WorldWideScience

Sample records for calibration human voxel

  1. Calibration Human Voxel Phantoms for In Vivo Measurement of ''2 sup 4 sup 1 Am in Bone at the Whole Body Counter Facility of CIEMAT

    CERN Document Server

    Moraleda, M; Navarro, J F; Navarro, T

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in det...

  2. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    International Nuclear Information System (INIS)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best counting geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs

  3. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-07-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best countring geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs.

  4. Automatic calibration method of voxel size for cone-beam 3D-CT scanning system

    International Nuclear Information System (INIS)

    Yang Min; Wang Xiaolong; Wei Dongbo; Liu Yipeng; Meng Fanyong; Li Xingdong; Liu Wenli

    2014-01-01

    For a cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary stage along X-ray direction. In order to realize the automatic calibration of the voxel size, a new and easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least-square fitting. Through these interpolation values, a linear equation is obtained that reflects the relationship between the voxel size and the rotary stage translation distance from its nominal zero position. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system. When the rotary stage is moving along X-ray direction, the accurate value of the voxel size is dynamically exported. The experimental results prove that this method meets the requirements of the actual CT scanning system, and has virtues of easy implementation and high accuracy. (authors)

  5. A software tool for modification of human voxel models used for application in radiation protection

    International Nuclear Information System (INIS)

    Becker, Janine; Zankl, Maria; Petoussi-Henss, Nina

    2007-01-01

    This note describes a new software tool called 'VolumeChange' that was developed to modify the masses and location of organs of virtual human voxel models. A voxel model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in slices, rows and columns. Each entry in this array represents a voxel; organs are represented by those voxels having the same identification number. With this tool, two human voxel models were adjusted to fit the reference organ masses of a male and a female adult, as defined by the International Commission on Radiological Protection (ICRP). The alteration of an already existing voxel model is a complicated process, leading to many problems that have to be solved. To solve those intricacies in an easy way, a new software tool was developed and is presented here. If the organs are modified, no bit of tissue, i.e. voxel, may vanish nor should an extra one appear. That means that organs cannot be modified without considering the neighbouring tissue. Thus, the principle of organ modification is based on the reassignment of voxels from one organ/tissue to another; actually deleting and adding voxels is only possible at the external surface, i.e. skin. In the software tool described here, the modifications are done by semi-automatic routines but including human control. Because of the complexity of the matter, a skilled person has to validate that the applied changes to organs are anatomically reasonable. A graphical user interface was designed to fulfil the purpose of a comfortable working process, and an adequate graphical display of the modified voxel model was developed. Single organs, organ complexes and even whole limbs can be edited with respect to volume, shape and location. (note)

  6. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  7. Application of Voxel Phantoms to Study the Influence of Heterogeneous Distribution of Actinides in Lungs on In Vivo Counting Calibration Factors Using Animal Experimentations

    Energy Technology Data Exchange (ETDEWEB)

    Lamart, S.; Pierrat, N.; De Carlan, L.; Franck, D. [IRSN/DRPH/SDI/LEDI, BP 17, F-92 262 Fontenay-aux-Roses (France); Dudoignon, N. [IRSN/DRPH/SRBE/LRPAT, BP 17, F-92 262 Fontenay-aux-Roses (France); Rateau, S.; Van der Meeren, A.; Rouit, E. [CEA/DSV/DRR/SRCA/LRT BP no 12, F-91680 Bruyeres-le-Chatel (France); Bottlaender, M. [CEA/SHFJ, 4, place du General Leclerc F-91400 Orsay (France)

    2006-07-01

    Calibration of lung counting system dedicated to retention assessment of actinides in the lungs remains critical due to large uncertainties in calibration factors. Among them, the detector positioning, the chest wall thickness and composition (muscle/fat) assessment, and the distribution of the contamination are the main parameters influencing the detector response. In order to reduce these uncertainties, a numerical approach based on the application of voxel phantoms (numerical phantoms based on tomographic images, CT or MRI) associated to a Monte-Carlo code (namely M.C.N.P.) was developed. It led to the development of a dedicated tool, called O.E.D.I.P.E., that allows to easily handle realistic voxel phantoms for the simulation of in vivo measurement (or dose calculation, application that will not be presented in this paper). The goal of this paper is to present our study of the influence of the lung distribution on calibration factors using both animal experimentations and our numerical method. Indeed, physical anthropomorphic phantoms used for calibration always consider a uniform distribution of the source in the lungs, which is not true in many contamination conditions. The purpose of the study is to compare the response of the measurement detectors using a real distribution of actinide particles in the lungs, obtained from animal experimentations, with the homogeneous one considered as the reference. This comparison was performed using O.E.D.I.P.E. that can almost simulate any source distribution. A non human primate was contaminated heterogeneously by intra-tracheal administration of actinide oxide. After euthanasia, gamma spectrometry measurements were performed on the pulmonary lobes to obtain the distribution of the contamination in the lungs. This realistic distribution was used to simulate an heterogeneous contamination in the numerical phantom of the non human primate, which was compared with a simulation of an homogeneous contamination presenting the

  8. Application of Voxel Phantoms to Study the Influence of Heterogeneous Distribution of Actinides in Lungs on In Vivo Counting Calibration Factors Using Animal Experimentations

    International Nuclear Information System (INIS)

    Lamart, S.; Pierrat, N.; De Carlan, L.; Franck, D.; Dudoignon, N.; Rateau, S.; Van der Meeren, A.; Rouit, E.; Bottlaender, M.

    2006-01-01

    Calibration of lung counting system dedicated to retention assessment of actinides in the lungs remains critical due to large uncertainties in calibration factors. Among them, the detector positioning, the chest wall thickness and composition (muscle/fat) assessment, and the distribution of the contamination are the main parameters influencing the detector response. In order to reduce these uncertainties, a numerical approach based on the application of voxel phantoms (numerical phantoms based on tomographic images, CT or MRI) associated to a Monte-Carlo code (namely M.C.N.P.) was developed. It led to the development of a dedicated tool, called O.E.D.I.P.E., that allows to easily handle realistic voxel phantoms for the simulation of in vivo measurement (or dose calculation, application that will not be presented in this paper). The goal of this paper is to present our study of the influence of the lung distribution on calibration factors using both animal experimentations and our numerical method. Indeed, physical anthropomorphic phantoms used for calibration always consider a uniform distribution of the source in the lungs, which is not true in many contamination conditions. The purpose of the study is to compare the response of the measurement detectors using a real distribution of actinide particles in the lungs, obtained from animal experimentations, with the homogeneous one considered as the reference. This comparison was performed using O.E.D.I.P.E. that can almost simulate any source distribution. A non human primate was contaminated heterogeneously by intra-tracheal administration of actinide oxide. After euthanasia, gamma spectrometry measurements were performed on the pulmonary lobes to obtain the distribution of the contamination in the lungs. This realistic distribution was used to simulate an heterogeneous contamination in the numerical phantom of the non human primate, which was compared with a simulation of an homogeneous contamination presenting the

  9. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy

    International Nuclear Information System (INIS)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de

    2005-01-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  10. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  11. Chinese reference human voxel phantoms for radiation protection: development, application and recent progress

    International Nuclear Information System (INIS)

    Pan Yuxi; Qiu Rui; Ren Li; Zhu Huanjun; Li Junli; Liu Liye

    2014-01-01

    This paper presents the work of constructing Chinese reference human voxel phantoms, taking Chinese reference adult female voxel model for example. In this study, a site-specific skeleton structure was built, some radiation sensitive organs were supplemented. Organ sub-segmentation was taken into account. The constructed phantoms include almost all radiation sensitive organs required by ICRP new recommendation. Masses of the organs are almost consistent with the Chinese reference data within 5%. The Chinese reference human phantoms have been applied both in internal dosimetry and external dosimetry. The results provide fundamental data for Chinese radiation dosimetry. In addition, the newly established detailed breast model and micro-bone model were introduced. (authors)

  12. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy; Fantoma computacional de voxel, associado a fantoma real antropomorfico antropometrico, para dosimetria em radioterapia de pelve masculina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  13. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    International Nuclear Information System (INIS)

    Moraleda, M.; Gomez-Ros, J.M.; Lopez, M.A.; Navarro, T.; Navarro, J.F.

    2004-01-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241 Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241 Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors

  14. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  15. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

    International Nuclear Information System (INIS)

    Astrakas, Loukas G.; Argyropoulou, Maria I.

    2010-01-01

    Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis. (orig.)

  16. Calibrated kallikrein generation in human plasma

    DEFF Research Database (Denmark)

    Biltoft, D; Sidelmann, J J; Olsen, L F

    2016-01-01

    generation method as a template. RESULTS: A suitable kallikrein specific fluorogenic substrate was identified (KM=0.91mM, kcat=19s(-1)), and kallikrein generation could be measured in undiluted plasma when silica was added as activator. Disturbing effects, including substrate depletion and the inner......-filter effect, however, affected the signal. These problems were corrected for by external calibration with α2-macroglobulin-kallikrein complexes. Selectivity studies of the substrate, experiments with FXII and PK depleted plasmas, and plasma with high or low complement C1-esterase inhibitor activity indicated...

  17. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  18. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2005-01-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions

  19. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Science.gov (United States)

    Findlay, R. P.; Dimbylow, P. J.

    2005-08-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  20. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2005-08-21

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  1. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  2. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  3. Monitoring of human brain functions in risk decision-making task by diffuse optical tomography using voxel-wise general linear model

    Science.gov (United States)

    Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.

  4. Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-01-01

    Full Text Available This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i moving human detection and tracking, (ii automatic camera calibration, and (iii human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic.

  5. Effect of visual experience on structural organization of the human brain: A voxel based morphometric study using DARTEL

    International Nuclear Information System (INIS)

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-01-01

    Objective: To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. Materials and methods: High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. Results: VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Conclusion: Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness

  6. Effect of visual experience on structural organization of the human brain: A voxel based morphometric study using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Shilpi, E-mail: modi_shilpi@yahoo.co.in [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Bhattacharya, Manisha, E-mail: manishab10@gmail.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Singh, Namita, E-mail: namita23m@gmail.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Tripathi, Rajendra Prasad, E-mail: director@inmas.drdo.in [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India); Khushu, Subash, E-mail: skhushu@yahoo.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi (India)

    2012-10-15

    Objective: To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. Materials and methods: High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. Results: VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Conclusion: Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness.

  7. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    Science.gov (United States)

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Development of a human head FE model for the impact analysis using VOXEL approach and simulation for the assessment on the focal brain injury

    International Nuclear Information System (INIS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    2008-01-01

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512 x 512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, cerebrospinal fluid (CSF), skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are it is based on the explicit time integration method and it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belythcko and it utilizes the parallel computation with the Massage Passing Interface (MPI). In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al. was simulated. The calculated results showed good agreement with experimental ones. A front and rear impact analyses were also performed investigate the relation between the impact direction and the positions of the high measurement of pressure and stresses in brain. The obtained results represent that brain injury has a closer relation with the Mises equivalent stress rather than the pressure. At this time, the large deformation of a frontal cranial base was observed in both frontal and occipital impact analyses. We expect that it induces the brain injury in a frontal lobe regardless of the impact positions. (author)

  9. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    Science.gov (United States)

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  10. Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    Science.gov (United States)

    Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909

  11. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    Science.gov (United States)

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  12. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    Directory of Open Access Journals (Sweden)

    Juha M Lahnakoski

    Full Text Available Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA. Auditory annotations correlated with two independent components (IC disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  13. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  14. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  15. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  16. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    Directory of Open Access Journals (Sweden)

    Liangyi Gong

    2015-12-01

    Full Text Available With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR and long-term averaged variance ratio (LVR. We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  17. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  18. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    Science.gov (United States)

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  19. Monte-Carlo simulation of OCT structural images of human skin using experimental B-scans and voxel based approach to optical properties distribution

    Science.gov (United States)

    Frolov, S. V.; Potlov, A. Yu.; Petrov, D. A.; Proskurin, S. G.

    2017-03-01

    A method of optical coherence tomography (OCT) structural images reconstruction using Monte Carlo simulations is described. Biological object is considered as a set of 3D elements that allow simulation of media, structure of which cannot be described analytically. Each voxel is characterized by its refractive index and anisotropy parameter, scattering and absorption coefficients. B-scans of the inner structure are used to reconstruct a simulated image instead of analytical representation of the boundary geometry. Henye-Greenstein scattering function, Beer-Lambert-Bouguer law and Fresnel equations are used for photon transport description. Efficiency of the described technique is checked by the comparison of the simulated and experimentally acquired A-scans.

  20. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Henrik, E-mail: kjeldsen@phys.au.d [AMS 14C Dating Centre, Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark); Heinemeier, Jan [AMS 14C Dating Centre, Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark); Heegaard, Steffen [Eye Pathology Section, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen (Denmark); Jacobsen, Christina; Lynnerup, Niels [Department of Forensic Medicine, University of Copenhagen, Copenhagen (Denmark)

    2010-04-15

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth, in accordance with expectations. Moreover, it has been possible to develop an age model for the formation of the eye-lens crystallines. From this model a radiocarbon calibration curve for lens crystallines has been calculated. As a consequence, the time of birth of humans can be determined with an accuracy of a few years by radiocarbon dating.

  1. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    International Nuclear Information System (INIS)

    Kjeldsen, Henrik; Heinemeier, Jan; Heegaard, Steffen; Jacobsen, Christina; Lynnerup, Niels

    2010-01-01

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth, in accordance with expectations. Moreover, it has been possible to develop an age model for the formation of the eye-lens crystallines. From this model a radiocarbon calibration curve for lens crystallines has been calculated. As a consequence, the time of birth of humans can be determined with an accuracy of a few years by radiocarbon dating.

  2. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    Science.gov (United States)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  3. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    International Nuclear Information System (INIS)

    Fonseca, T C Ferreira; Vanhavere, F; Bogaerts, R; Hunt, John

    2014-01-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. (paper)

  4. Comparison of PET/CT and whole-mount histopathology sections of the human prostate: a new strategy for voxel-wise evaluation.

    Science.gov (United States)

    Schiller, F; Fechter, T; Zamboglou, C; Chirindel, A; Salman, N; Jilg, C A; Drendel, V; Werner, M; Meyer, P T; Grosu, A-L; Mix, M

    2017-08-17

    Implementation of PET/CT in diagnosis of primary prostate cancer (PCa) requires a profound knowledge about the tracer, preferably from a quantitative evaluation. Direct visual comparison of PET/CT slices to whole prostate sections is hampered by considerable uncertainties from imperfect coregistration and fundamentally different image modalities. In the current study, we present a novel method for advanced voxel-wise comparison of histopathology from excised prostates to pre-surgical PET. Resected prostates from eight patients who underwent PSMA-PET/CT were scanned (ex vivo CT) and thoroughly pathologically prepared. In vivo and ex vivo CT including histopathology were coregistered with three different methods (manual, semi-/automatic). Spatial overlap after CT-based registration was evaluated with dice similarity (DSC). Furthermore, we constructed 3D cancer distribution models from histopathologic information in various slices. Subsequent smoothing reflected the intrinsically limited spatial resolution of PSMA-PET. The resulting histoPET models were used for quantitative analysis of spatial histopathology-PET pattern agreement focusing on p values and coefficients of determination (R 2 ). We examined additional rigid mutual information (MI) coregistration directly based on PSMA-PET and histoPET. Mean DSC for the three different methods (ManReg, ScalFactReg, and DefReg) were 0.79 ± 0.06, 0.82 ± 0.04, and 0.90 ± 0.02, respectively, while quantification of PET-histopathology pattern agreement after CT-based registration revealed R 2 45.7, 43.2, and 41.3% on average with p PET-based MI coregistration yielded R 2 61.3, 55.9, and 55.6%, respectively, while implying anatomically plausible transformations. Creating 3D histoPET models based on thorough histopathological preparation allowed sophisticated quantitative analyses showing highly significant correlations between histopathology and (PSMA-)PET. We recommend manual CT-based coregistration followed by a PET

  5. Monitoring angiogenesis using a human compatible calibration for broadband near-infrared spectroscopy

    Science.gov (United States)

    Yang, Runze; Zhang, Qiong; Wu, Ying; Dunn, Jeff F.

    2013-01-01

    Angiogenesis is a hallmark of many conditions, including cancer, stroke, vascular disease, diabetes, and high-altitude exposure. We have previously shown that one can study angiogenesis in animal models by using total hemoglobin (tHb) as a marker of cerebral blood volume (CBV), measured using broadband near-infrared spectroscopy (bNIRS). However, the method was not suitable for patients as global anoxia was used for the calibration. Here we determine if angiogenesis could be detected using a calibration method that could be applied to patients. CBV, as a marker of angiogenesis, is quantified in a rat cortex before and after hypoxia acclimation. Rats are acclimated at 370-mmHg pressure for three weeks, while rats in the control group are housed under the same conditions, but under normal pressure. CBV increased in each animal in the acclimation group. The mean CBV (%volume/volume) is 3.49%±0.43% (mean±SD) before acclimation for the experimental group, and 4.76%±0.29% after acclimation. The CBV for the control group is 3.28%±0.75%, and 3.09%±0.48% for the two measurements. This demonstrates that angiogenesis can be monitored noninvasively over time using a bNIRS system with a calibration method that is compatible with human use and less stressful for studies using animals.

  6. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    Science.gov (United States)

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  7. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  8. Comparison between calibration methods for in vivo monitoring in human body

    International Nuclear Information System (INIS)

    Mello, J.Q. de; Almeida, A.PF.; Dantas, A.L.A.; Hunt, J.G.; Dantas, B.M.

    2014-01-01

    The determination of photon emitters in the human body through in vivo measurements requires the use of specific techniques to obtain calibration factors which correlate count rates and activities present in the body. In the present work two methods were compared for the measurement of 40 K in whole body geometry with a scintillation detector type NaI(Tl)3x3: (1) experimental, using a BOMAB physical anthropomorphic phantom and (2) mathematical simulation of the phantom and the interaction of the photons with the detector. The results obtained show the equivalence between the methods in the geometry and energy conditions adopted in the experiment. (author)

  9. DTI analysis methods : Voxel-based analysis

    NARCIS (Netherlands)

    Van Hecke, Wim; Leemans, Alexander; Emsell, Louise

    2016-01-01

    Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does

  10. Construction of average adult Japanese voxel phantoms for dose assessment

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira

    2011-12-01

    The International Commission on Radiological Protection (ICRP) adopted the adult reference voxel phantoms based on the physiological and anatomical reference data of Caucasian on October, 2007. The organs and tissues of these phantoms were segmented on the basis of ICRP Publication 103. In future, the dose coefficients for internal dose and dose conversion coefficients for external dose calculated using the adult reference voxel phantoms will be widely used for the radiation protection fields. On the other hand, the body sizes and organ masses of adult Japanese are generally smaller than those of adult Caucasian. In addition, there are some cases that the anatomical characteristics such as body sizes, organ masses and postures of subjects influence the organ doses in dose assessment for medical treatments and radiation accident. Therefore, it was needed to use human phantoms with average anatomical characteristics of Japanese. The authors constructed the averaged adult Japanese male and female voxel phantoms by modifying the previously developed high-resolution adult male (JM) and female (JF) voxel phantoms. It has been modified in the following three aspects: (1) The heights and weights were agreed with the Japanese averages; (2) The masses of organs and tissues were adjusted to the Japanese averages within 10%; (3) The organs and tissues, which were newly added for evaluation of the effective dose in ICRP Publication 103, were modeled. In this study, the organ masses, distances between organs, specific absorbed fractions (SAFs) and dose conversion coefficients of these phantoms were compared with those evaluated using the ICRP adult reference voxel phantoms. This report provides valuable information on the anatomical and dosimetric characteristics of the averaged adult Japanese male and female voxel phantoms developed as reference phantoms of adult Japanese. (author)

  11. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  12. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain and for thromboplastin, recombinant, human, plain

    DEFF Research Database (Denmark)

    van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F

    2018-01-01

    BACKGROUND: The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current 4(th) International Standards are running low. Candidate replacement materia......) international standard (rTF/09). The candidate materials have been accepted by WHO as the 5(th) International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain. This article is protected by copyright. All rights reserved.......BACKGROUND: The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current 4(th) International Standards are running low. Candidate replacement materials...... have been prepared. This report describes the calibration of the proposed 5(th) International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). METHODS: An international collaborative study was carried out for the assignment...

  13. The Improved Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

    The concept of sparse Bayesian learning has received much attention in the machine learning literature as a means of achieving parsimonious representations of features used in regression and classification. It is an important family of algorithms for sparse signal recovery and compressed sensing....... Hence in its current form it is reminiscent of a greedy forward feature selection algorithm. In this report, we aim to solve the problems of the original RVoxM algorithm in the spirit of [7] (FastRVM).We call the new algorithm Improved Relevance Voxel Machine (IRVoxM). Our contributions...... and enables basis selection from overcomplete dictionaries. One of the trailblazers of Bayesian learning is MacKay who already worked on the topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the concept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector...

  14. Eliminating the human element and the drudgery from control-rod calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, L; Wang, H -K [Univ. of California, Berkeley (United States)

    1974-07-01

    The Berkeley TRIGA Mark III Reactor has three distinct reflector arrangements, depending on the position of the core in the pool. The control rods must be calibrated in each position, making 12 rod calibrations required, in all. To eliminate the human element and the drudgery involved in this repetitious task, a computer-assisted semi-automatic method has been devised to perform the necessary period methods, and to produce the resultant rod-calibration curves. The method is based on the use of a signal from the linear-power-channel recorder to feed a voltage comparator which generates a pulse at a preselected voltage 'B' and also at '1.50V'. The 2 pulses are used to start and stop pulses for an electronic timer, which easily measures the time difference to 0.01 second. The comparator actually consists of two such pulse-pair generating circuits, so that 2 measurements of t{sub 50} can be obtained on each range of the linear-power channel. Before the comparator is used for a series of rod calibrations, the voltage discrimination levels are checked with a precision voltage source to verify that they are set at 3.50, 5.25, 6.00, and 9.00 volts. Corrections in the discrimination levels can be made by means of front-panel potentiometer adjustments. As voltage is gradually increased past each of the pre-set discrimination levels, a panel light comes on, indicating that a pulse has been formed. The comparator circuit also accepts a reset command from a push button held in the hand of the reactor operator, which command is then converted into an electrical reset signal for the electronic timer. The system provides non-prejudiced measurements for t{sub 50} as short as 5 seconds, with no concern about pen lag. The only manipulation of the data is to determine the best value of t{sub 50}, which is done by averaging those values which agree to within 0.1 second. The program ''RODCALN'' is used to calculate the rod worth remaining (in dollar units) versus control rod position

  15. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; Motroni, A.; van der Stelt, P.; Wismeijer, D.

    2012-01-01

    Purpose: To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Materials and Methods: Ten partially edentulous human mandibular cadavers

  16. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

    Science.gov (United States)

    Yu, Dong; Zhang, Ruoyu; Liu, Qian

    2012-09-01

    To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. Copyright © 2012 Wiley Periodicals, Inc.

  17. Preparing a voxel-simulator of Alderson Rando physical phantom

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X.; Salmon Junior, Helio A.; Soares, Alessandro F.N.S.

    2011-01-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  18. Preparing a voxel-simulator of Alderson Rando physical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X., E-mail: lboia@con.ufrj.br, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear (PEN/COPPE/UFRJ). Universidade Federal do Rio de Janeiro, RJ (Brazil); Salmon Junior, Helio A., E-mail: heliosalmon@coinet.com.br [COI - Clinicas Oncologicas Integradas, MD.X Barra Medical Center, Rio de Janeiro, RJ (Brazil); Soares, Alessandro F.N.S., E-mail: afacure@cnen.gov.br [Comissao Nacional de Engenharia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  19. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  20. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    Science.gov (United States)

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good BMD and BMC agreement, did not detect

  1. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  2. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  3. Calibration procedures for in vivo sodium iodide spectrometry of plutonium and americium in the human lung

    International Nuclear Information System (INIS)

    Umbarger, C.J.; Jett, J.H.

    1976-01-01

    This paper describes the calibration techniques and associated error analysis for the in vivo measurement by NaI spectrometry of heavy elements in the lung, specifically plutonium and americium. A very brief description of the instrumentation system is included

  4. Calibration method for a in vivo measurement system using mathematical simulation of the radiation source and the detector

    International Nuclear Information System (INIS)

    Hunt, John

    1998-01-01

    A Monte Carlo program which uses a voxel phantom has been developed to simulate in vivo measurement systems for calibration purposes. The calibration method presented here employs a mathematical phantom, produced in the form of volume elements (voxels), obtained through Magnetic Resonance Images of the human body. The calibration method uses the Monte Carlo technique to simulate the tissue contamination, the transport of the photons through the tissues and the detection of the radiation. The program simulates the transport and detection of photons between 0.035 and 2 MeV and uses, for the body representation, a voxel phantom with a format of 871 slices each of 277 x 148 picture elements. The Monte Carlo code was applied to the calibration of in vivo systems and to estimate differences in counting efficiencies between homogeneous and non-homogeneous radionuclide distributions in the lung. Calculations show a factor of 20 between deposition of 241 Am at the back compared with the front of the lung. The program was also used to estimate the 137 Cs body burden of an internally contaminated individual, counted with an 8 x 4 Nal (TI) detector and an 241 Am body burden of an internally contaminated individual, who was counted using a planar germanium detector. (author)

  5. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  6. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined

  7. Human wound photogrammetry with low-cost hardware based on automatic calibration of geometry and color

    Science.gov (United States)

    Jose, Abin; Haak, Daniel; Jonas, Stephan; Brandenburg, Vincent; Deserno, Thomas M.

    2015-03-01

    Photographic documentation and image-based wound assessment is frequently performed in medical diagnostics, patient care, and clinical research. To support quantitative assessment, photographic imaging is based on expensive and high-quality hardware and still needs appropriate registration and calibration. Using inexpensive consumer hardware such as smartphone-integrated cameras, calibration of geometry, color, and contrast is challenging. Some methods involve color calibration using a reference pattern such as a standard color card, which is located manually in the photographs. In this paper, we adopt the lattice detection algorithm by Park et al. from real world to medicine. At first, the algorithm extracts and clusters feature points according to their local intensity patterns. Groups of similar points are fed into a selection process, which tests for suitability as a lattice grid. The group which describes the largest probability of the meshes of a lattice is selected and from it a template for an initial lattice cell is extracted. Then, a Markov random field is modeled. Using the mean-shift belief propagation, the detection of the 2D lattice is solved iteratively as a spatial tracking problem. Least-squares geometric calibration of projective distortions and non-linear color calibration in RGB space is supported by 35 corner points of 24 color patches, respectively. The method is tested on 37 photographs taken from the German Calciphylaxis registry, where non-standardized photographic documentation is collected nationwide from all contributing trial sites. In all images, the reference card location is correctly identified. At least, 28 out of 35 lattice points were detected, outperforming the SIFT-based approach previously applied. Based on these coordinates, robust geometry and color registration is performed making the photographs comparable for quantitative analysis.

  8. Aging effects on cerebral asymmetry: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Sasaki, Hiroki; Ohtomo, Kuni

    2010-01-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The purpose of this study was to evaluate the effects of aging on gray and white matter asymmetry. Two hundred twenty-six right-handed normal volunteers aged 21-71 years were included in this study. The effects of aging on gray matter volume asymmetry and white matter fractional anisotropy asymmetry were evaluated with use of voxel-based morphometry and voxel-based analysis of fractional anisotropy maps derived from diffusion tensor imaging (DTI), respectively. The voxel-based morphometry showed no significant correlation between age and gray matter volume asymmetry. The voxel-based analysis of DTI also showed no significant correlation between age and white matter fractional anisotropy asymmetry. Our results showed no significant effects of aging on either gray matter volume asymmetry or white matter fractional anisotropy asymmetry.

  9. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  10. Nanotechnology in global medicine and human biosecurity: private interests, policy dilemmas, and the calibration of public health law.

    Science.gov (United States)

    Faunce, Thomas A

    2007-01-01

    This paper considers how best to approach dilemmas posed to global health and biosecurity policy by increasing advances in practical applications of nanotechnology. The type of nano-technology policy dilemmas discussed include: (1) expenditure of public funds, (2) public-funded research priorities, (3) public confidence in government and science and, finally, (4) public safety. The article examines the value in this context of a legal obligation that the development of relevant public health law be calibrated against less corporate-influenced norms issuing from bioethics and international human rights.

  11. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  12. Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Science.gov (United States)

    2012-03-01

    6 Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less melanin appears brighter because it has higher reflectance...6 illustrates the spectral reflectance of human skin with different melanin levels. One paper proposes a Normalized Difference Skin Index (NDSI), a...1.4% Melanin 12.6% Melanin 23.2% Melanin 34.3% Melanin 45% Melanin Figure 6. Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less

  13. Calibration procedures for the quantitative determination of membrane potential in human cells using anionic dyes.

    Science.gov (United States)

    Klapperstück, Thomas; Glanz, Dagobert; Hanitsch, Stefan; Klapperstück, Manuela; Markwardt, Fritz; Wohlrab, Johannes

    2013-07-01

    Quantitative determinations of the cell membrane potential of lymphocytes (Wilson et al., J Cell Physiol 1985;125:72-81) and thymocytes (Krasznai et al., J Photochem Photobiol B 1995;28:93-99) using the anionic dye DiBAC4 (3) proved that dye depletion in the extracellular medium as a result of cellular uptake can be negligible over a wide range of cell densities. In contrast, most flow cytometric studies have not verified this condition but rather assumed it from the start. Consequently, the initially prepared extracellular dye concentration has usually been used for the calculation of the Nernst potential of the dye. In this study, however, external dye depletion could be observed in both large IGR-1 and small LCL-HO cells under experimental conditions, which have often been applied routinely in spectrofluorimetry and flow cytometry. The maximum cell density at which dye depletion could be virtually avoided was dependent on cell size and membrane potential and definitely needed to be taken into account to ensure reliable results. In addition, accepted calibration procedures based on the partition of sodium and potassium (Goldman-Hodgkin-Katz equation) or potassium alone (Nernst equation) were performed by flow cytometry on cell suspensions with an appropriately low cell density. The observed extensive lack of concordance between the correspondingly calculated membrane potential and the equilibrium potential of DiBAC4 (3) revealed that these methods require the additional measurement of cation parameters (membrane permeability and/or intracellular concentration). In contrast, due to the linear relation between fluorescence and low DiBAC4 (3) concentrations, the Nernst potential of the dye for totally depolarized cells can be reliably used for calibration with an essentially lower effort and expense. Copyright © 2013 International Society for Advancement of Cytometry.

  14. Application of voxel phantoms and Monte Carlo methods to internal and external dosimetry

    International Nuclear Information System (INIS)

    Hunt, J.G.; Santos, D. de S.; Silva, F.C. da; Dantas, B.M.; Azeredo, A.; Malatova, I.; Foltanova, S.

    2000-01-01

    Voxel phantoms and the Monte Carlo technique are applied to the areas of calibration of in vivo measurement systems, Specific Effective Energy calculations, and dose calculations due to external sources of radiation. The main advantages of the use of voxel phantoms is their high level of detail of body structures, and the ease with which their physical dimensions can be changed. For the simulation of in vivo measurement systems for calibration purposes, a voxel phantom with a format of 871 'slices' each of 277 x 148 picture elements was used. The Monte Carlo technique is used to simulate the tissue contamination, to transport the photons through the tissues and to simulate the detection of the radiation. For benchmarking, the program was applied to obtain calibration factors for the in vivo measurement of 241 Am, U nat and 137 Cs deposited in various tissues or in the whole body, as measured with a NaI or Gernlanium detector. The calculated and real activities in all cases were found to be in good agreement. For the calculation of Specific Effective Energies (SEEs) and the calculation of dose received from external sources, the Yale voxel phantom with a format of 493 slices' each of 87 x 147 picture elements was used. The Monte Carlo program was developed to calculate external doses due to environmental, occupational or accidental exposures. The program calculates tissue and effective dose for the following geometries: cloud immersion, ground contamination, X-ray irradiation, point source irradiation or others. The benchmarking results for the external source are in good agreement with the measured values. The results obtained for the SEEs are compatible with the ICRP values. (author)

  15. Calibration curves for biological dosimetry by drug-induced prematurely condensed chromosomes in human lymphocytes

    International Nuclear Information System (INIS)

    Kang, C. M.; Chung, H. C.; Cho, C. K.

    2002-01-01

    To develop the cytogenetic tool to detect chromosome damages after high dose exposure with 60 Coγ- rays, dose-response curves were measured for induction of prematurely condensed chromosomes (PCC) in peripheral lymphocytes. Blood was obtained from 10 different healthy donors, and given okadaic acid (OA) 500nM in cultured lymphocytes 1h after radiation exposure. Cells were analyzed by the frequencies of OA-induced PCC rings because it is difficult to obtain mitotic chromosomes using a conventional chromosome aberration (CA). PCC-rings were scored in cells exposed in the dose range of 0.2-16Gy. The frequency of the cells with PCC and the dose-response relationship for the yield of PCC rings were examined in the irradiated lymphocytes. The yield of PCC-rings increased with dose dependent-manner up to 16Gy. The observed dose-effect relationship for the percentage of cells with PCC-rings was calculated by linear-quadratic model. This technique can be applied to biological dosimetry of radiation exposures involving whole body irradiation to allow damaged chromosomes to be detected with great sensitivity. Detection of okadaic acid-induced PCC rings is a useful method up to 16Gy or more doses in estimating the absorbed doses of victims after high dose exposure. Calibration curves described in this paper will be used in our laboratory for biological dosimetry by PCC-ring after a high dose exposure

  16. A teaser made simple: a didactic measurement of the spectral answer of a human-eye-calibrated lux meter

    International Nuclear Information System (INIS)

    Di Capua, R; Offi, F; Dell'Omo, M; Fontana, F

    2012-01-01

    A simple didactic experiment has been designed and realized, in order to illustrate to undergraduate students in scientific faculties some basic concepts lying behind the fundamentals of geometrical optics. The spectral response of a human-eye-calibrated lux meter was measured using a very trivial experimental arrangement. The white light of a halogen lamp was decomposed into its spectral components through a diffraction grating, so that collecting the radiation at different dispersion angles allowed one to measure the intensity as a function of wavelength. The experiment can be used to effectively illustrate the concepts of spectral distribution, the radiometry versus photometry conversion and photopic response, and the famous historical experience by Herschel on the ‘temperature of colours’. (paper)

  17. Interactive voxel graphics in virtual reality

    Science.gov (United States)

    Brody, Bill; Chappell, Glenn G.; Hartman, Chris

    2002-06-01

    Interactive voxel graphics in virtual reality poses significant research challenges in terms of interface, file I/O, and real-time algorithms. Voxel graphics is not so new, as it is the focus of a good deal of scientific visualization. Interactive voxel creation and manipulation is a more innovative concept. Scientists are understandably reluctant to manipulate data. They collect or model data. A scientific analogy to interactive graphics is the generation of initial conditions for some model. It is used as a method to test those models. We, however, are in the business of creating new data in the form of graphical imagery. In our endeavor, science is a tool and not an end. Nevertheless, there is a whole class of interactions and associated data generation scenarios that are natural to our way of working and that are also appropriate to scientific inquiry. Annotation by sketching or painting to point to and distinguish interesting and important information is very significant for science as well as art. Annotation in 3D is difficult without a good 3D interface. Interactive graphics in virtual reality is an appropriate approach to this problem.

  18. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain, and for thromboplastin, recombinant, human, plain.

    Science.gov (United States)

    van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F; Binder, N B; Byrne, M; Dauer, R; Gudmundsdottir, B R; Jespersen, J; Kitchen, S; Legnani, C; Lindahl, T L; Manning, R A; Martinuzzo, M; Panes, O; Pengo, V; Riddell, A; Subramanian, S; Szederjesi, A; Tantanate, C; Herbel, P; Tripodi, A

    2018-01-01

    Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials

  19. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    DEFF Research Database (Denmark)

    Kjeldsen, Henrik; Heinemeier, Jan; Heegaard, Steffen

    2010-01-01

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth...

  20. Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics

    International Nuclear Information System (INIS)

    George, Nibu A; Mul, Frits F M de; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K

    2008-01-01

    We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications

  1. Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics

    Energy Technology Data Exchange (ETDEWEB)

    George, Nibu A; Mul, Frits F M de; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K [Groningen Voice Research Lab, Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, 9700 AD Groningen (Netherlands)

    2008-05-21

    We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications.

  2. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  3. Calibration method for a in vivo measurement system using mathematical simulation of the radiation source and the detector; Metodo de calibracao de um sistema de medida in vivo atraves da simulacao matematica da fonte de radiacao e do detector

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, John

    1998-12-31

    A Monte Carlo program which uses a voxel phantom has been developed to simulate in vivo measurement systems for calibration purposes. The calibration method presented here employs a mathematical phantom, produced in the form of volume elements (voxels), obtained through Magnetic Resonance Images of the human body. The calibration method uses the Monte Carlo technique to simulate the tissue contamination, the transport of the photons through the tissues and the detection of the radiation. The program simulates the transport and detection of photons between 0.035 and 2 MeV and uses, for the body representation, a voxel phantom with a format of 871 slices each of 277 x 148 picture elements. The Monte Carlo code was applied to the calibration of in vivo systems and to estimate differences in counting efficiencies between homogeneous and non-homogeneous radionuclide distributions in the lung. Calculations show a factor of 20 between deposition of {sup 241} Am at the back compared with the front of the lung. The program was also used to estimate the {sup 137} Cs body burden of an internally contaminated individual, counted with an 8 x 4 Nal (TI) detector and an {sup 241} Am body burden of an internally contaminated individual, who was counted using a planar germanium detector. (author) 24 refs., 38 figs., 23 tabs.

  4. Blood groups and human groups: collecting and calibrating genetic data after World War Two.

    Science.gov (United States)

    Bangham, Jenny

    2014-09-01

    Arthur Mourant's The Distribution of the Human Blood Groups (1954) was an "indispensable" reference book on the "anthropology of blood groups" containing a vast collection of human genetic data. It was based on the results of blood-grouping tests carried out on half-a-million people and drew together studies on diverse populations around the world: from rural communities, to religious exiles, to volunteer transfusion donors. This paper pieces together sequential stages in the production of a small fraction of the blood-group data in Mourant's book, to examine how he and his colleagues made genetic data from people. Using sources from several collecting projects, I follow how blood was encountered, how it was inscribed, and how it was turned into a laboratory resource. I trace Mourant's analytical and representational strategies to make blood groups both credibly 'genetic' and understood as relevant to human ancestry, race and history. In this story, 'populations' were not simply given, but were produced through public health, colonial and post-colonial institutions, and by the labour and expertise of subjects, assistants and mediators. Genetic data were not self-evidently 'biological', but were shaped by existing historical and geographical identities, by political relationships, and by notions of kinship and belonging. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. A software for digital image processing used in constructions of voxels phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson; Fernando Roberto de Andrade

    2008-01-01

    This paper presents, based on menus and menu items, the second version of software DIP-Digital Image Processing, that reads, edits and writes binary files containing the matrix 3D corresponding to a transversal voxels images of a certain geometry that may be a human body or other volume of interest

  6. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  7. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  8. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  9. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  10. Creation of voxel-based models for paediatric dosimetry from automatic segmentation methods

    International Nuclear Information System (INIS)

    Acosta, O.; Li, R.; Ourselin, S.; Caon, M.

    2006-01-01

    Full text: The first computational models representing human anatomy were mathematical phantoms, but still far from accurate representations of human body. These models have been used with radiation transport codes (Monte Carlo) to estimate organ doses from radiological procedures. Although new medical imaging techniques have recently allowed the construction of voxel-based models based on the real anatomy, few children models from individual CT or MRI data have been reported [1,3]. For pediatric dosimetry purposes, a large range of voxel models by ages is required since scaling the anatomy from existing models is not sufficiently accurate. The small number of models available arises from the small number of CT or MRI data sets of children available and the long amount of time required to segment the data sets. The existing models have been constructed by manual segmentation slice by slice and using simple thresholding techniques. In medical image segmentation, considerable difficulties appear when applying classical techniques like thresholding or simple edge detection. Until now, any evidence of more accurate or near-automatic methods used in construction of child voxel models exists. We aim to construct a range of pediatric voxel models, integrating automatic or semi-automatic 3D segmentation techniques. In this paper we present the first stage of this work using pediatric CT data.

  11. 14C age determination for human bones during the Yayoi period - the calibration ambiguity around 2400 BP and the marine reservoir effect

    International Nuclear Information System (INIS)

    Mihara, S.; Miyamoto, K.; Nakamura, T.; Koike, H.

    2004-01-01

    14 C ages for Japanese prehistoric samples from the Latest Jomon period to the early Yayoi period have a calibration ambiguity for dates around 2400 BP. It is also necessary to correct for the marine reservoir effect on 14 C ages of human bone samples from people who consumed marine food as a protein source. The Ohtomo site in western Japan, is a cemetery site used from the end of the Latest Jomon period to the Kofun period, provide a useful archaeological chronology. Human bones found in dolmen burials, jar burials and cist burials. In this study, we determined the 14 C ages of human bone samples and calculated the marine reservoir effect, using diet analysis based on carbon and nitrogen stable isotopes. Diet analysis showed that these people obtained from 40% to 60% of their protein from marine sources. Their 14 C ages with calibration and marine reservoir correction were serially matched with the archaeological chronology

  12. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  13. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chao [School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025 (China); Wu, Hai-Long, E-mail: hlwu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2016-03-03

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively. - Highlights: • A novel three-way calibration method for the quantitative kinetic analysis of NADH and FAD in human plasma is proposed. • The method can directly monitor the concentration of each analyte in the reaction in real-time and nondestructively. • The method has the second-order advantage. • A

  14. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage

    International Nuclear Information System (INIS)

    Kang, Chao; Wu, Hai-Long; Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin

    2016-01-01

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively. - Highlights: • A novel three-way calibration method for the quantitative kinetic analysis of NADH and FAD in human plasma is proposed. • The method can directly monitor the concentration of each analyte in the reaction in real-time and nondestructively. • The method has the second-order advantage. • A

  15. Multi Voxel Descriptor for 3D Texture Retrieval

    Directory of Open Access Journals (Sweden)

    Hero Yudo Martono

    2016-08-01

    Full Text Available In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.

  16. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  17. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  18. Application of Electron Dose Kernels to account for heterogeneities in voxelized phantoms

    International Nuclear Information System (INIS)

    Al-Basheer, A. K.; Sjoden, G. E.; Ghita, M.; Bolch, W.

    2009-01-01

    In this paper, we present work on the application of the Electron Dose Kernel discrete ordinates method (EDK-S N ) to compute doses and account for material heterogeneities using high energy external photon beam irradiations in voxelized human phantoms. EDKs are pre-computed using photon pencil 'beamlets' that lead to dose delivery in tissue using highly converged Monte Carlo. Coupling the EDKs to accumulate dose scaled by integral photon fluences computed using S N methods in dose driving voxels (DDVs) allows for the full charged particle physics computed dose to be accumulated throughout the voxelized phantom, and is the basis of the EDK-S N method, which is fully parallelized. For material heterogeneities, a density scaling correction factor is required to yield good agreement. In a fully voxelized phantom, all doses were in agreement with those determined by independent Monte Carlo computations. We are continuing to expand upon the development of this robust approach for rapid and accurate determination of whole body and out of field organ doses due to high energy x-ray beams. (authors)

  19. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based...... on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null...

  20. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  1. Simultaneous Determination of 6-Mercaptopurine and its Oxidative Metabolites in Synthetic Solutions and Human Plasma using Spectrophotometric Multivariate Calibration Methods

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Rashidi

    2011-06-01

    Full Text Available Introduction: 6-Mercaptopurine (6MP is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL. It is catabolized to 6-thiouric acid (6TUA through 8-hydroxo-6-mercaptopurine (8OH6MP or 6-thioxanthine (6TX intermediates. Methods: High-performance liquid chromatography (HPLC is usually used to determine the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples. In the present study, the multivariate calibration methods, partial least squares (PLS-1 and principle component regression (PCR have been developed and validated for the simultaneous determination of 6MP and its oxidative metabolites (6TUA, 8OH6MP and 6TX without analyte separation in spiked human plasma. Mixtures of 6MP, 8-8OH6MP, 6TX and 6TUA have been resolved by PLS-1 and PCR to their UV spectra. Results: Recoveries (% obtained for 6MP, 8-8OH6MP, 6TX and 6TUA were 94.5-97.5, 96.6-103.3, 95.1-96.9 and 93.4-95.8, respectively, using PLS-1 and 96.7-101.3, 96.2-98.8, 95.8-103.3 and 94.3-106.1, respectively, using PCR. The NAS (Net analyte signal concept was used to calculate multivariate analytical figures of merit such as limit of detection (LOD, selectivity and sensitivity. The limit of detections for 6MP, 8-8OH6MP, 6TX and 6TUA were calculated to be 0.734, 0.439, 0.797 and 0.482 µmol L-1, respectively, using PLS and 0.724, 0.418, 0783 and 0.535 µmol L-1, respectively, using PCR. HPLC was also applied as a validation method for simultaneous determination of these thiopurines in the synthetic solutions and human plasma. Conclusion: Combination of spectroscopic techniques and chemometric methods (PLS and PCR has provided a simple but powerful method for simultaneous analysis of multicomponent mixtures.

  2. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    Science.gov (United States)

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  3. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  4. Development of a voxel phantom specific for simulation of eye brachytherapy; Desenvolvimeto de um fantoma de voxel especifico para simulacao de braquiterapia ocular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcilio S.; Lima, Fernando R.A., E-mail: msilveira.fisica@gmail.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Vieira, Jose W., E-mail: jose-wilson59@live.com [lnstituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2013-11-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range.

  5. Construction of Korean female voxel phantom and its application to dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Ik

    2001-08-15

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established.

  6. Construction of Korean female voxel phantom and its application to dosimetry

    International Nuclear Information System (INIS)

    Lee, Choon Ik

    2001-08-01

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established

  7. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Niboyet, Jean; Mundler, Olivier

    2007-01-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  8. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)]. E-mail: eric.guedj@ap-hm.fr; Taieb, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Cammilleri, Serge [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Lussato, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Laforte, Catherine de [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Niboyet, Jean [Unite d' Etude et de Traitement de la Douleur, Clinique La Phoceanne, Marseille (France); Mundler, Olivier [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  9. Voxel-based morphometry and voxel-based diffusion tensor analysis in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin; Lou Xin; Wang Yan

    2010-01-01

    Objective: To evaluate gray matter volume, white matter volume and FA value changes in amyatrophic lateral sclerosis (ALS) patients by voxel-based morphometry (VBM) and voxel-based diffusion tensor analysis (VBDTA). Methods: Thirty-nine definite or probable ALS patients diagnosed by El Escorial standard and 39 healthy controls were recruited and underwent conventional MR scans and the neuropsychological evaluation. The 3D FSPGR T 1 WI and DTI data were collected on GE Medical 3.0 T MRI system. The 3DT 1 structural images were normalized, segmented and smoothed, and then VBM analysis was performed. DTI data were acquired from 76 healthy controls, and FA map template was made. FA maps generated from the DTI data of ALS patients and healthy controls were normalized to the FA map template for voxel-based analysis. ANCOVA was applied, controlling with age and total intracranial volume for VBM and age for VBDDTA. A statistical threshold of P<0.01 (uncorrected) and cluster level of more than continuous 20 voxels determined significance. Results: Statistical results showed no significant difference in the global volumes of gray matter and white matter, total intracranial volumes and gray matter fraction between ALS patients and healthy controls, but the white matter fraction of ALS patients (0.29 ± 0.02) was significantly less than that of healthy controls (0.30 ± 0.02) statistically (P=0.003). There was significant reduction of gray matter volumes in bilateral superior frontal gyri and precentral gyri, right middle frontal gyrus, right middle and inferior temporal gyrus, left superior occipital gyrus and cuneus and left insula in ALS patients when compared with healthy controls; and the regional reduction of white matter volumes in ALS patients mainly located in genu of corpus callosum, bilateral medial frontal gyri, paracentral lobule and insula, right superior and middle frontal gyrus and left postcentral gyrus. VBDTA showed decrease in FA values in bilateral

  10. The creation of voxel phantoms for the purpose of environmental dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, E.; Higley, K. [Oregon State University (United States)

    2014-07-01

    Basic geometric shapes have long been used as the standard for calculating radiation dose rates in non-human biota (NHB). Regulation standards have seen a shift recently, towards protection of NHB as its own endpoint. As such, there has been a growing interest in improving the calculations for NHB dose rates. To address calls for additional data, the development of voxelized models for the International Commission on Radiological Protection's (ICRP) twelve reference animal and plants (RAP) has been undertaken. Voxel models of a crab (Metacarcinus magister), flatfish (Pleuronectiformes), trout (Oncorhynchus mykiss), worm (Lumbricina), honey bee (Apis), frog (Anura), and rat, (Rattus) have been created to date. The purpose of this submission is to describe the processes of creating these voxel phantoms from radiological imaging data (i.e., Computed Tomography (CT), Magnetic Resonance Imaging (MRI), etc.). CT/MRI images of the organism are obtained and uploaded into a software package capable of segmenting the images (3D Doctor was used for the crab, flatfish, trout, worm, and honey bee). On each image slice, individual organs and other relevant anatomical features (e.g. bones or other structural tissues) are identified and segmented. Once segmentation is complete, a boundary file that describes the positioning of the organs and tissues in lattice geometry format is exported into software called Voxelizer, created by the Human Monitoring Laboratory of Canada. This software writes the boundary file geometry into an input file for Monte Carlo N-Particle (MCNP) based simulations. The user can then add appropriate materials, densities, and a desired source term. These simulations yield absorbed fraction (AF) values that are used in subsequent dose calculations with environmental concentration data. AFs are now available for the crab, flatfish, trout, worm, and honey bee at twelve photon and nine electron energies, consistent with ICRP AFs for human dosimetry

  11. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  12. Setup of HDRK-Man voxel model in Geant4 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwi; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of); Choi, Sang Hyoun [Inha Univ., Incheon (Korea, Republic of); Cho, Kun Woo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Many different voxel models, developed using tomographic images of human body, are used in various fields including both ionizing and non-ionizing radiation fields. Recently a high-quality voxel model/ named HDRK-Man, was constructed at Hanyang University and used to calculate the dose conversion coefficients (DCC) values for external photon and neutron beams using the MCNPX Monte Carlo code. The objective of the present study is to set up the HDRK-Man model in Geant4 in order to use it in more advanced calculations such as 4-D Monte Carlo simulations and space dosimetry studies involving very high energy particles. To that end, the HDRK-Man was ported to Geant4 and used to calculate the DCC values for external photon beams. The calculated values were then compared with the results of the MCNPX code. In addition, a computational Linux cluster was built to improve the computing speed in Geant4.

  13. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  14. Development and calibration of a portable detection system for in vivo monitoring of {sup 131}I incorporation by humans

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Eder A.; Dantas, Ana Leticia A.; Dantas, Bernardo M. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: eder@ird.gov.br

    2009-07-01

    {sup 131}I is one of the most frequently used radionuclides for diagnosis and therapy of thyroid diseases in nuclear medicine. Its increasing use for medical purposes creates a demand for feasible methodologies applied to the control of internal exposure by workers. In vivo monitoring of {sup 131}I incorporation is of great value for the evaluation of occupational exposure during its medical application and also in the case of accidents and incidents in nuclear power plants for the monitoring of workers and population. This work presents the development of a portable device specially designed for in vivo measurement of {sup 131}I in the thyroid. It is also presented the results of the calibration performed in different nuclear medicine centers where {sup 131}I is routinely manipulated for therapeutic purposes. The equipment consists in a NaI(Tl)3''x3'' detector installed in a lead collimator and assembled on a tripod. The detection system was calibrated with the IRD-Neck-Thyroid phantom for the determination of the calibration factors for direct in vivo quantification of {sup 131}I in the thyroid. In order to evaluate the applicability and limitations of the system, committed effective doses associated to the minimum detectable activities were calculated using current biokinetic and dosimetric models available in the literature. Dose detection limits have shown to be far below 1 mSv for the most likely incorporation scenarios. (author)

  15. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  16. Laser-induced forward transfer (LIFT) of congruent voxels

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Alberto, E-mail: pique@nrl.navy.mil [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, Eric [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-06-30

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  17. Laser-induced forward transfer (LIFT) of congruent voxels

    International Nuclear Information System (INIS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-01-01

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  18. A simple calibration of a whole-body counter for the measurement of total body potassium in humans

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El-Fiki, S.A.; El-Enany, N.; Youssef, S.K.; Aly, A.M.; Abbas, M.T.

    1992-01-01

    A simple calibration procedure for the Inshas whole body counter for evaluating total body potassium has been adopted. More than 120 Egyptian employees in the Nuclear Research Center (N.R.C.) were studied for their total body potassium (TBK). The potassium values were found to have an average of 2.85±0.57 g K kg -1 body weight for males and 2.62±0.52 g K kg -1 for females, which are higher than the recommended value given for reference man by ICRP. The TBK varied directly with body build index and is slightly sex dependent (Author)

  19. William, a voxel model of child anatomy from tomographic images for Monte Carlo dosimetry calculations

    International Nuclear Information System (INIS)

    Caon, M.

    2010-01-01

    Full text: Medical imaging provides two-dimensional pictures of the human internal anatomy from which may be constructed a three-dimensional model of organs and tissues suitable for calculation of dose from radiation. Diagnostic CT provides the greatest exposure to radiation per examination and the frequency of CT examination is high. Esti mates of dose from diagnostic radiography are still determined from data derived from geometric models (rather than anatomical models), models scaled from adult bodies (rather than bodies of children) and CT scanner hardware that is no longer used. The aim of anatomical modelling is to produce a mathematical representation of internal anatomy that has organs of realistic size, shape and positioning. The organs and tissues are represented by a great many cuboidal volumes (voxels). The conversion of medical images to voxels is called segmentation and on completion every pixel in an image is assigned to a tissue or organ. Segmentation is time consuming. An image processing pack age is used to identify organ boundaries in each image. Thirty to forty tomographic voxel models of anatomy have been reported in the literature. Each model is of an individual, or a composite from several individuals. Images of children are particularly scarce. So there remains a need for more paediatric anatomical models. I am working on segmenting ''William'' who is 368 PET-CT images from head to toe of a seven year old boy. William will be used for Monte Carlo dose calculations of dose from CT examination using a simulated modern CT scanner.

  20. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  1. Development of a voxel phantom specific for simulation of eye brachytherapy

    International Nuclear Information System (INIS)

    Santos, Marcilio S.; Lima, Fernando R.A.

    2013-01-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range

  2. Simultaneous and Direct Determination of Vancomycin and Cephalexin in Human Plasma by Using HPLC-DAD Coupled with Second-Order Calibration Algorithms

    Directory of Open Access Journals (Sweden)

    Le-Qian Hu

    2012-01-01

    Full Text Available A simple, rapid, and sensitive method for the simultaneous determination of vancomycin and cephalexin in human plasma was developed by using HPLC-DAD with second-order calibration algorithms. Instead of a completely chromatographic separation, mathematical separation was performed by using two trilinear decomposition algorithms, that is, PARAFAC-alternative least squares (PARAFAC-ALSs and self-weight-alternative-trilinear-decomposition- (SWATLD- coupled high-performance liquid chromatography with DAD detection. The average recoveries attained from PARAFAC-ALS and SWATLD with the factor number of 4 (N=4 were 101±5% and 102±4% for vancomycin, and 96±3% and 97±3% for cephalexininde in real human samples, respectively. The statistical comparison between PARAFAC-ALS and SWATLD is demonstrated to be similar. The results indicated that the combination of HPLC-DAD detection with second-order calibration algorithms is a powerful tool to quantify the analytes of interest from overlapped chromatographic profiles for complex analysis of drugs in plasma.

  3. Voxel inversion of airborne electromagnetic data for improved model integration

    Science.gov (United States)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054

  4. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    Science.gov (United States)

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    Science.gov (United States)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  6. Laser-induced forward transfer (LIFT) of congruent voxels

    Science.gov (United States)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  7. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    Science.gov (United States)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  8. A simple formulation for deriving effective atomic numbers via electron density calibration from dual-energy CT data in the human body.

    Science.gov (United States)

    Saito, Masatoshi; Sagara, Shota

    2017-06-01

    The main objective of this study is to propose a simple formulation (which we called DEEDZ) for deriving effective atomic numbers (Z eff ) via electron density (ρ e ) calibration from dual-energy (DE) CT data. We carried out numerical analysis of this DEEDZ method for a large variety of materials with known elemental compositions and mass densities using an available photon cross sections database. The new conversion approach was also applied to previously published experimental DECT data to validate its practical feasibility. We performed numerical analysis of the DEEDZ conversion method for tissue surrogates that have the same chemical compositions and mass densities as a commercial tissue-characterization phantom in order to determine the parameters necessary for the ρ e and Z eff calibrations in the DEEDZ conversion. These parameters were then applied to the human-body-equivalent tissues of ICRU Report 46 as objects of interest with unknown ρ e and Z eff . The attenuation coefficients of these materials were calculated using the XCOM photon cross sections database. We also applied the DEEDZ conversion to experimental DECT data available in the literature, which was measured for two commercial phantoms of different shapes and sizes using a dual-source CT scanner at 80 kV and 140 kV/Sn. The simulated Z eff 's were in excellent agreement with the reference values for almost all of the ICRU-46 human tissues over the Z eff range from 5.83 (gallstones-cholesterol) to 16.11 (bone mineral-hydroxyapatite). The relative deviations from the reference Z eff were within ± 0.3% for all materials, except for one outlier that presented a -3.1% deviation, namely, the thyroid. The reason for this discrepancy is that the thyroid contains a small amount of iodine, an element with a large atomic number (Z = 53). In the experimental case, we confirmed that the simple formulation with less fit parameters enable to calibrate Z eff as accurately as the existing calibration

  9. Evaluation of absorbed doses in voxel-based and simplified models for small animals

    International Nuclear Information System (INIS)

    Mohammadi, A.; Kinase, S.; Saito, K.

    2008-01-01

    Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25 %, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30 % uncertainties with exceptions for body contour (up to -40 %) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185 %) due to differences in the mass attenuation coefficients. For nuclides such as 90 Y and 90 Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3 %, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel

  10. A new anthropometric phantom of the human leg for calibrating in vivo measurements of stable lead in bone using x-ray fluorescence

    International Nuclear Information System (INIS)

    Spitz, Henry; Jenkins, Mark; Lodwick, Jeffrey

    1997-01-01

    Full text. A new anthropometric phantom of the human leg has been developed for calibrating in vivo measurements of stable lead in the bone using x-ray fluorescence. The phantom reproduces the shape and radiological characteristics of the midshaft of the human leg and includes tissue substitutes for cortical bone, bone marrow, and muscle which have been formulated using polyurethanes and calcium carbonate to provide the desired characteristics of density x-ray attenuation, and calcium content. The phantom includes a set of simulated tibia bones, each containing a precisely known concentration of stable lead, that can be easily inserted into the leg. Formerly, of a set of plexiglas cylinders filled with plaster of-paris, each containing a known lead content, was the consensus standard calibration phantom. Tissue substitute materials used in the new anthropometric calibration phantom are much more uniform in density and composition than the plaster-of-paris phantoms and its realistic appearance provides a practical means of evaluating the variability in measurements results due to the changes in subject-detector positioning. Use of the new anthropometric calibration phantom results in a energy spectrum that closely resembles the spectrum observed when measuring a human subject. The energy spectrum produced by the plaster-of-paris phantom lacks the substantial Compton Scattering component produced by the leg muscle mass which leads to unrealistic estimates of in vivo measurement sensitivity. The minimum detection limit (MDL) for in vivo measurement of stable lead in bone, using an efficiency derived from the new anthropometric phantom, ranges from 18,6 parts per million (ppm) to 26,3 ppm using the K β1,3 /Elastic ratio or the K 1 /Elastic ratio, respectively. These values are significantly greater than the MDL cited in the literature obtained using a efficiency derived the conventional cylindrical plaster-of-paris phantom. Likewise, the realistic shape of the new

  11. Giga-voxel computational morphogenesis for structural design

    Science.gov (United States)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  12. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    International Nuclear Information System (INIS)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M.

    2017-01-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of 152 Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  13. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M., E-mail: alexandrebaso@globo.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoração Interna

    2017-07-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of {sup 152}Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  14. Micellar Enhanced Three-Dimensional Excitation-Emission Matrix Fluorescence for Rapid Determination of Antihypertensives in Human Plasma with Aid of Second-Order Calibration Methods

    Directory of Open Access Journals (Sweden)

    Hai-Yan Fu

    2015-01-01

    Full Text Available A highly sensitive three-dimensional excitation-emission fluorescence method was proposed to determine antihypertensives including valsartan and amlodipine besylate in human plasma with the aid of second-order calibration methods based on parallel factor analysis (PARAFAC and alternating trilinear decomposition (ATLD algorithms. Antihypertensives with weak fluorescent can be transformed into a strong fluorescent property by changing microenvironment in samples using micellar enhanced surfactant. Both the adopted algorithms with second-order advantage can improve the resolution and directly attain antihypertensives concentration even in the presence of potential strong intrinsic fluorescence from human plasma. The satisfactory results can be achieved for valsartan and amlodipine besylate in complicated human plasma. Furthermore, some statistical parameters and figures of merit were evaluated to investigate the performance of the proposed method, and the accuracy and precision of the proposed method were also validated by the elliptical joint confidence region (EJCR test and repeatability analysis of intraday and interday assay. The proposed method could not only light a new avenue to directly determine valsartan or amlodipine besylate in human plasma, but also hold great potential to be extended as a promising alternative for more practical applications in the determination of weak fluorescent drugs.

  15. Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study

    Science.gov (United States)

    Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.

    2016-12-01

    In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60  ×  60 mm2 and 80  ×  80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100  ×  90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from  -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.

  16. Study on the Construction of a High-definition Whole-body Voxel Model based on Cadaver's Color Photographic Anatomical Slice Images and Monte Carlo Dose Calculations

    International Nuclear Information System (INIS)

    Choi, Sang Hyoun

    2007-08-01

    Ajou University School of Medicine made the serially sectioned anatomical images from the Visible Korean Human (VKH) Project in Korea. The VKH images, which are the high-resolution color photographic images, show the organs and tissues in the human body very clearly at 0.2 mm intervals. In this study, we constructed a high-quality voxel model (VKH-Man) with a total of 30 organs and tissues by manual and automatic segmentation method using the serially sectioned anatomical image data from the Visible Korean Human (VKH) project in Korea. The height and weight of VKH-Man voxel model is 164 cm and 57.6 kg, respectively, and the voxel resolution is 1.875 x 1.875 x 2 mm 3 . However, this voxel phantom can be used to calculate the organ and tissue doses of only one person. Therefore, in this study, we adjusted the voxel phantom to the 'Reference Korean' data to construct the voxel phantom that represents the radiation workers in Korea. The height and weight of the voxel model (HDRK-Man) that is finally developed are 171 cm and 68 kg, respectively, and the voxel resolution is 1.981 x 1.981 x 2.0854 mm 3 . VKH-Man and HDRK-Man voxel model were implemented in a Monte Carlo particle transport simulation code for calculation of the organ and tissue doses in various irradiation geometries. The calculated values were compared with each other to see the effect of the adjustment and also compared with other computational models (KTMAN-2, ICRP-74 and VIP-Man). According to the results, the adjustment of the voxel model was found hardly affect the dose calculations and most of the organ and tissue equivalent doses showed some differences among the models. These results shows that the difference in figure, and organ topology affects the organ doses more than the organ size. The calculated values of the effective dose from VKH-Man and HDRK-Man according to the ICRP-60 and upcoming ICRP recommendation were compared. For the other radiation geometries (AP, LLAT, RLAT) except for PA

  17. Human (Clovis)–gomphothere (Cuvieronius sp.) association ∼13,390 calibrated yBP in Sonora, Mexico

    Science.gov (United States)

    Sanchez, Guadalupe; Holliday, Vance T.; Gaines, Edmund P.; Arroyo-Cabrales, Joaquín; Martínez-Tagüeña, Natalia; Kowler, Andrew; Lange, Todd; Hodgins, Gregory W. L.; Mentzer, Susan M.; Sanchez-Morales, Ismael

    2014-01-01

    The earliest known foragers to populate most of North America south of the glaciers [∼11,500 to ≥ ∼10,800 14C yBP; ∼13,300 to ∼12,800 calibrated (Cal) years] made distinctive “Clovis” artifacts. They are stereotypically characterized as hunters of Pleistocene megamammals (mostly mammoth) who entered the continent via Beringia and an ice-free corridor in Canada. The origins of Clovis technology are unclear, however, with no obvious evidence of a predecessor to the north. Here we present evidence for Clovis hunting and habitation ∼11,550 yBP (∼13,390 Cal years) at “El Fin del Mundo,” an archaeological site in Sonora, northwestern Mexico. The site also includes the first evidence to our knowledge for gomphothere (Cuvieronius sp.) as Clovis prey, otherwise unknown in the North American archaeological record and terminal Pleistocene paleontological record. These data (i) broaden the age and geographic range for Clovis, establishing El Fin del Mundo as one of the oldest and southernmost in situ Clovis sites, supporting the hypothesis that Clovis had its origins well south of the gateways into the continent, and (ii) expand the make-up of the North American megafauna community just before extinction. PMID:25024193

  18. Human (Clovis)-gomphothere (Cuvieronius sp.) association ∼13,390 calibrated yBP in Sonora, Mexico

    Science.gov (United States)

    Sanchez, Guadalupe; Holliday, Vance T.; Gaines, Edmund P.; Arroyo-Cabrales, Joaquín; Martínez-Tagüeña, Natalia; Kowler, Andrew; Lange, Todd; Hodgins, Gregory W. L.; Mentzer, Susan M.; Sanchez-Morales, Ismael

    2014-07-01

    The earliest known foragers to populate most of North America south of the glaciers [∼11,500 to ≥ ∼10,800 14C yBP; ∼13,300 to ∼12,800 calibrated (Cal) years] made distinctive "Clovis" artifacts. They are stereotypically characterized as hunters of Pleistocene megamammals (mostly mammoth) who entered the continent via Beringia and an ice-free corridor in Canada. The origins of Clovis technology are unclear, however, with no obvious evidence of a predecessor to the north. Here we present evidence for Clovis hunting and habitation ∼11,550 yBP (∼13,390 Cal years) at "El Fin del Mundo," an archaeological site in Sonora, northwestern Mexico. The site also includes the first evidence to our knowledge for gomphothere (Cuvieronius sp.) as Clovis prey, otherwise unknown in the North American archaeological record and terminal Pleistocene paleontological record. These data (i) broaden the age and geographic range for Clovis, establishing El Fin del Mundo as one of the oldest and southernmost in situ Clovis sites, supporting the hypothesis that Clovis had its origins well south of the gateways into the continent, and (ii) expand the make-up of the North American megafauna community just before extinction.

  19. Monte Carlo simulation of dose calculation in voxel and geometric phantoms using GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Silva, Rosana de S. e; Begalli, Marcia

    2009-01-01

    Monte Carlo simulation techniques have become a valuable tool for scientific purposes. In radiation protection many quantities are obtained by means of the simulation of particles passing through human body models, also known as phantoms, allowing the calculation of doses deposited in an individual's organs exposed to ionizing radiation. These information are very useful from the medical viewpoint, as they are used in the planning of external beam radiotherapy and brachytherapy treatments. The goal of this work is the implementation of a voxel phantom and a geometrical phantom in the framework of the Geant4 tool kit, aiming at a future use of this code by professionals in the medical area. (author)

  20. An Improved Optimization Method for the Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, M. R.; Van Leemput, Koen

    2013-01-01

    In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the ...

  1. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  2. Development of the Reference Korean Female Voxel Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Bo Kyoung; Cho, Kun Woo [University of Science and Technology, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol [Hanyang University, Seoul (Korea, Republic of)

    2012-03-15

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm{sup 3} and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm{sup 3} for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  3. Quality control of geological voxel models using experts' gaze

    NARCIS (Netherlands)

    Maanen, P.P. van; Busschers, F.S.; Brouwer, A.M.; Meulen, M.J. van der; Erp, J.B.F. van

    2015-01-01

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  4. Quality Control of Geological Voxel Models using Experts' Gaze

    NARCIS (Netherlands)

    van Maanen, Peter-Paul; Busschers, Freek S.; Brouwer, Anne-Marie; van der Meulendijk, Michiel J.; van Erp, Johannes Bernardus Fransiscus

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  5. Voxel Advanced Digital-manufacturing for Earth & Regolith in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will...

  6. A Morphological Approach to the Voxelization of Solids

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Sramek, Milos; Christensen, Niels Jørgen

    2000-01-01

    In this paper we present a new, morphological criterion for determining whether a geometric solid is suitable for voxelization at a given resolution. The criterion embodies two conditions, namely that the curvature of the solid must be bounded and the critical points of the distance field must be...

  7. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  8. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    Science.gov (United States)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  9. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    Science.gov (United States)

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  10. Comparing the Effect of Different Voxel Resolutions for Assessment of Vertical Root Fracture of Permanent Teeth

    International Nuclear Information System (INIS)

    Uzun, Ismail; Gunduz, Kaan; Celenk, Peruze; Avsever, Hakan; Orhan, Kaan; Canitezer, Gozde; Ozmen, Bilal; Cicek, Ersan; Egrioglu, Erol

    2015-01-01

    The teeth with undiagnosed vertical root fractures (VRFs) are likely to receive endodontic treatment or retreatment, leading to frustration and inappropriate endodontic therapies. Moreover, many cases of VRFs cannot be diagnosed definitively until the extraction of tooth. This study aimed to assess the use of different voxel resolutions of two different cone beam computerized tomography (CBCT) units in the detection VRFs in vitro. The study material comprised 74 extracted human mandibular single rooted premolar teeth without root fractures that had not undergone any root-canal treatment. Images were obtained by two different CBCT units. Four image sets were obtained as follows: 1) 3D Accuitomo 170, 4 × 4 cm field of view (FOV) (0.080 mm 3 ); 2) 3D Accuitomo 170. 6 × 6 cm FOV (0.125 mm 3 ); 3) NewTom 3G, 6” (0.16 mm 3 ) and 4) NewTom 3G, 9” FOV (0.25 mm 3 ). Kappa coefficients were calculated to assess both intra- and inter-observer agreements for each image set. No significant differences were found among observers or voxel sizes, with high average Z (Az) results being reported for all groups. Both intra- and inter-observer agreement values were relatively better for 3D Accuitomo 170 images than the images from NewTom 3G. The highest Az and kappa values were obtained with 3D Accuitomo 170, 4 × 4 cm FOV (0.080 mm 3 ) images. No significant differences were found among observers or voxel sizes, with high Az results reported for all groups

  11. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    Science.gov (United States)

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  12. Rapid Assemblers for Voxel-Based VLSI Robotics

    Science.gov (United States)

    2014-02-12

    flux vector given by the Nernst -Planck equation ( equation ), where the partial derivative of the concentration of ions with respect to time plus the...species i given by the Nernst -Einstein equation . The boundary conditions are that the diffusive and convective contribu- tions to the flux are zero at...dependent partial differential equations . SIAM Journal of Numerical Analysis, 32(3):797-823, 1995. Task 2: cm-scale voxels for prototypes Task

  13. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  14. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  15. A HUMANIZED CLINICALLY CALIBRATED QUANTITATIVE SYSTEMS PHARMACOLOGY MODEL FOR HYPOKINETIC MOTOR SYMPTOMS IN PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Hugo eGeerts

    2016-02-01

    Full Text Available The current treatment of Parkinson’s disease with dopamine-centric approaches such as L-DOPA and dopamine agonists, although very succesfull, is in need of alternative treatment strategies, both in terms of disease modification and symptom management. Various non-dopaminergic treatment approaches did not result in a clear clinical benefit, despite showing a clear effect in preclinical animal models. In addition, polypharmacy is common, sometimes leading to unintended effects on non-motor symptoms such as in cognitive and psychiatric domains. To explore novel targets for symptomatic treatment and possible synergistic pharmacodynamic effects between different drugs, we developed a Quantitative Systems Pharmacology (QSP platform of the closed cortico-striatal-thalamic-cortical basal ganglia loop of the dorsal motor circuit. This mechanism-based simulation platform is based on the known neuro-anatomy and neurophysiology of the basal ganglia and explicitly incorporates domain expertise in a formalized way. The calculated beta/gamma power ratio of the local field potential in the subthalamic nucleus correlates well (R2=0.71 with clinically observed extra-pyramidal symptoms triggered by antipsychotics during schizophrenia treatment (43 drug-dose combinations. When incorporating Parkinsonian (PD pathology and reported compensatory changes, the computer model suggests a major increase in b/g ratio (corresponding to bradykinesia and rigidity from a dopamine depletion of 70% onwards. The correlation between the outcome of the QSP model and the reported changes in UPDRS III Motor Part for 22 placebo-normalized drug-dose combinations is R2=0.84. The model also correctly recapitulates the lack of clinical benefit for perampanel, MK-0567 and flupirtine and offers a hypothesis for the translational disconnect. Finally, using human PET imaging studies with placebo response, the computer model predicts well the placebo response for chronic treatment, but not

  16. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  17. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  18. A voxel visualization and analysis system based on AutoCAD

    Science.gov (United States)

    Marschallinger, Robert

    1996-05-01

    A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.

  19. Convolutional neural network based side attack explosive hazard detection in three dimensional voxel radar

    Science.gov (United States)

    Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David

    2018-04-01

    The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.

  20. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  1. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  2. Tritium β-radiation induction of chromosomal damage: a calibration curve for low dose, low dose rate exposures of human cells to tritiated water

    International Nuclear Information System (INIS)

    Morrison, D.P.; Gale, K.L.; Lucas, J.N.

    1997-01-01

    Radiation exposures from tritium contribute to the occupational radiation exposures associated with CANDU reactors. Tritiated water is of particular interest since it is readily taken up by human cells and its elimination from the body, and, consequently, the radiation exposure of the cells, is spread over a period of days. Occupational exposures to tritiated water result in what are effectively chronic β-radiation exposures. The doses and dose rates ordinarily used in the definition of cellular responses to radiation in vitro, for use in biological dosimetry (the assessment of radiation exposures based on the observed levels of changes in the cells of exposed individuals), are usually much higher than for most occupational exposures and involve radiations other than tritium β-rays. As a result, their use in assessing the effects from tritiated water exposures may not be appropriate. We describe here an in vitro calibration curve for chronic tritium β-radiation induction of reciprocal chromosomal translocations in humn peripheral blood lymphocytes (PBLs) for use in biodosimetry. (author)

  3. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  4. A voxel-based approach to gray matter asymmetries.

    Science.gov (United States)

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  5. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    International Nuclear Information System (INIS)

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131 Iodine, 123 Iodine and 99m Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99m Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123 I and 99m Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99m Tc incorporation. (author)

  6. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    OpenAIRE

    Koush, Yury; Elliott, Mark A.; Mathiak, Klaus

    2011-01-01

    Echo-planar imaging (EPI) in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI). The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS) for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repet...

  7. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    International Nuclear Information System (INIS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-01-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM-S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM-S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom. (paper)

  8. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    Science.gov (United States)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  9. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR

    International Nuclear Information System (INIS)

    Acosta, Andy L. Romero; Lores, Stefan Gutierrez

    2013-01-01

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba

  10. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio

    2004-01-01

    With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method

  11. New format for storage of voxel phantom, and exposure computer model EGS4/MAX to EGSnrc/MASH update

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose W.; Lima, Fernando R.A.; Lima, Lindeval F.

    2011-01-01

    In order to estimate the dosage absorbed by those subjected to ionizing radiation, it is necessary to perform simulations using the exposure computational model (ECM). Such models are consists essentially of an anthropomorphic phantom and a Monte Carlo code (MC). The conjunction of a voxel phantom of the MC code is a complex process and often results in solving a specific problem. This is partly due to the way the phantom voxel is stored on a computer. It is usually required a substantial amount of space to store a static representation of the human body and also a significant amount of memory for reading and processing a given simulation. This paper presents a new way to store data concerning the geometry irradiated (similar to the technique of repeated structures used in the geometry of MCNP code), reducing by 52% the disk space required for storage when compared to the previous format applied by Grupo de Dosimetria Numerica (GDN/CNPq). On the other hand, research in numerical dosimetry leads to a constant improvement on the resolution of voxel phantoms leading thus to a new requirement, namely, to develop new estimates of dose. Therefore, this work also performs an update of the MAX (Male Adult voXel)/EGS4 ECM for the MASH (Adult MaleMeSH)/EGSnrc ECM and presents instances of dosimetric evaluations using the new ECM. Besides the update of the phantom and the MC code, the algorithm of the source used has also been improved in contrast to previous publications. (author)

  12. The construction of trunk voxel phantom by using CT images and application to 3 dimensional radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    2001-10-01

    Trunk voxel phantom was constructed by using whole body CT images and tumor doses were calculated by using Monte Carlo method after simulating situation of radiotheraphy treatment planning. The whole body CT images of VHP (Visual Human Project) man were acquired from National Library of Medicine of USA. 153 slices of trunk part were extracted from whole body CT images and MCNP4B, a general purpose Monte Carlo code, was used for dose calculation. Gray scale of CT images were converted into density of medium and processed into trunk voxel phantom ported to MCNP4B input deck. The conversion method was verified by comparing cross sectional images of voxel phantom with original CT images. Tumor volumes with diameter of 3 cm were defined in liver, stomach and right lung and irradiated with 5, 10 and 15 MeV gamma beam with diameter of 6 cm. The technical basis for 3D dose calculation was established through this study for localization of 3D RTP system.

  13. A new algorithm for finite element simulation of wedge osteotomies in voxel models with application to the tibia

    Directory of Open Access Journals (Sweden)

    Thomas Pressel

    2010-01-01

    Full Text Available Thomas Pressel1, Markus D Schofer1, Jörg Meiforth2, Markus Lengsfeld1, Jan Schmitt11Department of Orthopaedics and Rheumatology, University Hospital Marburg, Marburg, Germany; 2St. Vincentius Kliniken, Klinik für Orthopädie, Karlsruhe, GermanyAbstract: Wedge osteotomies are used to correct bone deformities or change the forces acting on bones and joints in the human body. Finite element models can be employed to simulate the effect of such operations on the bone or adjacent joints. The automatic generation of voxel models derived from computed tomography data is a common procedure, but the major drawback of the method lies in irregular model surfaces. Therefore, the concept of hybrid models combining voxel and tetrahedron meshes was developed. We present an algorithm to simulate wedge osteotomies in voxel models by adding tetrahedron to brick elements. Applicability of the procedure was tested by performing a parametric study using a tibia model created from computed tomography scans taken in vivo applying individually calculated force conditions. The osteotomy angle largely affected maximum stresses: at 2.5 degrees valgus, the stresses at the medial and lateral tibial plateau were equivalent, while increasing valgus angles reduced medial stresses. The algorithm described here is an improvement of former mesh generation procedures and allows a better representation of the geometry at the osteotomy level. The algorithm can be used for all wedge osteotomies and is not limited to the tibia.Keywords: finite element/osteotomy/voxel/pre-operative planning, simulation, mesh algorithm

  14. Voxel-based model construction from colored tomographic images

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  15. Mister Voxel: 3D internal dosimetry software for nuclear medicine

    International Nuclear Information System (INIS)

    McKay, E.

    1998-01-01

    Full text: Calculation of individual internal dosimetry in nuclear medicine is a complex, multi-stage process. Most often, calculations are biased on the MIRD methodology, which assumes uniform distribution of cumulated activity inside a set of mathematically described internal organs. The MIRD 'reference man' geometry is highly simplified and the dosimetry estimates generated by this method were originally only intended to predict the average dose expected in an exposed population. We have developed a software package for the Macintosh computer ('Mister Voxel') that uses a fast Fourier transform to calculate the 3D distribution of absorbed dose by convolving a 3D dose kernel with a 3D distribution of cumulated activity. This makes it possible to generate dose volume histograms and isodose contours for organs or tumours treated with radiopharmaceuticals, a task not possible using the MIRD technique. In addition to providing 3D convolution, Mister Voxel performs basic image processing functions (image math, filters, cut and paste) and provides a collection of painting tools and simple morphological operators to facilitate the delineation of regions of interest (ROIs) along anatomical boundaries. The package also includes an image registration module with tools for automated or manual registration of 3D data sets. The structure of the package allows ROIs drawn on CT or MRI data to be easily transferred to registered SPECT data. Dose kernels are implemented by plug-in code modules, allowing the user to extend the system's capabilities if required. File import and export capabilities are also extensible

  16. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-09-01

    Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.

  17. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Mark A. Elliott

    2011-09-01

    Full Text Available Echo-planar imaging (EPI in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI. The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repetitions on a 7T Siemens MR scanner (TE/TR = 20/1000 ms, flip angle α = 90°, voxel size 10 × 10 × 10 mm3. Transmitter reference voltage was optimized for the voxel location. Spectral processing of the water signal free induction decay (FID using log-linear regression was used to estimate the T2* change between rest and activation of a functional task. The FID spectrum was filtered with a Gaussian window around the water peak, and log-linear regression was optimized for the particular ROI by adoption of the linearization length. The spectroscopic voxel was positioned on an ROI defined from a real-time fMRI EPI BOLD localizer. Additional online signal processing algorithms performed signal drift removal (exponential moving average, despiking and low-pass filtering (modified Kalman filter and, finally, the dynamic feedback signal normalization. Two functional tasks were used to estimate the sensitivity of the SVPS method compared to BOLD signal changes, namely the primary motor cortex (PMC, left hand finger tapping and visual cortex (VC, blinking checkerboard. Four healthy volunteers performed these tasks and an additional session using real-time signal feedback modulating their activation level of the PMC. Results show that single voxel spectroscopy is able to provide a good and reliable estimation of the BOLD signal changes. Small data size and FID signal processing instead of processing entire brain volumes as well as more information revealed from the

  18. Mechanics of log calibration

    International Nuclear Information System (INIS)

    Waller, W.C.; Cram, M.E.; Hall, J.E.

    1975-01-01

    For any measurement to have meaning, it must be related to generally accepted standard units by a valid and specified system of comparison. To calibrate well-logging tools, sensing systems are designed which produce consistent and repeatable indications over the range for which the tool was intended. The basics of calibration theory, procedures, and calibration record presentations are reviewed. Calibrations for induction, electrical, radioactivity, and sonic logging tools will be discussed. The authors' intent is to provide an understanding of the sources of errors, of the way errors are minimized in the calibration process, and of the significance of changes in recorded calibration data

  19. Calibration-free quantification of interior properties of porous media with x-ray computed tomography

    International Nuclear Information System (INIS)

    Hussein, Esam M.A.; Agbogun, H.M.D.; Al, Tom A.

    2015-01-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. - Highlights: • A method is presented for quantifying x-ray CT data for porous media. • The method neither requires calibration nor segmentation nor thresholding. • We use voxel matching between images of a sample saturated with two distinct solutions. • Method is demonstrated for micro-CT images of dolomite and sandstone samples. • Overall performance compares favorably with a calibration

  20. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  1. WE-D-BRE-06: Quantification of Dose-Response for High Grade Esophagtis Patients Using a Novel Voxel-To-Voxel Method

    International Nuclear Information System (INIS)

    Niedzielski, J; Martel, M; Tucker, S; Gomez, D; Court, L; Yang, J; Briere, T

    2014-01-01

    Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring. Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms

  2. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  3. ORNL calibrations facility

    International Nuclear Information System (INIS)

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  4. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  5. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  6. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Centro Federal de Educacao Tecnologica de Pernambuco, Avenida Professor Luiz Freire 500, CEP 50740-540, Recife, Pernambuco, Brazil and Escola Politecnica, UPE, Rua Benfica 455, CEP 50751-460, Recife, Pernambuco (Brazil); Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU (United Kingdom)

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  7. Calibration of lung counter using a CT model of Torso phantom and Monte Carlo method

    International Nuclear Information System (INIS)

    Zhang Binquan; Ma Jizeng; Yang Duanjie; Liu Liye; Cheng Jianping

    2006-01-01

    Tomography image of a Torso phantom was obtained from CT-Scan. The Torso phantom represents the trunk of an adult man that is 170 cm high and weight of 65 kg. After these images were segmented, cropped, and resized, a 3-dimension voxel phantom was created. The voxel phantom includes more than 2 million voxels, which size was 2.73 mm x 2.73 mm x 3 mm. This model could be used for the calibration of lung counter with Monte Carlo method. On the assumption that radioactive material was homogeneously distributed throughout the lung, counting efficiencies of a HPGe detector in different positions were calculated as Adipose Mass fraction (AMF) was different in the soft tissue in chest. The results showed that counting efficiencies of the lung counter changed up to 67% for 17.5 keV γ ray and 20% for 25 keV γ ray when AMF changed from 0 to 40%. (authors)

  8. Connecting horizon pixels and interior voxels of a black hole

    International Nuclear Information System (INIS)

    Nicolini, Piero; Singleton, Douglas

    2014-01-01

    In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels

  9. Effects of image distortion correction on voxel-based morphometry

    International Nuclear Information System (INIS)

    Goto, Masami; Abe, Osamu; Kabasawa, Hiroyuki

    2012-01-01

    We aimed to show that correcting image distortion significantly affects brain volumetry using voxel-based morphometry (VBM) and to assess whether the processing of distortion correction reduces system dependency. We obtained contiguous sagittal T 1 -weighted images of the brain from 22 healthy participants using 1.5- and 3-tesla magnetic resonance (MR) scanners, preprocessed images using Statistical Parametric Mapping 5, and tested the relation between distortion correction and brain volume using VBM. Local brain volume significantly increased or decreased on corrected images compared with uncorrected images. In addition, the method used to correct image distortion for gradient nonlinearity produced fewer volumetric errors from MR system variation. This is the first VBM study to show more precise volumetry using VBM with corrected images. These results indicate that multi-scanner or multi-site imaging trials require correction for distortion induced by gradient nonlinearity. (author)

  10. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  11. Creation of a voxel phantom of the ICRP reference crab.

    Science.gov (United States)

    Caffrey, E A; Higley, K A

    2013-06-01

    The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Calibration of SAR probes in waveguide at 900 MHz

    International Nuclear Information System (INIS)

    Jokela, K.; Puranen, L.; Hyysalo, P.

    1998-01-01

    The radiation safety tests for hand-held mobile phones require precise calibration of the small electric field probes used for the measurement of SAR in phantoms simulating the human body. In this study a calibration based on a rectangular waveguide was developed for SAR calibrations at 900 MHz

  14. Alderson-Rando phantom 'voxelization' for use in numerical dosimetry

    International Nuclear Information System (INIS)

    Santos, A.M.; Vieira, J.W.

    2008-01-01

    This paper presents the methodology used for creating a voxel phantom from the tomographic physical Alderson-Rando phantom images (HR) and to develop a computer model formed by exposure of the resulting phantom 'voxelization' of AR coupled to the Monte Carlo code EGS4 plus algorithms to simulate radioactive sources in internal dosimetry

  15. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  16. Development of Japanese voxel models and their application to organ dose calculation

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2007-01-01

    Three Japanese voxel (volume pixel) phantoms in supine and upright postures, which are consisted of about 1 mm 3 size voxels, have been developed on the basis of computed tomography (CT) images of healthy Japanese adult male and female volunteers. Their body structures are reproduced more realistically in comparison with most existing voxel phantoms. Organ doses due to internal or external exposures were calculated using the developed phantoms. In estimation of radiation dose from radionuclides incorporated into body, specific absorbed fractions (SAFs) for low energy photon were significantly influenced by the changes in postures. In estimation of organ doses due to external exposures, the doses of some organs of the developed phantom were calculated and were compared with those of a previous Japanese voxel phantom (voxel size: 0.98x0.98x10 mm 3 ) and the reference values of ICRP Publication 74. (author)

  17. Voxel-by-voxel analysis of ECD-brain SPECT can separate penumbra from irreversibly damaged tissue at the acute phase of stroke

    International Nuclear Information System (INIS)

    Darcourt, J.; Migneco, O.; David, O.; Bussiere, F.; Mahagne, M.H.; Dunac, A.; Baron, J.C.

    2002-01-01

    Aim. At the acute phase of ischemic stroke, the target of treatment is still salvageable hypoperfused cerebral tissue; so called penumbra. We tested the possibility of separating on early ECD brain SPECT penumbral voxels (P) from irreversibly damaged damaged tissue (IDT). We used ECD which is not only a perfusion tracer but also a metabolic marker. Materials and methods. We prospectively studied 18 patients who underwent ECD-SPECT within the 12 hours following a first-ever acute middle cerebral artery stroke. Neurological evaluation was performed using the Orgogozo's scale at admission and 3 months later in order to calculate and evolution index (IE%) (Martinez-Vila et al.). SPECT data were obtained using a triple head camera equipped with fan beam collimators one hour after injection of 1000 MBq of 99mTc-ECD. On reconstructed images gray matter voxels were automatically segmented. Contralateral healthy hemisphere was used as reference leading to the identification of 3 cortical voxel types: normal (N-SPECT) above 80%; penumbra (P-SPECT) between 80% and 40% and IDT (IDT-SPECT) below 40%. 10 patients also underwent a T2 weighted 3D MRI study at 3 months. Cortical voxels with hypersignal served as reference for IDT (IDT-MRI) the others were considered normal (N-MRI). SPECT and MRI data were co-registered. Therefore each voxel belonged to one of 6 categories (3 SPECT x 2 MRI). Results. (1) The SPECT thresholds were validated on the MRI subgroup. 99% of the N-SPECT voxels were normal on late MRI. 84% of IDT-SPECT voxels corresponded to IDT-MRI. 89% of P-SPECT voxels were normal on late MRI and 11% corresponded to IDT on late MRI. Other categories of voxels (N-SPECT IDT-MRI and IDT-SPECT N-MRI) represented less than 5%. (2) Percentages of each voxel SPECT type was correlated with the EI% on the entire population (Spearman test). P-SPECT extent correlated with EI% improvement (p<0.001) and IDT-SPECT with EI% worsening (p<0.001). Conclusion. Analysis of ECD cortical

  18. Calibration-free quantification of interior properties of porous media with x-ray computed tomography.

    Science.gov (United States)

    Hussein, Esam M A; Agbogun, H M D; Al, Tom A

    2015-03-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Calibration of Flick standards

    International Nuclear Information System (INIS)

    Thalmann, Ruedi; Spiller, Jürg; Küng, Alain; Jusko, Otto

    2012-01-01

    Flick standards or magnification standards are widely used for an efficient and functional calibration of the sensitivity of form measuring instruments. The results of a recent measurement comparison have shown to be partially unsatisfactory and revealed problems related to the calibration of these standards. In this paper the influence factors for the calibration of Flick standards using roundness measurement instruments are discussed in detail, in particular the bandwidth of the measurement chain, residual form errors of the device under test, profile distortions due to the diameter of the probing element and questions related to the definition of the measurand. The different contributions are estimated using simulations and are experimentally verified. Also alternative methods to calibrate Flick standards are investigated. Finally the practical limitations of Flick standard calibration are shown and the usability of Flick standards both to calibrate the sensitivity of roundness instruments and to check the filter function of such instruments is analysed. (paper)

  20. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  1. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    Science.gov (United States)

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  2. Calibration of gamma cameras for the evaluation of accidental intakes of high-energy photon emitting radionuclides by humans based on urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, A.L.; Lucena, E.A.; Reis, A.A. dos; Souza, W.O.; Dantas, A.L.A.; Dantas, B.M., E-mail: bmdantas@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Dosimetria

    2017-07-01

    The prompt response to emergency situations involving suspicion of intakes of radionuclides requires the use of simple and rapid methods of internal monitoring of the exposed individuals. The use of gamma cameras to estimate intakes and committed doses was investigated by the Centers for Disease Control and Preventions (CDC) of the USA in 2010.The present study aims to develop a calibration protocol for gamma cameras to be applied on internal monitoring based on urine samples to evaluate the incorporation of high-energy photon emitting radionuclides in emergency situations. A gamma camera available in a public hospital located in the city of Rio de Janeiro was calibrated using a standard liquid source of {sup 152}Eu supplied by the LNMRI of the IRD.'Efficiency vs Energy' curves at 10 and 30 cm were obtained. Calibration factors, Minimum Detectable Activities and Minimum Detectable Effective Doses of the gamma camera were calculated for {sup 137}Cs and {sup 60}Co. The gamma camera evaluated in this work presents enough sensitivity to detect activities of such radionuclides at dose levels suitable to assess suspected accidental intakes. (author)

  3. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  4. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  5. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  6. A voxel-based MRI morphometric study of Alzheimer's disease

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Yang Yanhui; Wang Wei; Li Ke; Yan Bin; Shan Baoci

    2005-01-01

    Objective: To assess the diagnostic value of voxel-based Morphometry (VBM) in studying Alzheimer's disease (AD). Methods: Graymatter density were comprehensive assessed by means of VBM on T 1 -weighted MRI volume sets in 19 patients with AD and 15 healthy subjects of similar age and gender ratio, 15 healthy adults. The data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by SPM 99 to generate gray matter density map. Results: Relative to healthy controls, significant clusters of reduced gray matter density were found to affect medial temporal lobe ( hippocampus) (P<0.001). For hippocampus, reduced gray matter density were 1529 in the right and 1281 in the left with right-sided predominance. Moreover, atrophy of right caudate head and left medial thalamus were showed. We demonstrate global asymmetrical cortical atrophy with sparing of the sensorimotor cortex, occipital lobe and cerebellum. Conclusion: The results from VBM are in perfect agreement with those of earlier neuroimaging, which confirmed its value in demonstrating neuroanatomy of AD. VBM, the simple and automatic approach providing a full-brain assessment of AD morphology, has a good clinical perspective. (authors)

  7. DTI Analysis of Presbycusis Using Voxel-Based Analysis.

    Science.gov (United States)

    Ma, W; Li, M; Gao, F; Zhang, X; Shi, L; Yu, L; Zhao, B; Chen, W; Wang, G; Wang, X

    2016-07-14

    Presbycusis is the most common sensory deficit in the aging population. A recent study reported using a DTI-based tractography technique to identify a lack of integrity in a portion of the auditory pathway in patients with presbycusis. The aim of our study was to investigate the white matter pathology of patients with presbycusis by using a voxel-based analysis that is highly sensitive to local intensity changes in DTI data. Fifteen patients with presbycusis and 14 age- and sex-matched healthy controls were scanned on a 3T scanner. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were obtained from the DTI data. Intergroup statistics were implemented on these measurements, which were transformed to Montreal Neurological Institute coordinates by using a nonrigid image registration method called large deformation diffeomorphic metric mapping. Increased axial diffusivity, radial diffusivity, and mean diffusivity and decreased fractional anisotropy were found near the right-side hearing-related areas in patients with presbycusis. Increased radial diffusivity and mean diffusivity were also found near a language-related area (Broca area) in patients with presbycusis. Our findings could be important for exploring reliable imaging evidence of presbycusis and could complement an ROI-based approach. © 2016 American Society of Neuroradiology.

  8. Validation of voxel-based morphometry (VBM) based on MRI

    Science.gov (United States)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  9. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  10. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.

    Science.gov (United States)

    Davis, Tyler; LaRocque, Karen F; Mumford, Jeanette A; Norman, Kenneth A; Wagner, Anthony D; Poldrack, Russell A

    2014-08-15

    Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Multi-voxel decoding and the topography of maintained information during visual working memory

    Directory of Open Access Journals (Sweden)

    Sue-Hyun eLee

    2016-02-01

    Full Text Available The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis that demonstrate decoding of the maintained content in visual cortex, providing support for a ‘sensory recruitment’ model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  12. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory.

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a "sensory recruitment" model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  13. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  14. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Science.gov (United States)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  15. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data

    Science.gov (United States)

    Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.

    2014-06-01

    The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.

  16. Study of the influence of radionuclide biokinetics on in vivo counting using voxel phantoms

    International Nuclear Information System (INIS)

    Lamart, St.

    2008-10-01

    The in vivo measurement is an efficient method to estimate the retention of activity in case of internal contamination. However, it is currently limited by the use of physical phantoms for the calibration, not enabling to reproduce neither the morphology of the measured person nor the actual distribution of the contamination. The current method of calibration therefore leads to significant systematic uncertainties on the quantification of the contamination. To improve the in vivo measurement, the Laboratory of Internal Dose Assessment (LEDI, IRSN) has developed an original numerical calibration method with the OEDIPE software. It is based on voxel phantoms created from the medical images of persons, and associated with the MCNPX Monte Carlo code of particle transport. The first version of this software enabled to model simple homogeneous sources and to better estimate the systematic uncertainties in the lung counting of actinides due to the detector position and to the heterogeneous distribution of activity inside the lungs. However, it was not possible to take into account the dynamic feature, and often heterogeneous distribution between body organs and tissues of the activity. Still, the efficiency of the detection system depends on the distribution of the source of activity. The main purpose of the thesis work is to answer to the question: what is the influence of the biokinetics of the radionuclides on the in vivo counting? To answer it, it was necessary to deeply modify OEDIPE. This new development enabled to model the source of activity more realistically from the reference biokinetic models defined by the ICRP. The first part of the work consisted in developing the numerical tools needed to integrate the biokinetics in OEDIPE. Then, a methodology was developed to quantify its influence on the in vivo counting from the results of simulations. This method was carried out and validated on the model of the in vivo counting system of the LEDI. Finally, the

  17. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    Science.gov (United States)

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  18. Calibration of moisture monitors

    International Nuclear Information System (INIS)

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  19. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...

  20. Topics in Statistical Calibration

    Science.gov (United States)

    2014-03-27

    Natural cubic spline speed di st 110 B.2 The calibrate function The most basic calibration problem, the one often encountered in more advanced ...0040-1706, 1537-2723. A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. McGraw-Hill, Auckland , U.A, 1974. ISBN

  1. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  2. The GERDA calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Froborg, Francis; Tarka, Michael; Bruch, Tobias; Ferella, Alfredo [Physik-Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2012-07-01

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the {sup 228}Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the {sup 228}Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  3. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  4. Cobalt source calibration

    International Nuclear Information System (INIS)

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  5. REKONSTRUKSI OBYEK TIGA DIMENSI DARI GAMBAR DUA DIMENSI MENGGUNAKAN METODE GENERALIZED VOXEL COLORING–LAYERED DEPTH IMAGE

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2008-01-01

    Full Text Available The objective of this research is to develop software which capable to reconstruct 3D object from 2D images as references using Generalized Voxel Coloring - Layered Depth Image method (GVC-LDI. This method reconstruct 3D object using LDI link list as help to find voxels which correspond to the objects based on color. To find the voxels, we calculate the color standard deviation of the pixels which is projected from the object. If the standard deviation is smaller than the threshold, the voxel evaluated as a part of the object. The process repeated for each voxel until it gets all of the voxels which shape the object. The voxels can be drawn to screen to get the photorealistic 3D object that represent the 2D images. In this research, we also compare the result of GVC-LDI and Generalized Voxel Coloring – Image Buffer (GVC-IB which is one of the GVC variant also. Future development of the software is automatic 3D modeling application and real time 3D animation application. Abstract in Bahasa Indonesia : Pada penelitian ini dikembangkan sebuah perangkat lunak untuk merekonstruksi obyek tiga dimensi dari kumpulan gambar dua dimensi dengan menggunakan metode generalized voxel coloring– layered depth image (GVC-LDI. Metode GVC-LDI ini melakukan rekonstruksi dengan bantuan link list LDI guna mencari voxel-voxel yang merupakan bagian dari obyek tiga dimensi berdasarkan warna. Guna penentuan voxel tersebut dilakukan perhitungan dari pixel-pixel yang merupakan proyeksi dari sebuah voxel. Perhitungan dilakukan dengan menggunakan standar deviasi warna untuk menentukan apakah pixel-pixel yang bersesuaian mewakili lokasi obyek yang sama. Apabila standar deviasi warna lebih kecil dari threshold maka dapat dikatakan bahwa voxel tersebut termasuk bagian obyek. Proses ini dilakukan secara berulang untuk semua voxel hingga didapatkan voxel-voxel yang merupakan bagian dari obyek. Voxel tersebut kemudian digambar pada layar monitor sehingga diperoleh hasil berupa

  6. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  7. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    OpenAIRE

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    International audience; The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tra...

  8. Compact radiometric microwave calibrator

    International Nuclear Information System (INIS)

    Fixsen, D. J.; Wollack, E. J.; Kogut, A.; Limon, M.; Mirel, P.; Singal, J.; Fixsen, S. M.

    2006-01-01

    The calibration methods for the ARCADE II instrument are described and the accuracy estimated. The Steelcast coated aluminum cones which comprise the calibrator have a low reflection while maintaining 94% of the absorber volume within 5 mK of the base temperature (modeled). The calibrator demonstrates an absorber with the active part less than one wavelength thick and only marginally larger than the mouth of the largest horn and yet black (less than -40 dB or 0.01% reflection) over five octaves in frequency

  9. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  10. Anatomical correlates of quality of life: evidence from voxel-based morphometry.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sassa, Yuko; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Nagase, Tomomi; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-05-01

    Quality of life (QOL) has been defined in many ways, and these definitions usually emphasize happiness and satisfaction with life. Health-related problems are known to cause lower QOL. However, the neural mechanisms underlying individual differences in QOL measured by questionnaire (QOLMQ) in young healthy subjects are unknown. QOL is essential to our well-being, and investigation of the neural mechanisms underlying QOL in uncompromised subjects is obviously of great scientific and social interest. We used voxel-based morphometry to investigate the association between regional gray matter volume (rGMV) and QOLMQ across the brain in healthy young adults (age, 21.4 ± 1.8 years) men (n = 88) and women (n = 68) in humans. We found significant negative relationships between QOLMQ and rGMV in a region in the left rostrolateral prefrontal cortex and regions in the dorsal part of the anterior cingulate gyrus and contingent cingulate regions. These findings show that structural variations in regions associated with processing of negative emotions such as fear and anger as well as those associated with evaluation of internally generated information are associated with QOLMQ. These findings suggest that these processes might be related to QOLMQ in healthy young adults. Copyright © 2013 Wiley Periodicals, Inc.

  11. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    Science.gov (United States)

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  12. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  13. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  14. BES online calibration system

    International Nuclear Information System (INIS)

    Zhang Bingyun; Li Xiaonan; Zhu Kejun; Zhang Jiawen; Gong Mingyu

    2003-01-01

    We constructed BES (Beijing Spectrometer) online calibration system to ensure the coherence of readout electronic channels due to huge data volume in high energy physics experiment. This paper describes the structure of hardware and software, and its characteristic and function

  15. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  16. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  17. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  18. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  19. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  20. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  1. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  2. Calculation of conversion coefficients for effective dose by using voxel phantoms with defined genus for radiodiagnostic common examinations

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Vieira, J.W.; Loureiro, E.C.M.; Hoff, G.

    2004-01-01

    Patient exposure from radiological examinations is usually quantified in terms of average absorbed dose or equivalent dose to certain radiosensitive organs of the human body. As these quantities cannot be measured in vivo, it is common practice to use physical or computational exposure models, which simulate the exposure to the patient in order to determine not only the quantities of interest (absorbed or equivalent dose), but also at the same time measurable quantities for the exposure conditions given. The ratio between a quantity of interest and a measurable quantity is called a conversion coefficient (CC), which is a function of the source and field parameters (tube voltage, filtration, field size, field position, focus-to-skin distance, etc.), the anatomical properties of the phantom, the elemental composition of relevant body tissues, and the radiation transport method applied. As the effective dose represents a sum over 23 risk-weighted organ and tissue equivalent doses, its determination practically implies the measurement or calculation of a complete distribution of equivalent doses throughout the human body. This task can be resolved most efficiently by means of computational exposure models, which consist of a virtual representation of the human body, also called phantom, connected to a Monte Carlo radiation transport computer code. The recently introduced MAX (Male Adult voXel) and FAXht (Female Adult voXel) head+trunk phantoms have been chosen for this task. With respect to their anatomical properties these phantoms correspond fairly well to the data recommended by the ICRP for the Reference Adult Male and Female. (author)

  3. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de [Clinica Universidad de Navarra, Neurology Department, Pamplona (Spain)

    2015-09-15

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  4. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    International Nuclear Information System (INIS)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier; Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de

    2015-01-01

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  5. Voxel-based morphometry analyses of in-vivo MRI in the aging mouse lemur primate

    Directory of Open Access Journals (Sweden)

    Stephen John Sawiak

    2014-05-01

    Full Text Available Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus is a small primate used as a model of age-related neurodegenerative processes. It is the first nonhuman primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI. These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM. The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13-16, hypothalamus, putamen, thalamus, corpus callosum. Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal, nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.

  6. Localized single voxel 1H MR spectroscopy toward routine clinical use

    International Nuclear Information System (INIS)

    Lee, Jung Hee; Choi, Choong Gon; Kim, Sang Tae; Kim, Jin Suh; Mun, Chi Woong; Suh, Dae Chul; Lim, Tae Hwan; Auh, Young Ho

    1996-01-01

    To evaluate the automated 1 H magnetic resonance spectroscopy ( 1 H-MRS) method for a routine clinical use, various regions of the normal human brain were examined for regional variations, the reproducibility, and the quality control of the spectral data. Localized 1 H-MRS was performed in a GE 1.5T SIGNA MRI/MRS system using the automated method (PROton Brain Exam:PROBE). Six regions of the human brain from normal volunteers (N=25, age=23-65) were examined: Occipital gray matter, parietal white matter, frontal white matter, pons, cerebellum, and basal ganglia region. STEAM was used as the localization method with the following parameters : TE=30 msec, TR=3.0 sec, AVG=48 AVG, NEX=2, Spectral Width (SW)=2500 Hz, Size (SI)=2048 points (2K), and the size of voxel=7-9 ml. The reproducibility and the quality control of the spectral data were evaluated. For the 6 regions, the regional variation by the spectral patterns and the metabolites ratios relative to creatine was well demonstrated. Rates of the auto prescan success and the percentages of obtaining the acceptable quality spectral were high in the parietal white matter, occipital gray matter, and basal ganglia regions, and low in the frontal white matter and pons regions. PROBE is a highly practical as well as reliable method to produce reproducible quality spectra that represent the regional metabolic exam or as an additional series to a routine brain MRI exam, which takes less than 10 minutes for acquisition of one spectrum. In order to obtain good quality spectra, a good quality control scheme of the MR instrument is mandatory

  7. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  8. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  9. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  10. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    Science.gov (United States)

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. VOXEL-BASED APPROACH FOR ESTIMATING URBAN TREE VOLUME FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    C. Vonderach

    2012-07-01

    Full Text Available The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance, climate (increased temperature, reduced humidity and species composition and arrangement (habitus and health status and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height and height of single trees from point clouds of terrestrial laser scanning (TLS. For data acquisition, the trees were scanned with highest scan resolution from several (up to five positions located around the tree. The resulting point clouds (20 to 60 million points are analysed with an algorithm based on voxel (volume elements structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the

  12. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Uribe-Sanchez, Andres F.; Li, Nan; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly

  13. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca, M.A.; Torres, L.A.; Cornejo, N.; Martin, G.

    2008-01-01

    Full text: MIRD formalism at voxel level has been suggested as an optional methodology to perform internal radiation dosimetry calculation during internal radiation therapy in Nuclear Medicine. Voxel S values for Y 90 , 131 I, 32 P, 99m Tc and 89 Sr have been published to different sizes. Currently, 188 Re has been proposed as a promising radionuclide for therapy due to its physical features and availability from generators. The main objective of this work was to estimate the voxel S values for 188 Re at cubical geometry using the MCNP-4C code for the simulations of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxel were estimated and reported for 188 Re and Y 90 . A comparison of voxel S values computed with the MCNP code and the data reported in MIRD Pamphlet 17 for 90 Y was performed in order to evaluate our results. (author)

  14. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency

    International Nuclear Information System (INIS)

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, Rene; Beaulieu, Luc

    2006-01-01

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation

  15. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X.

    2011-01-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm 3 and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  16. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  17. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari

    2011-03-01

    Computed tomography (CT)-based measures of skeletal geometry and material properties have been widely used to develop finite element (FE) models of bony structures. However, in the case of thin bone structures, the ability to develop FE models with accurate geometry derived from clinical CT data presents a challenge due to the thinness of the bone and the limited resolution of the imaging devices. The purpose of this study was to quantify the impact of voxel size on the thickness and intensity values of thin bone structure measurements and to assess the effect of voxel size on strains through FE modeling. Cortical bone thickness and material properties in five thin bone specimens were quantified at voxel sizes ranging from 16.4 to 488 μm. The measurements derived from large voxel size scans showed large increases in cortical thickness (61.9-252.2%) and large decreases in scan intensity (12.9-49.5%). Maximum principal strains from FE models generated using scans at 488 μm were decreased as compared to strains generated at 16.4 μm voxel size (8.6-64.2%). A higher level of significance was found in comparing intensity (p = 0.0001) vs. thickness (p = 0.005) to strain measurements. These findings have implications in developing methods to generate accurate FE models to predict the biomechanical behavior of thin bone structures.

  18. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  19. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X., E-mail: lboia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Salmon Junior, Helio A. [Clinicas Oncologicas Integradas (COI), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm{sup 3} and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  20. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM study.

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka

    Full Text Available Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  1. Ibis ground calibration

    International Nuclear Information System (INIS)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T.; Bazzano, A.; Del Santo, M.; Ubertini, P.; Blondel, C.; Laurent, P.; Lebrun, F.; Di Cocco, G.; Malaguti, E.; Gabriele, M.; La Rosa, G.; Segreto, A.; Quadrini, E.; Volkmer, R.

    2003-01-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system

  2. Gamma counter calibration system

    International Nuclear Information System (INIS)

    1977-01-01

    A method and apparatus are described for the calibration of a gamma radiation measurement instrument to be used over any of a number of different absolute energy ranges. The method includes the steps of adjusting the overall signal gain associated with pulses which are derived from detected gamma rays, until the instrument is calibrated for a particular absolute energy range; then storing parameter settings corresponding to the adjusted overall signal gain, and repeating the process for other desired absolute energy ranges. The stored settings can be subsequently retrieved and reapplied so that test measurements can be made using a selected one of the absolute energy ranges. Means are provided for adjusting the overall signal gain and a specific technique is disclosed for making coarse, then fine adjustments to the signal gain, for rapid convergence of the required calibration settings. (C.F.)

  3. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    Science.gov (United States)

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  4. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  5. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  6. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  7. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  8. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca Perez, Marco Antonio; Torres Aroche, Leonel Alberto; Cornejo, Nestor; Martin Hernandez, Guido

    2003-01-01

    The main objective of this work was estimate the voxels S values for 188 Re at cubical geometry using the MCNP-4C code for the simulation of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxels were estimated and reported for 188 Re and Y 90 . A comparison of voxels S values computed with the MCNP code the data reported in MIRD pamphlet 17 for 90 Y was performed in order to evaluate our results

  9. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  10. Construction of Korean adult voxel phantoms for radiation dosimetry and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik

    2002-08-15

    Although contribution of the MIRD-type mathematical anthropomorphic phantoms to computational radiation dosimetry, especially in determining the effective dose to the exposed personnel, is very significant, there remain some questions on possible deviation in the resulting dosimetric quantities from the true values. This is particularly the case for those organ or tissues having complicated geometry difficult to model with simple geometrical body elements. As an alternative approach to resolve the problem, there have been efforts to use voxel phantoms, which can very precisely describe both the external shape and the internal organs by virtue of fast advances in medical imaging technology as well as in computing power. In this study, Korean adult male and female voxel phantoms were constructed by processing whole-body MR images of healthy volunteers who belong to middle group of Korean in height and weight. Organs and tissues on tomographic images were manually segmented and indexed using the graphic software PL-400 . Due to limited resolution of the raw MR images, voxels of rather large size, 2 mmx2 mmx8 mm for the woman and 2mmx2mmx10mm for the man, were used. The resulting male and female voxel phantoms were named KRMAN and KRWOMAN, respectively. To assess utility of the voxel phatoms, calculations were carried out with the Monte Carlo code MCNP4B for two illustrative problems. A program VOXELMAKER1.0 was developed to convert the voxel phantom data into MCNP geometry input format. In the first example, organ equivalent doses and effective doses were evaluated for phantoms in broad parallel photon fields of different energies and directions and were compared to corresponding values given in ICRP 74 which were derived with the MIRD-type phantoms. No significant deviations between MIRD and voxel phantoms were found in the effective doses. Significant differences up to around factor of 2, however, were observed in organ equivalent doses for some organs including

  11. 21 CFR 864.8175 - Calibrator for platelet counting.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for platelet counting. 864.8175 Section 864.8175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8175 Calibrator for...

  12. 21 CFR 864.8150 - Calibrator for cell indices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for cell indices. 864.8150 Section 864.8150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell...

  13. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    International Nuclear Information System (INIS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-01-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes. (paper)

  14. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.

    Science.gov (United States)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-07

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  15. The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.

    Science.gov (United States)

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J

    2018-07-01

    This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  17. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  18. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    Bremond, J.; Da Costa, D.; Calvet, A.; Vieuxmaire, C.

    1966-01-01

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  19. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Anwar, K.; Arshed, W.; Mubarak, M.A.; Orfi, S.D.

    1984-08-01

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  20. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Gledhill, M.

    1996-01-01

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  1. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  2. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  3. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  4. Influence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabrication

    International Nuclear Information System (INIS)

    Li Wei; Cao Tianxiang; Zhai Zhaohui; Yu Xuanyi; Zhang Xinzheng; Xu Jingjun

    2013-01-01

    The relationship between the profile of the structures obtained by multiphoton polymerization and the optical parameters of nanofabrication systems has been studied theoretically for a multipulse scheme. We find that the profile of sub-wavelength structures is greatly affected by the evanescent waves affect. Not only is the photocured polymer voxel affected by the beam profile, but the beam propagation behavior is influenced by the photocured polymer voxel. This gives us a new view of matter–light interactions in multipulse polymerization process, which is useful to the accurate control of the nanofabrication profile and the selection of new nanofabrication materials. (paper)

  5. A generalization of voxel-wise procedures for highdimensional statistical inference using ridge regression

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Cardenas, Valerie A.; Larsen, Rasmus

    2008-01-01

    regression to address this issue, allowing for a gradual introduction of correlation information into the model. We make the connections between ridge regression and voxel-wise procedures explicit and discuss relations to other statistical methods. Results are given on an in-vivo data set of deformation......Whole-brain morphometry denotes a group of methods with the aim of relating clinical and cognitive measurements to regions of the brain. Typically, such methods require the statistical analysis of a data set with many variables (voxels and exogenous variables) paired with few observations (subjects...

  6. High performance cone-beam spiral backprojection with voxel-specific weighting

    International Nuclear Information System (INIS)

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2009-01-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 10 12 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 x 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  7. High performance cone-beam spiral backprojection with voxel-specific weighting

    Science.gov (United States)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  8. Hitchhiker'S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Scott Quadrelli

    2016-01-01

    Full Text Available Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS. In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.

  9. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  10. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  11. Mars 2020 Rover SHERLOC Calibration Target

    Science.gov (United States)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  12. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  13. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  14. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  15. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    International Nuclear Information System (INIS)

    Schlattl, H; Zankl, M; Petoussi-Henss, N

    2007-01-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360 deg. rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%

  16. A radioactive seed implant on a rabbit's liver following a voxel model representation for dosimetric proposals

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio P.R.; Andrade, Joao Paulo Lopes de; Costa, Igor Temponi; Teixeira, Cleuza H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg

    2005-07-01

    Animal models have been used in experimentation with ionizing radiation. The evaluation of the energy absorbed per unit tissue mass in vivo transported by nuclear particles is a task to be performed before experimentation. Stochastic or deterministic methodology can be applied, however the dosimetric protocols applied in radiotherapy center cannot be applied directly due to the inherent small geometry and chemical composition of the animal distinct from human. The present article addresses a method in development that will predict the dose distribution into the rabbit thorax based on the solution of the transport phenomena in a voxel model. The model will be applied to simulate a seed implant experiment on a rabbit. Herein, the construction of the three-dimensional voxel model anthropomorphic -anthropometrics to the rabbit is presented. The model is assembling from a set of computer tomography of the rabbit. The computational phantom of the thorax starts at the digitalisation of the CT images, tissue definition, and color image representation of each tissue and organ. The chemical composition and mass density of each tissue is evaluated as similar date presented by ICRU-44. To treat the images, a code namely SISCODES, developed in house, was used. The in vivo experiment that will be simulated is also described. That is a implant of five seeds of 1.6x2 mm performed in a rabbit's liver. The perspective of this work is the application of the model in dosimetric studies predicting the dose distribution around the seed's implanted in vivo experiments. (author)

  17. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    Science.gov (United States)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  18. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  19. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  20. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  1. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  2. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  3. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study

    NARCIS (Netherlands)

    Petit, S.F.; Dekker, A.L.A.J.; Seigneuric, R.; Murrer, L.H.P.; Riel, van N.A.W.; Nordsmark, M.; Overgaard, J.; Lambin, Ph.; Wouters, B.G.

    2009-01-01

    The purpose of this study was to increase the potential of dose redistribution by incorporating estimates of oxygen heterogeneity within imaging voxels for optimal dose determination. Cellular oxygen tension (pO2) distributions were estimated for imaging-size-based voxels by solving oxygen

  4. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  5. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  6. Calibration of hydrometers

    Science.gov (United States)

    Lorefice, Salvatore; Malengo, Andrea

    2006-10-01

    After a brief description of the different methods employed in periodic calibration of hydrometers used in most cases to measure the density of liquids in the range between 500 kg m-3 and 2000 kg m-3, particular emphasis is given to the multipoint procedure based on hydrostatic weighing, known as well as Cuckow's method. The features of the calibration apparatus and the procedure used at the INRiM (formerly IMGC-CNR) density laboratory have been considered to assess all relevant contributions involved in the calibration of different kinds of hydrometers. The uncertainty is strongly dependent on the kind of hydrometer; in particular, the results highlight the importance of the density of the reference buoyant liquid, the temperature of calibration and the skill of operator in the reading of the scale in the whole assessment of the uncertainty. It is also interesting to realize that for high-resolution hydrometers (division of 0.1 kg m-3), the uncertainty contribution of the density of the reference liquid is the main source of the total uncertainty, but its importance falls under about 50% for hydrometers with a division of 0.5 kg m-3 and becomes somewhat negligible for hydrometers with a division of 1 kg m-3, for which the reading uncertainty is the predominant part of the total uncertainty. At present the best INRiM result is obtained with commercially available hydrometers having a scale division of 0.1 kg m-3, for which the relative uncertainty is about 12 × 10-6.

  7. Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments

    NARCIS (Netherlands)

    Maljers, D.; Stafleu, J.; Meulen, M.J. van der; Dambrink, R.M.

    2015-01-01

    Aggregate resource assessments, derived from three subsequent generations of voxel models, were compared in a qualitative way to illustrate and discuss modelling progress. We compared the models in terms of both methodology and usability. All three models were produced by the Geological Survey of

  8. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  9. Two-tensor streamline tractography through white matter intra-voxel fiber crossings

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Kindlmann, G; O'Donnell, L

    2008-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we p...

  10. Light regimes in Populus plantations using the Voxel-based Light Interception Model

    NARCIS (Netherlands)

    Van der Zande, D.; Dieussart, K.; Stuckens, J.; Verstraeten, W.W.; Coppin, P.

    2011-01-01

    Three-dimensional light interception by three uniform Populus canopies was studied using the Voxel-based Light Interception Model (VLIM) in combination with ground-based Light Detection and Ranging (LiDAR) measurements. As the VLIM was developed and validated in a virtual environment to ensure

  11. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    International Nuclear Information System (INIS)

    Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.

    2004-01-01

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed

  12. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    Radua, J.; Grau, M.; van den Heuvel, O.A.; Thiebaut de Schotten, M.; Stein, D.J.; Canales-Rodriguez, E.J.; Catani, M.; Mataix-Cols, D.

    2014-01-01

    White matter (WM) abnormalities have long been suspected in obsessive-compulsive disorder (OCD) but the available evidence has been inconsistent. We conducted the first multimodal meta-analysis of WM volume (WMV) and fractional anisotropy (FA) studies in OCD. All voxel-wise studies comparing WMV or

  13. Dose conversion coefficients calculated using a series of adult Japanese voxel phantoms against external photon exposure

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2008-10-01

    This report presents a complete set of conversion coefficients of organ doses and effective doses calculated for external photon exposure using five Japanese adult voxel phantoms developed at the Japan Atomic Energy Agency (JAEA). At the JAEA, high-resolution Japanese voxel phantoms have been developed to clarify the variation of organ doses due to the anatomical characteristics of Japanese, and three male phantoms (JM, JM2 and Otoko) and two female phantoms (JF and Onago) have been constructed up to now. The conversion coefficients of organ doses and effective doses for the five voxel phantoms have been calculated for six kinds of idealized irradiation geometries from monoenergetic photons ranging from 0.01 to 10 MeV using EGS4, a Monte Carlo code for the simulation of coupled electron-photon transport. The dose conversion coefficients are given as absorbed dose and effective dose per unit air-kerma free-in-air, and are presented in tables and figures. The calculated dose conversion coefficients are compared with those of voxel phantoms based on the Caucasian and the recommended values in ICRP74 in order to discuss (1) variation of organ dose due to the body size and individual anatomy, such as position and shape of organs, and (2) effect of posture on organ doses. The present report provides valuable data to study the influence of the body characteristics of Japanese upon the organ doses and to discuss developing reference Japanese and Asian phantoms. (author)

  14. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  15. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  16. An eye model for computational dosimetry using a multi-scale voxel phantom

    International Nuclear Information System (INIS)

    Caracappa, P.F.; Rhodes, A.; Fiedler, D.

    2013-01-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. When the Lattice Overlay method, the simpler of the two to define, is utilized, the computational penalty in terms of speed is noticeable and the figure of merit for the eye dose tally decreases by as much as a factor of two. When the Voxel Substitution method is applied, the penalty in speed is nearly trivial and the impact on the tally figure of merit is comparatively smaller. The origin of this difference in the code behavior may warrant further investigation

  17. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  18. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  19. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    Fan, Xing; Wang, Yinyan; Wang, Kai; Ma, Jun; Li, Shaowu; Liu, Shuai; Liu, Yong; Jiang, Tao

    2016-01-01

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  20. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bottigli, U. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Sezione INFN di Cagliari (Italy); Brunetti, A. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Golosio, B. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy) and Sezione INFN di Cagliari (Italy)]. E-mail: golosio@uniss.it; Oliva, P. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Stumbo, S. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Vincze, L. [Department of Chemistry, University of Antwerp (Belgium); Randaccio, P. [Dipartimento di Fisica dell' Universita di Cagliari and Sezione INFN di Cagliari (Italy); Bleuet, P. [European Synchrotron Radiation Facility, Grenoble (France); Simionovici, A. [European Synchrotron Radiation Facility, Grenoble (France); Somogyi, A. [European Synchrotron Radiation Facility, Grenoble (France)

    2004-10-08

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed.

  1. Observation models in radiocarbon calibration

    International Nuclear Information System (INIS)

    Jones, M.D.; Nicholls, G.K.

    2001-01-01

    The observation model underlying any calibration process dictates the precise mathematical details of the calibration calculations. Accordingly it is important that an appropriate observation model is used. Here this is illustrated with reference to the use of reservoir offsets where the standard calibration approach is based on a different model to that which the practitioners clearly believe is being applied. This sort of error can give rise to significantly erroneous calibration results. (author). 12 refs., 1 fig

  2. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  3. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ghezzehej, T.

    2004-01-01

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  4. Giga-voxel computational morphogenesis for structural design

    DEFF Research Database (Denmark)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan Stefanov

    2017-01-01

    In the design of industrial products ranging from hearing aidsto automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer...... aeroplane wing designs, which translates into are duction in fuel consumption of about 40–200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems3, antennas4,nano-optics5 and micro-systems6,7...

  5. Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint

    Science.gov (United States)

    Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.

    2017-09-01

    For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.

  6. Variability of average SUV from several hottest voxels is lower than that of SUVmax and SUVpeak

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, E. [CHU de Bordeaux, Service de Medecine Nucleaire, Hopital du Haut-Leveque, Pessac (France); Universite de Bordeaux 2, Centre de Recherche Cardio-Thoracique, Bordeaux (France); INSERM U 1045, Centre de Recherche Cardio-Thoracique, Bordeaux (France); Lamare, F.; Clermont, H. de [CHU de Bordeaux, Service de Medecine Nucleaire, Hopital du Haut-Leveque, Pessac (France); Burger, I.A. [University Hospital of Zurich, Division of Nuclear Medicine, Department Medical Radiology, Zurich (Switzerland); Marthan, R. [Universite de Bordeaux 2, Centre de Recherche Cardio-Thoracique, Bordeaux (France); INSERM U 1045, Centre de Recherche Cardio-Thoracique, Bordeaux (France)

    2014-08-15

    To assess variability of the average standard uptake value (SUV) computed by varying the number of hottest voxels within an {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG)-positive lesion. This SUV metric was compared with the maximal SUV (SUV{sub max}: the hottest voxel) and peak SUV (SUV{sub peak}: SUV{sub max} and its 26 neighbouring voxels). Twelve lung cancer patients (20 lesions) were analysed using PET dynamic acquisition involving ten successive 2.5-min frames. In each frame and lesion, average SUV obtained from the N = 5, 10, 15, 20, 25 or 30 hottest voxels (SUV{sub max-N}){sub ,} SUV{sub max} and SUV{sub peak} were assessed. The relative standard deviations (SDrs) from ten frames were calculated for each SUV metric and lesion, yielding the mean relative SD from 20 lesions for each SUV metric (SDr{sub N}, SDr{sub max} and SDr{sub peak}), and hence relative measurement error and repeatability (MEr-R). For each N, SDr{sub N} was significantly lower than SDr{sub max} and SDr{sub peak}. SDr{sub N} correlated strongly with N: 6.471 x N{sup -0.103} (r = 0.994; P < 0.01). MEr-R of SUV{sub max-30} was 8.94-12.63 % (95 % CL), versus 13.86-19.59 % and 13.41-18.95 % for SUV{sub max} and SUV{sub peak} respectively. Variability of SUV{sub max-N} is significantly lower than for SUV{sub max} and SUV{sub peak}. Further prospective studies should be performed to determine the optimal total hottest volume, as voxel volume may depend on the PET system. (orig.)

  7. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    International Nuclear Information System (INIS)

    Mohy-ud-Din, Hassan; Rahmim, Arman; Lodge, Martin A

    2015-01-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82 Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. (paper)

  8. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan...... reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good...... agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual...

  9. Calibration of triaxial fluxgate gradiometer

    International Nuclear Information System (INIS)

    Vcelak, Jan

    2006-01-01

    The description of simple and fast calibration procedures used for double-probe triaxial fluxgate gradiometer is provided in this paper. The calibration procedure consists of three basic steps. In the first step both probes are calibrated independently in order to reach constant total field reading in every position. Both probes are numerically aligned in the second step in order that the gradient reading is zero in homogenous magnetic field. The third step consists of periodic drift calibration during measurement. The results and detailed description of each calibration step are presented and discussed in the paper. The gradiometer is finally verified during the detection of the metal object in the measuring grid

  10. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  11. Development and application of anthropomorphic voxel phantom of the head for in vivo measurement.

    Science.gov (United States)

    Vrba, T

    2007-01-01

    The in vivo measurement of the activity deposited in the skeleton is a very useful source of information on human internal contaminations with transuranic elements, e.g. americium 241, especially for long time periods after intake. Measurements are performed on the skull or the larger joints such as the knee or elbow. The paper deals with the construction of an anthropomorphic numerical phantom based on CT scans, its potential for calibration and the estimation of the uncertainties of the detection system. The density of bones, activity distribution and position of the detectors were changed in individual simulations in order to estimate their effects on the result of the measurement. The results from simulations with the numerical phantom were compared with the results of physical phantoms.

  12. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  13. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-01

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for 124I and 18F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  14. The CHEOPS calibration bench

    Science.gov (United States)

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of < 2 arcsec rms. This relatively modest pointing performance makes high quality flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  15. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  16. Radionuclide calibrators performance evaluation

    International Nuclear Information System (INIS)

    Mora Ramirez, E.; Zeledon Fonseca, P.; Jimenez Cordero, M.

    2008-01-01

    Radionuclide calibrators are used to estimate accurately activity prior to administration to a patient, so it is very important that this equipment meets its performance requirements. The purpose of this paper is to compare the commercially available 'Calicheck' (Calcorp. Inc), used to assess linearity, versus the well-known source decay method, and also to show our results after performing several recommended quality control tests. The parameters that we wanted to evaluate were carried on using the Capintec CRC-15R and CRC-15 β radionuclide calibrators. The evaluated tests were: high voltage, display, zero adjust, background, reproducibility, source constancy, accuracy, precision and linearity. The first six tests were evaluated on the daily practice, here we analyzed the 2007 recorded data; and the last three were evaluated once a year. During the daily evaluation both calibrators performance were satisfactory comparing with the manufacture's requirements. The accuracy test show result within the ± 10% allowed for a field instrument. Precision performance is within the ± 1 % allowed. On the other hand, the linearity test shows that using the source decay method the relative coefficient is 0.9998, for both equipment and using the Calicheck the relative coefficient is 0.997. However, looking the percentage of error, during the 'Calicheck' test, its range goes from 0.0 % up to -25.35%, and using the source decay method, the range goes from 0.0 % up to -31.05 %, taking into account both instruments. Checking the 'Calicheck' results we can see that the results varying randomly, but using the source decay method the percentage of error increase as the source activity decrease. We conclude that both devices meet its manufactures requirements, in the case of the linearity using the decay method, decreasing the activity source, increasing the percentage of error, this may happen because of the equipment age. (author)

  17. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  18. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    Science.gov (United States)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  19. A software to digital image processing to be used in the voxel phantom development.

    Science.gov (United States)

    Vieira, J W; Lima, F R A

    2009-11-15

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image

  20. Strategies for improving the Voxel-based statistical analysis for animal PET studies: assessment of cerebral glucose metabolism in cat deafness model

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Kang, Hye Jin; Im, Ki Chun; Moon, Dae Hyuk; Lim, Sang Moo; Oh, Seung Ha; Lee, Dong Soo

    2007-01-01

    In imaging studies of the human brain, voxel-based statistical analysis method was widely used, since these methods were originally developed for the analysis of the human brain data, they are not optimal for the animal brain data. The aim of this study is to optimize the procedures for the 3D voxel-based statistical analysis of cat FDG PET brain images. A microPET Focus 120 scanner was used. Eight cats underwent FDG PET scans twice before and after inducing the deafness. Only the brain and adjacent regions were extracted from each data set by manual masking. Individual PET image at normal and deaf state was realigned to each other to remove the confounding effects by the different spatial normalization parameters on the results of statistical analyses. Distance between the sampling points on the reference image and kernel size of Gaussian filter applied to the images before estimating the realignment parameters were adjusted to 0.5 mm and 2 mm. Both data was then spatial normalized onto study-specific cat brain template. Spatially normalized PET data were smoothed and voxel-based paired t-test was performed. Cerebral glucose metabolism decreased significantly after the loss of hearing capability in parietal lobes, postcentral gyri, STG, MTG, lTG, and IC at both hemisphere and left SC (FDR corrected P < 0.05, k=50). Cerebral glucose metabolism in deaf cats was found to be significantly higher than in controls in the right cingulate (FDR corrected P < 0.05, k=50). The ROI analysis also showed significant reduction of glucose metabolism in the same areas as in the SPM analysis, except for some regions (P < 0.05). Method for the voxel-based analysis of cat brain PET data was optimized for analysis of cat brain PET. This result was also confirmed by ROI analysis. The results obtained demonstrated the high localization accuracy and specificity of the developed method, and were found to be useful for examining cerebral glucose metabolism in a cat cortical deafness model

  1. Strategies for improving the Voxel-based statistical analysis for animal PET studies: assessment of cerebral glucose metabolism in cat deafness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Kang, Hye Jin; Im, Ki Chun; Moon, Dae Hyuk; Lim, Sang Moo; Oh, Seung Ha; Lee, Dong Soo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    In imaging studies of the human brain, voxel-based statistical analysis method was widely used, since these methods were originally developed for the analysis of the human brain data, they are not optimal for the animal brain data. The aim of this study is to optimize the procedures for the 3D voxel-based statistical analysis of cat FDG PET brain images. A microPET Focus 120 scanner was used. Eight cats underwent FDG PET scans twice before and after inducing the deafness. Only the brain and adjacent regions were extracted from each data set by manual masking. Individual PET image at normal and deaf state was realigned to each other to remove the confounding effects by the different spatial normalization parameters on the results of statistical analyses. Distance between the sampling points on the reference image and kernel size of Gaussian filter applied to the images before estimating the realignment parameters were adjusted to 0.5 mm and 2 mm. Both data was then spatial normalized onto study-specific cat brain template. Spatially normalized PET data were smoothed and voxel-based paired t-test was performed. Cerebral glucose metabolism decreased significantly after the loss of hearing capability in parietal lobes, postcentral gyri, STG, MTG, lTG, and IC at both hemisphere and left SC (FDR corrected P < 0.05, k=50). Cerebral glucose metabolism in deaf cats was found to be significantly higher than in controls in the right cingulate (FDR corrected P < 0.05, k=50). The ROI analysis also showed significant reduction of glucose metabolism in the same areas as in the SPM analysis, except for some regions (P < 0.05). Method for the voxel-based analysis of cat brain PET data was optimized for analysis of cat brain PET. This result was also confirmed by ROI analysis. The results obtained demonstrated the high localization accuracy and specificity of the developed method, and were found to be useful for examining cerebral glucose metabolism in a cat cortical deafness model.

  2. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  3. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  4. A Simple Accelerometer Calibrator

    International Nuclear Information System (INIS)

    Salam, R A; Islamy, M R F; Khairurrijal; Munir, M M; Latief, H; Irsyam, M

    2016-01-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. (paper)

  5. Traceable calibration of impedance heads and artificial mastoids

    International Nuclear Information System (INIS)

    Scott, D A; Dickinson, L P; Bell, T J

    2015-01-01

    Artificial mastoids are devices which simulate the mechanical characteristics of the human head, and in particular of the bony structure behind the ear. They are an essential tool in the calibration of bone-conduction hearing aids and audiometers. With the emergence of different types of artificial mastoids in the market, and the realisation that the visco-elastic part of these instruments changes over time, the development of a method of traceable calibration of these devices without relying on commercial software has become important for national metrology institutes. This paper describes commercially available calibration methods, and the development of a traceable calibration method including the traceable calibration of the impedance head used to measure the mechanical impedance of the artificial mastoid. (paper)

  6. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    International Nuclear Information System (INIS)

    Wang Zhiqun; Guo Xiaojuan; Qi Zhigang; Yao Li; Li Kuncheng

    2010-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  7. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  8. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  9. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  10. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  11. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  12. Optimization of digital chest radiography using computer modeling and voxels phantoms

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    The purpose of this work is to use the Monte Carlo code MCNPX and the Female Adult voxel (FAX) and Male Adult voxel (MAX) phantoms to investigate how the dose and image quality in digital chest radiography vary with tube voltage (70-150 kV), anti-scatter methods (grid and air gap) and gender of the patient. The effective dose was calculated by ICRP60 and image quality was quantified by calculating the signal-difference-to-noise ratio for pathological details (calcifications) positioned at different locations in the anatomy. Calculated quantities were normalized to a fixed value of air kerma (5 μGy) at the automatic exposure control chambers. The results obtained in this work show that the air gap technique and lower tube voltages provide an increase in the digital image quality. Furthermore, this study has also shown that the detection of pathological details vary with the gender of the patient. (author)

  13. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...

  14. Development of portable flow calibrator

    International Nuclear Information System (INIS)

    Akiyama, Kiyomitsu; Iijima, Nobuo

    1995-01-01

    In the nuclear facilities, air sniffer system is often utilized to evaluate atmospheric concentration of radioactivity in the working environment. The system collects airborne dust on the filter during some sampling period. In this method, total air flow during the sampling period is an important parameter to evaluate the radioactivity concentration correctly. Therefore, calibration for the flow meter of air sniffer system must be done periodically according to Japan Industry Standards (JIS). As we have had to available device to calibrate the flow meter in the working area, we had to remove the flow meters from the installed place and carry them to another place where calibration can be made. This work required a great deal of labor. Now we have developed a portable flow calibrator for air sniffer system which enables us to make in-site calibration of the flow meter in the working area more easily. This report describes the outline of portable flow calibrator and it's experimental results. (author)

  15. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    Science.gov (United States)

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  16. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    Science.gov (United States)

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.

    Science.gov (United States)

    Patriat, Rémi; Molloy, Erin K; Birn, Rasmus M

    2015-11-01

    Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.

  18. Voxel-wise prostate cell density prediction using multiparametric magnetic resonance imaging and machine learning.

    Science.gov (United States)

    Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette

    2018-04-26

    There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.

  19. Synthetic digital radiographs using exposure computer models of Voxels / EGS4 Phantoms

    International Nuclear Information System (INIS)

    Kenned, Roberto; Vieira, Jose W.; Lima, Fernando R.A.; Loureiro, Eduardo

    2008-01-01

    The objective of this work is to produce synthetic digital radiographs from synthetic phantoms with the use of a Computational Model of Exposition (MCE). The literature explains a model consisted on a phantom, a Monte Carlo code and an algorithm of a radioactive source. In this work it was used the FAX phantom (Female Adult voXel), besides the EGS4 system code Eletron Shower-range version 4) and an external source, similar to that used in diagnostic radiology. The implementation of MCE creates files with information on external energy deposited in the voxels of fantoma used, here called EnergiaPorVoxel.dat. These files along with the targeted phantom (fax.sgi) worked as data entry for the DIP software (Digital Imaging Processing) to build the synthetic phantoms based on energy and the effective dose. This way you can save each slice that is the stack of pictures of these phantoms synthetics, which have been called synthetic digital radiography. Using this, it is possible to use techniques of emphasis in space to increase the contrast or elineate contours between organs and tissues. The practical use of these images is not only to allow a planning of examinations performed in clinics and hospitals and reducing unnecessary exposure to patients by error of radiographic techniques. (author)

  20. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    Science.gov (United States)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  1. Quality Management and Calibration

    Science.gov (United States)

    Merkus, Henk G.

    Good specification of a product’s performance requires adequate characterization of relevant properties. Particulate products are usually characterized by some PSD, shape or porosity parameter(s). For proper characterization, adequate sampling, dispersion, and measurement procedures should be available or developed and skilful personnel should use appropriate, well-calibrated/qualified equipment. The characterization should be executed, in agreement with customers, in a wellorganized laboratory. All related aspects should be laid down in a quality handbook. The laboratory should provide proof for its capability to perform the characterization of stated products and/or reference materials within stated confidence limits. This can be done either by internal validation and audits or by external GLP accreditation.

  2. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  3. Calibration of Nanopositioning Stages

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  4. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  5. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  6. BXS Re-calibration

    International Nuclear Information System (INIS)

    Welch, J.

    2010-01-01

    Early in the commissioning it was noticed by Cecile Limborg that the calibration of the BXS spectrometer magnet seemed to be different from the strength of the BX01/BX02 magnets. First the BX01/BX02 currents were adjusted to 135 MeV and the beam energy was adjusted to make the horizontal orbit flat. Then BX01/BX02 magnets were switched off and BXS was adjusted to make the horizontal orbit in the spectrometer line flat, without changing the energy of the beam. The result was that about 140-141 MeV were required on the BXS magnet. This measurement was repeated several times by others with the same results. It was not clear what was causing the error: magnet strength or layout. A position error of about 19 mm of the BXS magnet could explain the difference. Because there was a significant misalignment of the vacuum chamber in the BXS line, the alignment of the whole spectrometer line was checked. The vacuum chamber was corrected, but the magnets were found to be in the proper alignment. So we were left with one (or conceivably two) magnet calibration errors. Because BXS is a wedged shaped magnet, the bend angle depends on the horizontal position of the incoming beam. As mentioned, an offset of the beam position of 19 mm would increase or decrease the bend angle roughly by the ratio of 135/141. The figure of 19 mm is special and caused a considerable confusion during the design and measurement of the BXS magnet. This is best illustrated in Figure 1 which was taken out of the BXS Traveler document. The distance between the horizontal midplanes of the poles and the apex of the beam path was chosen to be 19 mm so the beam is close to the good field region throughout its entire path. Thus it seemed possible that there was an error that resulted in the beam not being on this trajectory, or conversely, that the magnetic measurements were done on the wrong trajectory and the magnet was then mis-calibrated. Mechanical measurements of the vacuum chamber made in the tunnel

  7. Automation of the Calibration of Reference Dosimeters Used in Radiotherapy

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2013-01-01

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standard Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since these laboratories disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. These laboratories follow IAEA/WHO guidelines for calibration procedures, often being current and charge measurements described in these guidelines a tedious task. However, these measurements are usually done using modern electrometers which are equipped with a RS-232 interface that allows instrument control from a PC. This paper presents the design and employment of an automated system aimed to the measurements of the radiotherapy dosimeters calibration process for Cobalt-60 gamma rays. A software was developed using Lab View, in order to achieve the acquisition of the charge values measured, calculation of the calibration coefficient and issue of a calibration certificate. A primary data report file is filled and stored in the PC's hard disk. By using this software tool, a better control over the calibration process is achieved, it reduces the need for human intervention and it also reduces the exposure of the laboratory staff. The automated system has been used for the calibration of reference dosimeters used in radiotherapy at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene (Author)

  8. Exposure-rate calibration using large-area calibration pads

    International Nuclear Information System (INIS)

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data

  9. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    International Nuclear Information System (INIS)

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-01-01

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m -2 ). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction of

  10. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  11. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, C.; Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T.

    2015-10-01

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM B RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM B RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse phantoms

  12. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  13. LANL MTI calibration team experience

    Science.gov (United States)

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  14. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions...

  15. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    Science.gov (United States)

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.

    Science.gov (United States)

    Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang

    2014-01-01

    Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.

  17. Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Fengmei Lu

    Full Text Available This study aims to investigate the neurostructural foundations of the human personality in young adults. High-resolution structural T1-weighted MR images of 71 healthy young individuals were processed using voxel-based morphometric (VBM approach. Multiple regression analyses were performed to identify the associations between personality traits and gray matter volume (GMV. The Eysenck Personality Questionnaire-Revised, Short Scale for Chinese was chosen to assess the personality traits. This scale includes four dimensions, namely, extraversion, neuroticism, psychoticism, and lie. Particularly, we studied on two dimensions (extraversion and neuroticism of Eysenck's personality. Our results showed that extraversion was negatively correlated with GMV of the bilateral amygdala, the bilateral parahippocampal gyrus, the right middle temporal gyrus, and the left superior frontal gyrus, all of which are involved in emotional and social cognitive processes. These results might suggest an association between extraversion and affective processing. In addition, a positive correlation was detected between neuroticism and GMV of the right cerebellum, a key brain region for negative affect coordination. Meanwhile, a negative association was revealed between GMV of the left superior frontal gyrus and neuroticism. These results may prove that neuroticism is related to several brain regions involved in regulating negative emotions. Based on those findings, we concluded that brain regions involved in social cognition and affective process accounted for modulation and shaping of personality traits among young individuals. Results of this study may serve as a basis for elucidating the anatomical factors of personality.

  18. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  19. Permanently calibrated interpolating time counter

    International Nuclear Information System (INIS)

    Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

    2015-01-01

    We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

  20. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  1. Calibrating the Cryogenian

    Science.gov (United States)

    MacDonald, F. A.; Schmitz, M. D.; Crowley, J. L.; Haam, E.; Huybers, P.; Cohen, P. A.; Johnston, D. T.

    2009-12-01

    The IGCP 512 sub-commission on the Neoproterozoic is currently discussing criteria for the definition of the Cryogenian period. Herein we provide new U/Pb ID-TIMS ages and carbon and oxygen isotope data from Fifteenmile and Mt. Harper Groups in the Yukon Territory that inform the basis for the placement of the basal Cryogenian “golden spike”. Our U/Pb ages are from volcanic tuffs interbedded within glaciogenic, fossiliferous, and carbonate strata. With the current lack of Neoproterozoic index fossils and the paucity of radiogenic age constraints, chemo-stratigraphic correlations are particularly important for tuning the Neoproterozoic timescale. In an effort to move beyond conventional 'wiggle matching', chemostratigraphic correlations are determined using a new statistical method1, which indicates that the resulting chemo-stratigraphic correlations are statistically significant. These results permit us to refine and integrate Neoproterozoic climate, microfossil, and geochemical proxy records both regionally and globally. The newly calibrated microfossil record points to a eukaryotic radiation roughly coincident with the Bitter Springs isotopic stage and a barren interval between the Sturtian and Marinoan glaciations. 1 Haam, E. & Huybers, P., 2009, A test for the presence of covariance between time-uncertain series of data with applications to the Dongge Cave speleothem and atmospheric radiocarbon records, Paleoceanography, in press.

  2. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  3. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  4. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  5. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    Science.gov (United States)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  6. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  7. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  8. Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.

    Science.gov (United States)

    Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B

    2005-08-01

    Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.

  9. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  10. X-ray calibration qualities

    International Nuclear Information System (INIS)

    Burns, J.E.

    1998-01-01

    Since the recent publication of IAEA Technical Reports Series No. 374 ''Calibration of Dosimeters Used in Radiotheraphy'', there have been a number of queries about the origin of, and the rationale behind, the X-ray qualities recommended for calibration purposes. The simple answer is that these are the qualities derived at the UK National Physical Laboratory (NPL) in 1971 for calibration of therapy-level dosimeters and which are still in use for that purpose. As some SSDLs may have difficulties in adopting these exact combinations of kV and filtration. This paper discusses the basic ideas involved, and how to go about deriving a different series of qualities

  11. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  12. Voxel-based lesion analysis of brain regions underlying reading and writing.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie; Ludy, Carl; Paulraj, Selvi; Moncrief, Amber; Piai, Vitória; Curran, Brian; Turken, And; Herron, Tim; Dronkers, Nina F

    2018-03-20

    The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior

  13. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  14. How distributed processing produces false negatives in voxel-based lesion-deficit analyses.

    Science.gov (United States)

    Gajardo-Vidal, Andrea; Lorca-Puls, Diego L; Crinion, Jennifer T; White, Jitrachote; Seghier, Mohamed L; Leff, Alex P; Hope, Thomas M H; Ludersdorfer, Philipp; Green, David W; Bowman, Howard; Price, Cathy J

    2018-07-01

    In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients

  15. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  16. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Clustering

    Directory of Open Access Journals (Sweden)

    Klaudius eKalcher

    2015-12-01

    Full Text Available Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels. A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6 ± 5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remainingdifferences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needingany additional data beyond what is usually acquired (and exported in standard fMRI experiments.

  17. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Anizan, N; Wahl, R L; Frey, E C; Wang, H; Zhou, X C

    2015-01-01

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  18. Automatic Calibration of High Density Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Knibbe, Jarrod; Strohmeier, Paul; Boring, Sebastian

    2017-01-01

    . (2) EMS requires time consuming, expert calibration -- confining these interaction techniques to the lab. EMS arrays have been shown to increase stimulation resolution, but as calibration complexity increases exponentially as more electrodes are used, we require heuristics or automated procedures......Electric muscle stimulation (EMS) can enable mobile force feedback, support pedestrian navigation, or confer object affordances. To date, however, EMS is limited by two interlinked problems. (1) EMS is low resolution -- achieving only coarse movements and constraining opportunities for exploration...... for successful calibration. We explore the feasibility of using electromyography (EMG) to auto-calibrate high density EMS arrays. We determine regions of muscle activity during human-performed gestures, to inform stimulation patterns for EMS-performed gestures. We report on a study which shows that auto...

  19. Spectrophotometric calibration system for DECam

    Science.gov (United States)

    Rheault, J.-P.; DePoy, D. L.; Marshall, J. L.; Prochaska, T.; Allen, R.; Wise, J.; Martin, E.; Williams, P.

    2012-09-01

    We describe a spectrophotometric calibration system that is being implemented as part of the DES DECam project at the Blanco 4 meter at CTIO. Our calibration system uses a 1nm wide tunable source to measure the instrumental response function of the telescope optics and detector from 300nm up to 1100nm. This calibration will be performed regularly to monitor any change in the transmission function of the telescope during the 5 year survey. The system consists of a monochromator based tunable light source that provides illumination on a dome flat that is monitored by calibrated photodiodes that allow us to measure the telescope throughput as a function of wavelength. Our system has a peak output power of 2 mW, equivalent to a flux of approximately 800 photons/s/pixel on DECam.

  20. Recommended inorganic chemicals for calibration

    International Nuclear Information System (INIS)

    Moody, J.R.; Greenberg, R.R.; Pratt, K.W.; Rains, T.C.

    1988-01-01

    All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to an instrumental parameter. A fundamental component in the preparation of calibration solutions is the weighing of a pure chemical or metal before preparing a solution standard. The analyst must be assured that the purity, stoichiometry, and assay of the chemical are known. These terms have different meanings, and each has an important influence. This report is intended to assist the analyst in the selection and use of chemical standards for instrumental calibration. Purity, stoichiometry, and preparation of solutions for different purposes are discussed, and a critical evaluation of the best materials available for each element is presented for use in preparing solutions or calibration standards. Information on the chemical form, source, purity, drying, and appropriate precautions is given. In some cases, multiple sources or chemical forms are available. Certain radioactive elements, the transuranic elements, and the noble gases are not considered

  1. Field calibration of cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statistical significance of the calibration expressions. It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometers may take more than one month in order to have wind speeds covering a sufficiently large magnitude range in a wind direction sector where we can be sure that the instruments are exposed to identical, simultaneous wind flows. Another main conclusion is that statistical uncertainty must be carefully evaluated since the individual 10 minute wind-speed averages are not statistically independent. (au)

  2. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  3. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  4. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  5. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    Johns, B.R.

    1994-01-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  6. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  7. Comparison among physical and mathematical simulation methods to calibrate the scintillating detector to determine the high energy radionuclides in human body; Comparacao entre metodos de simulacao fisica e matematica para calibracao de detetor de cintilacao, visando a determinacao de radionuclideos de alta energia no corpo humano

    Energy Technology Data Exchange (ETDEWEB)

    Mello, J.Q.; Dantas, A.L.A.; Almeida, A.P.F.; Hunt, J.G.; Dantas, B.M., E-mail: jquince@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In vivo monitoring of photon emitters requires prior calibration of the detectors in order to obtain factors relate the count rate obtained in measuring the individual with this activity in the body. In this work were compared two calibration methods of a Nal scintillation detector (Tl) 3 x 3 for determination in vivo of {sup 40}K: (1) Experimental method using a physical-anthropomorphic simulator called BOMAB and (2) mathematical method using the VMC software (Visual Monte Carlo). Both methods aim at simulation of radionuclide distribution in the human body geometry and interaction of photons with the detector. The obtained results show the similarities and limitations of the evaluated methods for the measurement conditions used.

  8. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    International Nuclear Information System (INIS)

    Yang, F; Byrd, D; Bowen, S; Kinahan, P; Sandison, G

    2015-01-01

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolution of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter

  9. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  10. The KLOE online calibration system

    International Nuclear Information System (INIS)

    Pasqualucci, E.; Alexander, G.; Aloisio, A.

    2001-01-01

    Based on all the features of the KLOE online software, the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed. A calibration manager process controls the system, implementing the interface to the online system, receiving information from the run control and translating its state transitions to a separate state machine. It acts as a 'calibration run controller' and performs failure recovery when requested by a set of process checkers. The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms. A client library and C, fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an book-like interface. Several calibration processes running in parallel in a distributed, multiplatform environment can fill the same histograms, allowing fast external information check. A monitor thread allow remote browsing for visual inspection. Pre-filtered data are read in non-privileged spy mode from the data acquisition system via the Kloe Integrated Dataflow. The main characteristics of the system are presented

  11. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    International Nuclear Information System (INIS)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang

    2008-01-01

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  12. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang [Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China)

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD.

  13. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang (Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China))

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  14. Structural covariance in the hallucinating brain: a voxel-based morphometry study

    Science.gov (United States)

    Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André

    2009-01-01

    Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723

  15. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Tsujimoto, Masashi; Senda, Jo; Ishihara, Tetsuro; Niimi, Yoshiki; Kawai, Yoshinari; Atsuta, Naoki; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-08-15

    Amyotrophic lateral sclerosis (ALS) is a multisystem disorder with impairment of frontotemporal functions such as cognition and behavior, but the behavioral changes associated with ALS are not well defined. Twenty-one consecutive patients with sporadic ALS and 21 control subjects participated in the study. The Frontal System Behavior Scale (FrSBe) was used to assess behavioral change. Voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) were performed to explore the associations of brain degeneration with behavior. All patients were evaluated before the notification of ALS. FrSBe scores of ALS patients before notification were significantly increased compared to those of control subjects. Moreover, the FrSBe Apathy score of ALS patients significantly changed from pre- to post-illness (P<0.001). The severity of apathy was significantly correlated with atrophy in the prefrontal cortex, especially in the orbitofrontal (P=0.006) and dorsolateral prefrontal (P=0.006) cortices in VBM, and in the right frontal gyrus (P<0.001) in DTI. ALS patients exhibited apathy during the early course of the illness, the severity of which was significantly associated with frontal lobe involvement. These findings support the view that a continuum exits between ALS and frontotemporal dementia. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Viktor Hartung

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI. High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.

  17. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    Science.gov (United States)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  18. The brain and the subjective experience of time. A voxel based symptom-lesion mapping study.

    Science.gov (United States)

    Trojano, Luigi; Caccavale, Michelina; De Bellis, Francesco; Crisci, Claudio

    2017-06-30

    The aim of the study was to identify the anatomical bases involved in the subjective experience of time, by means of a voxel based symptom-lesion mapping (VLSM) study on patients with focal brain damage. Thirty-three patients (nineteen with right-hemisphere lesions -RBD, and fourteen with left lesion- LBD) and twenty-eight non-neurological controls (NNC) underwent the semi-structured QUEstionnaire for the Subjective experience of Time (QUEST) requiring retrospective and prospective judgements on self-relevant time intervals. All participants also completed tests to assess general cognitive functioning and two questionnaires to evaluate their emotional state. Both groups of brain-damaged patients achieved significantly different scores from NNC on the time performance, without differences between RBD and LBD. VLSM showed a cluster of voxels located in the right inferior parietal lobule significantly related to errors in the prospective items. The lesion subtraction analysis revealed two different patterns possibly associated with errors in the prospective items (the right inferior parietal cortex, rolandic operculum and posterior middle temporal gyrus) and in the retrospective items (superior middle temporal gyrus, white matter posterior to the insula). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. AUTOMATED VOXEL MODEL FROM POINT CLOUDS FOR STRUCTURAL ANALYSIS OF CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    G. Bitelli

    2016-06-01

    Full Text Available In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy that was hit by an earthquake in 2012.

  20. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Science.gov (United States)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  2. Application of Single Voxel 1H Magnetic Resonance Spectroscopy in Hepatic Benign and Malignant Lesions.

    Science.gov (United States)

    Yang, Zifeng; Sun, Shiqiang; Chen, Yuanli; Li, Rui

    2016-12-19

    BACKGROUND To quantify the metabolite changes in hepatic tumors by single-voxel 1H magnetic resonance spectroscopy (MRS) at 3.0 T and explore the application value of 1HMRS in the diagnosis of hepatic benign and malignant lesions. MATERIAL AND METHODS A total of 45 patients (55 lesions) diagnosed with hepatic lesions by ultrasound and/or computer topography (CT) from November 2006 to March 2007 were included in this study. All patients underwent 3D-dynamic enhanced scan with liver acquisition with acceleration volume acquisition (LAVA) sequence and single-voxel 1HMRS imaging with PRESS (point-resolved spectroscopy) sequence. The metabolite concentrations such as choline (Cho) and lipids (Lip) were measured. RESULTS There was significant difference regarding the occurrence rate of the obvious elevated Cho peaks between benign and malignant tumors (7/27 vs. 21/28, p=0.000). There was statistical significant differences regarding the Cho/Lip ratios in hepatic benign (0.0686±0.0283, 95% CI: 0.0134-0.1245) and malignant (0.1266 ±0.1124, 95% CI: 0.0937-0.2203) lesions (pbenign and malignant lesions. Combined use of 1HMRS and MRI can greatly improve the application value of MRI assessment in the diagnosis of hepatic benign and malignant lesions with a higher sensitivity, negative predictive value, and overall accuracy.

  3. The problem of low variance voxels in statistical parametric mapping; a new hat avoids a 'haircut'.

    Science.gov (United States)

    Ridgway, Gerard R; Litvak, Vladimir; Flandin, Guillaume; Friston, Karl J; Penny, Will D

    2012-02-01

    Statistical parametric mapping (SPM) locates significant clusters based on a ratio of signal to noise (a 'contrast' of the parameters divided by its standard error) meaning that very low noise regions, for example outside the brain, can attain artefactually high statistical values. Similarly, the commonly applied preprocessing step of Gaussian spatial smoothing can shift the peak statistical significance away from the peak of the contrast and towards regions of lower variance. These problems have previously been identified in positron emission tomography (PET) (Reimold et al., 2006) and voxel-based morphometry (VBM) (Acosta-Cabronero et al., 2008), but can also appear in functional magnetic resonance imaging (fMRI) studies. Additionally, for source-reconstructed magneto- and electro-encephalography (M/EEG), the problems are particularly severe because sparsity-favouring priors constrain meaningfully large signal and variance to a small set of compactly supported regions within the brain. (Acosta-Cabronero et al., 2008) suggested adding noise to background voxels (the 'haircut'), effectively increasing their noise variance, but at the cost of contaminating neighbouring regions with the added noise once smoothed. Following theory and simulations, we propose to modify--directly and solely--the noise variance estimate, and investigate this solution on real imaging data from a range of modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    Science.gov (United States)

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  5. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits.

    Science.gov (United States)

    Meyer, Sarah; Kessner, Simon S; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2016-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  6. VoxHenry: FFT-Accelerated Inductance Extraction for Voxelized Geometries

    KAUST Repository

    Yucel, Abdulkadir C.

    2018-01-18

    VoxHenry, a fast Fourier transform (FFT)-accelerated integral-equation-based simulator for extracting frequency-dependent inductances and resistances of structures discretized by voxels, is presented. VoxHenry shares many features with the popular inductance extractor, FastHenry. Just like FastHenry, VoxHenry solves a combination of the electric volume integral equation and the current continuity equation, but with three distinctions that make VoxHenry suitable and extremely efficient for analyzing voxelized geometries: 1) it leverages a carefully selected set of piecewise-constant and piecewise-linear basis functions; 2) it exploits FFTs to accelerate the matrix-vector multiplications during the iterative solution of system of equations; and 3) it employs a sparse preconditioner to ensure the rapid convergence of iterative solution. VoxHenry is capable of accurately computing frequency-dependent inductances and resistances of arbitrarily shaped and large-scale structures on a desktop computer. The accuracy, efficiency, and applicability of VoxHenry are demonstrated through inductance analysis of various structures, including square and circular coils as well as arrays of RF inductors (situated over ground planes).

  7. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    Science.gov (United States)

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  8. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  9. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bhole, Kiran, E-mail: kirandipali@gmail.com; Gandhi, Prasanna [Suman Mashruwala Advance Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India); Kundu, T. [Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2014-07-28

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  10. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    International Nuclear Information System (INIS)

    Bhole, Kiran; Gandhi, Prasanna; Kundu, T.

    2014-01-01

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  11. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  12. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  13. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    Science.gov (United States)

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  14. Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Ohtomo, Kuni

    2010-01-01

    To evaluate the differences in gray- and white-matter asymmetry between schizophrenia patients and normal subjects. Forty-eight right-handed patients with chronic schizophrenia (24 males and 24 females) and 48 right-handed age- and sex-matched healthy controls (24 males and 24 females) were included in this study. The effects of diagnosis on gray-matter volume asymmetry and white-matter fractional anisotropy (FA) asymmetry were evaluated with use of voxel-based morphometry (VBM) and voxel-based analysis of FA maps derived from diffusion tensor imaging (DTI), respectively. The mean gray- and white-matter volumes were significantly smaller in the schizophrenia group than in the control group. The voxel-based morphometry (VBM) showed no significant effect of diagnosis on gray-matter volume asymmetry. The voxel-based analysis of DTI also showed no significant effect of diagnosis on white-matter FA asymmetry. Our results of voxel-based analyses showed no significant differences in either gray-matter volume asymmetry or white-matter FA asymmetry between schizophrenia patients and normal subjects. (c) 2009 Wiley-Liss, Inc.

  15. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  16. Investigation on calibration parameter of mammography calibration facilities at MINT

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Wan Hazlinda Ismail; Md Saion Salikin; Muhammad Jamal Md Isa; Azuhar Ripin; Norriza Mohd Isa

    2004-01-01

    A mammography calibration facility has been established in the Medical Physics Laboratory, Malaysian Institute for Nuclear Technology Research (MINT). The calibration facility is established at the national level mainly to provide calibration services for radiation measuring test instruments or test tools used in quality assurance programme in mammography, which is being implemented in Malaysia. One of the accepted parameters that determine the quality of a radiation beam is the homogeneity coefficient. It is determined from the values of the 1 st and 2 nd Half Value Layer (HVL). In this paper, the consistency of the mammography machine beam qualities that is available in MINT, is investigated and presented. For calibration purposes, five radiation qualities namely 23, 25, 28, 30 and 35 kV, selectable from the control panel of the X-ray machine is used. Important parameters that are set for this calibration facility are exposure time, tube current, focal spot to detector distance (FDD) and beam size at specific distance. The values of homogeneity coefficient of this laboratory for the past few years tip to now be presented in this paper. Backscatter radiations are also considered in this investigation. (Author)

  17. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  18. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients.

    Science.gov (United States)

    Rizzo, G; Manners, D; Vetrugno, R; Tonon, C; Malucelli, E; Plazzi, G; Marconi, S; Pizza, F; Testa, C; Provini, F; Montagna, P; Lodi, R

    2012-07-01

      The aim of this study was to evaluate the presence of abnormalities in the brain of patients with restless legs syndrome (RLS) using voxel-based morphometry and diffusion tensor imaging (DTI).   Twenty patients and twenty controls were studied. Voxel-based morphometry analysis was performed using statistical parametric mapping (SPM8) and FSL-VBM software tools. For voxel-wise analysis of DTI, tract-based spatial statistics (TBSS) and SPM8 were used.   Applying an appropriate threshold of probability, no significant results were found either in comparison or in correlation analyses.   Our data argue against clear structural or microstructural abnormalities in the brain of patients with idiopathic RLS, suggesting a prevalent role of functional or metabolic impairment. © 2011 The Author(s) European Journal of Neurology © 2011 EFNS.

  19. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Kjer, Hans Martin; Van Leemput, Koen

    2014-01-01

    including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT...... receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation...... significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose...

  20. Voxel-based comparison of whole brain gray matter of patients with mild Alzheimer's disease with normal aging volunteers

    International Nuclear Information System (INIS)

    Xie Sheng; Wu Hongkun; Xiao Jiangxi; Wang Yinhua; Jiang Xuexiang

    2006-01-01

    Objective: To detect gray matter abnormalities of whole brain in patients with mild Alzheimer's disease (AD) by voxel-based morphometry (VBM). Methods: Thirteen patients with mild Alzheimer's disease and sixteen normal aging volunteers underwent 3D SPGR scanning. For every subject, data was transferred to PC to be normalized, segmented and smoothed using SPM99. Non-dependent samples T-tests were conducted to compare gray matter' density voxel to voxel between the two groups. Results Significant reductions in gray matter density were found in the bilateral hippocampi and nucleus amygdalae, bilateral insulae, bilateral medial thalami, bilateral rectus gyri, right superior temporal gyms, right caudate nucleus, fight prefrontal lobe, right basal forebrain and portions of right occipital lobe. Conclusion: VBM reveals significant gray matter' reductions of numeral cortices in mild Alzheimer's disease. It can be a useful method to evaluate the anatomical changes in the progress of the disease. (authors)

  1. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  2. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  3. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    Science.gov (United States)

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. In vivo quantification of intracerebral GABA by single-voxel {sup 1}H-MRS-How reproducible are the results?

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, W. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: wolfgang@nmr.at; Gruber, S. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: stephan@nmr.at; Doelken, M. [Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: marc.doelken@uk-erlangen.de; Stadlbauer, A. [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: andi@nmr.at; Ganslandt, O. [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: oliver.ganslandt@uk-erlangen.de; Boettcher, U. [Siemens Medical Solution, Karl-Schall Str. 6, D-91052 Erlangen (Germany)], E-mail: uwe.boettcher@siemens.com; Trattnig, S. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: siegfried.trattnig@meduniwien.ac.at; Doerfler, A. [Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: a.doerfler@nrad.imed.uni-erlangen.de; Stefan, H. [Center Epilepsy Erlangen (ZEE), Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Germany)], E-mail: Hermann.Stefan@uk-erlangen.de; Hammen, T. [Center Epilepsy Erlangen (ZEE), Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Germany)], E-mail: thilo.hammen@uk-erlangen.de

    2010-03-15

    Gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the human brain. It plays a decisive role in a variety of nervous system disorders, such as anxiety disorders, epilepsy, schizophrenia, insomnia, and many others. The reproducibility of GABA quantification results obtained with a single-voxel spectroscopy J-difference editing sequence with Point Resolved Spectroscopy localization (MEGA-PRESS) was determined on a 3.0 Tesla MR scanner in healthy adults. Eleven volunteers were measured in long- and short-term intervals. Intra- and inter-subject reproducibility were evaluated. Internal referencing of GABA+ to total creatine (tCr) and water (H{sub 2}O), as well as two different post-processing methods for the evaluation (signal integration and time-domain fitting) were compared. In all subjects lower coefficient of variation and therefore higher reproducibility can be observed for fitting compared to integration. The GABA+/tCr ratio performs better than the GABA+/H{sub 2}O ratio or GABA+ without internal referencing for both fitting and integration (GABA+/tCr: 13.3% and 17.0%; GABA+/H{sub 2}O: 15.0% and 17.8%; GABA+: 19.2% and 21.7%). Four-day measurements on three subjects showed higher intra- than inter-subject reproducibility (GABA+/tCr {approx}10-12%). With a coefficient of variation of about 13% for inter-subject and 10-12% for intra-subject variability of GABA+/tCr, this technique seems to be a precise tool that can detect GABA confidently. The results of this study show the reproducibility limitations of GABA quantification in vivo, which are necessary for further clinical studies.

  5. In vivo quantification of intracerebral GABA by single-voxel 1H-MRS-How reproducible are the results?

    International Nuclear Information System (INIS)

    Bogner, W.; Gruber, S.; Doelken, M.; Stadlbauer, A.; Ganslandt, O.; Boettcher, U.; Trattnig, S.; Doerfler, A.; Stefan, H.; Hammen, T.

    2010-01-01

    Gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the human brain. It plays a decisive role in a variety of nervous system disorders, such as anxiety disorders, epilepsy, schizophrenia, insomnia, and many others. The reproducibility of GABA quantification results obtained with a single-voxel spectroscopy J-difference editing sequence with Point Resolved Spectroscopy localization (MEGA-PRESS) was determined on a 3.0 Tesla MR scanner in healthy adults. Eleven volunteers were measured in long- and short-term intervals. Intra- and inter-subject reproducibility were evaluated. Internal referencing of GABA+ to total creatine (tCr) and water (H 2 O), as well as two different post-processing methods for the evaluation (signal integration and time-domain fitting) were compared. In all subjects lower coefficient of variation and therefore higher reproducibility can be observed for fitting compared to integration. The GABA+/tCr ratio performs better than the GABA+/H 2 O ratio or GABA+ without internal referencing for both fitting and integration (GABA+/tCr: 13.3% and 17.0%; GABA+/H 2 O: 15.0% and 17.8%; GABA+: 19.2% and 21.7%). Four-day measurements on three subjects showed higher intra- than inter-subject reproducibility (GABA+/tCr ∼10-12%). With a coefficient of variation of about 13% for inter-subject and 10-12% for intra-subject variability of GABA+/tCr, this technique seems to be a precise tool that can detect GABA confidently. The results of this study show the reproducibility limitations of GABA quantification in vivo, which are necessary for further clinical studies.

  6. Grey matter volume in healthy and epileptic beagles using voxel-based morphometry – a pilot study

    Directory of Open Access Journals (Sweden)

    Lisa Frank

    2018-02-01

    Full Text Available Abstract Background One of the most common chronic neurological disorders in dogs is idiopathic epilepsy (IE diagnosed as epilepsy without structural changes in the brain. In the current study the hypothesis should be proven that subtle grey matter changes occur in epileptic dogs. Therefore, magnetic resonance (MR images of one dog breed (Beagles were used to obtain an approximately uniform brain shape. Local differences in grey matter volume (GMV were compared between 5 healthy Beagles and 10 Beagles with spontaneously recurrent seizures (5 dogs with IE and 5 dogs with structural epilepsy (SE, using voxel-based morphometry (VBM. T1W images of all dogs were prepared using Amira 6.3.0 for brain extraction, FSL 4.1.8 for registration and SPM12 for realignment. After creation of tissue probability maps of cerebrospinal fluid, grey and white matter from control images to segment all extracted brains, GM templates for each group were constructed to normalize brain images for parametric statistical analysis, which was achieved using SPM12. Results Epileptic Beagles (IE and SE Beagles displayed statistically significant reduced GMV in olfactory bulb, cingulate gyrus, hippocampus and cortex, especially in temporal and occipital lobes. Beagles with IE showed statistically significant decreased GMV in olfactory bulb, cortex of parietal and temporal lobe, hippocampus and cingulate gyrus, Beagles with SE mild statistically significant GMV reduction in temporal lobe (p < 0.05; family- wise error correction. Conclusion These results suggest that, as reported in epileptic humans, focal reduction in GMV also occurs in epileptic dogs. Furthermore, the current study shows that VBM analysis represents an excellent method to detect GMV differences of the brain between a healthy dog group and dogs with epileptic syndrome, when MR images of one breed are used.

  7. FTIR Calibration Methods and Issues

    Science.gov (United States)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  8. Automatic calibration of gamma spectrometers

    International Nuclear Information System (INIS)

    Tluchor, D.; Jiranek, V.

    1989-01-01

    The principle is described of energy calibration of the spectrometric path based on the measurement of the standard of one radionuclide or a set of them. The entire computer-aided process is divided into three main steps, viz.: the insertion of the calibration standard by the operator; the start of the calibration program; energy calibration by the computer. The program was selected such that the spectrum identification should not depend on adjustment of the digital or analog elements of the gamma spectrometric measuring path. The ECL program is described for automatic energy calibration as is its control, the organization of data file ECL.DAT and the necessary hardware support. The computer-multichannel analyzer communication was provided using an interface pair of Canberra 8673V and Canberra 8573 operating in the RS-422 standard. All subroutines for communication with the multichannel analyzer were written in MACRO 11 while the main program and the other subroutines were written in FORTRAN-77. (E.J.). 1 tab., 4 refs

  9. Calibration of the SNO+ experiment

    Science.gov (United States)

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  10. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  11. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    Science.gov (United States)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  12. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.

    Science.gov (United States)

    Lu, Weiguo

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan

  13. Voxel-based models representing the male and female ICRP reference adult - the skeleton

    International Nuclear Information System (INIS)

    Zankl, M.; Eckerman, K.F.; Bolch, W.E.

    2007-01-01

    For the forthcoming update of organ dose conversion coefficients, the International Commission on Radiological Protection (ICRP) will use voxel-based computational phantoms due to their improved anatomical realism compared with the class of mathematical or stylized phantoms used previously. According to the ICRP philosophy, these phantoms should be representative of the male and female reference adults with respect to their external dimensions, their organ topology and their organ masses. To meet these requirements, reference models of an adult male and adult female have been constructed at the GSF, based on existing voxel models segmented from tomographic images of two individuals whose body height and weight closely resemble the ICRP Publication 89 reference values. The skeleton is a highly complex structure of the body, composed of cortical bone, trabecular bone, red and yellow bone marrow and endosteum ('bone surfaces' in their older terminology). The skeleton of the reference phantoms consists of 19 individually segmented bones and bone groups. Sub-division of these bones into the above-mentioned constituents would be necessary in order to allow a direct calculation of dose to red bone marrow and endosteum. However, the dimensions of the trabeculae, the cavities containing bone marrow and the endosteum layer lining these cavities are clearly smaller than the resolution of a normal CT scan and, thus, these volumes could not be segmented in the tomographic images. As an attempt to represent the gross spatial distribution of these regions as realistically as possible at the given voxel resolution, 48 individual organ identification numbers were assigned to various parts of the skeleton: every segmented bone was subdivided into an outer shell of cortical bone and a spongious core; in the shafts of the long bones, a medullary cavity was additionally segmented. Using the data from ICRP Publication 89 on elemental tissue composition, from ICRU Report 46 on material

  14. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    Science.gov (United States)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates

  15. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N{sup 3})) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets

  16. Calibration pipeline for VIR data

    Science.gov (United States)

    Carraro, F.; Fonte, S.; Coradini, A.; Filacchione, G.; de Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Cartacci, M.; Noschese, R.; Tosi, F.; Capaccioni, F.

    2011-10-01

    During the second quarter of 2011 VIR-MS (VIS and IR Mapping Spectrometer) [1] aboard Dawn mission [2] has approached Vesta in order to start a long period of acquisitions that will end at the beginning of 2012. Data acquired by each instrument always require a calibration process in order to remove all the instrument effects that could affect the scientific evaluations and analysis. VIR-MS instrument team has realized a calibration pipeline which has the goal of producing calibrated (1b level) data starting from the raw (1a level) ones. The other goal of the tool has been the check of the goodness of acquired data by means of the evaluation of a series of minimum requisites of each data file, such as the percentage of the saturated pixels, the presence of spikes or the mean S/N ratio of each qube.

  17. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  18. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  19. XRD alignment, calibration and performance

    International Nuclear Information System (INIS)

    Davy, L.

    2002-01-01

    Full text: The quality of any diffractometer system is very much dependent on the alignment, calibration and performance. The three subjects are very much related. Firstly, you must know how to carry out the full diffractometer alignment. XRD alignment is easy once you know how. The presentation will show you step by step to carry out the full alignment. Secondly, you need to know how to calibrate the diffractometer system. The presentation will show you how to calibrate the goniometer, detector etc. Thirdly, to prove the system is working within the manufacturer specification. The presentation will show you how to carry out the resolution, reproducibility and linearity test. Copyright (2002) Australian X-ray Analytical Association Inc

  20. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da, E-mail: jjunior@con.ufrj.b, E-mail: Ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Facure, Alessandro N.S., E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    This paper presents the modeling of 80, 88 and 100 of {sup 125}I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = {infinity} corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  1. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lin Fuchun, E-mail: fclin@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Yasong, E-mail: yasongdu@yahoo.com.cn [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Qin Lingdi, E-mail: flyingfool838@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Zhao Zhimin, E-mail: zmzsky@163.com [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lei Hao, E-mail: leihao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-07-15

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  2. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Ke, Xiaoyan; Tang, Tianyu; Hong, Shanshan; Hang, Yueyue; Zou, Bing; Li, Huiguo; Zhou, Zhenyu; Ruan, Zongcai; Lu, Zuhong; Tao, Guotai; Liu, Yijun

    2009-04-10

    This study explored white matter abnormalities in a group of Chinese children with high functioning autism (HFA). Twelve male children with HFA and ten matched typically developing children underwent diffusion tensor imaging (DTI) as well three-dimensional T1-weighted MRI for voxel-based morphometry (VBM). We found a significant decrease of the white matter density in the right frontal lobe, left parietal lobe and right anterior cingulate and a significant increase in the right frontal lobe, left parietal lobe and left cingulate gyrus in the HFA group compared with the control group. The HFA group also had decreased FA in the frontal lobe and left temporal lobe. By combining DT-MRI FA and MRI volumetric analyses based on the VBM model, the results showed consistent white matter abnormalities in a group of Chinese children with HFA.

  3. A voxel-based finite element model for the prediction of bladder deformation

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Chai; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan [Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Radiation Oncology Department, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  4. A voxel-based finite element model for the prediction of bladder deformation

    International Nuclear Information System (INIS)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-01

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  5. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Zhou Yan; Lin Fuchun; Du Yasong; Qin Lingdi; Zhao Zhimin; Xu Jianrong; Lei Hao

    2011-01-01

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  6. Geometry segmentation of voxelized representations of heterogeneous microstructures using betweenness centrality

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Rui; Singh, Sudhanshu S.; Chawla, Nikhilesh; Oswald, Jay, E-mail: joswald1@asu.edu

    2016-08-15

    We present a robust method for automating removal of “segregation artifacts” in segmented tomographic images of three-dimensional heterogeneous microstructures. The objective of this method is to accurately identify and separate discrete features in composite materials where limitations in imaging resolution lead to spurious connections near close contacts. The method utilizes betweenness centrality, a measure of the importance of a node in the connectivity of a graph network, to identify voxels that create artificial bridges between otherwise distinct geometric features. To facilitate automation of the algorithm, we develop a relative centrality metric to allow for the selection of a threshold criterion that is not sensitive to inclusion size or shape. As a demonstration of the effectiveness of the algorithm, we report on the segmentation of a 3D reconstruction of a SiC particle reinforced aluminum alloy, imaged by X-ray synchrotron tomography.

  7. Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.

    Science.gov (United States)

    Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong

    2017-11-02

    Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.

  8. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    International Nuclear Information System (INIS)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da

    2010-01-01

    This paper presents the modeling of 80, 88 and 100 of 125 I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = ∞ corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  9. Treatment plan modification using voxel-based weighting factors/dose prescription

    International Nuclear Information System (INIS)

    Wu Chuan; Olivera, Gustavo H; Jeraj, Robert; Keller, Harry; Mackie, Thomas R

    2003-01-01

    Under various clinical situations, it is desirable to modify the original treatment plan to better suit the clinical goals. In this work, a method to help physicians modify treatment plans based on their clinical preferences is proposed. The method uses a weighted quadratic dose objective function. The commonly used organ-/ROI-based weighting factors are expanded to a set of voxel-based weighting factors in order to obtain greater flexibility in treatment plan modification. Two different but equivalent modification schemes based on Rustem's quadratic programming algorithms -modification of a weighting matrix and modification of prescribed doses - are presented. Case studies demonstrated the effectiveness of the two methods with regard to their capability to fine-tune treatment plans

  10. Do manual and voxel-based morphometry measure the same? – A proof of concept study

    Directory of Open Access Journals (Sweden)

    Niels K. Focke

    2014-04-01

    Full Text Available Voxel-based morphometry (VBM is a commonly used method to study volumetric variations on a whole brain basis. However it is often criticised for potential confounds, mainly based on imperfect spatial registration. We therefore aimed to evaluate if VBM and gold-standard manual volumetry are measuring the same effects with respect to subcortical grey matter volumes. Manual regions-of-interest (ROIs were drawn in the hippocampus, amygdala, nucleus accumbens, thalamus, putamen, pallidum and caudate nucleus bilaterally. Resulting volumes were used for a whole brain VBM correlation analysis with SPM8. The hippocampus, amygdala, putamen and caudate nucleus were correctly identified by SPM using the contemporary high-dimensional normalization (DARTEL toolbox. This strongly suggests that VBM and manual volumetry both are indeed measuring the same effects with regard to subcortical brain structures.

  11. Direct Monte Carlo dose calculation using polygon-surface computational human model

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  12. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  13. Model Calibration in Option Pricing

    Directory of Open Access Journals (Sweden)

    Andre Loerx

    2012-04-01

    Full Text Available We consider calibration problems for models of pricing derivatives which occur in mathematical finance. We discuss various approaches such as using stochastic differential equations or partial differential equations for the modeling process. We discuss the development in the past literature and give an outlook into modern approaches of modelling. Furthermore, we address important numerical issues in the valuation of options and likewise the calibration of these models. This leads to interesting problems in optimization, where, e.g., the use of adjoint equations or the choice of the parametrization for the model parameters play an important role.

  14. Instrument Calibration and Certification Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. Wesley [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-31

    The Amptec 640SL-2 is a 4-wire Kelvin failsafe resistance meter, designed to reliably use very low-test currents for its resistance measurements. The 640SL-1 is a 2-wire version, designed to support customers using the Reynolds Industries type 311 connector. For both versions, a passive (analog) dual function DC Milliameter/Voltmeter allows the user to verify the actual 640SL output current level and the open circuit voltage on the test leads. This procedure includes tests of essential performance parameters. Any malfunction noticed during calibration, whether specifically tested for or not, shall be corrected before calibration continues or is completed.

  15. NIST display colorimeter calibration facility

    Science.gov (United States)

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  16. Tank calibration; Arqueacao de tanques

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  17. Voxel-based analysis of fractional anisotropy in post-stroke apathy.

    Directory of Open Access Journals (Sweden)

    Song-ran Yang

    Full Text Available To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA of fractional anisotropy (FA maps.We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31 and non-apathy (n = 23 groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD scores, Mini-Mental State Examination (MMSE scores, National Institutes of Health Stroke Scale (NIHSS scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates.HAMD (P = 0.01 and MMSE (P<0.01 scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = -16, Y = 30, Z = 8, left anterior corona radiata (-22, 30, 10, splenium of the corpus callosum (-24, -56, 18, and right inferior frontal gyrus white matter (52, 24, 18, after family-wise error correction for multiple comparisons.Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke.

  18. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study.