing conditions and enable simulating appearance of colours under different illuminants and illumination levels according to human perception. Since it is possible to predict how colour would look like when different illuminants are used, colour appearance models are incorporated in some monitor profiling software. Owing to these software, tone reproduction curve can be defined by taking into consideration viewing condition in which display is observed. In this work assessment of CIE CAM02 colour appearance model usage at calibrating LCD monitor for soft proof was tested in order to determine which tone reproduction curve enables better reproduction of colour. Luminance level was kept constant, whereas tone reproduction curves determined by gamma values and by parameters of CIE CAM02 model were varied. Testing was conducted in case where physical print reference is observed under illuminant which has colour temperature according to iso standard for soft-proofing (D50 and also for illuminants D65.  Based on the results of calibrations assessment, subjective and objective assessment of created profiles, as well as on the perceptual test carried out on human observers, differences in image display were defined and conclusions of the adequacy of CAM02 usage at monitor calibration for each of the viewing conditions reached.

  11. On-line monitoring applications at nuclear power plants. A risk informed approach to calibration reduction

    International Nuclear Information System (INIS)

    Shankar, Ramesh; Hussey, Aaron; Davis, Eddie

    2003-01-01

    On-line monitoring of instrument channels provides increased information about the condition of monitored channels through accurate, more frequent evaluation of each cannel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. EPRI's strategic role in on-line monitoring is to facilitate its implementation and cost-effective use in numerous applications at power plants. To this end, EPRI has sponsored an on-line monitoring implementation project at multiple nuclear plants specifically intended to install and use on-line monitoring technology. The selected on-line monitoring method is based on the Multivariate State Estimation Technique. The project has a planned three-year life; seven plants are participating in the project. The goal is to apply on-line monitoring to all types of power plant applications and document all aspects of the implementation process in a series of EPRI reports. These deliverables cover installation, modeling, optimization, and proven cost-benefit. This paper discusses the actual implementation of on-line monitoring to various nuclear plant instrument systems. Examples of detected instrument drift are provided. (author)

  12. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    Science.gov (United States)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  13. Active Job Monitoring in Pilots

    Science.gov (United States)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  14. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communication lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated

  15. An improved calibration technique for measurement of 41Ar activity in gaseous effluents

    International Nuclear Information System (INIS)

    Jose, M.T.; Raghunath, V.M.

    1992-01-01

    One of the methods used generally for the calibration of a gaseous effluent monitoring system is to estimate the efficiency of the detector system with a point source of 22 Na. The uncertainty in this method is the assumption that a point source kept at a distance from the detector and a volume source nearer the detector will have the same efficiency. To overcome this problem, a technique of using 22 Na in liquid form has been standardised. The uncertainties in the strength of the liquid source is avoided by proper intercomparison of the same with a reference standard traceable to a primary standard. The NaI system has been calibrated for estimating the 41 Ar activity from the peak area counts in the MCA and SCA systems respectively. (author). 1 ref., 1 tab

  16. Calibration of personnel monitors by exposure to gamma radiation with energies up to 9 MeV

    International Nuclear Information System (INIS)

    Leao, J.L.B.; Cunha, P.G. da; Diz, R.; Oberhofer, M.

    Occupational exposure with photons of high energy (higher than those from 60 Co) might occur from nuclear reactors and accelerators. Radiation monitors for absorbed dose determination, however, often do not have a wall thickness sufficient to establish electronical equilibrium in that energy range. Using calibration factors determined for lower energies (calibration factors for 60 Co radiation) might cause a significant underestimation of the soft tissue absorbed dose. The calibration factor of the personnel monitors of the Eberline Instrument Co.based on TL dosimeters of LiF is reported. This monitor was calibrated with 9 MeV photons produced by thermal neutrons capture in a Nitarget, at an absorbed dose rate of 125 rads/h at the C.E.N. in France. The results are compared with the corresponding calibration factors for different energies up to 60 Co radiation determined in the IRD (Instituto de Radioprotecao e Dosimetria Rio de Janeiro). (Author) [pt

  17. HUMAN ACTIVITY MONITORING USING SMARTPHONE

    OpenAIRE

    TOKALA, SAI SUJIT; ROKALA, RANADEEP

    2014-01-01

    The main aim of the project is to develop an algorithm which will classify the activity performed by a human who is carrying a smart phone. The day to day life made humans very busy at work and during daily activities, mostly elderly people who are at home have an important need to monitor their activity by others when they are alone, if they are inactive for a long time without movement, or in some situations like if they have fallen down, became unconscious for sometime or seized with a car...

  18. Total body neutron activation analysis of calcium: calibration and normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, N S.J.; Eastell, R; Ferrington, C M; Simpson, J D; Strong, J A [Western General Hospital, Edinburgh (UK); Smith, M A; Tothill, P [Royal Infirmary, Edinburgh (UK)

    1982-05-01

    An irradiation system has been designed, using a neutron beam from a cyclotron, which optimises the uniformity of activation of calcium. Induced activity is measured in a scanning, shadow-shield whole-body counter. Calibration has been effected and reproducibility assessed with three different types of phantom. Corrections were derived for variations in body height, depth and fat thickness. The coefficient of variation for repeated measurements of an anthropomorphic phantom was 1.8% for an absorbed dose equivalent of 13 mSv (1.3 rem). Measurements of total body calcium in 40 normal adults were used to derive normalisation factors which predict the normal calcium in a subject of given size and age. The coefficient of variation of normalised calcium was 6.2% in men and 6.6% in women, with the demonstration of an annual loss of 1.5% after the menopause. The narrow range should make single measurements useful for diagnostic purposes.

  19. Report on radiation protection calibration activities in Australia

    International Nuclear Information System (INIS)

    Hargrave, N.J.

    1995-01-01

    Australia is a federation of eight autonomous States or Territories. Each of these is responsible for many matters including radiation safety within their borders. National matters are the responsibility of the Federal Government. The Australian Radiation Laboratory (ARL) is a part of the Federal Government Department of Human Services and Health and undertakes research and service activities related to radiation health. Work related to both ionising and non ionising radiation and regulatory matters is performed. Some of the research activities relate to radiation measurement standards, environmental radioactivity (e.g. radon in air, radioactivity in drinking water), effects of electro-magnetic fields on health (ELF), ultra violet radiation (UV) and laser safety, radiochemistry, medical applications of radiation (and doses to the population as a result), general health physics, thermoluminescent dosimetry (TLD) and electron spin resonance (ESR) dosimetry. The calibration of protection instruments are undertaken by the Ionising Radiation Standards Group within the Laboratory and by State Health Laboratories. (J.P.N.)

  20. Activity calibration in breath test for diagnosis of Helicobacter pylori

    International Nuclear Information System (INIS)

    Wasilewka-Radwanska, M.; Pysklak, S.; Gilewicz-Wolter, J.; Kuc, T.; Jung, A.; Niziol, J.; Kopanski, J.; Micherdzinski, J.; Cienciala, A.

    1996-01-01

    Some technical and measurement problems of the breath test for diagnosis of Helicobacter pylori are briefly discussed. Calibrated results obtained for population of 108 cases indicate difference between HP+ (infected with Helicobacter pylori) and HP- (non infected with Helicobacter pylori) in exhaled 14 C activity not less than 3.9 kBq while the lower limit for HP+ cases was set at 6.8 kBq at the detection limit: 0.9 Bq/mmol of CO 2 . It was estimated that in exhalation way up to 29% of the taken activity was removed in HP+ cases during first 35 minutes. Radiation hazard for the patient system is negligibly small - dose equipment not exceeds 0.29% of the natural (environmental) yearly exposure. (author)

  1. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  2. Calibration of context-specific survey items to assess youth physical activity behaviour.

    Science.gov (United States)

    Saint-Maurice, Pedro F; Welk, Gregory J; Bartee, R Todd; Heelan, Kate

    2017-05-01

    This study tests calibration models to re-scale context-specific physical activity (PA) items to accelerometer-derived PA. A total of 195 4th-12th grades children wore an Actigraph monitor and completed the Physical Activity Questionnaire (PAQ) one week later. The relative time spent in moderate-to-vigorous PA (MVPA % ) obtained from the Actigraph at recess, PE, lunch, after-school, evening and weekend was matched with a respective item score obtained from the PAQ's. Item scores from 145 participants were calibrated against objective MVPA % using multiple linear regression with age, and sex as additional predictors. Predicted minutes of MVPA for school, out-of-school and total week were tested in the remaining sample (n = 50) using equivalence testing. The results showed that PAQ β-weights ranged from 0.06 (lunch) to 4.94 (PE) MVPA % (P PAQ and accelerometer MVPA at school and out-of-school ranged from -15.6 to +3.8 min and the PAQ was within 10-15% of accelerometer measured activity. This study demonstrated that context-specific items can be calibrated to predict minutes of MVPA in groups of youth during in- and out-of-school periods.

  3. Comparison of process estimation techniques for on-line calibration monitoring

    International Nuclear Information System (INIS)

    Shumaker, B. D.; Hashemian, H. M.; Morton, G. W.

    2006-01-01

    The goal of on-line calibration monitoring is to reduce the number of unnecessary calibrations performed each refueling cycle on pressure, level, and flow transmitters in nuclear power plants. The effort requires a baseline for determining calibration drift and thereby the need for a calibration. There are two ways to establish the baseline: averaging and modeling. Averaging techniques have proven to be highly successful in the applications when there are a large number of redundant transmitters; but, for systems with little or no redundancy, averaging methods are not always reliable. That is, for non-redundant transmitters, more sophisticated process estimation techniques are needed to augment or replace the averaging techniques. This paper explores three well-known process estimation techniques; namely Independent Component Analysis (ICA), Auto-Associative Neural Networks (AANN), and Auto-Associative Kernel Regression (AAKR). Using experience and data from an operating nuclear plant, the paper will present an evaluation of the effectiveness of these methods in detecting transmitter drift in actual plant conditions. (authors)

  4. Cuban-Brazilian comparison of the calibration procedures for surface contamination monitors

    International Nuclear Information System (INIS)

    Salas, Gonzalo W.; Garcia, Jose A.T.; Ramos, Manoel M.O.

    2007-01-01

    The calibration laboratory of the CPHR, Centro de Proteccion e Higiene de las Radiaciones, is the only laboratory that performs calibrations of radiation protection instruments in Cuba. Recently they started a cooperation project with IAEA, code number CUB3002-01 with the task title 'Assuring and Demonstrating the safety of radioactive Waste Management'. Within the frame of this project they have a compromise to implement the calibration service for surface contamination monitors, for which they received instruments and sources. In 2006 the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI) from the Instituto de Radioprotecao e Dosimetria, IRD/CNEN, was invited to perform a mission to CPHR in order to evaluate the level of implementation of the service trough the insertion of the service in the Quality Assurance System of their laboratory, and perform a comparison exercise to test the calibration method implemented. The results were evaluated by the methodology recommended in the ISO/IEC 43-1 standard. These results show that all values from both laboratories are comparable for most radionuclides except for Cl-36. The preliminary investigation about this situation is presented in the paper. (author)

  5. Flume and field-based calibration of surrogate sensors for monitoring bedload transport

    Science.gov (United States)

    Mao, L.; Carrillo, R.; Escauriaza, C.; Iroume, A.

    2016-01-01

    Bedload transport assessment is important for geomorphological, engineering, and ecological studies of gravel-bed rivers. Bedload can be monitored at experimental stations that require expensive maintenance or by using portable traps, which allows measuring instantaneous transport rates but at a single point and at high costs and operational risks. The need for continuously measuring bedload intensity and dynamics has therefore increased the use and enhancement of surrogate methods. This paper reports on a set of flume experiments in which a Japanese acoustic pipe and an impact plate have been tested using four well-sorted and three poorly sorted sediment mixtures. Additional data were collected in a glacierized high-gradient Andean stream (Estero Morales) using a portable Bunte-type bedload sampler. Results show that the data provided by the acoustic pipe (which is amplified on 6 channels having different gains) can be calibrated for the grain size and for the intensity of transported sediments coarser than 9 mm (R2 = 0.93 and 0.88, respectively). Even if the flume-based calibration is very robust, upscaling the calibration to field applications is more challenging, and the bedload intensity could be predicted better than the grain size of transported sediments (R2 = 0.61 and 0.43, respectively). The inexpensive impact plate equipped with accelerometer could be calibrated for bedload intensity quite well in the flume but only poorly in the field (R2 = 0.16) and could not provide information on the size of transported sediments.

  6. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations

    International Nuclear Information System (INIS)

    Balleza, M; Vargas, M; Delgadillo, I; Kashina, S; Huerta, M R; Moreno, G

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration. (paper)

  7. On-line Monitoring and Calibration Techniques in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Years of research, testing and experience in the field of sensor diagnostics have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. Among these technologies are On-Line Monitoring (OLM) and On-Line Calibration of critical process monitoring sensors such as resistance temperature detectors (RTD), thermocouples, and pressure transmitters to name a few. The remote access and verification of these sensors have been shown to limit the exposure of maintenance personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and performance of these sensors. In addition to sensors, technologies exist in determining not only the health of instrumentation and control (I and C) cabling that carries the signals from these sensors, but also these same cable testing techniques can be used in the remote evaluation of many end devices used in safety related operations as well. Given these advances in sensor system monitoring techniques it would seem to follow that nuclear utilities from around the world would be applying these tried and true techniques to optimize up time and to provide additional confidence in the output of processing sensors. However, although several of the world's regulatory bodies have approved of the concept of these techniques, few utilities have undertaken to fully embrace on-line monitoring and on-line calibration of nuclear process sensors. In the United States efforts are now underway, with representatives of the U.S. nuclear industry and nuclear power plant vendors to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will help pave the way toward greater implementation of OLM and its related calibration techniques. (author)

  8. The Canadian National Calibration Reference Center for Bioassay and in-vivo Monitoring: A program summary

    International Nuclear Information System (INIS)

    Kramer, G.H.; Zamora, M.L.

    1994-01-01

    The Canadian National Calibration Reference Center for Bioassay and in-vivo Monitoring is part of the Radiation Protection Bureau, Department of Health. The Reference Center operates a variety of different intercomparison programs that are designed to confirm that workplace monitoring results are accurate and provide the necessary external verification required by the Canadian regulators. The programs administered by the Reference Center currently include urinalysis intercomparisons for tritium, natural uranium, and 14 C, and in-vivo programs for whole-body, thorax, and thyroid monitoring. The benefits of the intercomparison programs to the participants are discussed by example. Future programs that are planned include dual spiked urine sample which contain both tritium and 14 C and the in-vivo measurement of 99m Tc. 18 refs., 1 fig., 2 tabs

  9. Commissioning of an LED calibration and monitoring system for the prototype of a hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Wattimena, N.

    2006-12-15

    The anticipated physics program for the International Linear Collider (ILC) requires a highly granular hadronic calorimeter. One option for such a tracking calorimeter is a scintillator-steel sandwich structure placed inside the magnetic coil. The development of hadronic showers will be studied with a physics prototype, in order to improve current models. This prototype, currently being built within the collaboration for a CAlorimeter for the LInear Collider Experiment (CALICE) at the Deutsches Elektronen-Synchrotron (DESY) also serves to test a new semiconductor based photodetector the so called silicon photomultiplier. The calibration of these new photodetectors requires to take into account their nonlinear response.The response function, describing this behaviour, is investigated in this thesis. A calibration and monitoring system, needed to correct for the temperature and voltage dependence of the silicon photomultiplier signals and to observe changes of their response over time, is optimised and tested. (orig.)

  10. Commissioning of an LED calibration and monitoring system for the prototype of a hadronic calorimeter

    International Nuclear Information System (INIS)

    Wattimena, N.

    2006-12-01

    The anticipated physics program for the International Linear Collider (ILC) requires a highly granular hadronic calorimeter. One option for such a tracking calorimeter is a scintillator-steel sandwich structure placed inside the magnetic coil. The development of hadronic showers will be studied with a physics prototype, in order to improve current models. This prototype, currently being built within the collaboration for a CAlorimeter for the LInear Collider Experiment (CALICE) at the Deutsches Elektronen-Synchrotron (DESY) also serves to test a new semiconductor based photodetector the so called silicon photomultiplier. The calibration of these new photodetectors requires to take into account their nonlinear response.The response function, describing this behaviour, is investigated in this thesis. A calibration and monitoring system, needed to correct for the temperature and voltage dependence of the silicon photomultiplier signals and to observe changes of their response over time, is optimised and tested. (orig.)

  11. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  12. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    Science.gov (United States)

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-05-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. © 2014 Diabetes Technology Society.

  13. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations.

    Science.gov (United States)

    Leelarathna, Lalantha; English, Shane W; Thabit, Hood; Caldwell, Karen; Allen, Janet M; Kumareswaran, Kavita; Wilinska, Malgorzata E; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L; Burnstein, Rowan; Hovorka, Roman

    2014-02-01

    Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle(®) Navigator(®) (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m(2); mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6-19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1-6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. In total, 1,060 CGM-ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122-213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non-critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements.

  14. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  15. Activity measurements of {sup 18}F and {sup 90}Y with commercial radionuclide calibrators for nuclear medicine in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Caffari, Yvan, E-mail: Yvan.Caffari@chuv.c [Institut de Radiophysique Appliquee, Grand-Pre 1, 1007 Lausanne (Switzerland); Spring, Philippe; Bailat, Claude; Nedjadi, Youcef; Bochud, Francois [Institut de Radiophysique Appliquee, Grand-Pre 1, 1007 Lausanne (Switzerland)

    2010-07-15

    The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of {sup 90}Sr and {sup 90}Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a {sup 90}Sr/{sup 90}Y source and a {sup 18}F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for {sup 90}Y. Activity measurements of a {sup 90}Sr/{sup 90}Y source with the {sup 90}Y calibration factor are performed in order to correct for the extra-contribution of {sup 90}Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with {sup 18}F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the {sup 18}F is very important. The {sup 18}F response normalized to the {sup 137}Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.

  16. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System

    OpenAIRE

    Bailey, Timothy; Bode, Bruce W.; Christiansen, Mark P.; Klaff, Leslie J.; Alva, Shridhara

    2015-01-01

    Abstract Introduction: The purpose of the study was to evaluate the performance and usability of the FreeStyle? Libre? Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Materials and Methods: Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated s...

  17. An optical sensor network for vegetation phenology monitoring and satellite data calibration

    DEFF Research Database (Denmark)

    Eklundh, L.; Jin, H.; Schubert, P.

    2011-01-01

    -board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations......We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located...... and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity....

  18. A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis.

    Science.gov (United States)

    Sin, Gürkan; Van Hulle, Stijn W H; De Pauw, Dirk J W; van Griensven, Ann; Vanrolleghem, Peter A

    2005-07-01

    Modelling activated sludge systems has gained an increasing momentum after the introduction of activated sludge models (ASMs) in 1987. Application of dynamic models for full-scale systems requires essentially a calibration of the chosen ASM to the case under study. Numerous full-scale model applications have been performed so far which were mostly based on ad hoc approaches and expert knowledge. Further, each modelling study has followed a different calibration approach: e.g. different influent wastewater characterization methods, different kinetic parameter estimation methods, different selection of parameters to be calibrated, different priorities within the calibration steps, etc. In short, there was no standard approach in performing the calibration study, which makes it difficult, if not impossible, to (1) compare different calibrations of ASMs with each other and (2) perform internal quality checks for each calibration study. To address these concerns, systematic calibration protocols have recently been proposed to bring guidance to the modeling of activated sludge systems and in particular to the calibration of full-scale models. In this contribution four existing calibration approaches (BIOMATH, HSG, STOWA and WERF) will be critically discussed using a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis. It will also be assessed in what way these approaches can be further developed in view of further improving the quality of ASM calibration. In this respect, the potential of automating some steps of the calibration procedure by use of mathematical algorithms is highlighted.

  19. Calibration and monitoring of a scintillator HCAL with SiPMs CALICE scintillator HCAL

    International Nuclear Information System (INIS)

    Lucaci-Timoce, Angela

    2009-01-01

    The operational experience with a highly-granular analogue hadronic calorimeter (AHCAL) consisting of 7608 individual scintillator tiles readout via Silicon-Photo-multipliers (SiPM) is presented. The calibration of each cell is based on minimum ionizing particle signals for which in general a muon beam is used. In addition, a correction for the non-linearity introduced by the finite number of pixels (1156) in the SiPM is applied. The aspects of temperature and voltage dependence of SiPM are addressed, and monitoring and calibration procedures are discussed. Such procedures are essential for the extrapolation of calibration factors over several days of data taking with the calorimeter. For this purpose a versatile UV-LED light distribution system was developed, capable of delivering light to all tiles with intensity from a few photo-electrons to the saturation of the SiPM. The procedures are tested using data collected with the AHCAL at the CERN SPS test beam.

  20. Monitoring angiogenesis using a human compatible calibration for broadband near-infrared spectroscopy

    Science.gov (United States)

    Yang, Runze; Zhang, Qiong; Wu, Ying; Dunn, Jeff F.

    2013-01-01

    Angiogenesis is a hallmark of many conditions, including cancer, stroke, vascular disease, diabetes, and high-altitude exposure. We have previously shown that one can study angiogenesis in animal models by using total hemoglobin (tHb) as a marker of cerebral blood volume (CBV), measured using broadband near-infrared spectroscopy (bNIRS). However, the method was not suitable for patients as global anoxia was used for the calibration. Here we determine if angiogenesis could be detected using a calibration method that could be applied to patients. CBV, as a marker of angiogenesis, is quantified in a rat cortex before and after hypoxia acclimation. Rats are acclimated at 370-mmHg pressure for three weeks, while rats in the control group are housed under the same conditions, but under normal pressure. CBV increased in each animal in the acclimation group. The mean CBV (%volume/volume) is 3.49%±0.43% (mean±SD) before acclimation for the experimental group, and 4.76%±0.29% after acclimation. The CBV for the control group is 3.28%±0.75%, and 3.09%±0.48% for the two measurements. This demonstrates that angiogenesis can be monitored noninvasively over time using a bNIRS system with a calibration method that is compatible with human use and less stressful for studies using animals.

  1. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    International Nuclear Information System (INIS)

    Sivolella, A; Maidantchik, C; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration constants stored in the COOL database have to be updated. Additionally MCWS system manages the update of these calibration constants values in the COOL database. The MCWS has been used by the Tile community since 2008, during the commissioning phase, and was upgraded to comply with ATLAS operation specifications. Among its future developments, it is foreseen an integration of MCWS with the TileCal control Web system (DCS) in order to identify high voltage problems automatically.

  2. Sensitivity and offset calibration for the beam position monitors at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chung, Y.; Barr, D.; Decker, G.; Evans, K. Jr.; Kahana, E.

    1995-01-01

    The beam position monitors (BPMs) play a critically important role in commissioning and operation of accelerators. Accurate determination of the offsets relative to the magnetic axis and sensitivities of individual BPMs is thus needed. We will describe in this paper the schemes for calibrating all of the 360 BPMs for sensitivity and offset in the 7-GeV Advanced Photon Source (APS) storage ring and the results. For the sensitivity calibration, a 2-dimensional map of the BPM response in the aluminum vacuum chamber is obtained theoretically, which is combined with the measured nonlinear response of the BPM electronics. A set of 2-dimensional polynomial coefficients is then obtained to approximate the result analytically. The offset calibration of the BPMs is done relative to the magnetic axis of the quadrupoles using the beam. This avoids the problem arising from various mechanical sources as well as the offset in the processing electronics. The measurement results for the resolution and long-term drift of the BPM electronics shows 0.06-μm/√Hz resolution and 2-μm/hr drift over a period of 1.5 hrs

  3. Comparison and calibration of numerical models from monitoring data of a reinforced concrete highway bridge

    Directory of Open Access Journals (Sweden)

    R. G. M. de Andrade

    Full Text Available The last four decades were important for the Brazilian highway system. Financial investments were made so it could expand and many structural solutions for bridges and viaducts were developed. In parallel, there was a significant raise of pathologies in these structures, due to lack of maintenance procedures. Thus, this paper main purpose is to create a short-term monitoring plan in order to check the structural behavior of a curved highway concrete bridge in current use. A bridge was chosen as a case study. A hierarchy of six numerical models is shown, so it can validate the bridge's structural behaviour. The acquired data from the monitoring was compared with the finest models so a calibration could be made.

  4. Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge

    Science.gov (United States)

    Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming

    2017-07-01

    The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.

  5. Impact of retrospective calibration algorithms on hypoglycemia detection in newborn infants using continuous glucose monitoring.

    Science.gov (United States)

    Signal, Matthew; Le Compte, Aaron; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Chase, J Geoffrey

    2012-10-01

    Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG neonates. CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L. Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data.

  6. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  7. Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring

    Science.gov (United States)

    Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.

    2017-12-01

    Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying

  8. Evaluation of the homogeneity of reference flat sources used in calibration of surface contamination monitors

    International Nuclear Information System (INIS)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Potiens, M.P.A.

    2014-01-01

    The aim of this study was to re-evaluate the uniformity of the wide area reference sources of the Calibration Laboratory of Instruments (LCI-IPEN) used in the calibration of surface contamination monitors, according the recommendations of the ISO 8769 standard and the NRPB. In this work used six wide area reference sources of 150 cm 2 of 241 Am, 14 C, 36 Cl, 137 Cs, 90 Sr+ 90 Y and 99 Tc with reference dates between 1996 and 1997 and three sources of 100 cm 2 of 14 C, 137 Cs and 60 Co were used with reference dates 2007. Measurements were performed with a radiation monitor of the Thermo, model FH40GX with a pancake probe, model FHZ732GM. We also made several models on paper with the objective of define each measurement position and an aluminum plate with a square hole (6.25 cm 2 ) in its center, allowing the passage of the radiation only through the hole. Each wide area reference source was positioned in setup and measurements were performed in order to cover the entire surface of the source. The values of the uniformity obtained partially confirm previous data obtained in another study conducted by LCI-IPEN, showing that some wide area reference sources 150 cm 2 in disagree with ISO 8769. In the former work, just the source of 241 Am (7.3%) was within the range specified by the standard, now have sources of 241 Am (5.7%), 137 Cs (8.8%), 90 Sr+ 9 '0Y (8, 8%) and 99 Tc (9.2%) with values within the specified uniformity. The sources of 14 C (53.3%) and 36 Cl (16.6%) were outside the specified. The wide area reference sources of 100 cm 2 , show disagreement in values of uniformity of the sources 14 C (46.7%) and 60 Co (10.4%). The values of the uniformity of the wide area reference sources show that some fonts can not be used in calibrations, because not in accordance with the value of uniformity specified in ISO 8769:2010, this is a conditions to believe a laboratory according to ISO 17025, show the laboratory performs its services with a high quality. The

  9. FPGA-based calibration and monitoring system for the HADES electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Alessandra [University of Turin (Italy); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Collaboration: HADES-Collaboration

    2015-07-01

    The High Acceptance Di-Electron Spectrometer (HADES) at GSI was designed to measure dileptons and strangeness in elementary and heavy-ion collisions. An upgrade of HADES with an Electromagnetic Calorimeter (ECAL) has started and will be ready for beam in 2017. The goal is to measure π{sup 0} and η meson yields together with the dielectron data in pion and proton-induced reactions as well as in heavy ion collisions. Moreover, photon measurement is important for Λ{sup 0} (1405) and Σ{sup 0} (1385) spectroscopy. It is essential to precisely calibrate all the lead-glass crystal modules individually in order to achieve the required ECAL performances. Continuous monitoring with a light pulser system is required. It is foreseen to use blue light from an LED source, driven by short signals from a flexible pulse generator and distributed with optical fibers to each module of the ECAL. Due to their great flexibility, Field Programmable Gate Arrays (FPGA) have been chosen to implement the mentioned monitoring system. In this contribution an FPGA-based calibration system for commissioning as well as long term stability of the ECAL modules are presented.

  10. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    Science.gov (United States)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto-calibrated

  11. The measurement of activity in vials and syringes using a radionuclide assay calibrator

    International Nuclear Information System (INIS)

    Hooper, S.A.; Davies, I.H.

    1993-01-01

    To enable accurate measurements of the activity in both vials and syringes, a series of measurements was undertaken to ascertain the changes in response with geometry in nine isotope assay calibrators. From these measurements, two jigs were made for each calibrator to enable (a) optimal measurement of activity in vials and (b) optimal measurement of activity in a variety of syringe sizes. (Author)

  12. Design and realization of an active SAR calibrator for TerraSAR-X

    Science.gov (United States)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  13. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    CERN Document Server

    Sipos, Roland; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-01-01

    The Compact Muon Solenoid (CMS) experiment makes a vast use of alignment and calibration measurements in several crucial workflows in the event selection at the High Level Trigger (HLT), in the processing of the recorded collisions and in the production of simulated events.A suite of services addresses the key requirements for the handling of the alignment and calibration conditions such as recording the status of the experiment and of the ongoing data taking, accepting conditions data updates provided by the detector experts, aggregating and navigating the calibration scenarios, and distributing conditions for consumption by the collaborators. Since a large fraction of such services is critical for the data taking and event filtering in the HLT, a comprehensive monitoring and alarm generating system had to be developed. Such monitoring system has been developed based on the open source industry standard for monitoring and alerting services (Nagios) to monitor the database back-end, the hosting nodes and k...

  14. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  15. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  16. 1988 Monitoring Activities Review (MAR) of the environmental monitoring program

    International Nuclear Information System (INIS)

    1989-03-01

    The EGandG Idaho Environmental Monitoring (EM) Unit is responsible for coordinating and conducting environmental measurements of radioactive and hazardous contaminants around facilities operated by EGandG Idaho. The EM Unit has several broad program objectives, which include complying with regulatory standards and developing a basis for estimating future impacts of operations at EGandG Idaho facilities. To improve program planning and to provide bases for technical improvement of the monitoring program, the EGandG Environmental Monitoring organization has regularly used the Monitoring Activities Review (MAR) process since 1982. Each MAR is conducted by a committee of individuals selected for their experience in the various types of monitoring performed by the EM organization. Previous MAR studies have focused on procedures for all currently monitored media except biota. Biotic monitoring was initiated following the last MAR. This report focuses on all currently monitored media, and includes the first review of biotic monitoring. The review of biotic monitoring has been conducted at a level of detail consistent with initial MAR reports for other parts of the Waste Management Program Facilities Environmental Monitoring Program. The review of the biotic monitoring activities is presented in Section 5.5 of this report. 21 refs., 7 figs., 4 tabs

  17. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre...... change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.......Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration...... and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital...

  18. Monitoring Activities Review action report for the Environmental Monitoring Program

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.

    1990-12-01

    To improve program planning and to provide bases for technical improvement of the monitoring program, the EG ampersand G Environmental Monitoring (EM) organization has regularly used the Monitoring Activities Review (MAR) process since 1982. Each MAR is conducted by a committee of individuals selected for their experience in the various types of monitoring performed by the EM organization. An MAR of the Environmental Monitoring Program was conducted in 1988. This action report identifies and discusses the recommendations of this MAR committee. This action report also identifies the actions already taken by the EM Unit in response to these recommendations, as well as the actions and schedules to be taken. 10 refs

  19. Proficiency Testing Activities of Frequency Calibration Laboratories in Taiwan, 2009

    Science.gov (United States)

    2009-11-01

    cht.com.tw Abstract In order to meet the requirements of ISO 17025 and the demand of TAF (Taiwan Accreditation Foundation) for calibration inter... IEC 17025 General requirements for the competence of testing and calibration laboratories. The proficiency testing results are then important...on-site evaluation, an assessment team is organized to examine the technical competence of the labs and their compliance with the requirements of ISO

  20. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    International Nuclear Information System (INIS)

    Wrest, D.J.; Hines, J.W.; Uhrig, R.E.

    1996-01-01

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs

  1. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wrest, D J; Hines, J W; Uhrig, R E [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1997-12-31

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs.

  2. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  3. Review of regulatory requirements relevant to calibration of monitoring instruments in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Hassan; Khedr, Ahmed; El-Din Talha, Kamal [Egyptian Nuclear and Radiological Regulatory Authority, Cairo (Egypt). Nuclear Safety Engineering Dept.

    2015-05-15

    The objective of this work is to demonstrate the regulatory requirements pertaining to calibration of monitoring instruments in research reactors. The regulatory statements concerning this subject in IAEA safety standards and the implementation of such regulations in twelve countries with different levels of nuclear programs are surveyed: Australia, Bulgaria, Canada, Egypt, Finland, Germany, Hungary, Slovenia, South Korea, Spain, United Kingdom of England and United States of America. In addition, the requirements of ISO/IEC17025 and NUPIC (Nuclear Utilities Procurement Issues Committee) are compared. Seven technical and administrate aspects are suggested as the comparison criteria and the explicit expression of the statements, the level of document (i.e.: act, requirement or guide) are the considered resources. The main differences and similarities between the different approaches are identified in order to provide an input for future development of the national regulations.

  4. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  5. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Science.gov (United States)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  6. Secondary clarifier hybrid model calibration in full scale pulp and paper activated sludge wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sreckovic, G.; Hall, E.R. [British Columbia Univ., Dept. of Civil Engineering, Vancouver, BC (Canada); Thibault, J. [Laval Univ., Dept. of Chemical Engineering, Ste-Foy, PQ (Canada); Savic, D. [Exeter Univ., School of Engineering, Exeter (United Kingdom)

    1999-05-01

    The issue of proper model calibration techniques applied to mechanistic mathematical models relating to activated sludge systems was discussed. Such calibrations are complex because of the non-linearity and multi-model objective functions of the process. This paper presents a hybrid model which was developed using two techniques to model and calibrate secondary clarifier parts of an activated sludge system. Genetic algorithms were used to successfully calibrate the settler mechanistic model, and neural networks were used to reduce the error between the mechanistic model output and real world data. Results of the modelling study show that the long term response of a one-dimensional settler mechanistic model calibrated by genetic algorithms and compared to full scale plant data can be improved by coupling the calibrated mechanistic model to as black-box model, such as a neural network. 11 refs., 2 figs.

  7. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    Science.gov (United States)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    Measurement of bedload rates is a crucial component in the study of alluvial processes in mountainous streams. Stream restoration efforts, the validation of morphodynamic models and the calibration empirical transport formulae rely on accurate bedload transport measurements. Bedload measurements using traditional methods (e.g. samplers, traps) are time consuming, resource intensive and not always feasible, especially at higher flow conditions. These limitations could potentially be addressed by acoustic instruments, which may provide unattended, continuous bedload measurements even at higher flow conditions, provided that these instruments are properly calibrated. The objective of this study is to calibrate an acoustic instrument (geophone) for performing bedload measurements in a well-monitored laboratory environment at conditions corresponding to low flow regime in mountainous streams. The geophone was manufactured by ClampOn® and was attached to the bottom of a steel plate with dimensions 0.15x0.15 m. The geophone registers the energy of the acoustic signal produced by the movement of the bedload particles over the steel plate with time resolution of one second. The plate-sensor system was installed in an acrylic housing such that the steel plate top surface was at the same level with the surface of a flat porous bed consisting of unisize spheres with diameter 19.1 mm. Unisize spherical glass particles, 15.9 mm in diameter, were preplaced along a 2 m long section upstream of the sensor, and were entrained over the steel plate. In these experiments, the geophone records spanned the complete experiment duratio. Plan view video of the particle movement over the steel plate was recorded via an overhead camera, and was used to calculate the actual bedload rate over the steel plate. Synchronized analysis of this plan view video and the geophone time series revealed that the geophone detected 62% of the bedload particles passing over the steel plate, which triggered

  8. Comparison between calibration methods for in vivo monitoring in human body

    International Nuclear Information System (INIS)

    Mello, J.Q. de; Almeida, A.PF.; Dantas, A.L.A.; Hunt, J.G.; Dantas, B.M.

    2014-01-01

    The determination of photon emitters in the human body through in vivo measurements requires the use of specific techniques to obtain calibration factors which correlate count rates and activities present in the body. In the present work two methods were compared for the measurement of 40 K in whole body geometry with a scintillation detector type NaI(Tl)3x3: (1) experimental, using a BOMAB physical anthropomorphic phantom and (2) mathematical simulation of the phantom and the interaction of the photons with the detector. The results obtained show the equivalence between the methods in the geometry and energy conditions adopted in the experiment. (author)

  9. Automatic Calibration and Reconstruction for Active Vision Systems

    CERN Document Server

    Zhang, Beiwei

    2012-01-01

    In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects.

  10. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    Energy Technology Data Exchange (ETDEWEB)

    Bevins, N; Vanderhoek, M; Lang, S; Flynn, M [Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary and secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.

  11. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    International Nuclear Information System (INIS)

    Bevins, N; Vanderhoek, M; Lang, S; Flynn, M

    2014-01-01

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary and secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system

  12. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  13. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    International Nuclear Information System (INIS)

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  14. Development and implementation of an automated system for antiquated of the process of gamma radiation monitors calibration; Desenvolvimento e implantacao de um sistema automatizado para adequacao do processo de calibracao de monitores de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Iremar Alves

    2012-07-01

    In this study it was carried out the development and implementation of a system for the appropriate process of gamma radiation monitors calibration, constituted by a pneumatic dispositive to exchange the attenuators and a positioning table, both actuated through a control panel. We also implemented a System of Caesa-Gammatron Irradiator, which increased the range of the air kerma rates, due to its higher activity comparing with the current system of gamma radiation in use in the calibration laboratory of gamma irradiation. Hence, it was necessary the installation of an attenuator dispositive remotely controlled in this irradiator system. Lastly, it was carried out an evaluation of the reduction in the rates of the occupational dose. This dissertation was developed with the aim of improving the quality of the services of calibration and tests of gamma radiation monitors - provided by the IPEN Laboratory of Instrument Calibration - as well as decreasing the occupational dose of the technicians involved in the process of calibration, following thus the principles of radiation protection. (author)

  15. Uranium cross-calibration measurements using an active well coincidence counter

    International Nuclear Information System (INIS)

    Nikolaev, V.; Prochine, I.; Smirnov, V.; Ensslin, N.; Carillo, L.

    1998-01-01

    This paper reports on the cross-calibration of an Active Well Coincidence Counter for use in the Materials Protection, Control, and Accountability Graduate Program at the Moscow State Engineering Physics Institute (MEPhI). The cross-calibration procedure and its application to nuclear material types available at MEPhI for instructional purposes is described. Cross-calibration results at Los Alamos and initial applications at MEPhI are summarized. Based on the results so far, the authors conclude that the cross-calibration approach seems useful, with good prospects for potential applications at other Russian and US Dept. of Energy facilities

  16. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  17. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  18. Conversion of an Alpha CAM Monitor of Victoreen calibrated of factory for plutonium in a measurement monitor of radon in the atmosphere

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2004-01-01

    It is presented in this work the conversion of a monitor ALPHA CAM of the monitor Victoreen gauged of it manufactures for plutonium in a monitor for radon mensuration in the atmosphere. Those units in that the radon measures are expressed are: peak curies/unit of volume of air to sampling. This way one has to gauge and to supplement the software and the parts that the old one monitor for plutonium. It requires. This task implies: a) To calibrate and to determine the efficiency of the detector of accustomed to state of 1700 mm 2 for alpha particles coming from the radioactive series of the radon. b) to connect in series and to calibrate a flow measurer of air in it lines with the detector. Measures are presented of the ambient air and other places of the the historical area of the city of Puebla obtained with the team Converted ALPHA-CAM. (Author)

  19. RSR Calculator, a tool for the Calibration / Validation activities

    Directory of Open Access Journals (Sweden)

    C. Durán-Alarcón

    2014-12-01

    Full Text Available The calibration/validation of remote sensing products is a key step that needs to be done before its use in different kinds of environmental applications and to ensure the success of remote sensing missions. In order to compare the measurements from remote sensors on spacecrafts and airborne platforms with in-situ data, it is necessary to perform a spectral comparison process that takes into account the relative spectral response of the sensors. This technical note presents the RSR Calculator, a new tool to estimate, through numerical convolution, the values corresponding to each spectral range of a given sensor. RSR Calculator is useful for several applications ranging from the convolution of spectral signatures of laboratory or field measurements to the parameter estimation for the calibration of sensors, such as extraterrestrial solar irradiance (ESUN or atmospheric transmissivity (τ per spectral band. RSR Calculator is a useful tool that allows the processing of spectral data and that it can be successfully applied in the calibration/validation remote sensing process of the optical domain.

  20. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  1. Calibration of ARI QC ionisation chambers using the Australian secondary standards for activity

    International Nuclear Information System (INIS)

    Mo, L.; Van Der Gaast, H.A.; Alexiev, D.; Butcher, K.S.A.; Davies, J.

    1999-01-01

    The Secondary Standard Activity Laboratory (SSAL) in ANSTO routinely provides standardised radioactive sources, traceable activity measurements and custom source preparation services to customers. The most important activity carried out is the calibration of ionisation chambers located in the Quality Control (QC) section of Australian Radioisotopes (ARI). This ensures that their activity measurements are traceable to the Australian primary methods of standardisation. ARI QC ionisation chambers are calibrated for 99m Tc, 67 Ga, 131 I, 201 Tl and 153 Sm. The SSAL has a TPA ionisation chamber, which has been directly calibrated against a primary standard for a variety of radioactive nuclides. Calibration factors for this chamber were determined specifically for the actual volumes (5ml for 99m Tc, 131 I, 2ml for 67 Ga, 201 Tl and 3 ml for 153 Sm) and types of vial (Wheaton) which are routinely used at ARI. These calibration factors can be used to accurately measure the activity of samples prepared by ARI. The samples can subsequently be used to calibrate the QC ionisation chambers. QC ionisation chambers are re-calibrated biannually

  2. Calibration of area monitors for neutrons used in clinical linear accelerators; Calibracao de monitores de area para neutrons usados em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This work demonstrates the complexity and the necessary cares for the realization of measurements of neutron fields in rooms for radiotherapy treatment containing clinical accelerators. The acquaintance of the technical characteristics of the monitors and the periodic calibration are actions and fundamental procedures to guarantee traceability and the reliability of measurements

  3. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    Science.gov (United States)

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  4. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  5. Development and calibration of an on-line aerosol monitor for PHEBUS test FPT1

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Carmack, W.J.; Sprenger, M.H.; Thurston, G.C.; Hunt, J.L.

    1994-10-01

    An on-line aerosol monitor (OLAM2) has been developed and tested for PHEBUS test FPT1. OLAM2 utilizes new detachable fiber optic cables and sapphire light pipes for light transmission between the OLAM and the electronics. This light transmission system was tested and found to provide better signal-to-noise performance than was achieved with the continuous fibers used for test FPT0. An additional advantage of the detachable fiber/light pipe system is ease of installation. Aerosol testing (OLAM calibration) was performed in order to verify adequate signal-to-noise performance of the new fiber optic system over the specified operating conditions and to check the quantitative light attenuation measurements against theoretical predictions. Results of the testing indicated that light extinction measurements obtained during Phebus tests could be used to estimate aerosol volume concentrations, if diamond window fouling can be avoided. OLAM2 was also subjected to a proof pressure test and a long-term thermal stability test. These tests verified the mechanical and thermal integrity of the OLAM within design specifications. Long-term output signal stability was also verified with the system maintained at design temperature and half-design pressure

  6. Monitoring Landscape Scale Soil Water Content with Cosmic-Ray Neutron Sensors: Validation and Calibration

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee; Weltin, Georg; Franz, Trenton E.; Strauss, Peter; Oismueller, Markus; Desilets, Darin

    2017-01-01

    Increasing populations growth combined with climate change are putting pressure on water resources and agricultural systems around the world. The need for effective water management strategies designed to maximize water use efficiency has made access to soil water content (SWC) information crucial to the global community. This work builds upon ongoing research that began in December 2013 in which a stationary Cosmic-Ray Neutron Sensor (CRNS) was used to monitor SWC within an agricultural system located in north central Austria. Past work at this study site at Petzenkirchen, Austria (100 km west of Vienna) has focused on the calibration and validation of the CRNS technology, and has shown the CRNS to reliably estimate SWC on a large scale (circle with radius of cca. 250 m) when compared to other methods of estimating SWC. This was determined via comparisons of insitu soil sampling, time domain reflectometry (TDR), and time domain transmissivity (TDT) of SWC with estimates of SWC determined from the CRNS. However, questions remain regarding the effective use of the CRNS technology.

  7. Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater

    International Nuclear Information System (INIS)

    Bailly, Emilie; Levi, Yves; Karolak, Sara

    2013-01-01

    The Polar Organic Chemical Integrative Sampler (POCIS) is a new tool for the sampling of organic pollutants in water. We tested this device for the monitoring of pharmaceuticals in hospital wastewater. After calibration, a field application was carried out in a French hospital for six pharmaceutical compounds (Atenolol, Prednisolone, Methylprednisolone, Sulfamethoxazole, Ofloxacin, Ketoprofen). POCIS were calibrated in tap water and wastewater in laboratory conditions close to relevant environmental conditions (temperature, flow velocity). Sampling rates (R s ) were determined and we observed a significant increase with flow velocity and temperature. Whatever the compound, the R s value was lower in wastewater and the linear phase of uptake was shorter. POCIS were deployed in a hospital sewage pipe during four days and the estimated water concentrations were close to those obtained with twenty-four hour composite samples. -- Highlights: ► Calibration of POCIS for the monitoring of pharmaceuticals in hospital wastewater. ► Uptake profile presents a shorter linear phase in wastewater than in tap water. ► Influence of R s values by temperature, flow velocity and bio-fouling. ► Correlation between concentrations estimated from POCIS or measured in TWA samples. ► Deployment period should be no longer than five days. -- After calibration in tap water and hospital wastewater, POCIS were used to monitor pharmaceuticals in hospital sewage and were compared to TWA sampling

  8. Comparison of two different physical activity monitors

    Directory of Open Access Journals (Sweden)

    Baer David J

    2007-06-01

    Full Text Available Abstract Background Understanding the relationships between physical activity (PA and disease has become a major area of research interest. Activity monitors, devices that quantify free-living PA for prolonged periods of time (days or weeks, are increasingly being used to estimate PA. A range of different activity monitors brands are available for investigators to use, but little is known about how they respond to different levels of PA in the field, nor if data conversion between brands is possible. Methods 56 women and men were fitted with two different activity monitors, the Actigraph™ (Actigraph LLC; AGR and the Actical™ (Mini-Mitter Co.; MM for 15 days. Both activity monitors were fixed to an elasticized belt worn over the hip, with the anterior and posterior position of the activity monitors randomized. Differences between activity monitors and the validity of brand inter-conversion were measured by t-tests, Pearson correlations, Bland-Altman plots, and coefficients of variation (CV. Results The AGR detected a significantly greater amount of daily PA (216.2 ± 106.2 vs. 188.0 ± 101.1 counts/min, P Conclusion Although activity monitors predict PA on the same scale (counts/min, the results between these two brands are not directly comparable. However, the data are comparable if a conversion equation is applied, with better results for log-transformed data.

  9. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    Science.gov (United States)

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  10. 7 CFR 800.216 - Activities that shall be monitored.

    Science.gov (United States)

    2010-01-01

    ... merchandising activities identified in this section shall be monitored in accordance with the instructions. (b) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring for...

  11. Calibration of a solid state nuclear track detector for the measurements of volumic activity of Radon

    International Nuclear Information System (INIS)

    HAKAM, O.K.; LFERDE, M.; BERRADA, M.

    1994-01-01

    Time - integrated measurements of environmental radiation activity are commonly carried out using solid state nuclear track detectors ( SSNTD ). These detectors should be calibrated of volumic activity of radon. This paper reports the results of experiments conducted to calibrate cellulose nitrate films LR - 115 type II used for measurements of volumic activity of radon in indoor air in dwellings and enclosed work areas in Morocco. Calibration measurements were made in laboratory using a calibration chamber and a radon source. The calibration chamber is a cylindric box ( 2613,6 cm sup 3)which we have manufactured of aluminium. The radon source is a natural sample rich of aluminium (17,29 + 0 ,12) Bq/g. The films are placed in detector holder with membrane and exposed inside the calibration chamber to varying concentrations of radon. Following the exposure, the films were chemically etched in sodium hydroxide (2,5 N) at 60 C for 120 minutes. The number of registered alpha particle tracks were counted with an optical microscope. In the used etching conditions, the removed mean thickness is in the order of 6 micro m. Therefore, we have normalized the track density to this value . We obtained a calibration factor of 0, 58 tracks . cm sup -2/ K Bq . h . m sup -3 . 1 tab.; 1 fig.; 2 refs. (author)

  12. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  13. Modeling of the active vibroseismic monitoring

    International Nuclear Information System (INIS)

    Kovalevskij, V.V.

    2006-01-01

    The results of the mathematical modeling of vibroseismic monitoring of changes in the elastic characteristics in the interior Earth's crust zone are presented. The model of the 'Earth's crust-mantle' system with point vibrational source on the free surface is considered. The estimates of sensitivity of active monitoring method with harmonic vibrational signals is determined. (author)

  14. Activity monitoring systems in health care

    NARCIS (Netherlands)

    Kröse, B.; van Oosterhout, T.; van Kasteren, T.; Salah, A.A.; Gevers, T.

    2011-01-01

    This chapter focuses on activity monitoring in a home setting for health care purposes. First the most current sensing systems are described, which consist of wearable and ambient sensors. Then several approaches for the monitoring of simple actions are discussed, like falls or therapies. After

  15. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.

    Science.gov (United States)

    Cappello, Carlo; Zonta, Daniele; Laasri, Hassan Ait; Glisic, Branko; Wang, Ming

    2018-02-05

    The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  16. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring

    Directory of Open Access Journals (Sweden)

    Carlo Cappello

    2018-02-01

    Full Text Available The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  17. Calibration and performance testing of the IAEA Aquila Active Well Coincidence Counter (Unit 1)

    International Nuclear Information System (INIS)

    Menlove, H.O..; Siebelist, R.; Wenz, T.R.

    1996-01-01

    An Active Well Coincidence Counter (AWCC) and a portable shift register (PSR-B) produced by Aquila Technologies Group, Inc., have been tested and cross-calibrated with existing AWCCs used by the International Atomic Energy Agency (IAEA). This report summarizes the results of these tests and the cross-calibration of the detector. In addition, updated tables summarizing the cross-calibration of existing AWCCs and AmLi sources are also included. Using the Aquila PSR-B with existing IAEA software requires secondary software also supplied by Aquila to set up the PSR-B with the appropriate measurement parameters

  18. PASTIS 57: Autonomous light sensors for PAI continuous monitoring. Principles, calibration and application to vegetation phenology

    Science.gov (United States)

    Lecerf, R.; Baret, F.; Hanocq, J.; Marloie, O.; Rautiainen, M.; Mottus, M.; Heiskanen, J.; Stenberg, P.

    2010-12-01

    The LAI (Leaf Area Index) is a key variable to analyze and model vegetation and its interactions with atmosphere and soils. The LAI maps derived from remote sensing images are often validated with non-destructive LAI measures obtained from digital hemispherical photography, LAI-2000 or ceptometer instruments. These methods are expensive and time consuming particularly when human intervention is needed. Consequently it is difficult to acquire overlapping field data and remotely sensed LAI. There is a need of a cheap, autonomous, easy to use ground system to measure foliage development and senescence at least with a daily frequency in order to increase the number of validation sites where vegetation phenology is continuously monitored. A system called PASTIS-57 (PAI Autonomous System from Transmittance Instantaneous Sensors oriented at 57°) devoted to PAI (Plant Area Index) ground measurements was developed to answer this need. PASTIS-57 consists in 6 sensors plugged on one logger that record data with a sampling rate of 1 to few minutes (tunable) with up to 3 months autonomy (energy and data storage). The sensors are plugged to the logger with 2x10m wires, 2x6m wires and 2x2m wires. The distance between each sensor was determined to obtain a representative spatial sampling over a 20m pixel corresponding to an Elementary Sampling Unit (ESU). The PASTIS-57 sensors are made of photodiodes that measure the incoming light in the blue wavelength to maximize the contrast between vegetation and sky and limit multiple scattering effects in the canopy. The diodes are oriented to the north to avoid direct sun light and point to a zenithal angle of 57° to minimize leaf angle distribution and plant clumping effects. The field of view of the diodes was set to ± 20° to take into consideration vegetation cover heterogeneity and to minimize environmental effects. The sensors were calibrated after recording data on a clear view site during a week. After calibration, the sensors

  19. Adaptive on-line calibration for around-view monitoring system using between-camera homography estimation

    Science.gov (United States)

    Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho

    2018-01-01

    The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.

  20. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System.

    Science.gov (United States)

    Bailey, Timothy; Bode, Bruce W; Christiansen, Mark P; Klaff, Leslie J; Alva, Shridhara

    2015-11-01

    The purpose of the study was to evaluate the performance and usability of the FreeStyle(®) Libre™ Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated sensor lots were used in the study. Sensor glucose measurements were compared with capillary blood glucose (BG) results (approximately eight per day) obtained using the BG meter built into the reader (BG reference) and with the YSI analyzer (Yellow Springs Instrument, Yellow Springs, OH) reference tests at three clinic visits (32 samples per visit). Sensor readings were masked to the participants. The accuracy of the results was demonstrated against capillary BG reference values, with 86.7% of sensor results within Consensus Error Grid Zone A. The percentage of readings within Consensus Error Grid Zone A on Days 2, 7, and 14 was 88.4%, 89.2%, and 85.2%, respectively. The overall mean absolute relative difference was 11.4%. The mean lag time between sensor and YSI reference values was 4.5±4.8 min. Sensor accuracy was not affected by factors such as body mass index, age, type of diabetes, clinical site, insulin administration, or hemoglobin A1c. Interstitial glucose measurements with the FreeStyle Libre system were found to be accurate compared with capillary BG reference values, with accuracy remaining stable over 14 days of wear and unaffected by patient characteristics.

  1. Reference sources for the calibration of surface contamination monitors - Beta-emitters (maximum beta energy greater than MeV) and alpha-emitters (International Standard Publication ISO 8769:1988)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    This International Standard specifies the characteristics of reference sources of radioactive surface contamination, traceable to national measurement standards, for the calibration of surface contamination monitors. This International Standard relates to alpha-emitters and to beta-emitters of maximum beta energy greater than 0,15 MeV. It does not describe the procedures involved in the use of these reference sources for the calibration of surface contamination monitors. Such procedures are specified in IEC Publication 325 and other documents. This International Standard specifies reference radiations for the calibration of surface contamination monitors which take the form of adequately characterized large area sources specified, without exception, in terms of activity and surface emission rate, the evaluation of these quantities being traceable to national standards

  2. Fourth IRMF comparison of calibrations of portable gamma-ray dose- rate monitors 2001-2002 Ionising radiation

    CERN Document Server

    Lewis, V E

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a fourth comparison of calibrations of gamma-ray dose-rate monitors in which fifteen establishments in the UK participated. The exercise involved the circulation of three gamma-ray monitors for calibration in the fields produced using sup 1 sup 3 sup 7 Cs, sup 2 sup 4 sup 1 Am and sup 6 sup 0 Co. The instruments used were an Electra with MC 20 probe, a Mini-Instruments Mini-rad 1000 and a Siemens electronic personal dosemeter Mk 2 (EPD). The responses relative to 'true' dose equivalent rate were calculated by the individual participants and submitted to the for analysis along with details of the facilities and fields employed. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments. However, the participants' treatment of uncertainties needs improvement and demonstrates a need for guidance in this area.

  3. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

    Science.gov (United States)

    Zimmerman, Naomi; Presto, Albert A.; Kumar, Sriniwasa P. N.; Gu, Jason; Hauryliuk, Aliaksei; Robinson, Ellis S.; Robinson, Allen L.; Subramanian, R.

    2018-01-01

    Low-cost sensing strategies hold the promise of denser air quality monitoring networks, which could significantly improve our understanding of personal air pollution exposure. Additionally, low-cost air quality sensors could be deployed to areas where limited monitoring exists. However, low-cost sensors are frequently sensitive to environmental conditions and pollutant cross-sensitivities, which have historically been poorly addressed by laboratory calibrations, limiting their utility for monitoring. In this study, we investigated different calibration models for the Real-time Affordable Multi-Pollutant (RAMP) sensor package, which measures CO, NO2, O3, and CO2. We explored three methods: (1) laboratory univariate linear regression, (2) empirical multiple linear regression, and (3) machine-learning-based calibration models using random forests (RF). Calibration models were developed for 16-19 RAMP monitors (varied by pollutant) using training and testing windows spanning August 2016 through February 2017 in Pittsburgh, PA, US. The random forest models matched (CO) or significantly outperformed (NO2, CO2, O3) the other calibration models, and their accuracy and precision were robust over time for testing windows of up to 16 weeks. Following calibration, average mean absolute error on the testing data set from the random forest models was 38 ppb for CO (14 % relative error), 10 ppm for CO2 (2 % relative error), 3.5 ppb for NO2 (29 % relative error), and 3.4 ppb for O3 (15 % relative error), and Pearson r versus the reference monitors exceeded 0.8 for most units. Model performance is explored in detail, including a quantification of model variable importance, accuracy across different concentration ranges, and performance in a range of monitoring contexts including the National Ambient Air Quality Standards (NAAQS) and the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. A key strength of the RF approach is that

  4. Monitoring Human Activity through Portable Devices

    Directory of Open Access Journals (Sweden)

    G. Sebestyen

    2012-06-01

    Full Text Available Monitoring human activity may be useful for medical supervision and for prophylactic purposes. Mobile devices like intelligent phones or watches have multiple sensors and wireless communication capabilities which can be used for this purpose. This paper presents some integrated solutions for determining and continuous monitoring of a person’s state. Aspects taken into consideration are: activity detection and recognition based on acceleration sensors, wireless communication protocols for data acquisition, web monitoring, alerts generation and statistical processing of multiple sensorial data. As practical implementations two case studies are presented, one using an intelligent phone and another using a mixed signal processor integrated in a watch.

  5. Efficiency calibration of a HPGe detector for [18F] FDG activity measurements

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceicao de Farias; Lacerda, Isabelle Viviane Batista de; Albuquerque, Antonio Morais de Sa

    2013-01-01

    The radionuclide 18 F, in the form of flurodeoxyglucose (FDG), is the most used radiopharmaceutical for Positron Emission Tomography (PET). Due to [ 18 F]FDG increasing demand, it is important to ensure high quality activity measurements in the nuclear medicine practice. Therefore, standardized reference sources are necessary to calibrate of 18 F measuring systems. Usually, the activity measurements are performed in re-entrant ionization chambers, also known as radionuclide calibrators. Among the existing alternatives for the standardization of radioactive sources, the method known as gamma spectrometry is widely used for short-lived radionuclides, since it is essential to minimize source preparation time. The purpose of this work was to perform the standardization of the [ 18 F]FDG solution by gamma spectrometry. In addition, the reference sources calibrated by this method can be used to calibrate and test the radionuclide calibrators from the Divisao de Producao de Radiofarmacos (DIPRA) of the Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE). Standard sources of 152 Eu, 137 Cs and 68 Ge were used for the efficiency calibration of the spectrometer system. As a result, the efficiency curve as a function of energy was determined in wide energy range from 122 to 1408 keV. Reference sources obtained by this method can be used in [ 18 F]FDG activity measurements comparison programs for PET services localized in the Brazilian Northeast region. (author)

  6. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers

    International Nuclear Information System (INIS)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-01-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr_3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. - Highlights: • A small-sized UAV airborne sensor system was developed. • Three radioactive models were chosen to simulate the Fukushima accident. • Both the air and ground radiation were considered in the models. • The efficiency calculations and MDAC values were given. • The sensor system is able to monitor in serious nuclear accidents.

  7. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  8. Monte Carlo simulation of calibration of shadow shield scanning bed whole body monitor using different size BOMAB phantoms

    International Nuclear Information System (INIS)

    Bhati, S.; Patni, H.K.; Singh, I.S.; Garg, S.P.

    2005-01-01

    A shadow shield scanning bed whole body monitor incorporating a (102 mm dia x 76 mm thick) NaI(Tl) detector, is employed for assessment of high-energy photon emitters at BARC. The monitor is calibrated using a Reference BOMAB phantom representative of an average Indian radiation worker. However to account for the size variation in the physique of workers, it is required to calibrate the system with different size BOMAB phantoms which is both difficult and expensive. Therefore, a theoretical approach based on Monte Carlo techniques has been employed to calibrate the system with BOMAB phantoms of different sizes for several radionuclides of interest. A computer program developed for this purpose, simulates the scanning geometry of the whole body monitor and computes detection efficiencies for the BARC Reference phantom (63 kg/168 cm), ICRP Reference phantom (70 kg/170 cm) and several of its scaled versions covering a wide range of body builds. The detection efficiencies computed for different photon energies for BARC Reference phantom were found to be in very good agreement with experimental data, thus validating the Monte Carlo scheme used in the computer code. The results from this study could be used for assessment of internal contamination due to high-energy photon emitters for radiation workers of different physiques. (author)

  9. Calibration of apparatus for short living radon daughters monitoring in air

    International Nuclear Information System (INIS)

    Chalupnik, S.; Lebecka, J.; Skubacz, K.

    1988-01-01

    A liquid scintillation method was developed for absolute measurement of radon daughters concentration in air. Calibration of site IRDM equipment appears as a significant problem. Usually it employs simultaneous measurements with the calibrated device and the reference one, of known detection efficiency. This yields systematic errors resulting from errors in evaluation of the detection efficiency. The presenting method is an absolute one. The efficiency for α and β particles is of about 100%. Thanks to this the developed method is excellent as a comparative one for calibration purposes. (author)

  10. Monitoring scanner calibration using the image-derived arterial blood SUV in whole-body FDG-PET.

    Science.gov (United States)

    Maus, Jens; Hofheinz, Frank; Apostolova, Ivayla; Kreissl, Michael C; Kotzerke, Jörg; van den Hoff, Jörg

    2018-05-15

    The current de facto standard for quantification of tumor metabolism in oncological whole-body PET is the standardized uptake value (SUV) approach. SUV determination requires accurate scanner calibration. Residual inaccuracies of the calibration lead to biased SUV values. Especially, this can adversely affect multicenter trials where it is difficult to ensure reliable cross-calibration across participating sites. The goal of the present work was the evaluation of a new method for monitoring scanner calibration utilizing the image-derived arterial blood SUV (BSUV) averaged over a sufficiently large number of whole-body FDG-PET investigations. Data of 681 patients from three sites which underwent routine 18 F-FDG PET/CT or PET/MR were retrospectively analyzed. BSUV was determined in the descending aorta using a three-dimensional ROI concentric to the aorta's centerline. The ROI was delineated in the CT or MRI images and transferred to the PET images. A minimum ROI volume of 5 mL and a concentric safety margin to the aortic wall was observed. Mean BSUV, standard deviation (SD), and standard error of the mean (SE) were computed for three groups of patients at each site, investigated 2 years apart, respectively, with group sizes between 53 and 100 patients. Differences of mean BSUV between the individual groups and sites were determined. SD (SE) of BSUV in the different groups ranged from 14.3 to 20.7% (1.7 to 2.8%). Differences of mean BSUV between intra-site groups were small (1.1-6.3%). Only one out of nine of these differences reached statistical significance. Inter-site differences were distinctly larger (12.6-25.1%) and highly significant (PPET investigations is a viable approach for ensuring consistent scanner calibration over time and across different sites. We propose this approach as a quality control and cross-calibration tool augmenting established phantom-based procedures.

  11. Calibration and monitoring of the MEG experiment by a proton beam from a Cockcroft-Walton accelerator

    International Nuclear Information System (INIS)

    Adam, J.; Bai, X.; Baldini, A.; Baracchini, E.; Bemporad, C.; Boca, G.; Cattaneo, P.W.; Cavoto, G.; Cei, F.; Cerri, C.; Corbo, M.; Curalli, N.; Bari, A. de; De Gerone, M.; Doke, T.; Dussoni, S.; Egger, J.

    2011-01-01

    The MEG experiment at PSI searches for the decay μ→eγ at a level of ∼10 -13 on the branching ratio BR(μ→eγ/μ→tot), well beyond the present experimental limit (BR≤1.2x10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (∼10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a Cockcroft-Walton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μ-beam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction 7 3 Li(p,γ) 8 4 Be or two coincident γs (11.67 and 4.4 MeV) from the reaction 11 5 B(p,γ 1 ) 12 6 C * . The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter (σ E γ /E γ =3.85±0.15% at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters (σ Δt =0.450±0.015ns). - Highlights: →Experiments that search for rare phenomena need to be constantly monitor and calibrated. →We show that proton induced nuclear reactions generate γ-rays useful for calibrating and monitoring the MEG experiment. →We describe the design, assembly and test of the calibration and monitoring accelerator for the MEG experiment.

  12. Calibration and study of the measurement capabilities of real-time gamma spectrometry equipment developed for the renewal of the network of stations automatic monitoring environmental radiation of the Generalitat of Catalunya

    International Nuclear Information System (INIS)

    Casanovas, R.; Prieto, E.; Salvado, M.

    2014-01-01

    The renewal of the automatic environmental radiation surveillance network of the Generalitat of Catalunya has been carried out through the development and implementation of gamma-spectrometry-based equipment. the monitors use scintillation crystals, either Na(TI) or LaBr 3 (Ce) and currently, there are 3 types of equipment water radioactivity monitors, aerosols on a particulate filter monitors and direct measurement monitors. In this paper, we expose the basic features of its operation, the details of their calibration and the minimum detectable activity concentration for some isotopes. (Author)

  13. Calibration of antimony-based electrode for ph monitoring into underground components of nuclear repositories

    International Nuclear Information System (INIS)

    Betelu, S.; Ignatiadis, I.

    2012-01-01

    Document available in extended abstract form only. Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, Callovo-Oxfordian formation (COx) is potential candidate for nuclear waste repository. It is thus necessary to measure in situ the state of a structure's health during its entire life. The monitoring of the near-field rock and the knowledge of the geochemical transformations can be carried out by a set of sensors for a sustainable management of long-term safety, reversibility and retrievability. Among the chemical parameters, the most significant are pH, conductivity and redox potential. Based upon the reversible interfacial redox processes involving H + , metal-metal oxides electrodes should be regarded among the promising technologies to be devoted to the observation and monitoring of pH into the underground components of nuclear repositories due to their physical and chemical stability, with regards to temperatures, pressures and aggressive environments. Metal-metal oxides electrodes present furthermore the advantage of being easily miniaturised. Among the metal-metal oxide group, antimony-antimony oxide system, for which improved properties were obtained using mono-crystalline antimony, has been the first and then the most investigated and disputed for pH sensing; the fact remains that it has been the most frequently used in practical pH measurements. Nevertheless, numerous conflicting data exist concerning the disturbances of their potential by various physical and chemical parameters, which require calibrating the electrode under conditions similar to those in which it is to be applied. This work aimed to calibrate mono-crystalline Sb electrode (99.999 %, m = 500 mg, d = 6.7) for pH measurements into the underground components of nuclear repositories. The electrode presented the advantage of being strong in the conception: it presented an important

  14. Determination of calibration factors for field measurements of liquid and gaseous activities

    International Nuclear Information System (INIS)

    Jose, M.T.; Ravi, T.; Raghunath, V.M.

    1994-01-01

    While working out the procedures for calibration and activity estimation of 41 Ar gaseous effluent earlier, it was felt necessary to obtain similar factors for liquid and gas activity measurements for other energies also. The paper describes the work done towards this and the conversion factors and minimum detectable levels established. (author). 3 tabs., 1 ref

  15. Determination of activation level energy of nuclear isomers by calibration of microspectra of radioactive sources

    International Nuclear Information System (INIS)

    Veres, A.; Pavlicsek, I.

    1980-01-01

    Nuclear isomers with unknown activation level were irradiated by calibrated radioactive sources. The integral cross sections were calculated for different energies of the sources. The activation energy was given by values coinciding with each other within the limits of error. The method made the determination of the unknown level of 1180+-10 keV of 195 Pt nucleus possible. (author)

  16. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  17. Fuel performance evaluation through iodine activity monitoring

    International Nuclear Information System (INIS)

    Anantharaman, K.; Chandra, R.

    1995-01-01

    The objective of the failed fuel detection system is to keep a watch on fuel behaviour during operation. This paper describes the evaluation of fuel behaviour by monitoring the activities of various isotopes of iodine both during steady state and during a reactor shutdown. The limitations of this approach also has been explained. The monitoring of tramp uranium for different types of release, namely fixed contamination and continuous release from fuel, is also presented. (author)

  18. Calibration procedures of area monitors in terms of the Ambient Dose Equivalent H*(10), for gamma, x-ray radiation fields

    International Nuclear Information System (INIS)

    Dieguez Davila, L.E.

    1998-01-01

    In the present thesis procedures for calibrating portable survey meters in terms of the new ICRU quantities H*(10) ambient dose equivalent are discussed. Also the remendations of International Comission on Radiation Protection in their report ICRP 60 that inludes the operational magnitudes that the International Comission of Radiation Units proposed for calibrating area monitors

  19. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  20. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  1. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  2. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  3. Calibrated and Interactive Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel

    2016-01-01

    Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....

  4. Project monitoring package (PMP) : A package for project activity monitoring

    International Nuclear Information System (INIS)

    Vyas, K.N.; Kannan, A.; Susandhi, R.; Basu, S.

    1987-01-01

    A package for preparing PERT/CPM network diagrams has been written for PDP-11/34. The program uses PLOT-10 library calls for device interfacing. The package is essentially non-interactive in nature, and reads input data in the form of activity description and duration. It calculates the critical path time and performs time scaling of the events. The report gives a brief outline of the logic used, a sample plot and tabular output for reference. An additional facility for performing project activity monitoring has also been implemented. Activity monitoring generally requires various reports such as feed back reports from various group co-ordinators, information report for project co-ordinator and brief periodical reports for management. A package 'DATATRIEVE' (DTR) on PDP-11/34 system is utilized for generating the above mentioned reports. As DTR can also use normal sequential files, an interfacing program has been written which reformats the files accepted by PERT program acceptable to DTR. Various types of reports as generated by DTR are included. However this part of the package is not transportable and can be implemented only on systems having DTR. 6 figures. (author)

  5. Neutron activation analysis for calibration of phosphorus implantation dose

    International Nuclear Information System (INIS)

    Paul, Rick L.; Simons, David S.

    2001-01-01

    A feasibility study was undertaken to determine if radiochemical neutron activation analysis (RNAA) can be used to certify the retained dose of phosphorus implanted in silicon, with the goal of producing a phosphorus SRM. Six pieces of silicon, implanted with a nominal phosphorus dose of 8.5x10 14 atoms·cm -2 were irradiated at a neutron flux of 1.05x10 14 cm -2 ·s -1 . The samples were mixed with carrier, dissolved in acid, the phosphorus isolated by chemical separation, and 32 P measured using a beta proportional counter. A mean phosphorus concentration of (8.35±0.20)x10 14 atoms·cm -2 (uncertainty=1 standard deviation) was determined for the six samples, in agreement with the nominal implanted dose

  6. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.

    2003-01-01

    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  7. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  8. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  9. Monitoring Malware Activity on the LAN Network

    Science.gov (United States)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  10. Comparison between two calibration models of a measurement system for thyroid monitoring

    International Nuclear Information System (INIS)

    Venturini, Luzia

    2005-01-01

    This paper shows a comparison between two theoretical calibration that use two mathematical models to represent the neck region. In the first model thyroid is considered to be just a region limited by two concentric cylinders whose dimensions are those of trachea and neck. The second model uses functional functions to get a better representation of the thyroid geometry. Efficiency values are obtained using Monte Carlo simulation. (author)

  11. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    Science.gov (United States)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Reporters to monitor cellular MMP12 activity

    Science.gov (United States)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  13. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    Science.gov (United States)

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A review of the probabilistic safety assessment of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Plant

    International Nuclear Information System (INIS)

    Gomes, Erica Cupertino

    2005-03-01

    The main purpose of this work is to update the PSA study of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Station taking into account new information. It is considered in this study an evaluation of the human reliability analysis in the calibration procedure of the radiation monitors, and for such the THERP modeling is used, as well as the use of the Bayesian approach for the calculation of the equipment failure probabilities used by the operators. Some accident scenarios of external origin were incorporated for evaluating their importance for an accident that might expose a worker to gamma radiation. A catastrophic failure is analyzed in the diesel generators 3 and 4, whose building is nearby the laboratory, as well as the route of change and the transportation of the steam generator of the nuclear power plant since the laboratory is located in the plant controlled area. Although more accidents scenarios are considered in this work, a conservative approach was not used and thus a smaller radiological risk was obtained. (author)

  15. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing100084 (China)

    2009-01-15

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration. (author)

  16. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  17. Clinical implications from monitoring fetal activity.

    Science.gov (United States)

    Rayburn, W F

    1982-12-15

    The monitoring of fetal motion in high-risk pregnancies has been shown to be worthwhile in predicting fetal distress and impending fetal death. The maternal recording of perceived fetal activity is an inexpensive surveillance technique which is most useful when there is chronic uteroplacental insufficiency or when a stillbirth may be expected. The presence of an active, vigorous fetus is reassuring, but documented fetal inactivity required a reassessment of the underlying antepartum complication and further fetal evaluation with real-time ultrasonography, fetal heart rate testing, and biochemical testing. Fetal distress from such acute changes as abruptio placentae or umbilical cord compression may not be predicted by monitoring fetal motion. Although not used for routine clinical investigation, electromechanical devices such as tocodynamometry have provided much insight into fetal behavioral patterns at many stages of pregnancy and in pregnancies with an antepartum complication.

  18. Automatization of the Calibration Laboratory for Radiation Monitors of the IRD

    International Nuclear Information System (INIS)

    Cabral, Tania S.; Ramos, Manoel M.O.; Quaresma, Daniel S.

    2007-01-01

    This work will present the concluded stages and also the ones that are still in process to reach the full automation of the calibration system. Little by little the laboratory included in its installations the automatization of some of its operations, aiming the safety of the staff and their equipment. The automation makes the installation almost ideal for the radioprotection, that is, makes its exposure as low as possible and the routines more accurate, minimizing attributed the uncertainties and the doses received by the professionals who operated the system manually. Currently, on the operation table there is a control of the position car exists and its speed, the internal TV circuit (of the room, the position of the car and equipment that is going to be calibrated), the control of the registration is done by the Autolab program and the Irradiator Buchler OB85 control with the sources of 137Cs and 60Co.A next stage will be the implantation of the automation project of the positioning of the three used attenuators. (author)

  19. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  20. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    Science.gov (United States)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  1. Calibration of whole-body counters for accident in vivo monitoring

    International Nuclear Information System (INIS)

    Laurer, G.R.

    2000-01-01

    This paper points out the importance of implementing transportable in vivo measurements laboratories in countries like Brazil where there is a large number of people directly and indirectly exposed to radionuclides. These units should be used mainly in emergency situations involving internal and external contamination of workers and public. Nevertheless such laboratories may also be used for simultaneously collecting and processing a great variety of biological and environmental samples not only for emergency purposes but also as part of a more comprehensive radiological survey of working and environmental conditions. The development of new techniques for calibrating the detection systems, i.e., physical and mathematical anthropomorphic phantoms, increases the range of applications for such laboratories and allows the obtention of quick results when and where it is necessary. (author)

  2. 4D monitoring of actively failing rockslopes

    Science.gov (United States)

    Rosser, Nick; Williams, Jack; Hardy, Richard; Brain, Matthew

    2017-04-01

    Assessing the conditions which promote rockfall to collapse relies upon detailed monitoring, ideally before, during and immediately after failure. With standard repeat surveys it is common that surveys do not coincide with or capture precursors, or that surveys are widely spaced relative to the timing and duration of driving forces such as storms. As a result gaining insight into the controls on failure and the timescales over which precursors operate remains difficult to establish with certainty, and establishing direct links between environmental conditions and rock-falls, or sequences of events prior to rockfall, remain difficult to define. To address this, we present analysis of a high-frequency 3D laser scan dataset captured using a new permanently installed system developed to constantly monitor actively failing rock slopes. The system is based around a time of flight laser scanner, integrated with and remotely controlled by dedicated controls and analysis software. The system is configured to capture data at 0.1 m spacing across > 22,000 m3 at up to 30 minute intervals. Here we present results captured with this system over a period of 9 months, spanning spring to winter 2015. Our analysis is focussed upon improving the understanding of the nature of small (volumetric measurement of rock face erosion. The results hold implications for understanding of rockfall mechanics, but also for how actively eroding surfaces can be monitored at high temporal frequency. Whilst high frequency data is ideal for describing processes that evolve rapidly through time, the cumulative errors that accumulate when monitored changes are dominated by inverse power-law distributed volumes are significant. To conclude we consider the benefits of defining survey frequency on the basis of the changes being detected relative to the accumulation of errors that inevitably arises when comparing high numbers of sequential surveys.

  3. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    Energy Technology Data Exchange (ETDEWEB)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others, E-mail: mariobalthar@gmail.com [Centro Tecnológico do Exército (IDQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Química, Biológica, Radiológica e Nuclear

    2017-07-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  4. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    International Nuclear Information System (INIS)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others

    2017-01-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  5. Calibration of an electron/proton monitor for the earth's radiation belt at 4 R/sub E/

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Argo, H.V.; Baker, D.N.

    1982-03-01

    A charged particle dosimeter (the Burst Detector Dosimeter or BDD) was designed and fabricated and will be flown on certain of the Global Positioning Satellite (GPS) series of spacecraft. The BDD will monitor the dose received by the GPS spacecraft from the fluxes of electrons and protons in the Earth's radiation belt. The BDD uses absorbers in front of silicon sensors to determine the energy thresholds for measuring incident particle fluxes; and the magnitude of energy loss in a single sensor distinguishes between ions and electrons over a wide range of energies. Our electron calibrations were performed to determine accurately the energy response function of the dosimeter. The experimentally determined energy and angular responses are used to determine the equivalent energy thresholds and geometric factors for idealized step function responses

  6. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  7. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; hide

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  8. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  9. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    Science.gov (United States)

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  10. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    International Nuclear Information System (INIS)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-01-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  11. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Massoutie, Martine.

    1981-05-01

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer [fr

  12. Characterization of a diamond detector to be used as neutron yield monitor during the in-vessel calibration of JET neutron detectors in preparation of the DT experiment

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Batistoni, Paola; Loreti, Stefano; Milocco, Alberto

    2016-01-01

    Highlights: • A diamond detector has been characterized for use as neutron yield monitor of a portable 14 MeV neutron generator. • The system will be used for the 14 MeV calibration of JET neutron detector. • The results and the performances of the monitor are very satisfactory in term of accuracy and reliability. - Abstract: A new Deuterium-Tritium (DT) campaign is planned at JET. An accurate calibration for the 14 MeV neutron yield monitors is necessary. In order to perform the calibration a 14 MeV Neutron Generator with suitable intensity (∼10 8 n/s) will be used. Due to the intensity change during the Neutron Generator lifetime it would be necessary to monitor continuously the neutron emission intensity during the calibration using a compact detector attached to it. A high quality diamond detector has been chosen as one of the monitors. This detector has been fully characterized at the 14 MeV Frascati Neutron Generator facility. The characterization procedure and the resulting 14 MeV neutron response of the detector are described in this paper together with the obtained uncertainties.

  13. Design of procedures for the calibration of non-invasive blood pressure monitoring

    OpenAIRE

    Meza Contreras, Luís Gregorio; Llamosa R., Luis Enrique; Izquierdo, Natalia

    2007-01-01

    El Laboratorio de Metrología - Variables Eléctricas, está en proceso de acreditar un laboratorio de calibración /ensayos de equipo electromédico en las áreas de: Seguridad Eléctrica, Electrocardiografía, electroencefalografía, Monitoría Fetal, Pulsioximetría SpO2, Electrobisturies, Desfibriladores/Marcapasos, Presión Arterial, Bombas de Infusión, Incubadoras, Flujo de Gas, Respiradores entre otros. En el contenido de éste artículo se hace referencia al procedimiento de calibración de in...

  14. Volume corrections factors in the measurement of 99mTc and 123I activities in radionuclide calibrators

    International Nuclear Information System (INIS)

    Correia, Amanda Ribeiro; Rezende, Eduarda Alexandre; Iwahara, Akira; Oliveira, Antonio Eduardo de; Oliveira, Estela Maria de; Tauhata, Luiz; Chaves, Taina Olivieri

    2012-01-01

    To determine correction factors for the variation in volume of radiopharmaceuticals in containers of different geometries, comparing the influence of such factors on the determination of 99m Tc and 123 I activity with two types of calibrators - one with ionization chamber and another with Geiger-Mueller (G-M) detector -; and to evaluate calibrators performance in the measurement of 99m Tc and 1 '2 3 I activities. Materials and Methods: Eight calibrators, 10R glass vials, 3 and 5 mL plastic syringes and 99m Tc and 123 I solutions were utilized. The correction factors were determined with basis on practical measurements of the variation in the calibrators' response according to the volume of radionuclide solution in the glass vials. The performance was evaluated according to the acceptance criterion of +- 10% accuracy required by the Brazilian standard. Results: The variation of the calibrators' response according to the variation in radionuclide volume was reasonably greater in the calibrator with G-M detector. It was also greater for 123 I than for 99m Tc. Conclusion: The results confirm that the calibrators' response depends on the radionuclide volume contained in the vials. Such dependence is more critical for the calibrators equipped with G-M detector and for 123 I as compared with 99m Tc. (author)

  15. Continuous Activity Monitoring During Concurrent Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Bodner, William R.; Mehta, Keyur J. [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York (United States); Halmos, Balazs; Haigentz, Missak [Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Rapkin, Bruce [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York (United States); Guha, Chandan; Kalnicki, Shalom; Garg, Madhur [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States)

    2017-04-01

    Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection of step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.

  16. Continuous Activity Monitoring During Concurrent Chemoradiotherapy

    International Nuclear Information System (INIS)

    Ohri, Nitin; Kabarriti, Rafi; Bodner, William R.; Mehta, Keyur J.; Shankar, Viswanathan; Halmos, Balazs; Haigentz, Missak; Rapkin, Bruce; Guha, Chandan; Kalnicki, Shalom; Garg, Madhur

    2017-01-01

    Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection of step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.

  17. Theoretical and experimental study of radon measurement with designing and calibration domestic canister with active charcoal

    International Nuclear Information System (INIS)

    Urosevic, V.; Nikezic, D.; Zekic, R.

    2005-01-01

    Radon concentration in air may change significantly large variation due to atmospheric variation. Measurement with active charcoal can be inaccurate because the variation in radon concentration. We made model to simulate radon measurements with active charcoal in order to optimize and improve integration characteristic. A numerical method and computer code based on the method of finite elements is developed for the case of variable radon concentration in air. This program simulates radon adsorption by the activated charcoal bed, enabling determination of sensitivity. The dependence of sensitivity on different parameters, such as temperature, thickness of the charcoal, etc. was studied using this program. Using results of theoretical investigation we designed and calibrated our canister with active charcoal for radon measurements. (author)

  18. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  19. Monitoring and controlling ovarian activity in elephants.

    Science.gov (United States)

    Thitaram, Chatchote; Brown, Janine L

    2018-03-15

    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development of a Primary Standard for Calibration of [18F]FDG Activity Measurement Systems

    International Nuclear Information System (INIS)

    Capogni, M; Felice, P De; Fazio, A; Simonelli, F; Abbas, K

    2006-01-01

    The 18 F national primary standard was developed by the INMRI-ENEA using the 4πβ Liquid Scintillation Spectrometry Method with 3 H-Standard Efficiency Tracing. Measurements were performed at JRCIspra under a scientific collaboration between the Institute for Health and Consumer Production, the Amersham Health and the National Institute for Occupational Safety and Prevention (ISPESL). The goal of the work was to calibrate, with minimum uncertainty, the INMRI-ENEA transfer standard portable well-type ionisation chamber as well as other JRC-Ispra and Amersham Health reference Ionising Chambers used for FDG activity measurement

  1. Development of a Primary Standard for Calibration of [{sup 18}F]FDG Activity Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Capogni, M [ENEA Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (INMRI), Centro Ricerche Casaccia, I-00060 Rome (Italy); Felice, P De [ENEA Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (INMRI), Centro Ricerche Casaccia, I-00060 Rome (Italy); Fazio, A [ENEA Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (INMRI), Centro Ricerche Casaccia, I-00060 Rome (Italy); Simonelli, F [Institute for Health and Consumer Protection, Joint Research Centre (JRC), European Commission, I-21020 Ispra (Vatican City State, Holy See,), Italy; D' Ursi, V [Amersham Health Srl (AH), I-13040 Saluggia (Saint Vincent and the Grenadines), Italy; Pecorale, A [Amersham Health Srl (AH), I-13040 Saluggia (Saint Vincent and the Grenadines), Italy; Giliberti, C [Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro (ISPESL), I-00184 Rome (Italy); Abbas, K [Institute for Health and Consumer Protection, Joint Research Centre (JRC), European Commission, I-21020 Ispra (Vatican City State, Holy See,), Italy

    2006-05-15

    The {sup 18}F national primary standard was developed by the INMRI-ENEA using the 4{pi}{beta} Liquid Scintillation Spectrometry Method with {sup 3}H-Standard Efficiency Tracing. Measurements were performed at JRCIspra under a scientific collaboration between the Institute for Health and Consumer Production, the Amersham Health and the National Institute for Occupational Safety and Prevention (ISPESL). The goal of the work was to calibrate, with minimum uncertainty, the INMRI-ENEA transfer standard portable well-type ionisation chamber as well as other JRC-Ispra and Amersham Health reference Ionising Chambers used for FDG activity measurement.

  2. A monitor for beta activity in air

    International Nuclear Information System (INIS)

    Bansode, P.Y.; Karpagam, R.; Phatak, P.R.; Jakati, R.K.

    2004-01-01

    Radiation monitors using compensated ion chamber technique have been in use in nuclear power plants and facilities for measurement of beta activity in presence of gamma background. This paper describes a system based on auto-ranging electrometer with provision for selecting alarm-level and giving out measurement and status information on RS232 serial link for remote use such as PC or notebook computer via RadNet protocol. The over all system incorporates indigenously developed 40 litre ion-chamber reported in the literature and facility for circulating air through the chamber using pumping system. The setup is housed in standard racks with wheels for easy transport within the laboratory building. The data acquiring and I/O processing is carried out using Philips 80c552 micro-controller. (author)

  3. Calibration of the JET neutron yield monitors using the delayed neutron counting technique

    International Nuclear Information System (INIS)

    van Belle, P.; Jarvis, O.N.; Sadler, G.; de Leeuw, S.; D'Hondt, P.; Pillon, M.

    1990-01-01

    The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET

  4. Activity standardisation of 18F and ionisation chamber calibration for nuclear medicine

    International Nuclear Information System (INIS)

    Schrader, H.; Klein, R.; Kossert, K.

    2007-01-01

    Primary activity standardisations were performed on solutions of 18 F using 4πβ-γ coincidence counting and liquid scintillation counting (LSC) according to the CIEMAT/NIST method. A β + -emission probability of 96.86% was used for both methods. The various standardised 18 F solutions were measured in ionisation chambers of the Physikalisch-Technische Bundesanstalt (PTB) and compared by determining radionuclide calibration factors. Already in 2001 an 18 F solution had been standardised at the PTB and compared with the results of nine national metrology institutes (NMIs), using the ISOCAL IV secondary radionuclide calibrators of the National Physical Laboratory (NPL) as transfer instruments and a 68 Ge check source solution. These results were linked to the International Reference System (SIR) at the Bureau International des Poids et Mesures (BIPM) by aliquots of solutions sent by the Laboratoire National Henri Becquerel (BNM-LNHB) and the NPL. Further on, in 2005, PTB sent an aliquot of an 18 F solution to the SIR for ionisation chamber measurements. A value of the equivalent activity was determined and included in the key comparison database (KCDB). The recent PTB value of the equivalent activity of the SIR is in good agreement with the key comparison reference value determined from five NMIs. These results confirm that the standardisation of 18 F solutions can be achieved with the accuracy required for use in nuclear medicine and, in particular, for applications in positron emission tomography (PET)

  5. The Light Plane Calibration Method of the Laser Welding Vision Monitoring System

    Science.gov (United States)

    Wang, B. G.; Wu, M. H.; Jia, W. P.

    2018-03-01

    According to the aerospace and automobile industry, the sheet steels are the very important parts. In the recent years, laser welding technique had been used to weld the sheet steel part. The seam width between the two parts is usually less than 0.1mm. Because the error of the fixture fixed can’t be eliminated, the welding parts quality can be greatly affected. In order to improve the welding quality, the line structured light is employed in the vision monitoring system to plan the welding path before welding. In order to improve the weld precision, the vision system is located on Z axis of the computer numerical control (CNC) tool. The planar pattern is placed on the X-Y plane of the CNC tool, and the structured light is projected on the planar pattern. The vision system stay at three different positions along the Z axis of the CNC tool, and the camera shoot the image of the planar pattern at every position. Using the calculated the sub-pixel center line of the structure light, the world coordinate of the center light line can be calculated. Thus, the structured light plane can be calculated by fitting the structured light line. Experiment result shows the effective of the proposed method.

  6. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    DEFF Research Database (Denmark)

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...... between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non...

  7. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    Science.gov (United States)

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  8. Comparisons of activity measurements in nuclear medicine with radionuclide calibrators in the Czech Republic

    International Nuclear Information System (INIS)

    Olsovcova, V.; Dryak, P.

    2002-01-01

    Activity measurements in nuclear medicine using so called 'radionuclide calibrators' or 'activimeters' have been performed for several decades and their reliability has varied. This paper presents comparison of data obtained in annual accuracy checks during the last decade in the Czech Republic, which were carried out by Czech Metrological Institute, Inspectorate for Ionizing Radiation (CMI IIR). Since there is a legal requirement of annual accuracy checks, all of 48 Nuclear Medicine departments in the Czech Republic have participated in the survey. During the last decade the system of accuracy checks has undergone a gradual development. In the initial system one radionuclide sample out of the offer-list was prepared and its activity measured by 4πγ reference chamber. The sample was then sent to the participants, who measured for them an unknown activity and filled out the questionnaire. Later the answers were evaluated in CMI IIR. This system was found unsatisfactory, mostly because of the long time intervals between the measurement and evaluation of results. Therefore, a different system, under which each participant can choose for the accuracy check all the radionuclides from the offered set, was first tried in the year 2000. The offered set is being gradually enlarged, so in 2001 it consisted of four nuclides 99m Tc, 131 I, 67 Ga and 201 Tl. Solution samples (5 ml volume in 10 ml standard serum bottle - the most common in the CR) are prepared in advance from all the nuclides except for 99m Tc and measured with 4πγ chamber to obtain a conventionally true value of activity. In case of 99m Tc is as the true value considered the activity measured with CMI's activimeter whose calibration is periodically compared with 4πγ chamber measurements

  9. Determination of Th and U by neutron activation for gamma spectrometry calibration in situ

    International Nuclear Information System (INIS)

    Nava M, F.; Rios M, C.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L.; Landsberger, S.

    2012-10-01

    Using the analysis by neutron activation to determine the profile of the thorium and uranium concentration calibration factors were obtained for their use in the gamma spectrometry in situ. Three sites were selected (San Ramon, Villa de Cos y la Zacatecana) and the analysis by activation was development in the Laboratory of Nuclear Engineering Teaching of the Texas University in Austin with the nuclear reactor Ut-TRIGA. Starting from the gamma spectra in situ, the areas of normalized photo-pick of the radioisotopes were: 208 Tl and 228 Ac for the thorium series and 214 Pb and 214 Bi for the uranium series. The averages of the factors found in units of (cpm/Bq/Kg) are of 105.63±8.32 and 75.87±4.61 for the thorium and uranium, respectively. (Author)

  10. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  11. New developments in continuous monitoring of airborne activity

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1987-01-01

    Air monitors that operate continuously are used in nuclear facilities to detect unexpected malfunctions in controls that limit levels of airborne radioactivity in occupied area. Monitoring for concentrations of alpha-emitting transuranics is the most difficult task in air monitoring. Workplace monitoring for alpha emitters requires a detection level ∼2% that of nonalpha-emitting radionuclides with a half-life >2 h. Typically, air monitoring is accomplished by passing a volume of the monitored air through a filter to collect the particulates. The filter is located near a detector that monitors the radioactivity of the collected particles and sends an alarm when the activity exceeds established limits. Alpha activity from daughters of thoron and radon, present in all air in variable amounts, hampers monitoring for transuranics. This presentation describes developments that have improved the accuracy and sensitivity for the monitoring of airborne concentration of transuranics

  12. JAXA's activities for environmental health monitoring

    Science.gov (United States)

    Murakami, Hiroshi

    2014-11-01

    In the first ten years after establishment of the Japan Aerospace eXploration Agency (JAXA) in 2003, our focuses were mainly on technical development (hardware and software) and accumulation of application research. In the next decade, we focus more on solution on social issues using innovative space science technology. Currently, JAXA is operating and developing several earth observation satellites and sensors: Greenhouse gases Observing SATellite (GOSAT) "IBUKI", Global Change Observation Mission - Water "SHIZUKU" (GCOM-W), Global Precipitation Measurement/Dual- frequency Precipitation Radar (GPM/DPR), Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2), Global Change Observation Mission - Climate (GCOM-C), Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), and GOSAT-2. They will provide essential environmental parameters, such as aerosols, clouds, land vegetation, ocean color, GHGs, and so on. In addition to the above missions, we are studying new instruments (altimeter, LIDAR, detectors, optical components) to obtain new parameters. Our activities will advance to provide essential inputs for diagnosis, prediction, and management of climate change, environmental assessment, and disaster monitoring.

  13. Ahead with Cairo. Monitoring country activities.

    Science.gov (United States)

    Danguilan, M; Wainer, J; Widyantoro, N; Capoor, I; Huq, N; Ashino, Y; Sadasivam, B; Le Thi Nham Tuyet

    1995-04-01

    In the aftermath of the 1994 UN Conference on Population and Development (ICPD) in Cairo, countries are proceeding with their implementation of the plan of action adopted at the conference. A brief description is given of some actions taken by specific countries toward plan implementation. In the Philippines meetings were held immediately after the conference in October on the implications for the Management, Family Planning, and Nongovernmental Organizations programs. The issues of concern were identified as the need for regular consultative meetings among relevant agencies, consultations with women's groups, and a responsive adolescents program. In Australia the program thrust was to focus on the implications for immigration. Monitoring of the plans of action will be undertaken by nongovernmental organizations (NGOs). In Malaysia committees are preparing a program of action suitable for implementation in Malaysia. A regional women's NGO organized a forum on the implications of ICPD for women's reproductive health, women's rights, and empowerment in Malaysia. In Vietnam, press conferences are used to communicate conference results. An NGO translated relevant ICPD materials into Vietnamese. In Indonesia, several ministries convened meetings among donors, NGOs, women's groups, and experts. In India, the government held a national conference. One view was that population issues should be discussed in the context of gender equality and empowerment of women. Another issue was the importance of placing reproductive health in the larger context of health and primary health services. Health personnel at all levels were considered in need of sensitization on gender issues. Problems such as anemia have not been successfully addressed in existing programs. The government agreed to remove in phases target driven programs and the sterilization emphasis. In Bangladesh, a national committee was formed, and NGOs are actively distributing information. In Japan, the Family Planning

  14. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  15. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  16. Classifying Transition Behaviour in Postural Activity Monitoring

    Directory of Open Access Journals (Sweden)

    James BRUSEY

    2009-10-01

    Full Text Available A few accelerometers positioned on different parts of the body can be used to accurately classify steady state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised learning approaches. Transitions between postures are, however, difficult to deal with using posture classification systems proposed to date, since there is no label set for intermediary postures and also the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass when using supervised learning to train such systems is to discard a section of the dataset around each transition. This leads to poorer classification performance when the systems are deployed out of the laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes. Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve posture classification accuracy in such real-life applications. Also, such filtering should reduce the number of event messages needed to be sent across a wireless network to track posture remotely, hence extending the system’s life. To support time-based filtering, understanding transitions, which are the major event generators in a classification system, is a key. This work examines three approaches to post-process the output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better results.

  17. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  18. Individual monitoring: A tool for active ALARA

    International Nuclear Information System (INIS)

    Hoefert, M.

    1989-01-01

    The system of individual monitoring at CERN is presented. Following the substantial decrease of individual doses over the last decade, emphasis is now placed on monitoring rather than on dosimetric aspects. Future developments have to face a possible decrease of dose limits that are difficult to control in view of the lower detection limits for the detectors presently used. One possible solution to the problem is the increase in the wearing time for individual dosemeters. (author)

  19. Environmental monitoring activities in JAERI at JCO accident

    International Nuclear Information System (INIS)

    Yamaguchi, Takenori

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) was involved in a various environmental monitoring activities, such as environmental radiation monitoring by monitoring post and monitoring car, air dust, soil, green vegetables and water sampling and measurements, neutron and gamma radiation dose rate survey around the JCO site for emergency response actions to the JCO accident on September 30, 1999. These activities were performed from Sep. 30 to Oct. 2, and were the initial and first stage activities in the emergency environmental monitoring activities. JAERI has been assigned to the public organization to support the government by Disaster Prevention Fundamental Law. These activities were performed to ensure the public safety to avoid the effluent of the accident. Through the environmental monitoring activities, I recognized that the importance of the accident information to make the best use for the initial environmental monitoring, and the monitoring information exchange is important to perform the effective monitoring activities for taking the early countermeasures such as evacuation to the public. (author)

  20. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  1. Active sites environmental monitoring Program - Program Plan: Revision 2

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results

  2. Instructional physical activity monitor video in english and spanish

    Science.gov (United States)

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  3. A Test of the Active-Day Fraction Method of Sunspot Group Number Calibration: Dependence on the Level of Solar Activity

    Science.gov (United States)

    Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.

    2018-04-01

    The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.

  4. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  5. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  6. Leisure time activities, parental monitoring and drunkenness in adolescents.

    Science.gov (United States)

    Tomcikova, Zuzana; Veselska, Zuzana; Madarasova Geckova, Andrea; van Dijk, Jitse P; Reijneveld, Sijmen A

    2013-01-01

    The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for drunkenness in the previous month, participation in risky leisure activities and parental monitoring. Participation in risky leisure time activities increased the probability of drunkenness among adolescents, while parental monitoring decreased it. The effect did not change after adding the mother's and father's monitoring into the models. Our results imply that adolescents involved in going out with friends, having parties with friends and/or visiting sporting events every day or several times a week are at a higher risk of drunkenness, as are those less monitored by their parents. These less monitored adolescents and their parents should become a target group in prevention. Copyright © 2012 S. Karger AG, Basel.

  7. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Science.gov (United States)

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  8. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    Science.gov (United States)

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  9. Performance evaluation of the reference system for calibration of IPEN activities

    International Nuclear Information System (INIS)

    Martins, Elaine Wirney; Potiens, Maria da Penha A.

    2011-01-01

    The formation of good quality image in nuclear medicine services depends on several factors, including the radiopharmaceutical activity, which must be well determined by a specific apparatus, in perfect operating condition, called activimeter. Therefore, the establishment of a quality control program for measuring the radiopharmaceuticals radioactivity before being administered to the patient is crucial to the safe and effective use of the radiopharmaceuticals used in diagnostic and therapeutical procedures. Two activimeters, belonging by the Laboratorio de Calibracao do Instrumentos (LCI) of Instituto de Pesquisas Energeticas e Nucleares (IPEN), were evaluated: the secondary standard system NPL-CRC radionuclide calibrator, manufactured by Southern Scientific, and the work standard system CRC-15BT with traceability to National Institute of Standard and Technology (NIST). A set of standard sources of the radionuclides 1 '3 3 Ba, 57 Co and 137 Cs was used as reference to perform the quality control tests. The precision, accuracy and repeatability tests were in agreement with those established by the CNEN-NE 3.05 Brazilian standard, which recommends the variation limit of up to 10%, 5% and 5% respectively. The results obtained for the reproducibility tests presented a variation always below 1,5%, which means it is within the IEC 61674 international standard recommendation of up to 3%. Activimeters response regarding linearity showed concordance between the measured activities and the theoretical curve for both activimeters. (author)

  10. Performance evaluation of the reference system for calibration of IPEN activities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Elaine Wirney; Potiens, Maria da Penha A., E-mail: ewmartins@ipen.br, E-mail: mppalbu@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The formation of good quality image in nuclear medicine services depends on several factors, including the radiopharmaceutical activity, which must be well determined by a specific apparatus, in perfect operating condition, called activimeter. Therefore, the establishment of a quality control program for measuring the radiopharmaceuticals radioactivity before being administered to the patient is crucial to the safe and effective use of the radiopharmaceuticals used in diagnostic and therapeutical procedures. Two activimeters, belonging by the Laboratorio de Calibracao do Instrumentos (LCI) of Instituto de Pesquisas Energeticas e Nucleares (IPEN), were evaluated: the secondary standard system NPL-CRC radionuclide calibrator, manufactured by Southern Scientific, and the work standard system CRC-15BT with traceability to National Institute of Standard and Technology (NIST). A set of standard sources of the radionuclides {sup 1}'3{sup 3}Ba, {sup 57}Co and {sup 137}Cs was used as reference to perform the quality control tests. The precision, accuracy and repeatability tests were in agreement with those established by the CNEN-NE 3.05 Brazilian standard, which recommends the variation limit of up to 10%, 5% and 5% respectively. The results obtained for the reproducibility tests presented a variation always below 1,5%, which means it is within the IEC 61674 international standard recommendation of up to 3%. Activimeters response regarding linearity showed concordance between the measured activities and the theoretical curve for both activimeters. (author)

  11. Accuracy, reproducibility, and uncertainty analysis of thyroid-probe-based activity measurements for determination of dose calibrator settings.

    Science.gov (United States)

    Esquinas, Pedro L; Tanguay, Jesse; Gonzalez, Marjorie; Vuckovic, Milan; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna

    2016-12-01

    In the nuclear medicine department, the activity of radiopharmaceuticals is measured using dose calibrators (DCs) prior to patient injection. The DC consists of an ionization chamber that measures current generated by ionizing radiation (emitted from the radiotracer). In order to obtain an activity reading, the current is converted into units of activity by applying an appropriate calibration factor (also referred to as DC dial setting). Accurate determination of DC dial settings is crucial to ensure that patients receive the appropriate dose in diagnostic scans or radionuclide therapies. The goals of this study were (1) to describe a practical method to experimentally determine dose calibrator settings using a thyroid-probe (TP) and (2) to investigate the accuracy, reproducibility, and uncertainties of the method. As an illustration, the TP method was applied to determine 188 Re dial settings for two dose calibrator models: Atomlab 100plus and Capintec CRC-55tR. Using the TP to determine dose calibrator settings involved three measurements. First, the energy-dependent efficiency of the TP was determined from energy spectra measurements of two calibration sources ( 152 Eu and 22 Na). Second, the gamma emissions from the investigated isotope ( 188 Re) were measured using the TP and its activity was determined using γ-ray spectroscopy methods. Ambient background, scatter, and source-geometry corrections were applied during the efficiency and activity determination steps. Third, the TP-based 188 Re activity was used to determine the dose calibrator settings following the calibration curve method [B. E. Zimmerman et al., J. Nucl. Med. 40, 1508-1516 (1999)]. The interobserver reproducibility of TP measurements was determined by the coefficient of variation (COV) and uncertainties associated to each step of the measuring process were estimated. The accuracy of activity measurements using the proposed method was evaluated by comparing the TP activity estimates of 99m Tc

  12. Calibration of A Prompt Gamma Neutron Activation Analysis (PGNAA) Facility: Experience at the Oregon State University TRIGA Reactor

    International Nuclear Information System (INIS)

    Norlida Yussup

    2011-01-01

    A prompt gamma neutron activation analysis (PGNAA) facility at Oregon State University (OSU) TRIGA reactor has been built in year 2008 and been operated since then. PGNAA is a technique used to determine the presence and quantity of trace elements such as boron, hydrogen and carbon which are more difficult to detect with other neutron analysis method. A calibration is essential to ensure the system works as required and the output is valid and reliable. The calibration was carried out by using Standard Reference Material (SRM). Besides, background data was also acquired for comparisons and analysis. The results are analyzed and discussed in this paper. (author)

  13. Monitoring activities review of the Radiological Environmental Surveillance Program

    International Nuclear Information System (INIS)

    Ritter, P.D.

    1992-03-01

    The 1992 Monitoring Activities Review (MAR) is directed at the Radiological Environment Surveillance Program (RESP) activities at the Radioactive Waste Management Complex (RWMC) of Idaho Engineering Laboratory (INEL). MAR panelists studied RESP documents and discussed their concerns with Environmental Monitoring Unit (EMU) staff and other panel members. These concerns were subsequently consolidated into a collection of recommendations with supporting discussions. Recommendations focus on specific monitoring activities, as well as the overall program. The MAR report also contains pertinent comments that should not require further action

  14. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  15. Calibration of a HPGe detector for Marinelli vessel geometry for measurement of gaseous 41Ar activity using MCNP

    International Nuclear Information System (INIS)

    Raghunath, T.; Narasimhanath, V.; Sunil, C.N.; Kumaravel, S.; Ramakrishna, V.; Prashanth Kumar, M.; Nair, B.S.K.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    To carry out measurement of 41 Ar gaseous activity an attempt is made to calibrate the detector (HPGe) for Standard Measuring Flask (SMF) and Marinelli vessel geometry and compare their efficiencies. As standard gaseous source of 41 Ar is not available the calibration is done using liquid standard source of 22 Na (having 1274.5 KeV gamma energy close to the 1293.6 KeV gamma energy of 41 Ar). The HPGe detector and both the geometries are simulated and efficiencies for Full Energy Peak (FEP) are obtained using MCNP. The correction factor for energy and sample matrix is obtained from simulated efficiencies. By applying these correction factors the calibration is done. (author)

  16. Conversion of an Alpha CAM Monitor of Victoreen calibrated of factory for plutonium in a measurement monitor of radon in the atmosphere; Conversion de un monitor Alpha CAM de la Victoreen calibrado de fabrica para plutonio en un monitor para medicion de radon en la atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2004-07-01

    It is presented in this work the conversion of a monitor ALPHA CAM of the monitor Victoreen gauged of it manufactures for plutonium in a monitor for radon mensuration in the atmosphere. Those units in that the radon measures are expressed are: peak curies/unit of volume of air to sampling. This way one has to gauge and to supplement the software and the parts that the old one monitor for plutonium. It requires. This task implies: a) To calibrate and to determine the efficiency of the detector of accustomed to state of 1700 mm{sup 2} for alpha particles coming from the radioactive series of the radon. b) to connect in series and to calibrate a flow measurer of air in it lines with the detector. Measures are presented of the ambient air and other places of the the historical area of the city of Puebla obtained with the team Converted ALPHA-CAM. (Author)

  17. Clinical monitoring of 'autoimmune' chronic active hepatitis

    NARCIS (Netherlands)

    Hoek, Bart van

    1989-01-01

    This thesis describes the outcome- survival of a large group of 186 consecutive patients with chronic active hepatitis of variouse tiologies, and describes in detail the progress of 21 patients from this group with 'autoimmunie' chronic active hepatitis maintained on standardized immunosuppressive

  18. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity

    DEFF Research Database (Denmark)

    Brage, Søren; Ekelund, Ulf; Brage, Niels

    2007-01-01

    , submaximal step and walk tests with and without calorimetry, and nonexercise calibration using sleeping HR and gender. Reference accelerometry and HR models explained >95% of the between-individual variance in PAI (P

  19. Active imaging for monitoring and technical diagnostics

    Directory of Open Access Journals (Sweden)

    Marek Piszczek

    2014-08-01

    Full Text Available The article presents the results of currently running work in the field of active imaging. The term active refers to both the image acquisition methods, so-called methods of the spatio-temporal framing and active visualization method applying augmented reality. Also results of application of the HMD and 6DoF modules as well as the experimental laser photography device are given. The device works by methods of spatio-temporal framing and it has been developed at the IOE WAT. In terms of image acquisition - active imaging involves the use of illumination of the observed scene. In the field of information visualization - active imaging directly concerns the issues of interaction human-machine environment. The results show the possibility of using the described techniques, among others, rescue (fire brigade, security of mass events (police or the protection of critical infrastructure as well as broadly understood diagnostic problems. Examples presented in the article show a wide range of possible uses of the methods both in observational techniques and measurement. They are relatively innovative solutions and require elaboration of series of hardware and algorithmic issues. However, already at this stage it is clear that active acquisition and visualization methods indicate a high potential for this type of information solutions.[b]Keywords[/b]: active imaging, augmented reality, digital image processing

  20. Active sites environmental monitoring program FY 1997 annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B

  1. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Science.gov (United States)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  2. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Directory of Open Access Journals (Sweden)

    Duc Nguyen Minh

    2017-01-01

    Full Text Available This work describes Live Monitor, the monitoring subsystem of SDDS – an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  3. Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems.

    Science.gov (United States)

    Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D

    2016-03-01

    Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. © The Author(s) 2016.

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  5. Quality control of calibration system for area monitors at National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Ramos, M.M.O.; Freitas, L.C. de

    1992-01-01

    The quality control of equipment used in calibration from the National Laboratory of Metrology on Ionizing Radiations is presented, with results of standard measure systems and irradiation system. Tables and graphics with the quality of systems are also shown. (C.G.C.)

  6. A Comparison and Calibration of a Wrist-Worn Blood Pressure Monitor for Patient Management: Assessing the Reliability of Innovative Blood Pressure Devices

    Science.gov (United States)

    Melville, Sarah; Teskey, Robert; Philip, Shona; Simpson, Jeremy A; Lutchmedial, Sohrab

    2018-01-01

    Background Clinical guidelines recommend monitoring of blood pressure at home using an automatic blood pressure device for the management of hypertension. Devices are not often calibrated against direct blood pressure measures, leaving health care providers and patients with less reliable information than is possible with current technology. Rigorous assessments of medical devices are necessary for establishing clinical utility. Objective The purpose of our study was 2-fold: (1) to assess the validity and perform iterative calibration of indirect blood pressure measurements by a noninvasive wrist cuff blood pressure device in direct comparison with simultaneously recorded peripheral and central intra-arterial blood pressure measurements and (2) to assess the validity of the measurements thereafter of the noninvasive wrist cuff blood pressure device in comparison with measurements by a noninvasive upper arm blood pressure device to the Canadian hypertension guidelines. Methods The cloud-based blood pressure algorithms for an oscillometric wrist cuff device were iteratively calibrated to direct pressure measures in 20 consented patient participants. We then assessed measurement validity of the device, using Bland-Altman analysis during routine cardiovascular catheterization. Results The precalibrated absolute mean difference between direct intra-arterial to wrist cuff pressure measurements were 10.8 (SD 9.7) for systolic and 16.1 (SD 6.3) for diastolic. The postcalibrated absolute mean difference was 7.2 (SD 5.1) for systolic and 4.3 (SD 3.3) for diastolic pressures. This is an improvement in accuracy of 33% systolic and 73% diastolic with a 48% reduction in the variability for both measures. Furthermore, the wrist cuff device demonstrated similar sensitivity in measuring high blood pressure compared with the direct intra-arterial method. The device, when calibrated to direct aortic pressures, demonstrated the potential to reduce a treatment gap in high blood

  7. Construction monitoring activities in the ESF starter tunnel

    International Nuclear Information System (INIS)

    Pott, J.; Carlisle, S.

    1994-01-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented

  8. Nordic monitoring on diet, physical activity and overweight

    DEFF Research Database (Denmark)

    Fagt, Sisse; Andersen, Lene Frost; Anderssen, Sigmund A.

    . In 2009, the indicator questions were validated against an objective method (physical activity) or existing survey methods (diet) and the present report mainly describes the validation studies. On basis of the validation studies the working group suggests that the indicators are used in a future......In 2007, a Nordic working group was established with the aim to describe a future Nordic monitoring system on diet, physical activity and overweight. The monitoring system should be simple and at relatively low cost. Therefore it has been decided to conduct the moni-toring as a telephone interview...

  9. Extinction, seeing and sky transparency monitoring at the Observatorio Astrofísico de Javalambre for J-PAS and J-PLUS calibration and scheduling

    Science.gov (United States)

    Vázquez Ramió, H.; Díaz-Martín, M. C.; Varela, J.; Ederoclite, A.; Maícas, N. Lamadrid, J. L.; Abril, J.; Iglesias-Marzoa, R.; Rodríguez, S.; Tilve, V.; Cenarro, A. J.; Antón Bravo, J. L.; Bello Ferrer, R.; Cristóbal-Hornillos, D.; Guillén Civera, L.; Hernández-Fuertes, J.; Jiménez Mejías, D.; Lasso-Cabrera, N. M.; López Alegre, G.; López Sainz, A.; Luis-Simoes, R. M.; Marín-Franch, A.; Moles, M.; Rueda-Teruel, F.; Rueda-Teruel, S.; Suárez López, O.; Yanes-Díaz, A.

    2015-05-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS; see Benítez et al. 2014) and the Javalambre-Photometric Local Universe Survey (J-PLUS) will be conducted at the brand-new Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. J-PLUS is planned to start by the first half of 2015 while J-PAS first light is expected to happen along 2015. Besides the two main telescopes (with 2.5 m and 80 cm apertures), several smaller-sized facilities are present at the OAJ devoted to site characterization and supporting measurements to be used to calibrate the J-PAS and J-PLUS photometry and to feed up the OAJ's Sequencer with the integrated seeing and the sky transparency. These instruments are: i) an extinction monitor, an 11 " telescope estimating the atmospheric extinction to finally obtain the OAJ extinction curve, which is the initial step to J-PAS overall photometric calibration procedure; ii) an 8 " telescope implementing the Differential Image Motion Monitor (DIMM) technique to obtain the integrated seeing; and iii) an All-Sky Transmission MONitor (ASTMON), a roughly all-sky instrument providing the sky transparency as well as sky brightness and the atmospheric extinction too.

  10. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  11. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  12. Evaluation of Activity Recognition Algorithms for Employee Performance Monitoring

    OpenAIRE

    Mehreen Mumtaz; Hafiz Adnan Habib

    2012-01-01

    Successful Human Resource Management plays a key role in success of any organization. Traditionally, human resource managers rely on various information technology solutions such as Payroll and Work Time Systems incorporating RFID and biometric technologies. This research evaluates activity recognition algorithms for employee performance monitoring. An activity recognition algorithm has been implemented that categorized the activity of employee into following in to classes: job activities and...

  13. ON-LINE MONITORING OF I&C TRANSMITTERS AND SENSORS FOR CALIBRATION VERIFICATION AND RESPONSE TIME TESTING WAS SUCCESSFULLY IMPLEMENTED AT ATR

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Phillip A.; O' Hagan, Ryan; Shumaker, Brent; Hashemian, H. M.

    2017-03-01

    The Advanced Test Reactor (ATR) has always had a comprehensive procedure to verify the performance of its critical transmitters and sensors, including RTDs, and pressure, level, and flow transmitters. These transmitters and sensors have been periodically tested for response time and calibration verification to ensure accuracy. With implementation of online monitoring techniques at ATR, the calibration verification and response time testing of these transmitters and sensors are verified remotely, automatically, hands off, include more portions of the system, and can be performed at almost any time during process operations. The work was done under a DOE funded SBIR project carried out by AMS. As a result, ATR is now able to save the manpower that has been spent over the years on manual calibration verification and response time testing of its temperature and pressure sensors and refocus those resources towards more equipment reliability needs. More importantly, implementation of OLM will help enhance the overall availability, safety, and efficiency. Together with equipment reliability programs of ATR, the integration of OLM will also help with I&C aging management goals of the Department of Energy and long-time operation of ATR.

  14. Active Sites Environmental Monitoring Program: FY 1990 annual report

    International Nuclear Information System (INIS)

    Wickliff, D.S.; Morrissey, C.M.; Ashwood, T.L.

    1991-10-01

    Chapter 3 of US Department of Energy (DOE) Order 5820.2A (DOE 1988) sets forth requirements for environmental monitoring of active low-level waste (LLW) disposal sites. Active sites are defined as those LLW facilities that were in use on or after the date of the order (September 1988). The transuranic (TRU) waste storage areas in Solid Waste Storage Area (SWSA) 5 North are covered by Chap. 2 of the order. In both chapters, monitoring is required to provide for early warning of leaks before those leaks pose a threat to human health or the environment. Chapter 3 also requires that monitoring be conducted to evaluate the short- and long-term performance of LLW disposal facilities. In accordance with this order, the Solid Waste Operations Department at Oak Ridge National Laboratory (ORNL) has established an Active Sites Environmental Monitoring Program (ASEMP) that is implemented by staff of the Environmental Sciences Division (ESD) at ORNL. This report summarizes data from ASEMP monitoring activities for the final 6 months of FY 1990. A brief summary of the monitoring methodology for each site is presented also

  15. A remarkable systemic error in calibration methods of γ spectrometer used for determining activity of 238U

    International Nuclear Information System (INIS)

    Su Qiong; Cheng Jianping; Diao Lijun; Li Guiqun

    2006-01-01

    A remarkable systemic error which was unknown in past long time has been indicated. The error appears in the calibration methods of determining activity of 238 U is used with γ-spectrometer with high resolution. When the γ-ray of 92.6 keV as the characteristic radiation from 238 U is used to determine the activity of 238 U in natural environment samples, the disturbing radiation produced by external excitation (or called outer sourcing X-ray radiation) is the main problem. Because the X-ray intensity is changed with many indefinite factors, it is advised that the calibration methods should be put away. As the influence of the systemic errors has been left in some past research papers, the authors suggest that the data from those papers should be cited carefully and if possible the data ought to be re-determined. (authors)

  16. Calibration of radon-222 detectors using closed circuit radium-226 sources

    International Nuclear Information System (INIS)

    Perna, Allan Felipe Nunes; Paschuk, Sergei Anatolyevich; Correa, Janine Nicolosi; Del Claro, Flavia

    2012-01-01

    This paper presents the results of the calibration of the Radon-222 detectors used by the Laboratories specializing in measuring natural radiation from this gas. The research was conducted in collaboration between UTFPR, CDTN/CNEN, UFRN and IRD/CNEN. During the calibration the detectors were exposed in isolated chambers with radioactive calibrated sources. The calibration procedure was supported with four instant radon monitors AlphaGUARD (SAPHYMO Co.) responsible for radon activity measurements in the experimental chamber. The calibration procedure resulted an equation that relates the number of tracks found in solid-state detector CR-39 (Track-Etch detector) with the concentration of radon in the atmosphere. Obtained results are compatible with previously performed calibration at the National Institute of Radiological Sciences (NIRS, Japan) using high activity levels of radon in air. Present results of calibration give the possibility to expand the calibration curve of CR-39 for medium and low activity levels of radon. (author)

  17. Monitoring bat activity at the Dutch EEZ in 2014

    NARCIS (Netherlands)

    Lagerveld, S.; Jonge Poerink, B.; Vries, de P.

    2015-01-01

    IMARES conducted studies in 2012 and 2013 to monitor offshore bat activity with passive acoustic ultrasonic recorders. In the follow-up project reported here, more data on the offshore occurrence of bats was collected in 2014. Using the same methodology as in 2012 and 2013, bat activity was

  18. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  19. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  20. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  1. Using Calibrated RGB Imagery from Low-Cost Uavs for Grassland Monitoring: Case Study at the Rengen Grassland Experiment (rge), Germany

    Science.gov (United States)

    Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.

    2017-08-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  2. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE, GERMANY

    Directory of Open Access Journals (Sweden)

    U. Lussem

    2017-08-01

    Full Text Available Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999. Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  3. Dashboard applications to monitor experiment activities at sites

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Julia; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciaba, Andrea [CERN, European Organization for Nuclear Research (Switzerland); Belforte, Stefano [INFN Trieste (Italy); Boehm, Max [EDS, an HP Company, Plano, TX (United States); Casajus, Adrian [Universitat de Barcelona (Spain); Flix, Josep [PIC, Port d' Informacio CientIfica, Bellaterra (Spain); Tsaregorodtsev, Andrei, E-mail: Elisa.Lanciotti@cern.c, E-mail: Pablo.Saiz@cern.c [CPPM Marseille (France)

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  4. Dashboard applications to monitor experiment activities at sites

    International Nuclear Information System (INIS)

    Andreeva, Julia; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciaba, Andrea; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Tsaregorodtsev, Andrei

    2010-01-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  5. Overview of calibration and validation activities for the EUMETSAT polar system: second generation (EPS-SG) visible/infrared imager (METimage)

    Science.gov (United States)

    Phillips, P.; Bonsignori, R.; Schlüssel, P.; Schmülling, F.; Spezzi, L.; Watts, P.; Zerfowski, I.

    2016-10-01

    The EPS-SG Visible/Infrared Imaging (VII) mission is dedicated to supporting the optical imagery user needs for Numerical Weather Prediction (NWP), Nowcasting (NWC) and climate in the timeframe beyond 2020. The VII mission is fulfilled by the METimage instrument, developed by the German Space Agency (DLR) and funded by the German government and EUMETSAT. Following on from an important list of predecessors such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate resolution Imaging Spectro-radiometer (MODIS), METimage will fly in the mid-morning orbit of the Joint Polar System, whilst the early-afternoon orbits are served by the JPSS (U.S. Joint Polar Satellite System) Visible Infrared Imager Radiometer Suite (VIIRS). METimage itself is a cross-purpose medium resolution, multi-spectral optical imager, measuring the optical spectrum of radiation emitted and reflected by the Earth from a low-altitude sun synchronous orbit over a minimum swath width of 2700 km. The top of the atmosphere outgoing radiance will be sampled every 500 m (at nadir) with measurements made in 20 spectral channels ranging from 443 nm in the visible up to 13.345 μm in the thermal infrared. The three major objectives of the EPS-SG METimage calibration and validation activities are: • Verification of the instrument performances through continuous in-flight calibration and characterisation, including monitoring of long term stability. • Provision of validated level 1 and level 2 METimage products. • Revision of product processing facilities, i.e. algorithms and auxiliary data sets, to assure that products conform with user requirements, and then, if possible, exceed user expectations. This paper will describe the overall Calibration and Validation (Cal/Val) logic and the methods adopted to ensure that the METimage data products meet performance specifications for the lifetime of the mission. Such methods include inter-comparisons with other missions through simultaneous

  6. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  7. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    Science.gov (United States)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant

  8. Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

    DEFF Research Database (Denmark)

    Caterino, Nicola; Georgakis, Christos T.; Spizzuoco, Mariacristina

    2016-01-01

    The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing....../20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been...... calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base...

  9. Micro-Arcsec mission: implications of the monitoring, diagnostic and calibration of the instrument response in the data reduction chain. .

    Science.gov (United States)

    Busonero, D.; Gai, M.

    The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.

  10. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    International Nuclear Information System (INIS)

    Moraleda, M.; Gomez-Ros, J.M.; Lopez, M.A.; Navarro, T.; Navarro, J.F.

    2004-01-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241 Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241 Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors

  11. Doses monitoring in radiology: calibration of air kerma-area product (P{sub KA}) meters; Monitoracao de doses em radiologia: a calibracao de medidores do produto kerma-area (P{sub KA})

    Energy Technology Data Exchange (ETDEWEB)

    Terini, Ricardo Andrade; Campelo, Maria Carolina de Santana; Almeida Junior, Jose Neres de, E-mail: rterini@pucsp.br [Pontificia Universidade Catolica de Sao Paulo (PUC-SP), SP (Brazil); Herdade, Silvio Bruni; Pereira, Marco Aurelio Guedes [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Instituto de Energia e Ambiente

    2013-11-15

    Materials and methods: different qualities of both incident and transmitted beams were utilized in conditions similar to a clinical setting, analyzing the influence from the reference dosimeter, from the distance between meters, from the filtration and from the average beam energy. Calibrations were performed directly against a standard 30 cm{sup 3} cylindrical chamber or a parallel-plate monitor chamber, and indirectly against the PDC meter. Results: the lowest energy dependence was observed for transmitted beams. The cross calibration between the Diamentor E2 and the PDC meters, and the PDC presented the greatest propagation of uncertainties. Conclusion: the calibration coefficient of the PDC meter showed to be more stable with voltage, while the Diamentor E2 calibration coefficient was more variable. On the other hand, the PDC meter presented greater uncertainty in readings (5.0%) than with the use of the monitor chamber (3.5%) as a reference. (author)

  12. Continuous gravity monitoring of geothermal activity; Renzoku juryoku sokutei ni yoru chinetsu katsudo no monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, M [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    To clarify the geothermal activity in the geothermal fields in New Zealand, gravity monitoring was conducted using SCINTREX automatic gravimeter. The measurements were conducted between the end of January and the beginning of March, 1996. Firstly, continuous monitoring was conducted at the standard point for about ten days, and the tidal components were estimated from the records. After that, continuous monitoring was conducted at Waimangu area for several days. Continuous monitoring was repeated at the standard point, again. At the Waimangu area, three times of changes in the pulse-shape amplitude of 0.01 mgal having a width of several hours were observed. For the SCINTREX gravimeter, the inclination of gravimeter is also recorded in addition to the change of gravity. During the monitoring, the gravimeter was also inclined with the changes of gravity. This inclination was useful not only for the correction of gravity measured, but also for evaluating the ground fluctuation due to the underground pressure source. It is likely that the continuous gravity monitoring is the relatively conventional technique which is effective for prospecting the change of geothermal reservoir. 2 figs.

  13. Leisure time activities, parental monitoring and drunkenness in adolescents

    NARCIS (Netherlands)

    Tomcikova, Z.; Veselska, Z.; Madarasova Geckova, A.; van Dijk, J.P.; Reijneveld, S.A.

    2012-01-01

    Background: The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. Methods: A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for

  14. Leisure Time Activities, Parental Monitoring and Drunkenness in Adolescents

    NARCIS (Netherlands)

    Tomcikova, Zuzana; Veselska, Zuzana; Geckova, Andrea Madarasova; van Dijk, Jitse P.; Reijneveld, Sijmen A.

    2013-01-01

    Background: The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. Methods: A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for

  15. Waste monitoring of the uranium ore processing activities in Romania

    International Nuclear Information System (INIS)

    Nica, L.

    2002-01-01

    The uranium ore processing activities at the Feldioara site produce a range of liquid and solid waste that are monitored. Liquids are treated through decantation, pH correction and uranium precipitation before their release into the environment. The solid waste is gathered into ore specific area and are covered regularly with clay materials. (author)

  16. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    Science.gov (United States)

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  17. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  18. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    Science.gov (United States)

    Kogan, F.

    From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the

  19. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  20. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  1. Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Baker, Michael Sean; Crowson, Douglas A.; Mitchell, John Anthony; Moore, Nathan W.

    2009-10-01

    Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.

  2. Calibration of antimony-based electrode for pH monitoring into underground components of nuclear repositories

    OpenAIRE

    Betelu , Stéphanie; Ignatiadis , Ioannis

    2012-01-01

    Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, Callovo-Oxfordian formation (COx) is potential candidate for nuclear waste repository. It is thus necessary to measure in situ the state of a structure's health during its entire life. The monitoring of the near-field rock and the knowledge of the geochemical transformations can be carried out by a set of sensors for a sustainable managem...

  3. New Transcriptional Reporters to Quantify and Monitor PPARγ Activity

    Directory of Open Access Journals (Sweden)

    Séverine A. Degrelle

    2017-01-01

    Full Text Available The peroxisome-proliferator-activated-receptor-γ (PPARγ is a member of the nuclear receptor superfamily that plays a critical role in diverse biological processes, including adipogenesis, lipid metabolism, and placental development. To study the activity of PPARγ, we constructed two new reporter genes: a fluorescent GFP-tagged histone-2B (PPRE-H2B-eGFP and a secreted nanoluciferase (PPRE-pNL1.3[secNluc]. This study demonstrates their usage to monitor PPARγ activity in different cell types and screen for PPARγ’s potential ligands.

  4. Incorporation monitoring by measurements of activity concentrations in air

    International Nuclear Information System (INIS)

    Breukelmann, G.; Dalheimer, A.; Dilger, H.; Henrichs, K.

    1997-01-01

    The incorporation monitoring of workers handling actinides is in many cases not possible by individual methods: The sensitivity of bioassay of methods (in vivo, in vitro) is not sufficient to detect amounts as required by the low annual limits of intake. Similar difficulties may occur with the use of radionuclides with very short physical half-lives. In these cases, the measuring of activity concentrations in the air is the only way to monitor the workers and to meet legal requirements. The essential problem connected with this approach is to make sure, that the air sample analyzed represents the average air inhaled actually. Correspondingly, the new system regulating the incorporation monitoring in Germany requires additional measures to ensure this representatively. (author)

  5. Calibration and study of the measurement capabilities of real-time gamma spectrometry equipment developed for the renewal of the network of stations automatic monitoring environmental radiation of the Generalitat of Catalunya; Calibracion y estudio de las capacidades de medida de los equipos de espectrometria gamma en tiempo real desarrollados para la renovacion de la Red de Estaciones Automaticas de vigilancia radiologia ambiental de la Generalitat de Catalunya

    Energy Technology Data Exchange (ETDEWEB)

    Casanovas, R.; Prieto, E.; Salvado, M.

    2014-10-01

    The renewal of the automatic environmental radiation surveillance network of the Generalitat of Catalunya has been carried out through the development and implementation of gamma-spectrometry-based equipment. the monitors use scintillation crystals, either Na(TI) or LaBr{sub 3}(Ce) and currently, there are 3 types of equipment water radioactivity monitors, aerosols on a particulate filter monitors and direct measurement monitors. In this paper, we expose the basic features of its operation, the details of their calibration and the minimum detectable activity concentration for some isotopes. (Author)

  6. An overview of existing raptor contaminant monitoring activities in Europe.

    Science.gov (United States)

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  7. Validity of physical activity monitors in adults participating in free-living activities

    DEFF Research Database (Denmark)

    Berntsen, S; Hageberg, R; Aandstad, A

    2010-01-01

    expenditure differently compared with indirect calorimetry, was also determined. Material and methods The activity monitors and a portable oxygen analyser were worn by 14 men and 6 women for 120 min doing a variety of activities of different intensities. Resting metabolic rate was measured with indirect......Background For a given subject, time in moderate to very vigorous intensity physical activity (MVPA) varies substantially among physical activity monitors. Objective In the present study, the primary objective, whether time in MVPA recorded with SenseWear Pro(2) Armband (Armband; Body......Reg, respectively. ActiReg (p = 0.004) and ActiGraph (p = 0.007) underestimated energy expenditure in MVPA, and all monitors underestimated total energy expenditure (by 5% to 21%). Conclusions Recorded time in MVPA and energy expenditure varies substantially among physical activity monitors. Thus, when comparing...

  8. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  9. National physical activity surveillance: Users of wearable activity monitors as a potential data source

    Directory of Open Access Journals (Sweden)

    John D. Omura, MD

    2017-03-01

    Full Text Available The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5% reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  10. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.

    Science.gov (United States)

    Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R

    2018-03-01

    The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.

  11. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Science.gov (United States)

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  12. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Enhad A Chowdhury

    Full Text Available Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise and over a 24 hour period in free-living conditions. Thirty men (n = 15 and women (n = 15 wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR, an accelerometry-only device as a comparison (Jawbone UP24 and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™. During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01. The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01. None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors

  13. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  14. Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis

    DEFF Research Database (Denmark)

    Ruano, MV; Ribes, J; de Pauw, DJW

    2007-01-01

    to describe nitrogen and phosphorus removal in the Haaren WWTP (The Netherlands). The parameter significance ranking shows that the temperature correction coefficients are among the most influential parameters on the model output. This outcome confronts the previous identifiability studies and the experience...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast......, although the experience-based approach is computationally affordable, it is unable to take into account the information content issue and therefore can be either too optimistic (giving poorly identifiable sets) or pessimistic (small size of sets while much more can be estimated from the data...

  15. Photometric Calibration of the Barium Cloud Image in a Space Active Experiment: Determining the Release Efficiency

    International Nuclear Information System (INIS)

    Xie Liang-Hai; Li Lei; Wang Jing-Dong; Tao Ran; Cheng Bing-Jun; Zhang Yi-Teng

    2014-01-01

    The barium release experiment is an effective method to explore the near-earth environment and to study all kinds of space physics processes. The first space barium release experiment in China was successfully carried out by a sounding rocket on April 5, 2013. This work is devoted to calculating the release efficiency of the barium release by analyzing the optical image observed during the experiment. First, we present a method to calibrate the images grey value of barium cloud with the reference stars to obtain the radiant fluxes at different moments. Then the release efficiency is obtained by a curve fitting with the theoretical evolution model of barium cloud. The calculated result is basically consistent with the test value on ground

  16. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  17. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  18. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    OpenAIRE

    Maria Marsella; Carla Nardinocchi; Cristina Proietti; Leonardo Daga; Mauro Coltelli

    2014-01-01

    In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows) and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly cha...

  19. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... temperature-equilibrated and temperature-monitored calibration salt solutions in containers that seal...

  20. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    Science.gov (United States)

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Calibration of a low background gas-flow proportional counter to estimate "2"3"4Th activity in coastal waters

    International Nuclear Information System (INIS)

    Cuesta, E.; Lozano, R.L.; Miguel, E.G. San; Casas-Ruiz, M.; Bolívar, J.P.

    2016-01-01

    This paper relates the calibration of a low background gas-flow proportional counter. This calibration has been used to determine low activity of "2"3"4Th in coastal water samples. Two methods were used to prepare calibration samples: Evaporation and Electrodeposition. First method was rejected due to the lack of reproducibility because the different geometry adopted by the drops of tracer once dried on the disk. On the contrary, through the second method, similar efficiencies were obtained in all detectors with an average of 0.401±0.004. In this paper, the whole procedure to obtain "2"3"4Th activity in dissolution as well as in particulate matter has been detailed, and all the algorithms needed to calculate activities and efficiencies are shown. Finally, two experiments have been designed in order to validate the calibration of the beta counter and the method to determine "2"3"4Th in coastal waters with high concentration of particulate matter. - Highlights: • This paper shows a Home-made calibration using two methods to prepare calibration samples. • The algorithms needed to obtain Th-234 activity concentrations are described in full detail. • This is the first time Th-234 has been determined in water samples from Huelva Estuary.

  2. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  3. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  4. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  5. Calibration of the A.E.E. Winfrith whole body monitor equipment with sodium-24 solution in a polythene man-phantom

    International Nuclear Information System (INIS)

    Peabody, C.O.; Speight, R.G.; Passant, F.H.

    1964-04-01

    Results are presented for the sensitivity of the existing Winfrith Whole Body Monitor equipment when used for measurement of sodium-24 activity in solution in a polythene man-phantom. The relationship is discussed between these results and those expected for the sodium-24 produced in a human body by accidental neutron irradiation. Estimates are made of the additional contribution of chlorine-38 activity at various times after whole body irradiation. (author)

  6. NICMOS Cycles 13 and 14 Calibration Plans

    Science.gov (United States)

    Arribas, Santiago; Bergeron, Eddie; de Jong, Roeof; Malhotra, Sangeeta; Mobasher, Bahram; Noll, Keith; Schultz, Al; Wiklind, Tommy; Xu, Chun

    2005-11-01

    This document summarizes the NICMOS Calibration Plans for Cycles 13 and 14. These plans complement the SMOV3b, the Cycle 10 (interim), and the Cycles 11 and 12 (regular) calibration programs executed after the installation of the NICMOS Cooling System (NCS).. These previous programs have shown that the instrument is very stable, which has motivated a further reduction in the frequency of the monitoring programs for Cycle 13. In addition, for Cycle 14 some of these programs were slightly modified to account for 2 Gyro HST operations. The special calibrations on Cycle 13 were focussed on a follow up of the spectroscopic recalibration initiated in Cycle 12. This program led to the discovery of a possible count rate non-linearity, which has triggered a special program for Cycle 13 and a number of subsequent tests and calibrations during Cycle 14. At the time of writing this is a very active area of research. We also briefly comment on other calibrations defined to address other specific issues like: the autoreset test, the SPAR sequences tests, and the low-frequency flat residual for NIC1. The calibration programs for the 2-Gyro campaigns are not included here, since they have been described somewhere else. Further details and updates on specific programs can be found via the NICMOS web site.

  7. Monitoring single protease activities on triple-helical collagen molecules

    Science.gov (United States)

    Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki

    Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.

  8. Monitoring and inspection techniques for long term storage of higher activity waste packages

    International Nuclear Information System (INIS)

    Bolton, Gary

    2013-01-01

    In 2009, following recent changes in United Kingdom (UK) Government Policy, the Nuclear Decommissioning Authority (NDA) identified a knowledge gap in the area of long term interim storage of waste packages. A cross-industry Integrated Project Team (IPT) for Interim Storage was created with responsibility for delivering Industry Guidance on the storage of packaged Higher Activity Waste (HAW) for the current UK civil decommissioning and clean-up programmes. This included a remit to direct research and development projects via the NDA's Direct Research Portfolio (DRP) to fill the knowledge gap. The IPT for Interim Storage published Industry Guidance in 2012 which established a method to define generic package performance criteria and made recommendations on monitoring and inspection. The package performance method consists of the following steps; identification of the package safety function, identification of evolutionary processes that may affect safety function performance, determination of measurable indicators of these evolutionary processes and calibration of the indicators into package performance zones. This article provides an overview of three projects funded by the NDA's DRP that the UK National Nuclear Laboratory (NNL) have completed to address monitoring and inspection needs of waste packages in interim storage. (orig.)

  9. Precision monitoring and calibration of the high-voltage for the KATRIN experiment; Praezisionsueberwachung und Kalibration der Hochspannung fuer das KATRIN-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thuemmler, T.

    2007-11-12

    The goal of the KATRIN(KArlsruhe TRIritium Neutrino) Experiment is to directly determine the neutrino rest mass from the kinematics of the tritium-{beta}-decay. KATRIN uses the high resolution and luminosity of a spectrometer following the MAC-E filter principle. Based on the experience of the successful predecessor experiments in Mainz and Troisk and the improved experimental technology, KATRIN aims to reach a sensitivity on the neutrino mass of 0.2 eV/c{sup 2} (90% C.L.). One of the few systematic uncertainties that have to be reduced to meet this goal is the uncertainty of measuring and monitoring the potential of the electrostatic filter of the spectrometer. In tritium measurement mode voltages of about U{sub 0} =-18.6 kV have to be permanently monitored with a maximum uncertainty of 3.3 ppm ({approx} 61mV at U{sub 0}), in order not to add more than {delta}m{sup 2}{sub {nu}{sub ec}}{sup 4} {<=} 0.0075 eV{sup 2} to the total systematic uncertainty. The goal of this work is to build a new precision high voltage divider in cooperation with PTB Braunschweig that reaches an uncertainty of about 1 ppm at voltages up to 35 kV. The divider is based on a new type of precision resistors, which have been screened with respect to their warm up drift and their temperature coefficient at the ppm level. By combining 100 of the best matching samples, the mutual warm up effect could be reduced to a computed value of <0.02 ppm. The precision resistors are mounted in a shielded and temperature stabilized vessel under N{sub 2} gas. The properties of both installed low voltage outputs with the ratios 1972:1 and 3944:1 have been repeatedly calibrated with about one year time difference at the DC high voltage laboratory (division 2.31) of PTB. The performance of the new divider in real measurements has been tested with the prototype of the new condensed {sup 83m}Kr calibration source (CKrS) [Ost08] at the Mainz spectrometer. Detailed stability investigations of the energy of the {sup

  10. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  11. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  12. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  13. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  14. Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye.

    Science.gov (United States)

    Namin, Shabnam M; Nofallah, Sara; Joshi, Mahesh S; Kavallieratos, Konstantinos; Tsoukias, Nikolaos M

    2013-01-15

    Nitric oxide (NO) research in biomedicine has been hampered by the absence of a method that will allow quantitative measurement of NO in biological tissues with high sensitivity and selectivity, and with adequate spatial and temporal resolution. 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) is a NO sensitive fluorescence probe that has been used widely for qualitative assessment of cellular NO production. However, calibration of the fluorescent signal and quantification of NO concentration in cells and tissues using fluorescent probes, have provided significant challenge. In this study we utilize a combination of mathematical modeling and experimentation to elucidate the kinetics of NO/DAF-FM reaction in solution. Modeling and experiments suggest that the slope of fluorescent intensity (FI) can be related to NO concentration according to the equation: ddtFI=2αk(1)NO(2)O(2)DAF-FMkNO+DAF-FM where α is a proportionality coefficient that relates FI to unit concentration of activated DAF-FM, k(1) is the NO oxidation rate constant, and k was estimated to be 4.3±0.6. The FI slope exhibits saturation kinetics with DAF-FM concentration. Interestingly, the effective half-maximum constant (EC(50)) increases proportionally to NO concentration. This result is not in agreement with the proposition that N(2)O(3) is the NO oxidation byproduct that activates DAF-FM. Kinetic analysis suggests that the reactive intermediate should exhibit NO-dependent consumption and thus NO(2)() is a more likely candidate. The derived rate law can be used for the calibration of DAF-FM fluorescence and the quantification of NO concentration in biological tissues. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  16. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  17. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    Science.gov (United States)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  18. Active sensors for health monitoring of aging aerospace structures

    Science.gov (United States)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  19. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    Science.gov (United States)

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR 24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR 24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR 24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  20. Compact radiometric microwave calibrator

    International Nuclear Information System (INIS)

    Fixsen, D. J.; Wollack, E. J.; Kogut, A.; Limon, M.; Mirel, P.; Singal, J.; Fixsen, S. M.

    2006-01-01

    The calibration methods for the ARCADE II instrument are described and the accuracy estimated. The Steelcast coated aluminum cones which comprise the calibrator have a low reflection while maintaining 94% of the absorber volume within 5 mK of the base temperature (modeled). The calibrator demonstrates an absorber with the active part less than one wavelength thick and only marginally larger than the mouth of the largest horn and yet black (less than -40 dB or 0.01% reflection) over five octaves in frequency

  1. Calibration of a detector by activation with a continuous neutron source used as a transfer standard for measuring pulsed neutron beams

    International Nuclear Information System (INIS)

    Moreno, Jose; Silva, Patricio; Birstein, Lipo; Soto, Leopoldo

    2002-01-01

    This paper presents a method for calibrating activation detectors. These detectors will be used as transfer standard in measuring neutron fluxes produced by pulsed plasma sources. A standard neutron source is used as a secondary standard. The activation detector is being shielded in order to substantially reduce detection of gamma emission coming from the source. The detector's calibration factor is obtained by considering also the standard neutron source as a free source of gamma radiation so that the measurements can be done without quickly withdrawing the neutron source as it is usually done. This will substantially simplify the traditionally established method (JM)

  2. Monitoring of the 14C activity in the atmosphere

    International Nuclear Information System (INIS)

    Svingor, E.; Molnar, M.; Futo, I.; Rinyu, L.

    2006-01-01

    Complete text of publication follows. The distribution of atmospheric radiocarbon has been extensively investigated both in the Northern and Southern Hemisphere as well as in the Tropics for a number of decades. Systematic global observations of 14 CO 2 in the troposphere were made during and after atmospheric nuclear weapon tests in the 1950s and 1960s by several laboratories. Nowadays the monitoring of 14 C in regions adjacent to nuclear power plants (NPP) or sites of land-filled radioactive wastes has growing importance in determining the frequency and activity of anthropogenic 14 C released to the environment. On the other hand, the depletion of 14 C in the atmosphere gives information about the regional fossil fuel CO 2 contributions (Figure 1., Prague-Bulovka). The 14 C activity of the atmosphere has been monitored in the vicinity of Paks NPP by sampling environmental air monthly since 1994. Four differential sampling units collect air samples less than 2 km away from the 100- m-high stacks of Paks NPP (A-type stations), and for reference a sampler is operated at a station (B24) ca. 30 km away from Paks NPP. The highest 14 C values were measured at the site located less than 1km away from Paks NPP. The influence of the 14 C discharge in the environment decreases rapidly with the distance from the source and under normal operating conditions the effect of Paks NPP is negligible at a distance of 2.5km. In Figure 1. we have compared our data for Paks NPP measured during the time span of 2000 - 2005 with data from different European monitoring stations. (The 14 C activities are given in Δ values: Δ 14 C(% (A sample /A standard -1) x 1000.) In 2000-2001 the excess 14 C at Paks NPP compared to the B24 was 5-10 (per mille) but its Δ value didn't exceed the tropospheric background (1). With the growing traffic the inactive CO 2 emission (Suess effect) exceeded the influence of the NPP (2). After a cleaning tank incident at unit 2 of Paks NPP in April 2003 a 5

  3. Evaluation of a novel canine activity monitor for at-home physical activity analysis.

    Science.gov (United States)

    Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M

    2015-07-04

    Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.

  4. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Anne N Thorndike

    Full Text Available Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise.We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention or to a blinded monitor (control. Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1 median steps/day and 2 proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day. Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses.In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16 and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73. In Phase 2 (team competition, residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002;7,832 vs. 7,739, p = 0.13. Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001. Mean systolic blood pressure decreased (p = 0.004 and HDL cholesterol increased (p<0.001 among all participants at end of study compared to baseline.Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for

  5. Passive and Active Monitoring on a High Performance Research Network

    International Nuclear Information System (INIS)

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  6. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  7. Feasibility of calibration of liquid sodium flowmeters by neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1976-07-01

    Velocities of fluids in pipes can be measured by injecting radioactive tracers into the fluid and recording the activity downstream of the injection point. One convenient method of injecting radioactive tracers is by neutron activation of the fluid itself. The present report describes a FORTRAN program that can be used for the prediction of the counting rates of fluid flow tests performed with a pulsed neutron source and a scintillation detector. The program models the flow profile and the mixing of the fluid, the attenuation of neutrons and gamma rays in the fluid, and the geometric arrangement of the source and the detector. Using this program, an experiment for the measurement of the secondary sodium flow of the EBR-II was optimized. A pulsed D,T neutron source and a 5 in. x 5 in. NaI detector will be used in the EBR-II test. Under optimized conditions, the expected accuracy of the flow measurement is about 2 percent

  8. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  9. Nanosensors for a Monitoring System in Intelligent and Active Packaging

    Directory of Open Access Journals (Sweden)

    Guillermo Fuertes

    2016-01-01

    Full Text Available A theoretical wireless nanosensor network (WNSN system that gives information about the food packaging condition is proposed. The protection effectiveness is estimated by measuring many factors, such as the existence of microorganisms, bacteria, gases, and contaminants. This study is focused on the detection of an antimicrobial agent (AA attached on a polymer forming an active integrated package. All monitoring technologies for food conservation are analyzed. Nanobiosensor nanomachine (NM, which converts biological or chemical signals into electrical signals, is used. A mathematical model, which describes the constituent’s emigration from the package to food, is programmed in MatLab software. The results show three nanobiosensors forming a WNSN. The nanobiosensors are able to carry out the average concentration for different spots in the package. This monitoring system shows reading percentages in three degrees and different colors: excellent (green, good (cyan, and lacking (red. To confirm the utility of the model, different simulations are performed. Using the WNSNs, results of AA existing in food package (FP through time were successfully obtained.

  10. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    Science.gov (United States)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  11. Development and calibration of a ground-based active collector for cloud- and fogwater

    Energy Technology Data Exchange (ETDEWEB)

    Kins, L.; Junkermann, W.; Meixner, F.X.; Muller, K.P.; Ehhalt, D.H.

    1986-04-01

    In spring 1985, field experiments were started to study the scavenging processes of atmospheric trace substances. Besides the chemical analysis of precipitation sample, these studies required simultaneous collection of cloud water for chemical analysis. In particular, a ground-based cloud water collector was needed, suitable for use on the top of a TV-tower. Existing designs of ground-based cloud or fogwater samplers be divided into two general classes: a) passive collectors, which utilize the ambient wind to impact the droplets on the collection surface; b) active collectors, which accelerate the droplets to a certain velocity as they approach the collection surface. Teflon-strings are extended between two disks which are 1m apart. The disadvantage of this collector, for these experiments, was that the collector strings are always exposed to the ambient air, so that contamination by aerosol impact during dry periods can not be excluded. Furthermore, because of the length of the strings, impacted droplets need a certain time to drain off, during which they remain exposed to the ambient air stream and continue to scavenge trace gases.

  12. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  13. Calibration of a 4π-γ well-type ionization chamber system for measuring of the radionuclides activity

    International Nuclear Information System (INIS)

    Dias, M.S.

    1978-01-01

    The calibration of a 4π well-type ionization Chamber System installed at the Laboratorio de Metrologia Nuclear, of the Instituto de Energia Atomica of Sao Paulo used for of the activity determination of radioactive solutions is descrided. The determination can be performed by two methods: 1) Direct Method, comparing the ionization Chamber response for solutions of unknown activity against that obtained with a solution which is standardized by the Absolute 4πβγ Coincidence Method. By this method the following radionuclides are standardized: 241 Am, 139 Ce, 198 Au, 22 Na, 134 Cs, 54 Mn, 60 Co, 42 K, 24 Na. In this case, the accuracy achieved is about 0.2 to 0,4%. 2) Indirect Method, by means of curves of relative beta or gama efficiency, which were determined in this work. This method can be applied for those radionuclides not included in the direct method. In this case, the accuracy depends on the gama energy range of the curves and on the accuracy of the absolute gama intensities, taken from the literature. In general the uncertainty is greater than the direct method, but values of 0,2% can be achieved in favourable cases. The upper and lower limits of Activity that can be measured depend on the radionuclide. These limits are from a few micro-curies to many mili-curies, which are satisfactory for most purposes. The sample preparation is simple and the time spent in the measurement is, in general, restricted to a few minutes. These are some of the advantages of this ionization Chamber System in comparison with other systems [pt

  14. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  15. Actively cooled plasma facing components qualification, commissioning and health monitoring

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Courtois, X.; Farjon, J.-L.; Schlosser, J.; Merola, M.; Tivey, R.

    2006-01-01

    In modern steady state magnetic fusion devices, actively cooled plasma facing components (PFC) have to handle heat fluxes in the range of 10-20 MW/m 2 . This generates a number of engineering constraints: the armour materials must be refractory and compatible with plasma wall interaction requirements (low sputtering and/or low atomic number); the heat sink must offer high thermal conductivity, high mechanical resistance and sufficient ductility; the component cooling system -which is generally based on the circulation of pressurized water in the PFC's heat sink - must offer high thermal heat transfer efficiency. Furthermore, the assembling of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on thermo-mechanical properties of materials and design requirements. Life time of the PFC during plasma operation are linked to their manufacturing quality, in particular they are reduced by the possible presence of flaw assembling. The fabrication of PFC in an industrial frame including their qualification and their commissioning - which consists in checking the manufacturing quality during and at the end of manufacture - is a real challenge. From experience gained at Tore Supra on carbon fibre composite flat tiles technology components, it was assessed that a set of qualifications activities must be operated during R(and)D and manufacturing phases. Dedicated Non Destructive Technique (NDT) based on advanced active infrared thermography was developed for this purpose, afterwards, correlations between NDT, high heat flux testing and thermomechanical modelling were performed to analyse damage detection and propagation, and define an acceptance criteria valuable for industrial application. Health monitoring using lock-in technique was also recently operated in-situ of the Tore Supra tokamak for detection of possible defect propagation during operations, presence of acoustic precursor for critical heat flux detection induced

  16. Improvement of personalized Monte Carlo-aided direct internal contamination monitoring: optimization of calculation times and measurement methodology for the establishment of activity distribution

    International Nuclear Information System (INIS)

    Farah, Jad

    2011-01-01

    To optimize the monitoring of female workers using in vivo spectrometry measurements, it is necessary to correct the typical calibration coefficients obtained with the Livermore male physical phantom. To do so, numerical calibrations based on the use of Monte Carlo simulations combined with anthropomorphic 3D phantoms were used. Such computational calibrations require on the one hand the development of representative female phantoms of different size and morphologies and on the other hand rapid and reliable Monte Carlo calculations. A library of female torso models was hence developed by fitting the weight of internal organs and breasts according to the body height and to relevant plastic surgery recommendations. This library was next used to realize a numerical calibration of the AREVA NC La Hague in vivo counting installation. Moreover, the morphology-induced counting efficiency variations with energy were put into equation and recommendations were given to correct the typical calibration coefficients for any monitored female worker as a function of body height and breast size. Meanwhile, variance reduction techniques and geometry simplification operations were considered to accelerate simulations. Furthermore, to determine the activity mapping in the case of complex contaminations, a method that combines Monte Carlo simulations with in vivo measurements was developed. This method consists of realizing several spectrometry measurements with different detector positioning. Next, the contribution of each contaminated organ to the count is assessed from Monte Carlo calculations. The in vivo measurements realized at LEDI, CIEMAT and KIT have demonstrated the effectiveness of the method and highlighted the valuable contribution of Monte Carlo simulations for a more detailed analysis of spectrometry measurements. Thus, a more precise estimate of the activity distribution is given in the case of an internal contamination. (author)

  17. Neutron-activation method of monitoring of the environment

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Komilov, J.M.; Kadirov, F.; Kist, A.A.

    2004-01-01

    Full text: Estimation of technogenic influences of the industrial enterprises on an environment, in particular, on ground and underground waters, was carried out by the fragmentary analysis of their element structure. In the report application of neutron-activation analysis (NAA) for monitoring an environment is considered. The total contents of elements was determined by NAA method with use of a reactor such as WWR-SM. Values of factors of correlation (K) are calculated with use of the computer, by special algorithm and reception of numerical values between 30 elements in the samples selected by a traditional technique from more than 600 points in area of activity GMZ-2. The developed technique has allowed to reveal elements indicators of technogenic (As, Ag, Sb, W, Au), mixed (Mo, Ba, Hg) and natural (Sc, Fe, Co, Ni, Rb, Cs, REE, Hf, Th, U) origins. Change of the total contents of elements in underground waters which were selected from observant chinks quarterly within three years is investigated. The technique of definition of forms of a presence of elements in underground and the sewage, based on electrodialysis division of ions with use nuclear (on a basis polyethyleneterephtalate film) filters with a diameter of pores of 0,16x0,2 micrometres is developed

  18. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  19. Performance of a coincidence based blood activity monitor

    International Nuclear Information System (INIS)

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per μCi/ml, and has a paralyzing dead time of 1.2 μs, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for 18 F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs

  20. Monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice

    International Nuclear Information System (INIS)

    Dobis, L.; Kaizer, J.; Svitek, J.

    1998-01-01

    In this paper the technical description of the monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice as well as the results of monitoring during last six months are described

  1. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822

  2. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    Science.gov (United States)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  3. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  4. Monitoring of prestressed concrete pressure vessels. 1. An overview of concrete embedment strain instrumentation and calibration test results for selected concrete embedment strain meters

    International Nuclear Information System (INIS)

    Naus, D.J.; Hurtt, C.C.

    1978-01-01

    The report presents results of calibration tests on strain meters. The approach was divided into two phases: (1) an overview of meter performance criteria for PCPV applications and techniques for strain measurements in concrete and (2) procurement of commercially available gages and their evaluation to assess the reliability of manufacturer-supplied calibration factors. Calibration test results for gages embedded in 15.2-cm-diam by 54-cm cylindrical concrete specimens indicated that calibration factors should be determined (verified) by embedding samples of the gages in test specimens fabricated using a representative mix and that further research should be conducted on other measurement techniques based on inductance, capacitance, semiconductors, and fluidic principles

  5. Reliability and validity of the Mywellness Key physical activity monitor

    Directory of Open Access Journals (Sweden)

    Sieverdes JC

    2013-01-01

    of physical activity.Keywords: physical activity, accelerometer, health monitor

  6. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tuning permissiveness of active safety monitors for autonomous systems

    OpenAIRE

    Masson , Lola; Guiochet , Jérémie; Waeselynck , Hélène; Cabrera , Kalou; Cassel , Sofia; Törngren , Martin

    2018-01-01

    International audience; Robots and autonomous systems have become a part of our everyday life, therefore guaranteeing their safety is crucial.Among the possible ways to do so, monitoring is widely used, but few methods exist to systematically generate safety rules to implement such monitors. Particularly, building safety monitors that do not constrain excessively the system's ability to perform its tasks is necessary as those systems operate with few human interventions.We propose in this pap...

  8. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sarraguca, Mafalda C.; Lopes, Joao A. [Universidade do Porto, REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Porto (Portugal); Paulo, Ana; Alves, Madalena M.; Dias, Ana M.A.; Ferreira, Eugenio C. [Universidade do Minho, IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Braga (Portugal)

    2009-10-15

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO{sub 3}{sup -}), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of {proportional_to}25% and correlation coefficients of {proportional_to}0.82 for COD and TSS and 0.87 for N-NO{sub 3}{sup -}. The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification. (orig.)

  9. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  10. Comparison of active and passive sampling strategies for the monitoring of pesticide contamination in streams

    Science.gov (United States)

    Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina

    2014-05-01

    constants (Rs). Each constant links the mass of the a target contaminant accumulated in the sampler to its concentration in water. At the end of the field application, the Rs are used to calculate the TWA concentration of each target contaminant with the final mass of the contaminants accumulated in the sampler. Stir Bar Sorptive Extraction (SBSE) is a solvent free sample preparation technique dedicated to the analysis of moderately hydrophobic to hydrophobic compounds in liquid and gas samples. It is composed of a magnet enclosed in a glass tube coated with a thick film of polydimethysiloxane (PDMS). We recently developed the in situ application of SBSE as a passive sampling technique (herein named "Passive SBSE") for the monitoring of agricultural pesticides. The aim of this study is to perform the calibration of the passive SBSE in the laboratory, and to apply and compare this technique to active sampling strategies for the monitoring of 16 relatively hydrophobic to hydrophobic pesticides in streams, during 2 1-month sampling campaigns. Time-weighted averaged concentrations of the target pesticides obtained from passive SBSE were compared to the target pesticide concentrations of grab samples, and time-related and flow-dependent samples of the streams. Results showed passive SBSE as an efficient alternative to conventional active sampling strategies.

  11. Uganda's participation in CTBT activities and earthquake monitoring

    International Nuclear Information System (INIS)

    Tugume, F.A.

    2002-01-01

    Earthquake occurrence in Uganda is mostly related to East Africa Rift System. The country's western border lies within the Western branch of this system while the Eastern branch is only 200 km from its eastern border. The two tectonic features contribute to seismicity in Uganda. These are the Aswar shear zone running from Nimule at the border of Uganda and Sudan, to Mount Elgon on the Eastern border and Katonga fault break which cuts across the country from the foot hills of mount Rwenzori to the Western side of Lake Victoria. This unique tectonic setting makes Uganda one of most seismically active countries on the African continet as exemplified by some destructive earthquakes that have hit the country. For this reason the Government of uganda is in the process of setting up an earthquake monitoring system, the National Seismological Network, with efficient detectability, efficient data transmission and processing facilities so that earthquakes in Uganda can be properly assessed and seismic hazard studies of the country cunducted. The objectives of the said network, the seismic developments for the last two decades and its current satus are described

  12. Activities and Issues in Monitoring Scrap Metal Against Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y., E-mail: sychen@anl.gov [Argonne National Laboratory, Argonne, IL (United States)

    2011-07-15

    Over the past few decades, the global scrap metal industry has grown increasingly vigilant regarding radioactive contamination. Accidental melts of radioactive sources in some smelting facilities, in particular, have caused considerable damage and required recovery efforts costing tens of millions of dollars. In response, the industry has developed and deployed countermeasures. Increasingly expensive and sophisticated radiation monitoring devices have been implemented at key scrap entry points - ports and scrapyards. Recognition of the importance of such endeavors has led to a series of activities aimed at establishing organized and coordinated efforts among the interested parties. Recent concerns over the potential use of radioactive sources for radiological devices in terrorist acts have substantially heightened the need for national and international authorities to further control, intercept, and secure the sources that have escaped the regulatory domain. Enhanced collaboration by the government and industry could substantially improve the effectiveness of efforts at control; the 'Spanish Protocol' as developed by the Spanish metal industry and government regulators is a good example of such collaboration. (author)

  13. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  14. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  15. Optical monitoring of Active Galactic Nuclei from ARIES

    Science.gov (United States)

    Gopal-Krishna; Wiita, Paul Joseph

    2018-04-01

    This overview provides a historical perspective highlighting the pioneering role which the fairly modest observational facilities of ARIES have played since the 1990s in systematically characterizing the optical variability on hour-like time scale (intra-night optical variability, or INOV) of several major types of high-luminosity Active Galactic Nuclei (AGN). Such information was previously available only for blazars. Similar studies have since been initiated in at least a dozen countries, giving a boost to AGN variability research. Our work has, in particular, provided strong indication that mild INOV occurs in radio-quiet QSOs (amplitude up to 3 – 5 % and duty cycle 10%) and, moreover, has demonstrated that similarly mild INOV is exhibited even by the vast majority of radio-loud quasars which possess powerful relativistic jets (even including many that are beamed towards us). The solitary outliers are blazars, the tiny strongly polarized subset of powerful AGN, which frequently exhibit a pronounced INOV. Among the blazars, BL Lac objects often show a bluer-when-brighter chromatic behavior, while the flat spectrum radio quasars seem not to. Quantifying any differences of INOV among the major subclasses of non-blazar type AGNs will require dedicated monitoring programs using 2 - 3 metre class telescopes.

  16. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  17. Monitoring uterine activity during labor: a comparison of three methods

    Science.gov (United States)

    EULIANO, Tammy Y.; NGUYEN, Minh Tam; DARMANJIAN, Shalom; MCGORRAY, Susan P.; EULIANO, Neil; ONKALA, Allison; GREGG, Anthony R.

    2012-01-01

    Objective Tocodynamometry (Toco—strain gauge technology) provides contraction frequency and approximate duration of labor contractions, but suffers frequent signal dropout necessitating re-positioning by a nurse, and may fail in obese patients. The alternative invasive intrauterine pressure catheter (IUPC) is more reliable and adds contraction pressure information, but requires ruptured membranes and introduces small risks of infection and abruption. Electrohysterography (EHG) reports the electrical activity of the uterus through electrodes placed on the maternal abdomen. This study compared all three methods of contraction detection simultaneously in laboring women. Study Design Upon consent, laboring women were monitored simultaneously with Toco, EHG, and IUPC. Contraction curves were generated in real-time for the EHG and all three curves were stored electronically. A contraction detection algorithm was used to compare frequency and timing between methods. Seventy-three subjects were enrolled in the study; 14 were excluded due to hardware failure of one or more of the devices (12) or inadequate data collection duration(2). Results In comparison with the gold-standard IUPC, EHG performed significantly better than Toco with regard to Contractions Consistency Index (CCI). The mean CCI for EHG was 0.88 ± 0.17 compared to 0.69 ± 0.27 for Toco (pToco, EHG was not significantly affected by obesity. Conclusion Toco does not correlate well with the gold-standard IUPC and fails more frequently in obese patients. EHG provides a reliable non-invasive alternative regardless of body habitus. PMID:23122926

  18. Monitoring uterine activity during labor: a comparison of 3 methods.

    Science.gov (United States)

    Euliano, Tammy Y; Nguyen, Minh Tam; Darmanjian, Shalom; McGorray, Susan P; Euliano, Neil; Onkala, Allison; Gregg, Anthony R

    2013-01-01

    Tocodynamometry (Toco; strain gauge technology) provides contraction frequency and approximate duration of labor contractions but suffers frequent signal dropout, necessitating repositioning by a nurse, and may fail in obese patients. The alternative invasive intrauterine pressure catheter (IUPC) is more reliable and adds contraction pressure information but requires ruptured membranes and introduces small risks of infection and abruption. Electrohysterography (EHG) reports the electrical activity of the uterus through electrodes placed on the maternal abdomen. This study compared all 3 methods of contraction detection simultaneously in laboring women. Upon consent, laboring women were monitored simultaneously with Toco, EHG, and IUPC. Contraction curves were generated in real-time for the EHG, and all 3 curves were stored electronically. A contraction detection algorithm was used to compare frequency and timing between methods. Seventy-three subjects were enrolled in the study; 14 were excluded due to hardware failure of 1 or more of the devices (n = 12) or inadequate data collection duration (n = 2). In comparison with the gold-standard IUPC, EHG performed significantly better than Toco with regard to the Contractions Consistency Index (CCI). The mean CCI for EHG was 0.88 ± 0.17 compared with 0.69 ± 0.27 for Toco (P Toco, EHG was not significantly affected by obesity. Toco does not correlate well with the gold-standard IUPC and fails more frequently in obese patients. EHG provides a reliable noninvasive alternative, regardless of body habitus. Copyright © 2013 Mosby, Inc. All rights reserved.

  19. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  20. Heart activity monitoring using 3D hologram based on smartphone.

    Science.gov (United States)

    Thap, Tharoeun; Heewon Chung; Jinseok Lee

    2016-08-01

    In this paper, we used smartphone to obtained pulsatile signal from a fingertip by illuminating the skin tissue using flashlight and with an on-board camera to record the change of the light intensity reflected from the tissue. The pulsatile signal is produced by analyzing average green component values of the frames taken by the camera and the heart rate is estimated in real time by detecting the pulse peaks. Based on each instant obtained heartbeat, we design a heart animation that beats according to each interval of the heartbeat. At the same time, we made a simple pyramid shaped hologram from a transparent OHP film to show the heart animation acting above the smartphone screen in three-dimensional view. With this application, users can actually monitor their heart activity in 3D rather than just to see the pulsatile signal graphically. The performances were done in two different conditions: under bright and dark environments. The holograms were made based on three different materials: grey transparent film, clear transparent film, and hard black acrylic board; the grey transparent film provided better performance and we achieved satisfactory results regardless of all environments.

  1. Calibration and performance testing of electronic personal dosimeters (EPD)

    International Nuclear Information System (INIS)

    Banaga, H.A.

    2008-04-01

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm 3 . Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  2. Step detection and activity recognition accuracy of seven physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Fabio A Storm

    Full Text Available The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts, Up (Jawbone, One (Fitbit, ActivPAL (PAL Technologies Ltd., Nike+ Fuelband (Nike Inc., Tractivity (Kineteks Corp. and Sensewear Armband Mini (Bodymedia. Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  3. Step detection and activity recognition accuracy of seven physical activity monitors.

    Science.gov (United States)

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  4. Spectrophotometric calibration system for DECam

    Science.gov (United States)

    Rheault, J.-P.; DePoy, D. L.; Marshall, J. L.; Prochaska, T.; Allen, R.; Wise, J.; Martin, E.; Williams, P.

    2012-09-01

    We describe a spectrophotometric calibration system that is being implemented as part of the DES DECam project at the Blanco 4 meter at CTIO. Our calibration system uses a 1nm wide tunable source to measure the instrumental response function of the telescope optics and detector from 300nm up to 1100nm. This calibration will be performed regularly to monitor any change in the transmission function of the telescope during the 5 year survey. The system consists of a monochromator based tunable light source that provides illumination on a dome flat that is monitored by calibrated photodiodes that allow us to measure the telescope throughput as a function of wavelength. Our system has a peak output power of 2 mW, equivalent to a flux of approximately 800 photons/s/pixel on DECam.

  5. Characterization of a 137Cs standard source for calibration purposes at CRCN-NE

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Santos, Marcus A.P. dos; Benvides, Clayton A.

    2008-01-01

    Radiation protection monitoring instruments should be calibrated by accredited calibration laboratories. To offer calibration services, a laboratory must accomplish all requirements established by the national regulatory agency. The Calibration Service of the Centro Regional de Ciencias Nucleares (CRCN-NE), Comissao Nacional de Energia Nuclear, Recife, Brazil, is trying to achieve this accreditation. In the present work, a 137 Cs standard source was characterized following the national and international recommendations and the results are presented. This source is a commercially available single source irradiator model 28-8A, manufactured by J.L. Shepherd and Associates, with initial activity of 444 GBq (05/13/03). To provide different air kerma rates, as required for the calibration of portable radiation monitors, this irradiator have a set of four lead attenuators with different thickness, providing attenuation factors equal to 2, 4, 10 and 100 times (nominally). The performed tests included: size and uniformity of the radiation standard field at calibration reference position, variation of the air kerma rate for different lead attenuators, determination of attenuation factors for each lead attenuator configuration, and determination of the radiation scattering at the calibration reference position. The results showed the usefulness of the 137 Cs standard source for the calibration of radiation protection monitoring detectors. (author)

  6. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    Science.gov (United States)

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between

  7. Environmental Monitoring of Occupational Exposure to N,N-dimethylformamide: Comparison between Active and Diffusive Sampling

    Czech Academy of Sciences Publication Activity Database

    Baglioni, S.; Cassinelli, C.; Bongini, G.; Cenni, I.; Graziani, N.; Landini, M.; Tanturli, G.; Brabec, Marek; Bavazzano, P.

    2007-01-01

    Roč. 80, č. 3 (2007), s. 228-233 ISSN 0340-0131 Source of funding: V - iné verejné zdroje Keywords : calibration * dimethylformamide * occupational exposure estimation * active and passive samplers Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.476, year: 2007

  8. Individual Self-monitoring &Peer-monitoring In One Classroom in Writing Activities: Who Is at Disadvantage?

    Directory of Open Access Journals (Sweden)

    Zohreh Zare Toofan

    2014-02-01

    Full Text Available Writing is an important experience through which we are able to share ideas, arouse feelings, persuade and convince other people (white & Arndt, 1991. It is important to view writing not solely as the product of an individual, but as a cognitive, social and cultural act. Writing is an act that takes place within a context, that accomplishes a particular purpose and that is appropriately shaped for its intended audience (Hamplyones & Condon, 1989. Here, the present research considers the significance effects of two important independent variables self-monitoring and peer-monitoring in writing activities on Iranian EFL learners. In this research it was supposed to study new effects of two Meta cognitive strategies self-monitoring and peer-monitoring on 173 male and female learners' writing activities whose age ranged between the age 16-27, and they had a composing description writing paragraph as pre & post test in the same conditions. Although many studies have been conducted on the effects of self-monitoring with a variety of students across a variety of settings (Amato-Zech, Hoff, & Doepke, 2006 Cooper et al., 2007, Dunlap, Dunlap, Koegel, & Koegel 1991. But goal of this study was to increase the participant’s on-task behavior in self & peer-monitoring (E. Johnson, 2007, Self &Peer-monitoring added. Although both of them were useful for providing challengeable students, and became useful for prosocial life, but self-monitoring helped them to become awareness of their weaknesses and strengths to increase positive way of the quality and quantity of their learning in written task, and peer-monitoring occurred when the students achieved recognition level to evaluate the other peers' behavior, and it was obviously understood that it needed more training time to arrive at the level of recognition of each others' behavior.

  9. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    Science.gov (United States)

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  10. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    Science.gov (United States)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in

  11. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  12. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  13. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  14. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  15. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  16. Summary of KOMPSAT-5 Calibration and Validation

    Science.gov (United States)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities

  17. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    Science.gov (United States)

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  18. Monitoring of Volcanic Activity by Sub-mm Geodetic Analyses

    Science.gov (United States)

    Miura, S.; Mare, Y.; Ichiki, M.; Demachi, T.; Tachibana, K.; Nishimura, T.

    2017-12-01

    Volcanic earthquakes have been occurring beneath Zao volcano in northern Honshu, Japan since 2013, following the increase of deep low frequency earthquakes from 2012. On account of a burst of seismicity initiated in April 2015, the JMA announced a warning of eruption, however, the seismicity gradually decreased for the next two months and the warning was canceled in June. In the same time period, minor expansive deformation was observed by GNSS. Small earthquakes are still occurring, and low-freq. earthquakes (LPE) occur sometimes accompanied by static tilt changes. In this study, we try to extract the sub-mm displacements from the LPE waveforms observed by broadband seismometers (BBS) and utilize them for geodetic inversion to monitor volcanic activities. Thun et al. (2015, 2016) devised an efficient method using a running median filter (RMF) to remove LP noises, which contaminate displacement waveforms. They demonstrated the reproducibility of the waveforms corresponding to the experimentally given sub-mm displacements in the laboratory. They also apply the method to the field LPE data obtained from several volcanoes to show static displacements. The procedure is outlined as follows: (1) Unfiltered removal of the instrument response, (2) LP noise estimate by LPF with a corner frequency of 5/M, where M (seconds) is the time window of the RMF and should be at least three times the length of the rise time. (3) Subtract the noise estimated from step (2). (4) Integrate to obtain displacement waveforms. We apply the method to the BBS waveform at a distance of about 1.5 km ESE from the summit crater of Zao Volcano associated with a LPE on April 1, 2017. Assuming the time window M as 300 seconds, we successfully obtained the displacement history: taking the rise time of about 2 minutes, the site was gradually uplifted with the amount of about 50-60 µm and then subsided with HF displacements in the next 2 minutes resulting about 20-30 µm static upheaval. Comparing the

  19. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  20. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    Science.gov (United States)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  1. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    Directory of Open Access Journals (Sweden)

    Iwakura M

    2016-07-01

    Full Text Available Masahiro Iwakura,1,2 Kazuki Okura,2 Kazuyuki Shibata,1,2 Atsuyoshi Kawagoshi,2 Keiyu Sugawara,2 Hitomi Takahashi,2 Takanobu Shioya1 1Department of Rehabilitation, Akita City Hospital, 2Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan Background: Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods: Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted and 13 age-matched healthy control subjects (mean age, 72±6 years participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST] and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]. Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results: The COPD patients exhibited significant reductions in OLST times (P=0.033, Short Physical Performance Battery scores (P=0.013, 4 m gait speed (P<0.001, five-times sit-to-stand times (P=0.002, daily steps (P=0.003, and MV-PA (P=0.022 compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001 and between OLST times and MV-PA (P=0.014 in the COPD group after adjusting for

  2. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  3. An overview of Suomi NPP VIIRS calibration maneuvers

    Science.gov (United States)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  4. Comparison between two calibration models of a measurement system for thyroid monitoring; Comparacao entre dois modelos para calibracao de um sistema de medidas dedicado ao monitoramento de tireoide

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Luzia [Instituto de Pesquisas Energeicas e Nucleares (IPEN), Sao Paulo, Sp (Brazil). Dept. de Metrologia das Radiacoes]. E-mail: lventur@net.ipen.br

    2005-07-01

    This paper shows a comparison between two theoretical calibration that use two mathematical models to represent the neck region. In the first model thyroid is considered to be just a region limited by two concentric cylinders whose dimensions are those of trachea and neck. The second model uses functional functions to get a better representation of the thyroid geometry. Efficiency values are obtained using Monte Carlo simulation. (author)

  5. Results of the marine biota monitoring during drilling activity on Campos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Petta, Claudia Brigagao de; Bastos, Fabio; Danielski, Monica; Ferreira, Mariana; Gama, Mariana; Coelho, Ana Paula Athanazio; Maia, Decio [Aecom do Brasil Ltda, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The Environmental Monitoring Project (PMA) aims to report environmental changes arising from drilling activity, in relation to the marine fauna. This project can also help in the monitoring of accidental spills. Since the professionals spend six hours of the day monitoring the ocean around the rigs, they can locate and identify oil stains, notify the responsible onboard, and also help in the monitoring of the oil stain. Such Project has been developed onboard a drilling unit working in Campos Basin. The results presented here were collected during the drilling activity in Bijupira and Salema fields, by Shell Brasil Petroleo Ltda, from July 13th to October 8th, 2011.

  6. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  7. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Directory of Open Access Journals (Sweden)

    Sandra O'Connell

    Full Text Available Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities.Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video.All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025. The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both. The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both.As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non

  8. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

    Directory of Open Access Journals (Sweden)

    Malchau Henrik

    2006-09-01

    Full Text Available Abstract Background There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting. Methods We compared Biomotion Laboratory (BML "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory. Results Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML. Conclusion The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.

  9. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Science.gov (United States)

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P positive steps during the cycling exercises (P positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping physical activities can result in the false detection of steps. This can negatively affect the quantification of physical

  10. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  11. Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis

    Science.gov (United States)

    Monekosso, Dorothy; Remagnino, Paolo

    This paper describes a data generator that produces synthetic data to simulate observations from an array of environment monitoring sensors. The overall goal of our work is to monitor the well-being of one occupant in a home. Sensors are embedded in a smart home to unobtrusively record environmental parameters. Based on the sensor observations, behavior analysis and modeling are performed. However behavior analysis and modeling require large data sets to be collected over long periods of time to achieve the level of accuracy expected. A data generator - was developed based on initial data i.e. data collected over periods lasting weeks to facilitate concurrent data collection and development of algorithms. The data generator is based on statistical inference techniques. Variation is introduced into the data using perturbation models.

  12. Activity Monitors Help Users Get Optimum Sun Exposure

    Science.gov (United States)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  13. Therapeutic Drug Monitoring of Asparaginase Activity-Method Comparison of MAAT and AHA Test Used in the International AIEOP-BFM ALL 2009 Trial.

    Science.gov (United States)

    Lanvers-Kaminsky, Claudia; Rüffer, Andrea; Würthwein, Gudrun; Gerss, Joachim; Zucchetti, Massimo; Ballerini, Andrea; Attarbaschi, Andishe; Smisek, Petr; Nath, Christa; Lee, Samiuela; Elitzur, Sara; Zimmermann, Martin; Möricke, Anja; Schrappe, Martin; Rizzari, Carmelo; Boos, Joachim

    2018-02-01

    In the international AIEOP-BFM ALL 2009 trial, asparaginase (ASE) activity was monitored after each dose of pegylated Escherichia coli ASE (PEG-ASE). Two methods were used: the aspartic acid β-hydroxamate (AHA) test and medac asparaginase activity test (MAAT). As the latter method overestimates PEG-ASE activity because it calibrates using E. coli ASE, method comparison was performed using samples from the AIEOP-BFM ALL 2009 trial. PEG-ASE activities were determined using MAAT and AHA test in 2 sets of samples (first set: 630 samples and second set: 91 samples). Bland-Altman analysis was performed on ratios between MAAT and AHA tests. The mean difference between both methods, limits of agreement, and 95% confidence intervals were calculated and compared for all samples and samples grouped according to the calibration ranges of the MAAT and the AHA test. PEG-ASE activity determined using the MAAT was significantly higher than when determined using the AHA test (P Wilcoxon signed-rank test). Within the calibration range of the MAAT (30-600 U/L), PEG-ASE activities determined using the MAAT were on average 23% higher than PEG-ASE activities determined using the AHA test. This complies with the mean difference reported in the MAAT manual. With PEG-ASE activities >600 U/L, the discrepancies between MAAT and AHA test increased. Above the calibration range of the MAAT (>600 U/L) and the AHA test (>1000 U/L), a mean difference of 42% was determined. Because more than 70% of samples had PEG-ASE activities >600 U/L and required additional sample dilution, an overall mean difference of 37% was calculated for all samples (37% for the first and 34% for the second set). Comparison of the MAAT and AHA test for PEG-ASE activity confirmed a mean difference of 23% between MAAT and AHA test for PEG-ASE activities between 30 and 600 U/L. The discrepancy increased in samples with >600 U/L PEG-ASE activity, which will be especially relevant when evaluating high PEG-ASE activities in

  14. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.

    Science.gov (United States)

    Leving, Marika T; Horemans, Henricus L D; Vegter, Riemer J K; de Groot, Sonja; Bussmann, Johannes B J; van der Woude, Lucas H V

    2018-01-01

    Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities

  15. Calibration of SSNDT detectors for radon measurements

    International Nuclear Information System (INIS)

    Takahashi, Laura C.; Santos, Talita O.; Pinheiro, Rose Mary M.; Rocha, Zildete

    2017-01-01

    The methods and instrumentation used to measure the concentration of radon need to be calibrated to obtain accurate results. The Nuclear Track Detector is considered the main method of analysis of radon research. Thus, the Natural Radioactivity Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG, Brazil) uses the detector CR-39 (Landauer) to measure the concentration of radon in homes, workplaces, underground mines, soils and in environment. Epidemiological studies reveal the strong relationship between lung cancer and radon exposure. Therefore, it is important to monitor this gas and its progeny in order to assess the radiological risk. The alpha particles emitted by radon and its progeny leave traces on CR-39 due to Coulombian interactions with the atoms of the material. The liquid density of traces is converted to radon concentration by means of a calibration factor obtained in calibrated systems. This work aims to determine the LRN / CDTN calibration factor. To do so, the CR-39 detectors were placed inside the calibration chambers, along with two AlphaGUARD (Saphymo GmbH) detectors and Ra-266 sources with activities of 3,379 kBq or 0.483 kBq, referenced by NIST. From this, six levels of exposure were obtained, which were: 44 kBq.d.m 3 , 4 kBq.d.m 3 , 3 kBq.d.m 3 , 15 kBq.d.m 3 , 30 kBq.d.m 3 , 26 kBq.d.m 3 . The conversion factor between the liquid density of traces and the total exposure time obtained was K = 52.028 ± 0.752 [(trace density.cm -2 ) / (kBq.d.m -3 )]. After the determination of the conversion factor, it was used to measure the concentration of radon in underground mines, obtaining concentration results between 122 ± 24 and 7384 ± 517 kBq.m -3

  16. Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 (Uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g 235 U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 4lSt Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 (Uranium Isotopic Standard for Gamma Spectrometry Measurements) in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U 3 O 8 to (1) extend the low range of the reported mass calibration curve to 10 g 235 U, (2) evaluate the effect of U 3 O 8 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U 3 O 8 enriched to 20.1 wt% 235 U and 52.5 wt% 235 U.

  17. Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N₂O emission dynamics.

    Science.gov (United States)

    Guo, Lisha; Vanrolleghem, Peter A

    2014-02-01

    An activated sludge model for greenhouse gases no. 1 was calibrated with data from a wastewater treatment plant (WWTP) without control systems and validated with data from three similar plants equipped with control systems. Special about the calibration/validation approach adopted in this paper is that the data are obtained from simulations with a mathematical model that is widely accepted to describe effluent quality and operating costs of actual WWTPs, the Benchmark Simulation Model No. 2 (BSM2). The calibration also aimed at fitting the model to typical observed nitrous oxide (N₂O) emission data, i.e., a yearly average of 0.5% of the influent total nitrogen load emitted as N₂O-N. Model validation was performed by challenging the model in configurations with different control strategies. The kinetic term describing the dissolved oxygen effect on the denitrification by ammonia-oxidizing bacteria (AOB) was modified into a Haldane term. Both original and Haldane-modified models passed calibration and validation. Even though their yearly averaged values were similar, the two models presented different dynamic N₂O emissions under cold temperature conditions and control. Therefore, data collected in such situations can potentially permit model discrimination. Observed seasonal trends in N₂O emissions are simulated well with both original and Haldane-modified models. A mechanistic explanation based on the temperature-dependent interaction between heterotrophic and autotrophic N₂O pathways was provided. Finally, while adding the AOB denitrification pathway to a model with only heterotrophic N₂O production showed little impact on effluent quality and operating cost criteria, it clearly affected N2O emission productions.

  18. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  19. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C.

    2007-12-01

    A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature is the main parameter affecting IR temperatures, while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 to January 2007, which suggests that origin of the changes were linked to anthropogenic activity, vegetation growth, and the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.

  20. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    OpenAIRE

    Ardic, Fusun; G?cer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n?=?10), overweight (n?=?10), and obese (n?=?10). After the submaxima...

  1. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  2. Active Layer Monitoring, Arctic and Subarctic Canada, Version 6

    Data.gov (United States)

    National Aeronautics and Space Administration — This project involves measuring regional and site variability in maximum annual active layer development and vertical surface movement over permafrost, and...

  3. 30 CFR 280.29 - Will MMS monitor the environmental effects of my activity?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS monitor the environmental effects of my activity? 280.29 Section 280.29 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Obligations Under This Part Environmental Issues § 280.29 Will MMS monitor the environmental effects of my...

  4. New Monitoring Technology to Objectively Assess Adherence to Prescribed Footwear and Assistive Devices During Ambulatory Activity

    NARCIS (Netherlands)

    Bus, Sicco A.; Waaijman, Roelof; Nollet, Frans

    2012-01-01

    Bus SA, Waaijman R, Nollet F. New monitoring technology to objectively assess adherence to prescribed footwear and assistive devices during ambulatory activity. Arch Phys Med Rehabil 2012;93:2075-9. Objective: To assess the validity and feasibility of a new temperature-based adherence monitor to

  5. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Science.gov (United States)

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  6. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  7. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  8. Postural activity monitoring for increasing safety in bomb disposal missions

    International Nuclear Information System (INIS)

    Brusey, James; Rednic, Ramona; Gaura, Elena I; Kemp, John; Poole, Nigel

    2009-01-01

    In enclosed suits, such as those worn by explosive ordnance disposal (EOD) experts, evaporative cooling through perspiration is less effective and, particularly in hot environments, uncompensable heat stress (UHS) may occur. Although some suits have cooling systems, their effectiveness during missions is dependent on the operative's posture. In order to properly assess thermal state, temperature-based assessment systems need to take posture into account. This paper builds on previous work for instrumenting EOD suits with regard to temperature monitoring and proposes to also monitor operative posture with MEMS accelerometers. Posture is a key factor in predicting how body temperature will change and is therefore important in providing local or remote warning of the onset of UHS. In this work, the C4.5 decision tree algorithm is used to produce an on-line classifier that can differentiate between nine key postures from current acceleration readings. Additional features that summarize how acceleration is changing over time are used to improve average classification accuracy to around 97.2%. Without such temporal feature extraction, dynamic postures are difficult to classify accurately. Experimental results show that training over a variety of subjects, and in particular, mixing gender, improves results on unseen subjects. The main advantages of the on-line posture classification system described here are that it is accurate, does not require integration of acceleration over time, and is computationally lightweight, allowing it to be easily supported on wearable microprocessors

  9. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  10. Telemetered sensors for dynamic activity and structural performance monitoring

    Science.gov (United States)

    Townsend, Christopher P.; Hamel, Michael J.; Arms, Steven W.

    2001-08-01

    The development of improved structures requires knowledge of their dynamic behavior. Minimally intrusive wireless systems, capable of monitoring vibration and impact, are needed in order to provide this knowledge. Our objective was to design, build, and test a high speed data collection and wireless data communications system, including microsensors, and capable of being embedded or externally worn. Our previous transmitter designs were small and could be used to transmit multichannel digital data, but they were not capable of fast data transmission rates. The addition of a remotely triggered datalogger allowed us to overcome the limitations of our earlier designs. A bi-directional RF communications link was used to trigger a sample to be logged (from 30 meters), as well as to request data to be transmitted to the host PC for data acquisition/analysis. Sweep rates of 2000 Hz were successfully demonstrated from a triad of MEMs accelerometers. The remote datalogger and transceiver and accelerometer package measured 12 mm by 24 mm by 6 mm thick; these were mounted to the feet of thoroughbred horses to study their impact levels. These small, fast, wireless data recording systems can be used to monitor rotating/ vibrating machinery and civil/automotive/aerospace structures.

  11. A Context-Aware Adaptive Feedback System for Activity Monitoring

    NARCIS (Netherlands)

    op den Akker, Harm; Hermens, Hermanus J.; Jones, Valerie M.

    2011-01-01

    An active lifestyle is an important factor in the prevention of deconditioning and many negative secondary effects in chronic diseases (e.g. COPD). A number of studies have been conducted with the aim of gaining insight into the daily activity patterns of these patients. Current research is

  12. Methodology for monitoring radionuclide activity in waste waters

    International Nuclear Information System (INIS)

    Padilla, R.; Hernandez, R.; Fernandez, J.; Vizcaino, M.

    1996-01-01

    A procedure for the determination of the volumetric specific activity of the liquid effluents of the CEADEN was established. The waters of the retention tank are sampled weekly and analyzed by gamma and beta spectrometry, determining the activity of several isotopes used in the radiochemistry works

  13. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE), GERMANY

    OpenAIRE

    U. Lussem; J. Hollberg; J. Hollberg; J. Menne; J. Schellberg; J. Schellberg; G. Bareth; G. Bareth

    2017-01-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer g...

  14. The ENEA calibration service for ionising radiations

    International Nuclear Information System (INIS)

    Monteventi, F.; Sermenghi, I.

    1999-01-01

    The report describes all the facilities available at the the service of the ENEA Calibration Service for Ionising Radiations at Bologna (Italy). It gives a detailed description of all equipments qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters [it

  15. The ENEA calibration service for ionising radiations. Part 1: Photons

    International Nuclear Information System (INIS)

    Monteventi, F.; Sermenghi, I.

    1999-01-01

    The ENEA (National Agency for New Technology, Energy and the Environment) calibration service for ionizing radiations has been active for 40 years in the secondary standard dosimetry laboratory web. It has been the first center, in 1985, to be acknowledges by the Italian calibration service (SIT) for the two quantities for photons: exposure and air kerma. Since the Institute for the Radiation Protection of ENEA has moved to the new site in Montecuccolino (Bologna, Italy) in 1995, the whole laboratory has been renovated and all irradiation rooms together with radiation source and equipment have been reorganized according to the Χ, γ, β and neutron fields metrology requirements. The aim of this report, as the first part of a report describing all facilities available at the service, is to give a detailed description of all equipment s qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters [it