WorldWideScience

Sample records for calibrated pressure pulses

  1. Measurement of the pressure pulse from a detonating explosive

    International Nuclear Information System (INIS)

    Bourne, N K; Milne, A M; Biers, R A

    2005-01-01

    A series of experiments has been carried out to determine the pressure pulse exiting from a polymethylmethacrylate (PMMA) plate, of varying thickness, subject to the shock pulse exerted by a detonating charge of fixed mass. This calibration will define a new donor explosive and inert gap material for use in one of the qualification tests for energetic materials, the large scale gap test. The peak pressure was recorded on the central axis of the attenuator using calibrated piezoresistive manganin gauges as a function of the quantity of PMMA applied to the output of the donor charge. The stress history within the PMMA was measured as a function of run distance and the peak pressure plotted against thickness as a calibration. The shock front was known to have curvature and a measurement of this was attempted. The behaviour of the transmitted shock at small gap thicknesses was shown to be anomalous since the front was partially in a reactive and partially within an inert medium

  2. Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration.

    Science.gov (United States)

    Martin, Jeffrey S; Borges, Alexandra R; Christy, John B; Beck, Darren T

    2015-10-01

    Methods employed for pulse wave analysis (PWA) and peripheral blood pressure (PBP) calibration vary. The purpose of this study was to evaluate the agreement of SphygmoCor PWA parameters derived from radial artery tonometry when considering (1) timing (before vs. after tonometry) and side selection (ipsilateral vs. contralateral limb) for PBP calibration and (2) side selection for tonometry (left vs. right arm). In 34 subjects (aged 21.9 ± 2.3 years), bilateral radial artery tonometry was performed simultaneously on three instances. PBP assessment via oscillometric sphygmomanometry in the left arm only and both arms simultaneously occurred following the first and second instances of tonometry, respectively. Significant within arm differences in PWA parameters derived before and after PBP measurement were observed in the right arm only (for example, aortic systolic blood pressure, Δ=0.38 ± 0.64 mm Hg). Simultaneously captured bilateral PWA variables demonstrated significant between arm differences in 88% (14/16) and 56% (9/16) of outcome variables when calibrated to within arm and equivalent PBP, respectively. Moreover, the right arm consistently demonstrated lower values for clinical PWA variables (for example, augmentation index, bias=-2.79%). However, 26% (n=9) of participants presented with clinically significant differences (>10 mm Hg) in bilateral PBP and their exclusion from analysis abolished most between arm differences observed. SphygmoCor PWA in the right radial artery results in greater variability independent of the timing of PBP measurement and magnitude of calibration pressures in young subjects. Moreover, bilateral PBP measurement is imperative to identify subjects in whom a significant difference in bilateral PWA outcomes may exist.

  3. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  4. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  5. Vessel calibre and haemoglobin effects on pulse oximetry

    International Nuclear Information System (INIS)

    McEwen, M P; Reynolds, K J; Bull, G P

    2009-01-01

    Despite its success as a clinical monitoring tool, pulse oximetry may be improved with respect to the need for empirical calibration and the reports of biases in readings associated with peripheral vasoconstriction and haemoglobin concentration. To effect this improvement, this work aims to improve the understanding of the photoplethysmography signal—as used by pulse oximeters—and investigates the effect of vessel calibre and haemoglobin concentration on pulse oximetry. The digital temperature and the transmission of a wide spectrum of light through the fingers of 57 people with known haemoglobin concentrations were measured and simulations of the transmission of that spectrum of light through finger models were performed. Ratios of pulsatile attenuations of light as used in pulse oximetry were dependent upon peripheral temperature and on blood haemoglobin concentration. In addition, both the simulation and in vivo results showed that the pulsatile attenuation of light through fingers was approximately proportional to the absorption coefficients of blood, only when the absorption coefficients were small. These findings were explained in terms of discrete blood vessels acting as barriers to light transmission through tissue. Due to the influence of discrete blood vessels on light transmission, pulse oximeter outputs tend to be dependent upon haemoglobin concentration and on the calibre of pulsing blood vessels—which are affected by vasoconstriction/vasodilation. The effects of discrete blood vessels may account for part of the difference between the Beer–Lambert pulse oximetry model and empirical calibration

  6. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  7. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects

    International Nuclear Information System (INIS)

    Vermeersch, S J; Verdonck, P R; Segers, P; Rietzschel, E R; De Buyzere, M L; Gillebert, T C; De Bacquer, D; De Backer, G; Van Bortel, L M

    2008-01-01

    Calibrated diameter distension waveforms could provide an alternative for local arterial pressure assessment more widely applicable than applanation tonometry. We compared linearly and exponentially calibrated carotid diameter waveforms to tonometry readings. Local carotid pressures measured by tonometry and diameter waveforms measured by ultrasound were obtained in 2026 subjects participating in the Asklepios study protocol. Diameter waveforms were calibrated using a linear and an exponential calibration scheme and compared to measured tonometry waveforms by examining the mean root-mean-squared error (RMSE), carotid systolic blood pressure (SBP car ) and augmentation index (AIx) of calibrated and measured pressures. Mean RMSE was 5.2(3.3) mmHg (mean(stdev)) for linear and 4.6(3.6) mmHg for exponential calibration. Linear calibration yielded an underestimation of SBP car by 6.4(4.1) mmHg which was strongly correlated to values of brachial pulse pressure (PP bra ) (R = 0.4, P car by 1.9(3.9) mmHg, independent of PP bra . AIx was overestimated by linear calibration by 1.9(10.1)%, the difference significantly increasing with increasing AIx (R = 0.25, P < 0.001) and by exponential calibration by 5.4(10.6)%, independently of the value of AIx. Properly calibrated diameter waveforms offer a viable alternative for local pressure estimation at the carotid artery. Compared to linear calibration, exponential calibration significantly improves the pressure estimation

  8. Effects of pressurization procedures on calibration results for precise pressure transducers

    International Nuclear Information System (INIS)

    Kajikawa, Hiroaki; Kobata, Tokihiko

    2010-01-01

    The output of electromechanical pressure gauges depends on not only the currently applied pressure, but also the pressurization history. Thus, the calibration results of gauges are affected by the pressurization procedure. In this paper, among several important factors influencing the results, we report the effects of the interval between the calibration cycles and the effects of the preliminary pressurizations. In order to quantitatively evaluate these effects, we developed a fully automated system that uses a pressure balance to calibrate pressure gauges. Subsequently, gauges containing quartz Bourdon-type pressure transducers were calibrated in a stepwise manner for pressures between 10 MPa and 100 MPa. The typical standard deviation of the data over three cycles was reduced to a few parts per million (ppm). The interval between the calibration cycles, which ranges from zero to more than 12 h, exerts a strong influence on the results in the process of increasing the pressure, where at 10 MPa the maximum difference between the results was approximately 40 ppm. The preliminary pressurization immediately before the calibration cycle reduces the effects of the interval on the results in certain cases. However, in turn, the influence of the waiting time between the preliminary pressurization and the main calibration cycle becomes strong. In the present paper, we outline several possible measures for obtaining calibration results with high reproducibility

  9. Calibration of a detector for pulsed neutron sources

    International Nuclear Information System (INIS)

    Veeser, L.R.; Hemmendinger, A.; Shunk, E.R.

    1978-02-01

    A plastic scintillator detector for measuring the strength of a pulsed neutron source is described and the problems of calibration and discrimination against x-ray background for both pulsed and steady-state detectors are discussed

  10. ATLAS FCal Diagnostics using the Calibration Pulse

    CERN Document Server

    Rutherfoord, J

    2004-01-01

    The calibration pulser in the ATLAS Forward Calorimeter electronics is used to 1) directly calibrate the warm, active electronics and 2) diagnose the cold, passive electronics chain all the way to the liquid argon electrodes. The study presented here shows that reflections of the calibration pulse coming from discontinuities located at or between the warm preamplifier and the electrode can differentiate and identify all known defects so far observed in this chain.

  11. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  12. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  13. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  14. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  15. Impact of calibration on estimates of central blood pressures.

    Science.gov (United States)

    Soender, T K; Van Bortel, L M; Møller, J E; Lambrechtsen, J; Hangaard, J; Egstrup, K

    2012-12-01

    Using the Sphygmocor device it is recommended that the radial pressure wave is calibrated for brachial systolic blood pressure (SBP) and diastolic blood pressure (DBP). However it has been suggested that brachial-to-radial pressure amplification causes underestimation of central blood pressures (BPs) using this calibration. In the present study we examined if different calibrations had an impact on estimates of central BPs and on the clinical interpretation of our results. On the basis of ambulatory BP measurements, patients were categorized into patients with controlled, uncontrolled or resistant hypertension. We first calibrated the radial pressure wave as recommended and afterwards recalibrated the same pressure wave using brachial DBP and calculated mean arterial pressure. Recalibration of the pressure wave generated significantly higher estimates of central SBP (P=0.0003 and Plost in patients with resistant hypertension (P=0.15). We conclude that calibration with DBP and mean arterial pressure produces higher estimates of central BPs than recommended calibration. The present study also shows that this difference between the two calibration methods can produce more than a systematic error and has an impact on interpretation of clinical results.

  16. Calibrated Pulse-Thermography Procedure for Inspecting HDPE

    Directory of Open Access Journals (Sweden)

    Mohammed A. Omar

    2008-01-01

    Full Text Available This manuscript discusses the application of a pulse-thermography modality to evaluate the integrity of a high-density polyethylene HDPE joint for delamination, in nonintrusive manner. The inspected HDPE structure is a twin-cup shape, molded through extrusion, and the inspection system comprises a high-intensity, short-duration radiation pulse to excite thermal emission; the text calibrates the experiment settings (pulse duration, and detector sampling rate to accommodate HDPE bulks thermal response. The acquired thermal scans are processed through new contrast computation named “self-referencing”, to investigate the joint tensile strength and further map its adhesion interface in real-time. The proposed system (hardware, software combination performance is assessed through an ultrasound C-scan validation and further benchmarked using a standard pulse phase thermography (PPT routine.

  17. The calibration of a cylindrical pressure probe for recirculating flow measurements

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-06-01

    The use of the pressure distribution around a cylinder in cross-flow to indicate the magnitude and direction of the velocity vector is discussed in the context of making measurements in highly turbulent recirculating flows. The intended application is the measurement of the flow between the ribs on the large-scale model of the AGR fuel-pin surface. Results from a number of calibration experiments in boundary layers are used to provide a correlation for the positions at which local static pressure is measured on the cylinder surface. After appropriate corrections, the dynamic pressure is deduced from the pressure at the stagnation point. Corrections are also necessary in deducing the direction of flow from the bisector of the static pressure positions, when the cylinder is in a shear flow or near a wall, and these too are evaluated from the results of the calibration experiments. Measurements in two recirculating flows are then presented as an illustration both of the validity and limitations of the technique. In the first case, comparison is made with the measurements of a pulsed-wire anemometer behind a surface-mounted cube and, in the second, the continuity is used to provide an overall check on measurements behind a transverse plate. It is concluded that useful results can be obtained in many turbulent flow situations. (author)

  18. The effect of positive end-expiratory pressure on pulse pressure ...

    African Journals Online (AJOL)

    The effect of positive end-expiratory pressure on pulse pressure variation. FJ Smith, M Geyser, I Schreuder, PJ Becker. Abstract. Objectives: To determine the effect of different levels of positive end-expiratory pressure (PEEP) on pulse pressure variation (PPV). Design: An observational study. Setting: Operating theatres of a ...

  19. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    Science.gov (United States)

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  20. Carbon resistor pressure gauge calibration at low stresses

    International Nuclear Information System (INIS)

    Cunningham, Bruce; Vandersall, Kevin S.; Niles, Angela M.; Greenwood, Daniel W.; Garcia, Frank; Forbes, Jerry W.; Wilson, William H.

    2002-01-01

    The 470 Ohm carbon resistor gauge has been used in the stress range up to 4-5 GPa for highly heterogeneous materials and/or divergent flow experiments. The attractiveness of the gauge is its rugged nature, simple construction, low cost, reproducibility, and survivability in dynamic events. Gauge drawbacks are the long time response to pressure equilibration and gauge resistance hysteresis. In the regime below 0.4 GPa, gauge calibration has been extrapolated. Because of the need for calibration data within this low stress regime, calibration experiments were performed using a split-Hopkinson bar, drop tower apparatus, and gas pressure chamber. Since the performance of the gauge at elevated temperatures is a concern, the change in resistance due to heating at atmospheric pressure was also investigated. Details of the various calibration arrangements and the results are discussed and compared to a calibration curve fit to previously published calibration data

  1. Precise calibration of few-cycle laser pulses with atomic hydrogen

    Science.gov (United States)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  2. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    Science.gov (United States)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  3. Calibration method of the pulsed X-ray relative sensitivity for ST401 plastic scintillators

    International Nuclear Information System (INIS)

    Xie Hongwei; Song Guzhou; Wang Kuilu

    2011-01-01

    The relative sensitivity calibration method of the pulsed X-ray in ST401 plastic scintillator is presented. Experimental relative sensitivity calibrations of the plastic scintillators of different thicknesses from 1 mm to 50 mm are accomplished on the 'Chenguang' pulsed X-ray source and a Co radioactive source, The uncertainty of the calibration data is evaluated, which can be treated as the experimental evidence for the relative sensitivity conversion of ST401 plastic scintillator. (authors)

  4. An overview of the dynamic calibration of piezoelectric pressure transducers

    Science.gov (United States)

    Theodoro, F. R. F.; Reis, M. L. C. C.; d’ Souto, C.

    2018-03-01

    Dynamic calibration is a research area that is still under development and is of great interest to aerospace and automotive industries. This study discusses some concepts regarding dynamic measurements of pressure quantities and presents an overview of dynamic calibration of pressure transducers. Studies conducted by the Institute of Aeronautics and Space focusing on research regarding piezoelectric pressure transducer calibration in shock tube are presented. We employed the Guide to the Expression of Uncertainty and a Monte Carlo Method in the methodology. The results show that both device and methodology employed are adequate to calibrate the piezoelectric sensor.

  5. EPMT: a portable transfer standard for telemetry system pressure-transducer calibration

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1977-01-01

    The LLL developed electronic pressure meter (EPMT) is a portable static-pressure calibration instrument for use with the LLL telemetry transducer system at the Nevada Test Site (NTS). It is significantly more accurate and rugged than the bourdon-tube pressure gauge it replaces, and can be incorporated into a field-use, semi-automatic, pressure calibration system. The process by which a transducer is selected for EPMT use from the inventory of field-service-certified transducers and subjected to an extensive preconditioning and calibration procedure is described. By combining this unusual calibration procedure with a unique, statistically based data-reduction routine, the total uncertainty of the measuring process at each calibration point can be determined with high accuracy

  6. Robust motion artefact resistant circuit for calculation of Mean Arterial Pressure from pulse transit time.

    Science.gov (United States)

    Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika

    2017-07-01

    Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.

  7. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  8. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  9. Cryogenic Pressure Calibration Facility Using a Cold Force Reference

    CERN Document Server

    Bager, T; Métral, L

    1999-01-01

    Presently various commercial cryogenic pressure sensors are being investigated for installation in the LHC collider, they will eventually be used to assess that the magnets are fully immersed in liquid and to monitor fast pressure transients. In the framework of this selection procedure a cryogenic pressue calibration facility has been designed and built; it is based on a cryogenic primary pressure reference made of a bellows that converts the pressure into a force measurement. For that a shaft transfers this force to a precision force transducer at room temperature. Knowing the liquid bath pessure and the surface area of the bellows the pressure applied to the transducers under calibration is calculated; corrections due to thermal contraction are introduced. To avoid loss of force in the bellows wall its length is maintained constant; a cold capacitive displacement sensor measures this. The calibration temperature covers 1.5 K to 4.2 K and the pressure 0 to 20 bar. In contrast with more classical techniques ...

  10. Measuring sub-bandage pressure: comparing the use of pressure monitors and pulse oximeters.

    Science.gov (United States)

    Satpathy, A; Hayes, S; Dodds, S R

    2006-03-01

    To test the use of low-cost sub-bandage pressure monitors and pulse oximeters as part of a quality-control measure for graduated compression bandaging in leg ulcer clinics. Twenty-five healthy volunteers (mean age 40 years) providing 50 limbs were bandaged with a four-layer compression bandaging system. The ankle systolic pressure (ASP) was measured using a pulse oximeter (Nellcor NBP-40) before applying the graduated compression bandages. Interface pressure was measured by placing pressure sensors on the skin at three points (2cm above the medial malleolus; the widest part of the calf; and a point midway between them) in the supine and standing positions. The ASP was measured again with the pulse oximeter after the bandage had been applied, and the effect of the bandage on the ASP was recorded. The actual pressure created by the bandage was compared with the required pressure profile. Interface pressures varied with change of position and movement. With the operator blinded to the pressure monitors while applying the bandages, the target pressure of 35-40mmHg at the ankle was achieved in only 36% of limbs ([mean +/- 95% confidence interval]; 32.3 +/- 1.6mmHg [supine]; 38.4 +/- 2.4mmHg [standing position]). With the help of the pressure monitors, the target pressure was achieved in 78% of the limbs. There was no correlation between the pressure monitors and pulse oximeter pressures, demonstrating that the pulse oximeter is not a useful tool for measuring sub-bandage pressures. The results suggest a tool (interface pressure monitors) that is easy to operate should be available as part of quality assurance for treatment, training of care providers and education.

  11. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  12. Maximum respiratory pressure measuring system : calibration and evaluation of uncertainty

    NARCIS (Netherlands)

    Ferreira, J.L.; Pereira, N.C.; Oliveira Júnior, M.; Vasconcelos, F.H.; Parreira, V.F.; Tierra-Criollo, C.J.

    2010-01-01

    The objective of this paper is to present a methodology for the evaluation of uncertainties in the measurements results obtained during the calibration of a digital manovacuometer prototype (DM) with a load cell sensor pressure device incorporated. Calibration curves were obtained for both pressure

  13. In-situ calibration of RTDs and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1994-01-01

    New techniques have been developed and validated for in-situ calibration of pressure transmitters as installed in nuclear power plants. These new techniques originate from a desire within the nuclear industry to monitor the calibration of pressure sensors during normal power operation by monitoring the DC output of the sensors for any significant draft and other anomalies. Currently, the calibration of pressure sensors is performed once every fuel cycle (18-24 months). The work involves significant manpower, radiation exposure to plant personnel, and potential damage to the plant equipment. In-situ calibration offers the potential to identify the sensors that need to be replaced or require calibration during normal plant operation, and reduce the calibration effort during outages to those sensors that need to be calibrated, as opposed to calibrating all the sensors

  14. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    Science.gov (United States)

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  15. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    at an extended water-solid interface by imposing a tensile stress pulse which easily causes cavitation. Next, a compressive pulse of duration ~1 ms and a peak intensity of a few bar is imposed prior to the tensile stress pulse. A dramatic increase of the tensile strength is observed immediately after......It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water...

  16. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  17. Numerical simulation of the pressure pulses produced by a pressure screen foil rotor

    International Nuclear Information System (INIS)

    Feng, M.; Ollivier-Gooch, C.; Gooding, R.W.; Olson, J.A.

    2003-01-01

    Pressure screening is the most industrially efficient and effective means of removing contaminants that degrade the appearance and strength of paper and fractionating fibres for selective treatments and specialty products. A critical design component of a screen is the rotor which produces pressure pulses on the screen cylinder surface to keep the screening apertures clear. To understand the effect of the key design and operating variables for a NACA 0012 foil rotor, a computational fluid dynamic (CFD) simulation tool was developed with FLUENT software, and the numerical results were compared with experimental measurements. The computational results of pressure pulses were shown to be in good agreement with experimental pressure measurements over a wide range of foil tip-speeds, clearances and angles of attack. In addition, it was shown that the magnitude of the pressure pulse peak increases as the rotating speed increases linearly with the square of tip-speed for all the angles of attack studied. The maximum negative pressure pulse occurred for the foil at 5 degrees angle of attack. Flow began to separate from foil surface near the screen plate beyond 10 degrees angle of attack. The positive pressure peak near the leading edge of the foil is completely eliminated for foils operating at a positive angle of attack. The magnitude of the negative pressure peak increased as clearance decreased. In addition to, and more important than, these specific results, we have shown that CFD is a viable tool for the optimal design and operation of rotors in industrial pressure screens. (author)

  18. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Energy Technology Data Exchange (ETDEWEB)

    Buzrul, S; Largeteau, A; Demazeau, G [ICMCB, CNRS, Universite Bordeaux 1, site de l' ENSCPB, 87 avenue du Dr. A. Schweitzer, 33608 PESSAC cedex (France); Alpas, H [Food Engineering Department, Middle East Technical University, 06531, Ankara (Turkey)], E-mail: sbuzrul@metu.edu.tr

    2008-07-15

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  19. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Science.gov (United States)

    Buzrul, S.; Largeteau, A.; Alpas, H.; Demazeau, G.

    2008-07-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min × 2 pulses, 1 min × 5 pulses and 0.5 min × 10 pulses), 10 min (5 min × 2 pulses, 2 min × 5 pulses and 1 min × 10 pulses), 15 min (5 min × 3 pulses, 3 min × 5 pulses and 1.5 min × 10 pulses) and 20 min (10 min × 2 pulses, 5 min × 4 pulses, 4 min × 5 pulses and 2 min × 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  20. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    International Nuclear Information System (INIS)

    Buzrul, S; Largeteau, A; Demazeau, G; Alpas, H

    2008-01-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms

  1. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  2. An in vitro quantification of pressures exerted by earlobe pulse oximeter probes following reports of device-related pressure ulcers in ICU patients .

    Science.gov (United States)

    Goodell, Teresa T

    2012-11-01

    The earlobe often is used to monitor perfusion when pulse oximeter signal quality is impaired in the fingers and toes. Prompted by intermittent occurrences of roughly circular earlobe pressure ulcers among patients in intensive care units, a convenience sample of seven calibrated pulse oximeter probes was used to quantify earlobe pressure exerted by these devices in vitro. All were tested twice with an electronic load cell, a strain gauge with a transducer that transforms the measured force into a readable numerical signal. The probe was clipped to the load cell just as it is clipped to the earlobe in the clinical setting. The probes exerted an average of 0.24 lb (SD 0.6) of force over an area of 0.3 square inches, equal to an average of 20.7 mm Hg (SD 0.6) pressure on tissue. This value exceeds some empirically derived values of capillary perfusion pressure. The occurrence of device-related pressure ulcers, as well pressure ulcers on the ears, has been documented, but little is known about device-related earlobe pressure ulcers or the actual pressure exerted by these devices. Additional in vitro studies are needed to quantify the pressures exerted by these and other probes, and future prevalence and incidence studies should include more detailed pressure ulcer location and device use documentation. Until more is known about the possible role of these devices in the development of pressure ulcers, clinicians should be cognizant of their potential for causing pressure ulcers, particularly in patients whose conditions can compromise skin integrity.

  3. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by 'pressure garments'.

    Science.gov (United States)

    Macintyre, Lisa

    2011-11-01

    Accurate measurement of the pressure delivered by medical compression products is highly desirable both in monitoring treatment and in developing new pressure inducing garments or products. There are several complications in measuring pressure at the garment/body interface and at present no ideal pressure measurement tool exists for this purpose. This paper summarises a thorough evaluation of the accuracy and reproducibility of measurements taken following both of Tekscan Inc.'s recommended calibration procedures for I-scan sensors; and presents an improved method for calibrating and using I-scan pressure sensors. The proposed calibration method enables accurate (±2.1 mmHg) measurement of pressures delivered by pressure garments to body parts with a circumference ≥30 cm. This method is too cumbersome for routine clinical use but is very useful, accurate and reproducible for product development or clinical evaluation purposes. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  4. Pulse Pressure: An Indicator of Heart Health?

    Science.gov (United States)

    ... pressure should also be considered alongside pulse pressure values. Higher systolic and diastolic pairs imply higher risk than ... endorse any of the third party products and services advertised. Advertising ... Education and Research. © 1998-2018 Mayo Foundation for Medical ...

  5. Models of brachial to finger pulse wave distortion and pressure decrement.

    Science.gov (United States)

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  6. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  7. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  8. Monitoring of deposits in pipelines using pressure pulse technology

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Jon S.; Celius, Harald K.

    2005-07-01

    The basis of pressure pulse technology is presented in terms of the water hammer equation, the pipeline pressure drop equation and the equation for speed of sound in multiphase mixtures. The technology can be used for a range of applications, from on-line monitoring of flowing conditions to on-demand measurements and analysis to locate and quantify deposits in wells and pipelines. While pressure pulse measurements are low-cost and easy to implement, the commercial use of pressure pulse technology has resulted from extensive field experience and substantial in-house software development. Simulation tools were used to illustrate the effect of a 2 mm thick deposit, 500 m long and located 375 m from a quick-acting valve. The simulation conditions used are typical for multiphase gas-oil flow along a horizontal 2 km long pipeline from wellhead to manifold. (Author)

  9. The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell

    Science.gov (United States)

    Davis, M. K.; Panero, W. R.; Stixrude, L. P.

    2003-12-01

    Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the

  10. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  11. Pressure pulses generated by gas released from a breached fuel element

    International Nuclear Information System (INIS)

    Wu, T.S.

    1979-01-01

    In experimental measurements of liquid pressure pulses generated by rapid release of gas from breached fuel elements in a nuclear reactor, different peak pressures were observed at locations equidistant from the origin of the release. Using the model of a submerged spherical bubble with a nonstationary center, this analysis predicts not only that the peak pressure would be higher at a point in front of the advancing bubble than that at a point the same distance behind the bubble origin, but also that the pressure pulse in front of the bubble reaches its peak later than the pulse behind the origin

  12. A photon pressure calibrator for the GEO 600 gravitational wave detector

    International Nuclear Information System (INIS)

    Mossavi, K.; Hewitson, M.; Hild, S.; Seifert, F.; Weiland, U.; Smith, J.R.; Lueck, H.; Grote, H.; Willke, B.; Danzmann, K.

    2006-01-01

    Interferometer mirror displacement induced by radiation pressure is used to demonstrate an alternative calibration method for the GEO 600 detector. The photon calibrator utilizes an amplitude modulated laser diode with up to 1.4 W output power at a wavelength of 1035 nm. The achieved accuracy of the strain amplitude calibration is dominated by the laser power calibration error, which is in the range of ±4% for the measurements presented in this Letter

  13. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  14. Calibration and use of a rugged new piezoresistive pressure transducer

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, R.A.; Charest, J.A.

    1995-09-01

    A new 50-ohm piezoresistive pressure gauge has been developed and calibrated in the range 0 to 4.0 GPa. This ``pinducer`` consists of one half of 100 ohm, one quarter watt, carbon composition resistor mounted coaxially at the end of a small brass tube. Three techniques have been used to calibrate this new gauge. Good agreement is found between all calibration data, and a smooth curve is fit through all resistance change versus pressure data up to 1.5 GPa. The gauges exhibit rise times of about 0.5 {mu}s. They offer advantages in raggedness, cost, and flexibility of application. The pinducer can be successfully used in divergent flows, harsh environments, and positions where lead protection would be impossible with thin-film gauges. A unique application is demonstrated.

  15. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    International Nuclear Information System (INIS)

    Baeva, M; Gier, H; Pott, A; Uhlenbusch, J; Hoeschele, J; Steinwandel, J

    2002-01-01

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 μs is experimentally studied with respect to the ability to remove NO x from synthetic exhaust gases. Experiments in gas mixtures containing N 2 /O 2 /NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NO x reduction of more than 90% in the case of N 2 /NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NO x reduction can still be observed up to 9% O 2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N 2 . Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N 2 . The vibrational temperature drops to 1500 K when O 2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N 2 amounts to 2.2x10 6 V m -1 , a value that is reproducible within 2%. In the case of O 2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8x10 6 V m -1

  16. Probability based calibration of pressure coefficients

    DEFF Research Database (Denmark)

    Hansen, Svend Ole; Pedersen, Marie Louise; Sørensen, John Dalsgaard

    2015-01-01

    Normally, a consistent basis for calculating partial factors focuses on a homogeneous reliability index neither depending on which material the structure is constructed of nor the ratio between the permanent and variable actions acting on the structure. Furthermore, the reliability index should n...... the characteristic shape coefficients are based on mean values as specified in background documents to the Eurocodes. Importance of hidden safeties judging the reliability is discussed for wind actions on low-rise structures....... not depend on the type of variable action. A probability based calibration of pressure coefficients have been carried out using pressure measurements on the standard CAARC building modelled on scale of 1:383. The extreme pressures measured on the CAARC building model in the wind tunnel have been fitted.......3, the Eurocode partial factor of 1.5 for variable actions agrees well with the inherent uncertainties of wind actions when the pressure coefficients are determined using wind tunnel test results. The increased bias and uncertainty when pressure coefficients mainly are based on structural codes lead to a larger...

  17. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  18. Comparison of under-pressure and over-pressure pulse tests conducted in low-permeability basalt horizons at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Thorne, P.D.; Spane, F.A. Jr.

    1984-10-01

    Over-pressure pulse tests (pressurized slug tests have been widely used by others for hydraulic characterization of low-permeability ( -8 m/sec) rock formations. Recent field studies of low-permeability basalt horizons at the Hanford Site, Washington, indicate that the under-pressure pulse technique is also a viable test method for hydraulic characterization studies. For over-pressure pulse tests, fluid within the test system is rapidly pressurized and the associated pressure decay is monitored as compressed fluid within the test system expands and flows into the test formation. Under-pressure pulse tests are conducted in a similar manner by abruptly decreasing the pressure of fluid within the test system, and monitoring the associated increase in pressure as fluid flows from the formation into the test system. Both pulse test methods have been used in conjunction with other types of tests to determine the hydraulic properties of selected low-permeability basalt horizons at Hanford test sites. Results from both pulse test methods generally provide comparable estimates of hydraulic properties and are in good agreement with those from other tests

  19. Ankle Blood Pressure and Pulse Pressure as Predictors of Cerebrovascular Morbidity and Mortality in a Prospective Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Heikki J. Hietanen

    2010-01-01

    Full Text Available Background and Objective. We examined the association of elevated ankle blood pressure (ABP, together with exercise blood pressure, with incident cerebrovascular (CV morbidity and mortality in a prospective follow-up study of 3,808 patients. The results were compared with pulse pressure, another indicator of arterial stiffness. Methods. Patients with normal ankle and exercise brachial blood pressures were taken as the reference group. Pulse pressure was considered as quartiles with the lowest quartile as the reference category. Results. A total of 170 subjects had a CV event during the follow-up. Multivariate adjusted hazard ratio of a CV event was 2.24 (95% CI 1.43–3.52, <.0001 in patients with abnormal ABP. The pulse pressure was significant only in the model adjusted for age and sex. Conclusion. The risk of a future CV event was elevated already in those patients among whom elevated ABP was the only abnormal finding. As a risk marker, ABP is superior to the pulse pressure.

  20. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  1. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao (Jing Hua); S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I.E. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  2. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  3. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  4. A Comparison and Calibration of a Wrist-Worn Blood Pressure Monitor for Patient Management: Assessing the Reliability of Innovative Blood Pressure Devices

    Science.gov (United States)

    Melville, Sarah; Teskey, Robert; Philip, Shona; Simpson, Jeremy A; Lutchmedial, Sohrab

    2018-01-01

    Background Clinical guidelines recommend monitoring of blood pressure at home using an automatic blood pressure device for the management of hypertension. Devices are not often calibrated against direct blood pressure measures, leaving health care providers and patients with less reliable information than is possible with current technology. Rigorous assessments of medical devices are necessary for establishing clinical utility. Objective The purpose of our study was 2-fold: (1) to assess the validity and perform iterative calibration of indirect blood pressure measurements by a noninvasive wrist cuff blood pressure device in direct comparison with simultaneously recorded peripheral and central intra-arterial blood pressure measurements and (2) to assess the validity of the measurements thereafter of the noninvasive wrist cuff blood pressure device in comparison with measurements by a noninvasive upper arm blood pressure device to the Canadian hypertension guidelines. Methods The cloud-based blood pressure algorithms for an oscillometric wrist cuff device were iteratively calibrated to direct pressure measures in 20 consented patient participants. We then assessed measurement validity of the device, using Bland-Altman analysis during routine cardiovascular catheterization. Results The precalibrated absolute mean difference between direct intra-arterial to wrist cuff pressure measurements were 10.8 (SD 9.7) for systolic and 16.1 (SD 6.3) for diastolic. The postcalibrated absolute mean difference was 7.2 (SD 5.1) for systolic and 4.3 (SD 3.3) for diastolic pressures. This is an improvement in accuracy of 33% systolic and 73% diastolic with a 48% reduction in the variability for both measures. Furthermore, the wrist cuff device demonstrated similar sensitivity in measuring high blood pressure compared with the direct intra-arterial method. The device, when calibrated to direct aortic pressures, demonstrated the potential to reduce a treatment gap in high blood

  5. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  6. [The development of a wearable pulse oximeter sensor and study of the calibration method].

    Science.gov (United States)

    Wu, Xiaoling; Cai, Guiyan

    2009-08-01

    The paper first analyses the principles of measurement of the two-wave oximeter and their limitations in technology. We propose to filter off motion interference from pulse oximeter signal using an algorithm based on the Beer-Lambert law that requires a three-wave probe (660 nm, 850 nm, and 940 nm). Based on the new algorithm, this paper describes the design principle of the circuitry and the software flowchart. Also, we study the calibration method of the pulse oximeter sensor and discuss the results in this paper.

  7. Importance of Calibration Method in Central Blood Pressure for Cardiac Structural Abnormalities.

    Science.gov (United States)

    Negishi, Kazuaki; Yang, Hong; Wang, Ying; Nolan, Mark T; Negishi, Tomoko; Pathan, Faraz; Marwick, Thomas H; Sharman, James E

    2016-09-01

    Central blood pressure (CBP) independently predicts cardiovascular risk, but calibration methods may affect accuracy of central systolic blood pressure (CSBP). Standard central systolic blood pressure (Stan-CSBP) from peripheral waveforms is usually derived with calibration using brachial SBP and diastolic BP (DBP). However, calibration using oscillometric mean arterial pressure (MAP) and DBP (MAP-CSBP) is purported to provide more accurate representation of true invasive CSBP. This study sought to determine which derived CSBP could more accurately discriminate cardiac structural abnormalities. A total of 349 community-based patients with risk factors (71±5years, 161 males) had CSBP measured by brachial oscillometry (Mobil-O-Graph, IEM GmbH, Stolberg, Germany) using 2 calibration methods: MAP-CSBP and Stan-CSBP. Left ventricular hypertrophy (LVH) and left atrial dilatation (LAD) were measured based on standard guidelines. MAP-CSBP was higher than Stan-CSBP (149±20 vs. 128±15mm Hg, P curve analyses, MAP-CSBP significantly better discriminated LVH compared with Stan-CSBP (area under the curve (AUC) 0.66 vs. 0.59, P = 0.0063) and brachial SBP (0.62, P = 0.027). Continuous net reclassification improvement (NRI) (P AUC 0.63 vs. 0.56, P = 0.005) and conventional brachial SBP (0.58, P = 0.006), whereas Stan-CSBP provided no better discrimination than conventional brachial BP (P = 0.09). CSBP is calibration dependent and when oscillometric MAP and DBP are used, the derived CSBP is a better discriminator for cardiac structural abnormalities. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The impact of sedation on pulse pressure variation

    Czech Academy of Sciences Publication Activity Database

    Zvoníček, V.; Jurák, Pavel; Halámek, Josef; Kružliak, P.; Vondra, Vlastimil; Leinveber, P.; Cundrle, I.; Pavlík, M.; Suk, P.; Šrámek, V.

    2015-01-01

    Roč. 28, č. 4 (2015), s. 203-207 ISSN 1036-7314 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : pulse pressure variation * sedation * heart lung interactions * mechanical ventilation * brain death * oesophageal pressure Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.479, year: 2015

  9. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  10. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  11. Relationship between Resting Heart Rate, Blood Pressure and Pulse Pressure in Adolescents.

    Science.gov (United States)

    Christofaro, Diego Giulliano Destro; Casonatto, Juliano; Vanderlei, Luiz Carlos Marques; Cucato, Gabriel Grizzo; Dias, Raphael Mendes Ritti

    2017-05-01

    High resting heart rate is considered an important factor for increasing mortality chance in adults. However, it remains unclear whether the observed associations would remain after adjustment for confounders in adolescents. To analyze the relationship between resting heart rate, blood pressure and pulse pressure in adolescents of both sexes. A cross-sectional study with 1231 adolescents (716 girls and 515 boys) aged 14-17 years. Heart rate, blood pressure and pulse pressure were evaluated using an oscillometric blood pressure device, validated for this population. Weight and height were measured with an electronic scale and a stadiometer, respectively, and waist circumference with a non-elastic tape. Multivariate analysis using linear regression investigated the relationship between resting heart rate and blood pressure and pulse pressure in boys and girls, controlling for general and abdominal obesity. Higher resting heart rate values were observed in girls (80.1 ± 11.0 beats/min) compared to boys (75.9 ± 12.7 beats/min) (p ≤ 0.001). Resting heart rate was associated with systolic blood pressure in boys (Beta = 0.15 [0.04; 0.26]) and girls (Beta = 0.24 [0.16; 0.33]), with diastolic blood pressure in boys (Beta = 0.50 [0.37; 0.64]) and girls (Beta = 0.41 [0.30; 0.53]), and with pulse pressure in boys (Beta = -0.16 [-0.27; -0.04]). This study demonstrated a relationship between elevated resting heart rate and increased systolic and diastolic blood pressure in both sexes and pulse pressure in boys even after controlling for potential confounders, such as general and abdominal obesity. A frequência cardíaca de repouso é considerada um importante fator de aumento de mortalidade em adultos. Entretanto, ainda é incerto se as associações observadas permanecem após ajuste para fatores de confusão em adolescentes. Analisar a relação entre frequência cardíaca de repouso, pressão arterial e pressão de pulso em adolescentes dos dois sexos. Estudo transversal

  12. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Jochen Steppan

    2011-01-01

    Full Text Available Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.

  13. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    Science.gov (United States)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  14. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    Science.gov (United States)

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  15. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  16. Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: the impact of posture.

    Science.gov (United States)

    Muehlsteff, J; Aubert, X A; Morren, G

    2008-01-01

    There is an unmet need for cuff-less blood pressure (BP) monitoring especially, in personal healthcare applications. The pulse arrival time (PAT) approach might offer a suitable solution to enable comfortable BP monitoring even at beat-level. However, the methodology is based on hemodynamic surrogate measures, which are sensitive to patient activities such as posture changes, not necessarily related to blood pressure variations. In this paper, we analyze the impact of posture on the PAT measure and related hemodynamic parameters such as the pre-ejection period in well-defined procedures. Additionally, the PAT of a monitored subject is investigated in an unsupervised scenario illustrating the complexity of such a measurement. Our results show the failure of blood pressure inference based on simple calibration strategies using the PAT measure only. We discuss opportunities to compensate for the observed effects towards the realization of wearable cuff-less blood pressure monitoring. These findings emphasize the importance of accessing context information in personal healthcare applications, where vital sign monitoring is typically unsupervised.

  17. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  18. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    International Nuclear Information System (INIS)

    Joshi, Abhay B.; Kalange, Ashok E.; Bodas, Dhananjay; Gangal, S.A.

    2010-01-01

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  19. Dose calibrations of itensifying screens and neutral density filters for use on pulsed x-ray sources

    International Nuclear Information System (INIS)

    Gersten, M.; Rauch, J.E.; Shannon, J.

    1983-01-01

    We calibrated three intensifying screens: Kodak Lanex Regular, Kodak X-Omatic Regular, and Kodak X-Omatic Fine, with relative speeds of 400, 100, and 15 for exposures to a 85 keV bremsstrahling spectrum when used in conjunction with Ortho G film. We also calibrated three neutral density filters: 0.6, 1, and 2 OD. When the screens are used in conjunction with the neutral density filters, 12 configurations can be obtained, with a total dynamic range of 2700. The film/screen/filter pack calibrations were performed in support of the bremsstrahlung experiments on Maxwell Laboratories BLACKJACK 5' pulse generator; the film/screen/filter packs are used to record pinhole photographs, one of the major diagnostics in the program. Because of reciprocity failure associated with the exposure of photographic film by visible light, an intense pulsed X-ray source was needed for the calibration. We used Maxwell Laboratories modular bremsstrahlung source, MBS. In the mode used (mean electron energy 213 + or - 6 keV, peak diode voltage 264 + or - 8 keV, and peak diode current 368 + or - 24 kA), a source strength of 47 + or - 2 J was obtained in a 30 + or - 1.2 ns FWHM pulse. In this mode, 41 + or - 4 percent of the fluence was above 67 keV. In this experiment, the machine operating parameters were held constant and the flux on the film/screen/filter pack was varied between 1.5 x 10 -3 - 5.6 x 10 -8 J/cm 2 . This was achieved by varying the distance between the film/screen/filter pack and the source and-by aperturing the source. The fil/screen/filter pack used for the calibration had three horizontal strips of screen pairs, overlayed with three vertical strips of neutral density filter pairs. One vertical section was left unfiltered. In this configuration 12 exposures are obtained simulatenously. The dose was measured with four TLD's placed inside the film/screen/filter pack at four corners

  20. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.

    1993-01-01

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  1. Long-duration nano-second single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures

    International Nuclear Information System (INIS)

    Thornton, Blair; Sakka, Tetsuo; Masamura, Tatsuya; Tamura, Ayaka; Takahashi, Tomoko; Matsumoto, Ayumu

    2014-01-01

    The influence of laser pulse duration on the spectral emissions observed from bulk ionic solutions has been investigated for hydrostatic pressures between 0.1 and 30 MPa. Transient pressure, shadowgraph imaging and spectroscopic measurements were performed for single pulses of duration 20 and 150 ns. The transient pressure measurements show that for hydrostatic pressures up to 30 MPa, propagation of the high-pressure shockwave generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure are larger, with the latter lasting longer for the 150 ns pulse compared to a 20 ns pulse of the same energy. The 150 ns pulse generates larger cavities with significant enhancement of the spectral emissions observed compared to the 20 ns duration pulse for pressures up to 30 MPa. The results demonstrate that laser-induced breakdown using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30 MPa. - Highlights: • Long-ns-duration laser pulses enhance the spectra observed from bulk solutions. • Laser-induced shockwaves momentarily reduce pressures to below ambient levels. • 150 ns pulses generate larger cavities than 20 ns pulses of the same energy. • Hydrostatic pressures < 30 MPa have no significant effect on the observed spectra

  2. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    Science.gov (United States)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  3. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  4. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  5. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  6. Models of brachial to finger pulse wave distortion and pressure decrement

    NARCIS (Netherlands)

    Gizdulich, P.; Prentza, A.; Wesseling, K.H.

    1997-01-01

    Objective: To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Methods: Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by

  7. Calibration of an isotopically enriched carbon-13 layer pressure sensor to 156 GPa in a diamond anvil cell

    International Nuclear Information System (INIS)

    Qiu Wei; Baker, Paul A.; Velisavljevic, Nenad; Vohra, Yogesh K.; Weir, Samuel T.

    2006-01-01

    An isotopically enriched 13 C homoepitaxial diamond layer of 6±1 μm thickness was grown on top of a brilliant cut diamond anvil by a microwave plasma chemical vapor deposition process for application as a pressure sensor. This isotopically enriched diamond tip was then used in conjunction with a natural isotopic abundance diamond anvil to generate high pressure on the sample. We provide a calibration for the 13 C Raman mode of this extremely thin epitaxial layer to 156 GPa using ruby fluorescence and the equation of state of copper as secondary pressure standards. The nonlinear calibration of the 13 C Raman mode pressure sensor is compared with similar calibrations of 12 C Raman edge and a good agreement is obtained. The Raman signal from the 13 C epitaxial layer remained a distinct singlet to 156 GPa, and pressure calibration is independent of sample mechanical strength or the diamond anvil geometry. The use of even thinner layer would allow calibration further into ultrahigh pressure regime where the use of other optical sensors has proven to be difficult

  8. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  9. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  10. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  11. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  12. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  13. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    International Nuclear Information System (INIS)

    Nurkkala, P.; Hoikkanen, J.

    1997-01-01

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. 'grounded' and 'with goose neck'). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.)

  14. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P; Hoikkanen, J [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  15. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  16. Abdominal Obesity Is Characterized by Higher Pulse Pressure: Possible Role of Free Triiodothyronine

    Directory of Open Access Journals (Sweden)

    Giovanni De Pergola

    2012-01-01

    Full Text Available Objective. This study examined whether obesity is characterized by higher 24 h mean pulse pressure (24 h mean SBP-24 h mean DBP and whether free thyroid hormones (FT3 and FT4 have a relationship with 24 h mean pulse pressure. Methods. A total of 231 euthyroid overweight and obese patients, 103 women and 128 men, aged 18–68 yrs, normotensive ( or with recently developed hypertension (, never treated with antihypertensive drugs, were investigated. Fasting insulin, TSH, FT3, FT4, glucose, and lipid serum concentrations were measured. Waist circumference was measured as an indirect parameter of central fat accumulation. Ambulatory blood pressure monitoring (ABPM was performed. Results. 24 h mean pulse pressure (PP showed a significant positive correlation with BMI (, waist circumference (, and FT3 ( and insulin serum levels (. When a multivariate analysis was performed, and 24 h PP was considered as the dependent variable, and waist circumference, FT3, insulin, male sex, and age as independent parameters, 24 h mean PP maintained a significant association only with waist circumference ( and FT3 levels (. Conclusion. Our results suggest that FT3 per se may contribute to higher pulse pressure in obese subjects.

  17. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    National Research Council Canada - National Science Library

    Sorvoja, H

    2001-01-01

    .... Systolic pressure errors were defined and correlations with other specific values, like pressure rise time, pulse wave velocity, systolic pressure, augmentation, arm circumference and body mass index were calculated...

  18. CryoSat SIRAL Calibration and Performance

    Science.gov (United States)

    Fornari, Marco; Scagliola, Michele; Tagliani, Nicolas; Parrinello, Tommaso

    2013-04-01

    The main payload of CryoSat is a Ku band pulse-width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is a significant improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed, including both an internal and external calibration. The internal calibration monitors the instrument impulse response and the transfer function, like traditional altimeters. In addition to that, the interferometer requires a special calibration developed ad hoc for SIRAL. The external calibration is performed with the use of a ground transponder, located in Svalbard, which receives SIRAL signal and sends the echo back to the satellite. Internal calibration data are processed on ground by the CryoSat Instrument Processing Facility (IPF1) and then applied to the science data. By April 2013, almost 3 years of calibration data will be available, which will be shown in this poster. The external calibration (transponder) data are processed and analyzed independently from the operational chain. The use of an external transponder has been very useful to determine instrument performance and for the tuning of the on-ground processor. This poster presents the transponder results in terms of range noise and datation error.

  19. Statistical analysis on experimental calibration data for flowmeters in pressure pipes

    Science.gov (United States)

    Lazzarin, Alessandro; Orsi, Enrico; Sanfilippo, Umberto

    2017-08-01

    This paper shows a statistical analysis on experimental calibration data for flowmeters (i.e.: electromagnetic, ultrasonic, turbine flowmeters) in pressure pipes. The experimental calibration data set consists of the whole archive of the calibration tests carried out on 246 flowmeters from January 2001 to October 2015 at Settore Portate of Laboratorio di Idraulica “G. Fantoli” of Politecnico di Milano, that is accredited as LAT 104 for a flow range between 3 l/s and 80 l/s, with a certified Calibration and Measurement Capability (CMC) - formerly known as Best Measurement Capability (BMC) - equal to 0.2%. The data set is split into three subsets, respectively consisting in: 94 electromagnetic, 83 ultrasonic and 69 turbine flowmeters; each subset is analysed separately from the others, but then a final comparison is carried out. In particular, the main focus of the statistical analysis is the correction C, that is the difference between the flow rate Q measured by the calibration facility (through the accredited procedures and the certified reference specimen) minus the flow rate QM contemporarily recorded by the flowmeter under calibration, expressed as a percentage of the same QM .

  20. Results of the non-nulling calibration of five-hole pressure probe

    Science.gov (United States)

    Bereznai, J.; Mlynár, P.; Masaryk, M.

    2017-09-01

    In the laboratory of the Institute of Energy Machinery, Faculty of Mechanical Engineering in Bratislava were produced amount of pressure probes of different designs. Special position among themselves are five-hole pressure probe with tip of sphere or wedge used to determine the velocity vector in a unknown flow fields. Such probes have to be calibrated during blowing an air stream of known velocity magnitude and components of the velocity vector at different angles of attack, when the characteristic information about pressures on a sensitive part of the measuring probe is obtained.

  1. Elevated pulse pressure is associated with hemolysis, proteinuria and chronic kidney disease in sickle cell disease.

    Directory of Open Access Journals (Sweden)

    Enrico M Novelli

    Full Text Available A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661 enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02 and high hemolytic index (beta  =  1.53, p = 0.002 in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02, and with proteinuria (beta  =  2.52, p  =  0.04. These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses.

  2. Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method

    Science.gov (United States)

    Arai, Kenta; Yoshida, Hajime

    2014-10-01

    Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.

  3. Morning pulse pressure is associated more strongly with elevated albuminuria than systolic blood pressure in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study.

    Science.gov (United States)

    Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Matsumoto, Shinobu; Mineoka, Yusuke; Nakanishi, Naoko; Senmaru, Takafumi; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

    2013-09-01

    Recently, focus has been directed toward pulse pressure as a potentially independent risk factor for micro- and macrovascular disease. This study was designed to examine the relationship between pulse pressure taken at home and elevated albuminuria in patients with type 2 diabetes. This study is a post hoc analysis of a cross-sectional multicenter study. Home blood pressure measurements were performed for 14 consecutive days in 858 patients with type 2 diabetes. We investigated the relationship between systolic blood pressure or pulse pressure in the morning or in the evening and urinary albumin excretion using univariate and multivariate analyses. Furthermore, we measured area under the receiver-operating characteristic curve (AUC) to compare the ability to identify elevated albuminuria, defined as urinary albumin excretion equal to or more than 30 mg/g creatinine, of systolic blood pressure or pulse pressure. Morning systolic blood pressure (β=0.339, Ppressure (β=0.378, PAUC for elevated albuminuria in morning systolic blood pressure and morning pulse pressure were 0.668 (0.632-0.705; PAUC of morning pulse pressure was significantly greater than that of morning systolic blood pressure (P=0.040). Our findings implicate that morning pulse pressure is associated with elevated albuminuria in patients with type 2 diabetes, which suggests that lowering morning pulse pressure could prevent the development and progression of diabetic nephropathy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Differing prognostic value of pulse pressure in patients with heart failure with reduced or preserved ejection fraction

    DEFF Research Database (Denmark)

    Jackson, Colette E; Castagno, Davide; Maggioni, Aldo P

    2015-01-01

    ) and 5008 with HF-PEF (828 deaths). Pulse pressure was analysed in quintiles in a multivariable model adjusted for the previously reported Meta-Analysis Global Group in Chronic Heart Failure prognostic variables. Heart failure and reduced ejection fraction patients in the lowest pulse pressure quintile had...... in patients with HF-PEF [ejection fraction (EF) ≥ 50%] and HF-REF. METHODS AND RESULTS: Data from 22 HF studies were examined. Preserved left ventricular ejection fraction (LVEF) was defined as LVEF ≥ 50%. All-cause mortality at 3 years was evaluated in 27 046 patients: 22 038 with HF-REF (4980 deaths......AIMS: Low pulse pressure is a marker of adverse outcome in patients with heart failure (HF) and reduced ejection fraction (HF-REF) but the prognostic value of pulse pressure in patients with HF and preserved ejection fraction (HF-PEF) is unknown. We examined the prognostic value of pulse pressure...

  5. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  6. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  7. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2015-05-01

    Full Text Available Multi-pulsed high hydrostatic pressure (mpHHP treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  8. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    Science.gov (United States)

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  9. MP.EXE, a Calculation Program for Pressure Reciprocity Calibration of Microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    A computer program is described which calculates the pressure sensitivity of microphones based on measurements of the electrical transfer impedance in a reciprocity calibration set-up. The calculations are performed according to the International Standard IEC 6194-2. In addition a number of options...

  10. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  11. Phylloquinone (vitamin K₁) intake and pulse pressure as a measure of arterial stiffness in older adults.

    Science.gov (United States)

    Vaccaro, Joan A; Huffman, Fatma G

    2013-01-01

    This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.

  12. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    Science.gov (United States)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  13. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.

    Science.gov (United States)

    Feng, Jingjie; Huang, Zhongyi; Zhou, Congcong; Ye, Xuesong

    2018-06-01

    It is widely recognized that pulse transit time (PTT) can track blood pressure (BP) over short periods of time, and hemodynamic covariates such as heart rate, stiffness index may also contribute to BP monitoring. In this paper, we derived a proportional relationship between BP and PPT -2 and proposed an improved method adopting hemodynamic covariates in addition to PTT for continuous BP estimation. We divided 28 subjects from the Multi-parameter Intelligent Monitoring for Intensive Care database into two groups (with/without cardiovascular diseases) and utilized a machine learning strategy based on regularized linear regression (RLR) to construct BP models with different covariates for corresponding groups. RLR was performed for individuals as the initial calibration, while recursive least square algorithm was employed for the re-calibration. The results showed that errors of BP estimation by our method stayed within the Association of Advancement of Medical Instrumentation limits (- 0.98 ± 6.00 mmHg @ SBP, 0.02 ± 4.98 mmHg @ DBP) when the calibration interval extended to 1200-beat cardiac cycles. In comparison with other two representative studies, Chen's method kept accurate (0.32 ± 6.74 mmHg @ SBP, 0.94 ± 5.37 mmHg @ DBP) using a 400-beat calibration interval, while Poon's failed (- 1.97 ± 10.59 mmHg @ SBP, 0.70 ± 4.10 mmHg @ DBP) when using a 200-beat calibration interval. With additional hemodynamic covariates utilized, our method improved the accuracy of PTT-based BP estimation, decreased the calibration frequency and had the potential for better continuous BP estimation.

  14. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  15. Construction and calibration of high time resolution gas pressure meter

    International Nuclear Information System (INIS)

    Rossi, J.O.; Santos, C.; Ueda, M.

    1989-11-01

    In this report, the construction and calibration of a gas pressure meter with a time resolution better than 20 μs are described. The meter consists basically of a sensor of the FIG (Fast Ionization Gauge) type and an adequate electronic circuit. A 6AU6A pentode vacuum tube without the glass envelope is used as the sensor head. (author) [pt

  16. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  17. Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensions

    DEFF Research Database (Denmark)

    Diederichsen, Søren Elmin; Hansen, Jesper Mark Fly; Engholm, Mathias

    2017-01-01

    This paper presents an experimental study of the acoustic performance of Capacitive Micromachined Ultrasonic Transducers (CMUTs) as function of plate dimensions. The objective is to increase the output pressure without decreasingthe pulse-echo signal. The CMUTs are fabricated with a LOCOS process......-to-peak output pressure and pulse-echo signal is obtained for the 9.3μm plate, which still has a moderate pulseecho bandwidth of 60%. The 9.3μm plate results in a 1.9 times higher peak-to-peak output pressure and a 3.6 times higherpulse-echo signal compared to the 2μm plate. By adjusting the plate dimensions...

  18. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  19. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  20. CryoSat-2 SIRAL Calibration and Performance

    Science.gov (United States)

    Fornari, M.; Scagliola, M.; Tagliani, N.; Parrinello, T.

    2012-12-01

    The main payload of CryoSat-2 is a Ku band pulse-width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is a significant improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed, including both an internal and external calibration. The internal calibration monitors the instrument impulse response and the transfer function, like traditional altimeters. In addition to that, the interferometer requires a special calibration developed ad hoc for SIRAL. The external calibration is performed with the use of a ground transponder, located in Svalbard, which receives SIRAL signal and sends the echo back to the satellite. Internal calibration data are processed on ground by the CryoSat-2 Instrument Processing Facility (IPF1) and then applied to the science data. In December 2012, two and a half years of calibration data will be available, which will be shown in this poster. The external calibration (transponder) data are processed and analyzed independently from the operational chain. The use of an external transponder has been very useful to determine instrument performance and for the tuning of the on-ground processor. This poster presents the transponder results in terms of range noise and datation error.

  1. Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.

    Science.gov (United States)

    Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao

    2016-08-01

    Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.

  2. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S

    2014-12-01

    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  3. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement

    Science.gov (United States)

    Pfennigbauer, Martin; Ullrich, Andreas

    2010-04-01

    Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.

  4. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  5. Calibration of an accountability tank by bubbling pressure method: correction factors to be taken into account

    International Nuclear Information System (INIS)

    Cauchetier, Ph.

    1993-01-01

    To obtain the needed precision in the calibration of an accountability tank by bubbling pressure method, it requires to use very slow bubbling. The measured data (mass and pressure) must be transformed into physical sizes of the vessel (height and cubic capacity). All corrections to take in account (buoyancy, calibration curve of the sensor, density of the liquid, weight of the gas column, bubbling overpressure, temperature...) are reviewed and valuated. We give the used equations. (author). 3 figs., 1 tab., 2 refs

  6. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test.

    Science.gov (United States)

    Lee, I-Te; Chen, Chen-Huan; Wang, Jun-Sing; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Sheu, Wayne Huey-Herng

    2018-01-01

    Arterial stiffening blunts postprandial vasodilatation. We hypothesized that brain-derived neurotrophic factor (BDNF) may modulate postprandial central pulse pressure, a surrogate marker for arterial stiffening. A total of 82 non-diabetic subjects received a 75-g oral glucose tolerance test (OGTT) after overnight fasting. Serum BDNF concentrations were determined at 0, 30, and 120min to calculate the area under the curve (AUC). Brachial and central blood pressures were measured using a noninvasive central blood pressure monitor before blood withdrawals at 0 and 120min. With the median AUC of BDNF of 45(ng/ml)∗h as the cutoff value, the central pulse pressure after glucose intake was significantly higher in the subjects with a low BDNF than in those with a high BDNF (63±16 vs. 53±11mmHg, P=0.003), while the brachial pulse pressure was not significantly different between the 2 groups (P=0.099). In a multivariate linear regression model, a lower AUC of BDNF was an independent predictor of a higher central pulse pressure after oral glucose intake (linear regression coefficient-0.202, 95% confidence interval-0.340 to -0.065, P=0.004). After oral glucose challenge, a lower serum BDNF response is significantly associated with a higher central pulse pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A search for upstream pressure pulses associated with flux transfer events: An AMPTE/ISEE case study

    Science.gov (United States)

    Elphic, R. C.; Baumjohann, W.; Cattell, C. A.; Luehr, H.; Smith, M. F.

    1994-01-01

    On September 19, 1984, the Active Magnetospheric Particle Tracers Explorers (AMPTE) United Kingdom Satellite (UKS) and Ion Release Module (IRM) and International Sun Earth Explorers (ISEE) 1 and 2 spacecraft passed outbound through the dayside magnetopause at about the same time. The AMPTE spacecraft pair crossed first and were in the near-subsolar magnetosheath for more than an hour. Meanwhile the ISEE pair, about 5 R(sub E) to the south, observed flux transfer event (FTE) signatures. We use the AMPTE UKS and IRM plasma and field observations of magnetosheath conditions directly upstream of the subsolar magnetopause to check whether pressure pulses are responsible for the FTE signatures seen at ISEE. Pulses in both the ion thermal pressure and the dynamic pressure are observed in the magnetosheath early on when IRM and UKS are close to the magnetopause, but not later. These large pulses appear to be related to reconnection going on at the magnetopause nearby. AMPTE magnetosheath data far from the magnetopause do not show a pressure pulse correlation with FTEs at ISEE. Moreover, the magnetic pressure and tension effects seen in the ISEE FTEs are much larger than any pressure effects seen in the magnetosheath. A superposed epoch analysis based on small-amplitude peaks in the AMPTE magnetosheath total static pressure (nkT + B(exp 2)/2 mu(sub 0)) hint at some boundary effects, less than 5 nT peak-to-peak variations in the ISEE 1 and 2 B(sub N) signature starting about 1 min after the pressure peak epoch. However, these variations are much smaller than the standard deviations of the B(sub N) field component. Thus the evidence from this case study suggests that upstream magnetosheath pressure pulses do not give rise to FTEs, but may produce very small amplitude signatures in the magnetic field at the magnetopause.

  8. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  9. Perceived social isolation moderates the relationship between early childhood trauma and pulse pressure in older adults.

    Science.gov (United States)

    Norman, Greg J; Hawkley, Louise; Ball, Aaron; Berntson, Gary G; Cacioppo, John T

    2013-06-01

    Over a million children are subjected to some form of trauma in the United States every year. Early trauma has been shown to have deleterious effects on cardiovascular health in adulthood. However, the presence of strong social relationships as an adult can buffer an individual against many of the harmful effects of early trauma. Furthermore, the perception of social isolation has been shown to be a significant risk factor for the development of cardiovascular disease and is a strong predictor of all cause mortality. One likely mechanism thought to underlie the influence of perceived isolation on health is changes in arterial stiffness. One of the more widely used measures of arterial stiffness in older individuals is pulse pressure. The goal of the present study was to determine whether early childhood trauma is associated with elevations on pulse pressure. Furthermore, this study sought to determine whether perceived social isolation moderates the relationship between early trauma and pulse pressure. Results revealed that individuals with low perceived social isolation displayed no significant relationship between early trauma and pulse pressure. However, individuals who reported higher levels of perceived isolation showed a significant positive association between early trauma and pulse pressure. Therefore, the detrimental effects of early trauma may be partially dependent upon the quality of social relationships as an adult. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  11. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  12. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  13. Using a heterodyne vibrometer in combination with pulse excitation for primary calibration of ultrasonic hydrophones in amplitude and phase

    Science.gov (United States)

    Weber, Martin; Wilkens, Volker

    2017-08-01

    A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.

  14. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-01-01

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times

  15. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  16. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  17. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  19. Melodic algorithms for pulse oximetry to allow audible discrimination of abnormal systolic blood pressures.

    Science.gov (United States)

    Chima, Ranjit S; Ortega, Rafael; Connor, Christopher W

    2014-12-01

    An anesthesiologist must remain vigilant of the patient's clinical status, incorporating many independent physiological measurements. Oxygen saturation and heart rate are represented by continuous audible tones generated by the pulse oximeter, a mandated monitoring device. Other important clinical parameters--notably blood pressure--lack any audible representation beyond arbitrarily-configured threshold alarms. Attempts to introduce further continuous audible tones have apparently foundered; the complexity and interaction of these tones have exceeded the ability of clinicians to interpret them. Instead, we manipulate the tonal and rhythmic structure of the accepted pulse oximeter tone pattern melodically. Three melodic algorithms were developed to apply tonal and rhythmic variations to the continuous pulse oximeter tone, dependent on the systolic blood pressure. The algorithms distort the original audible pattern minimally, to facilitate comprehension of both the underlying pattern and the applied variations. A panel of anesthesia practitioners (attending anesthesiologists, residents and nurse anesthetists) assessed these algorithms in characterizing perturbations in cardiopulmonary status. Twelve scenarios, incorporating combinations of oxygen desaturation, bradycardia, tachycardia, hypotension and hypertension, were tested. A rhythmic variation in which additional auditory information was conveyed only at halftime intervals, with every other "beat" of the pulse oximeter, was strongly favored. The respondents also strongly favored the use of musical chords over single tones. Given three algorithms of tones embedded in the pulse oximeter signal, anesthesiologists preferred a melodic tone to signal a significant change in blood pressure.

  20. CryoSat-2 SIRAL Calibration: Strategy, Application and Results

    Science.gov (United States)

    Parrinello, T.; Fornari, M.; Bouzinac, C.; Scagliola, M.; Tagliani, N.

    2012-04-01

    The main payload of CryoSat-2 is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is an important improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only the corrections for transfer function amplitude with respect to frequency, gain and instrument path delay have to be computed but it is also needed to provide corrections for transfer function phase with respect to frequency and AGC setting as well as the phase variation across bursts of pulses. As a consequence, SIRAL performs regularly four types of calibrations: (1) CAL1 in order to calibrate the internal path delay and peak power variation, (2) CAL2 in order to compensate the instrument transfer function, (3) CAL4 to calibrate the interferometer and (4) AutoCal, a specific sequence in order to calibrate the gain and phase difference for each AGC setting. Commissioning phase results (April-December 2010) revealed high stability of the instrument, which made possible to reduce the calibration frequency during Operations. Internal calibration data are processed on ground by the CryoSat-2 Instrument Processing Facility (IPF1) and then applied to the science data. In this poster we will describe as first the calibration strategy and then how the four different types of calibration are applied to science data. Moreover the calibration results over almost 2 years of mission will be presented, analyzing their temporal evolution in order to highlight the stability of the instrument over its life.

  1. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  2. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  3. Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse

    Science.gov (United States)

    Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan

    2011-11-01

    A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.

  4. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  5. Explosive Processes on Cathode while Forming Nanosecond Pulsed Discharge of High Pressure

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2012-01-01

    Full Text Available The paper is devoted to research of cathode surfaces with different curvature radius (r = 1–8 mm while forming nanosecond pulsed discharge in dense air. Influence of field and air pressure heterogeneity rate in gas gap on size of micro-craters being formed on working cathode surface after pulsed effect has been shown in the paper. The paper reveals a maximum expansion of separate micro-crater size on cathode surface with small curvature radius.

  6. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  7. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  8. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Nobuhiko eAkazawa

    2015-10-01

    Full Text Available Central arterial blood pressure (BP is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine healthy postmenopausal women (age: 61 ± 2 years participated in a 12-week aerobic exercise training regimen. Before and after the training, each subjects performed a single bout of cycling at ventilatory thresholds for 30 min. We evaluated the post-exercise aortic BP response, which was estimated via the general transfer function from applanation tonometry. After the initial pre-training aerobic exercise session, aortic BP did not change significantly: however, aortic pulse pressure and augmentation pressure were significantly attenuated after the single aerobic exercise session following the 12-week training regimen. The present study demonstrated that a regular aerobic exercise training regimen induced the post-exercise reduction of aortic pulse pressure and augmentation pressure. Regular aerobic exercise training may enhance post-exercise reduction in aortic BP.

  9. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Joo, H.W.; Kim, G.B.; Kim, K.W.; Kim, S.C.; Kim, S.K.; Lee, J.H.; Lee, J.K.; Myung, S.S.; Hahn, I.S.; Jeon, E.J.; Kang, W.G.; Kim, Y.D.; Kim, Y.H.; Li, J.; Kim, H.J.; Leonard, D.S.

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137 Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  10. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  11. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  12. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  13. CryoSat/SIRAL Cal1 Calibration Orbits

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    The main payload of CryoSat is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for SAR processing. This allows to reach an along track resolution that is significantly improved with respect to traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only corrections for transfer function, gain and instrument path delay have to be computed (as in previous altimeters), but also corrections for phase (SAR/SARIn) and phase difference between the two receiving chains (SARIN only). Recalling that the CryoSat's orbit has a high inclination of 92° and it is non-sun-synchronous, the temperature of the SIRAL changes continuously along the orbit with a period of about 480 days and it is also function of the ascending/descending passes. By analysis of the CAL1 calibration corrections, it has been verified that the internal path delay and the instrument gain variation measured on the SIRAL are affected by the thermal status of the instrument and as a consequence they are expected to vary along the orbit. In order to gain knowledge on the calibration corrections (i.e. the instrument behavior) as function of latitude and temperature, it has been planned to command a few number of orbits where only CAL1 calibration acquisitions are continuously performed. The analysis of the CAL1 calibration corrections produced along the Calibration orbits can be also useful to verify whether the current calibration plan is able to provide sufficiently accurate corrections for the instrument acquisitions at any latitude. In 2016, the CryoSat/SIRAL Cal1 Calibration Orbits have been commanded two times, a first time the 20th of July 2016 and a second time the 24th of November 2016, and they

  14. Determination of etching parameters for pulsed XeF2 etching of silicon using chamber pressure data

    Science.gov (United States)

    Sarkar, Dipta; Baboly, M. G.; Elahi, M. M.; Abbas, K.; Butner, J.; Piñon, D.; Ward, T. L.; Hieber, Tyler; Schuberth, Austin; Leseman, Z. C.

    2018-04-01

    A technique is presented for determination of the depletion of the etchant, etched depth, and instantaneous etch rate for Si etching with XeF2 in a pulsed etching system in real time. The only experimental data required is the pressure data collected temporally. Coupling the pressure data with the knowledge of the chemical reactions allows for the determination of the etching parameters of interest. Using this technique, it is revealed that pulsed etching processes are nonlinear, with the initial etch rate being the highest and monotonically decreasing as the etchant is depleted. With the pulsed etching system introduced in this paper, the highest instantaneous etch rate of silicon was recorded to be 19.5 µm min-1 for an initial pressure of 1.2 Torr for XeF2. Additionally, the same data is used to determine the rate constant for the reaction of XeF2 with Si; the reaction is determined to be second order in nature. The effect of varying the exposed surface area of Si as well as the effect that pressure has on the instantaneous etch rate as a function of time is shown applying the same technique. As a proof of concept, an AlN resonator is released using XeF2 pulses to remove a sacrificial poly-Si layer.

  15. Blood pressure and pulse rate of apparently healthy adults on land ...

    African Journals Online (AJOL)

    Blood pressure and pulse rate of apparently healthy adults on land and in water: A comparative study. AI Bello, BOA Adegoke, OA Abass, O Addo. Abstract. Objective: The study compared cardiovascular parameters of apparently healthy adults in erect standing posture on land and whilst immersed in water at rest. Methods: ...

  16. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  17. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  18. Energy calibration of a multilayer photon detector

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1983-01-01

    The job of energy calibration was broken into three parts: gain normalization of all equivalent elements; determination of the functions for conversion of pulse height to energy; and gain stabilization. It is found that calorimeter experiments are no better than their calibration systems - calibration errors will be the major source of error at high energies. Redundance is found to be necessary - the system should be designed such that every element could be replaced during the life of the experiment. It is found to be important to have enough data taken during calibration runs and during the experiment to be able to sort out where the calibration problems were after the experiment is over. Each layer was normalized independently with electrons, and then the pulse height to energy conversion was determined with photons. The primary method of gain stabilization used the light flasher system

  19. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    Science.gov (United States)

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  20. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  1. Calibration of a detector by activation with a continuous neutron source used as a transfer standard for measuring pulsed neutron beams

    International Nuclear Information System (INIS)

    Moreno, Jose; Silva, Patricio; Birstein, Lipo; Soto, Leopoldo

    2002-01-01

    This paper presents a method for calibrating activation detectors. These detectors will be used as transfer standard in measuring neutron fluxes produced by pulsed plasma sources. A standard neutron source is used as a secondary standard. The activation detector is being shielded in order to substantially reduce detection of gamma emission coming from the source. The detector's calibration factor is obtained by considering also the standard neutron source as a free source of gamma radiation so that the measurements can be done without quickly withdrawing the neutron source as it is usually done. This will substantially simplify the traditionally established method (JM)

  2. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  3. REFLECTANCE PULSE OXIMETRY AT THE FOREHEAD IMPROVES BY PRESSURE ON THE PROBE

    NARCIS (Netherlands)

    DASSEL, ACM; GRAAFF, R; SIKKEMA, M; ZIJLSTRA, WG; AARNOUDSE, JG

    In this study, we investigated the possibility of improving reflectance (back-scatter) pulse oximetry measurements by pressure applied to the probe. Optimal signal detection, with the probe applied to an easily accessible location, is important to prevent erroneous oxygen saturation readouts. At the

  4. Some characteristics of the digitization pulses from high pressure neon-helium flash tubes

    International Nuclear Information System (INIS)

    Chan, D.S.K.; Leung, S.K.; Ng, L.K.

    1979-01-01

    Characteristics of the digitization output pulses from high pressure neon-helium flash tubes were studied under various operation conditions using square ultra-high voltage pulses. Properties reported by previous workers were compared. Two discharge mechanisms, the Townsend avalanche discharge and the streamer discharge, were observed to occur in sequence in some events. The output waveforms for both discharge mechanisms were studied in detail. The charge induced on a detecting probe was also estimated from the measured data. (Auth.)

  5. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension.

    Science.gov (United States)

    Castelain, V; Hervé, P; Lecarpentier, Y; Duroux, P; Simonneau, G; Chemla, D

    2001-03-15

    The purpose of this time-domain study was to compare pulmonary artery (PA) pulse pressure and wave reflection in chronic pulmonary thromboembolism (CPTE) and primary pulmonary hypertension (PPH). Pulmonary artery pressure waveform analysis provides a simple and accurate estimation of right ventricular afterload in the time-domain. Chronic pulmonary thromboembolism and PPH are both responsible for severe pulmonary hypertension. Chronic pulmonary thromboembolism and PPH predominantly involve proximal and distal arteries, respectively, and may lead to differences in PA pressure waveform. High-fidelity PA pressure was recorded in 14 patients (7 men/7 women, 46 +/- 14 years) with CPTE (n = 7) and PPH (n = 7). We measured thermodilution cardiac output, mean PA pressure (MPAP), PA pulse pressure (PAPP = systolic - diastolic PAP) and normalized PAPP (nPAPP = PPAP/MPAP). Wave reflection was quantified by measuring Ti, that is, the time between pressure upstroke and the systolic inflection point (Pi), deltaP, that is, the systolic PAP minus Pi difference, and the augmentation index (deltaP/PPAP). At baseline, CPTE and PPH had similar cardiac index (2.4 +/- 0.4 vs. 2.5 +/- 0.5 l/min/m2), mean PAP (59 +/- 9 vs. 59 +/- 10 mm Hg), PPAP (57 +/- 13 vs. 53 +/- 13 mm Hg) and nPPAP (0.97 +/- 0.16 vs. 0.89 +/- 0.13). Chronic pulmonary thromboembolism had shorter Ti (90 +/- 17 vs. 126 +/- 16 ms, p PPAP (0.26 +/- 0.01 vs. 0.09 +/- 0.07, p < 0.01). Our study indicated that: 1) CPTE and PPH with severe pulmonary hypertension had similar PA pulse pressure, and 2) wave reflection is elevated in both groups, and CPTE had increased and anticipated wave reflection as compared with PPH, thus suggesting differences in the pulsatile component of right ventricular afterload.

  6. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  7. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  8. Line pressure effects on differential pressure measurements

    International Nuclear Information System (INIS)

    Neff, G.G.; Evans, R.P.

    1982-01-01

    The performance of differential pressure transducers in experimental pressurized water reactor (PWR) systems was evaluated. Transient differential pressure measurements made using a simple calibration proportionality relating differential pressure to output voltage could have large measurement uncertainties. A more sophisticated calibration equation was derived to incorporate the effects of zero shifts and sensitivity shifts as pressure in the pressure sensing line changes with time. A comparison made between the original calibration proportionality equation and the derived compensation equation indicates that potential measurement uncertainties can be reduced

  9. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    Science.gov (United States)

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  10. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  11. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  12. Comparative Study on the Pulse Wave Variables and Sasang Constitution in Cerebral Infarction Patients and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Ko KiDuk

    2007-06-01

    Full Text Available This study was performed to determine whether a pulse analyzer was useful 1 to characterize the variables of pulse wave of cerebral infarction patieno (CI, compared with those of healthy subjects, as well as 2 to determine Sasang Constitution in CI and healthy subjects. 1. Calibrated in Gwan, the amount of energy(Energy, height of main peak(H1, height of aorticvalley(H2, height of aortic peak(H3, total area of pulse wave(At, and area of main peak width(Aw of the CI group were higher than those of the healthy group. 2. Calibrated in Cheek, Energy, H1, H2, H3, height of valve valley(H4, At, Aw, and main peak angle(MPA of the CI group were higher than those of the healthy group. 3. Among the healthy (subjects group, Taeumin showed the highest contact pressure(CP and height of valve peak(H5 calibrated in Chon. The main peak width divided by whole time of pulse wave(MPW/T calibrated in Gwan and Cheok, was highest in Soyangin and was lowest in Taeumin. The H3 divided by H1(H3/H1 and the time to valve valley minus the time to main peak and divided by T[(T4-T1/T] calibrated in Cheek were highest in Soyangin. The time to main peak(T1 was longest in Soumin. 4. Among the CI group, At calibrated in Chon was widest in Taeumin and was narrowest in Soumin The time to aortic peak(T3 calibrated in Cheek was longest in Soumin and was shortest in Soyangin. The time to valve peak(T5 was shortest in Soyangin. 5. There were main effects of cerebral infarction in the area of systolic period(As and area of diastolic period(Ad calibrated in Chon, Energy calibrated in Cwan, and Energy, H1, H2, H3, (H4+H5/Hl, and MPA calibrated in Cheek. 6. There were main effects of Sasang Constitution in (T4-T1/T, area of systolic period(As, and Ad calibrated in Chon. 7. The interactions between the cerebral infarction and Sasang Constitution were observed in H5/H1 , T, At, As, Ad, and MPA calibrated in Chon, H4, T4, (T4-T1/T, As, and Ad calibrated in Cwan, and 74,75, and MPW calibrated

  13. Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: An in silico study.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca; Mesin, Luca

    2017-04-01

    Everyday clinical cardiovascular evaluation is still largely based on brachial systolic and diastolic pressures. However, several clinical studies have demonstrated the higher diagnostic capacities of the aortic pressure, as well as the need to assess the aortic mechanical properties (e.g., by measuring the aortic pulse wave velocity). In order to fill this gap, we propose to exploit a set of easy-to-obtain physical characteristics to estimate the aortic pressure and pulse wave velocity. To this aim, a large population of virtual subjects is created by a validated mathematical model of the cardiovascular system. Quadratic regressive models are then fitted and statistically selected in order to obtain reliable estimations of the aortic pressure and pulse wave velocity starting from the knowledge of the subject age, height, weight, brachial pressure, photoplethysmographic measures and either electrocardiogram or phonocardiogram. The results are very encouraging and foster clinical studies aiming to apply a similar technique to a real population. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  15. Performance, Calibration and Stability of the Mars InSight Mission Pressure Sensor

    Science.gov (United States)

    Banfield, Don; Banerdt, Bruce; Hurst, Ken; Grinblat, Jonny; murray, alex; Carpenter, Scott

    2017-10-01

    The NASA Mars InSight Discovery Mission is primarily aimed at understanding the seismic environment at Mars and in turn the interior structure of the planet. To this end, it carries a set of very sensitive seismometers to characterize fine ground movements from quakes, impacts and tides. However, to remove atmospheric perturbations that would otherwise corrupt the seismic signals, InSight also carries a pressure sensor of unprecedented sensitivity and frequency response for a Mars mission.The instrument is based on a commercial spacecraft pressure sensor built by the Tavis Corporation. Tavis heritage transducers have provided pressure measurements on several interplanetary missions, starting with a similar application on the Viking Landers. The sensor developed for the Insight mission is their most sensitive device. That same sensitivity was the root of the challenges faced in the design and development for Insight. It uses inductive sensing of a deformable membrane, and includes an internal temperature sensor to compensate for temperature effects in its overall response.The technical requirement on the pressure sensor performance is 0.01(f/0.1)^(-2/3) Pa/sqrt(Hz) between 0.01 and 0.1 Hz, and 0.01 Pa/sqrt(Hz) between 0.1 and 1 Hz. The actual noise spectrum is about 0.01(f/0.3)^(-2/3) Pa/sqrt(Hz) between 0.01 and 1 Hz, and its frequency response (including inlet plumbing) has good response up to about 10 Hz Nyquist (it will be sampled at 20 Hz).Achieving the required sensitivity proved to be a difficult engineering challenge, which necessitated extensive experimentation and prototyping of the electronics design. In addition, a late discovery of the introduction of noise by the signal processing chain into the measurement stream forced a last-minute change in the instrument’s firmware.The flight unit has been calibrated twice, separated by a time span of about 2 years due to the delay in launching the InSight mission. This has the benefit of allowing a direct

  16. Carbon dioxide reforming of methane by atmospheric pressure pulsed glow discharge: The effect of pulse compression

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A.; Modarresi, H.

    2006-01-01

    Methane reforming by carbon dioxide in atmospheric pressure pulsed glow discharge was examined. The pulse duration of plasma was compressed to ∼50 ns or lower. This compression allowed working at higher frequencies, more than 3 k Hz, without glow to arc transition. The main outlet gases were synthetic gases (H 2 , CO) and C 2 (ethylene, ethane, and acetylene) products. At equal reactants proportion CO 2 /CH 4 =1, about 42 p ercent o f plasma energy went to chemical dissociation while reactant conversions were relatively high, i.e. near 55 p ercent % (CH 4 ) and 42 p ercent ( CO 2 ). At this point, the energy expenditure was less than 3.8 eV per each converted molecule. The reactor energy performance even gets better at higher CO 2 /CH 4 proportions. At CO 2 /CH 4 =5, The conversions of about 65 p ercent a nd 45 p ercent w ere obtained for methane and carbon dioxide respectively, while energy efficiency reached near 45 p ercent . It is discussed that high nonequilibrium state of vibrational energy at short pulses, especially in carbon dioxide, leads to this improvement.

  17. Calibration of water distribution network of the Ramnagar zone in Nagpur City using online pressure and flow data

    Science.gov (United States)

    Jadhao, Ramrao D.; Gupta, Rajesh

    2018-03-01

    Calibration of hydraulic model of a water distribution network is required to match the model results of flows and pressures with those obtained in the field. This is a challenging task considering the involvement of a large number of parameters. Having more precise data helps in reducing time and results in better calibration as shown herein with a case study of one hydraulic zone served from the Ramnagar Ground Service Reservoir in Nagpur City. Flow and pressure values for the entire day were obtained through data loggers. Network details regarding pipe lengths, diameters, installation year and material were obtained with the largest possible accuracy. Locations of consumers on the network were noted and average nodal consumptions were obtained from the billing records. The non-revenue water losses were uniformly allocated to all junctions. Valve positions and their operating status were noted from the field and used. The pipe roughness coefficients were adjusted to match the model values with field values of pressures at observation nodes by minimizing the sum of square of difference between them. This paper aims at describing the entire process from collection of the required data to the calibration of the network.

  18. An internally consistent pressure calibration of geobarometers applicable to the Earth’s upper mantle using in situ XRD

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Christopher; Rosenthal, Anja; Myhill, Robert; Crichton, Wilson A.; Yu, Tony; Wang, Yanbin; Frost, Daniel J.

    2018-02-01

    We have performed an experimental cross calibration of a suite of mineral equilibria within mantle rock bulk compositions that are commonly used in geobarometry to determine the equilibration depths of upper mantle assemblages. Multiple barometers were compared simultaneously in experimental runs, where the pressure was determined using in-situ measurements of the unit cell volumes of MgO, NaCl, Re and h-BN between 3.6 and 10.4 GPa, and 1250 and 1500 °C. The experiments were performed in a large volume press (LVPs) in combination with synchrotron X-ray diffraction. Noble metal capsules drilled with multiple sample chambers were loaded with a range of bulk compositions representative of peridotite, eclogite and pyroxenite lithologies. By this approach, we simultaneously calibrated the geobarometers applicable to different mantle lithologies under identical and well determined pressure and temperature conditions. We identified discrepancies between the calculated and experimental pressures for which we propose simple linear or constant correction factors to some of the previously published barometric equations. As a result, we establish internally-consistent cross-calibrations for a number of garnet-orthopyroxene, garnet-clinopyroxene, Ca-Tschermaks-in-clinopyroxene and majorite geobarometers.

  19. Calibration of the pressure sensitivity of microphones by a free-field method at frequencies up to 80 khz.

    Science.gov (United States)

    Zuckerwar, Allan J; Herring, G C; Elbing, Brian R

    2006-01-01

    A free-field (FF) substitution method for calibrating the pressure sensitivity of microphones at frequencies up to 80 kHz is demonstrated with both grazing and normal-incidence geometries. The substitution-based method, as opposed to a simultaneous method, avoids problems associated with the nonuniformity of the sound field and, as applied here, uses a 1/4-in. air-condenser pressure microphone as a known reference. Best results were obtained with a centrifugal fan, which is used as a random, broadband sound source. A broadband source minimizes reflection-related interferences that can plague FF measurements. Calibrations were performed on 1/4-in. FF air-condenser, electret, and microelectromechanical systems (MEMS) microphones in an anechoic chamber. The uncertainty of this FF method is estimated by comparing the pressure sensitivity of an air-condenser FF microphone, as derived from the FF measurement, with that of an electrostatic actuator calibration. The root-mean-square difference is found to be +/- 0.3 dB over the range 1-80 kHz, and the combined standard uncertainty of the FF method, including other significant contributions, is +/- 0.41 dB.

  20. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  1. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  2. On random pressure pulses in the turbine draft tube

    Science.gov (United States)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  3. Central Pressure Appraisal: Clinical Validation of a Subject-Specific Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Francesco Tosello

    Full Text Available Current evidence suggests that aortic blood pressure has a superior prognostic value with respect to brachial pressure for cardiovascular events, but direct measurement is not feasible in daily clinical practice.The aim of the present study is the clinical validation of a multiscale mathematical model for non-invasive appraisal of central blood pressure from subject-specific characteristics.A total of 51 young male were selected for the present study. Aortic systolic and diastolic pressure were estimated with a mathematical model and were compared to the most-used non-invasive validated technique (SphygmoCor device, AtCor Medical, Australia. SphygmoCor was calibrated through diastolic and systolic brachial pressure obtained with a sphygmomanometer, while model inputs consist of brachial pressure, height, weight, age, left-ventricular end-systolic and end-diastolic volumes, and data from a pulse wave velocity study.Model-estimated systolic and diastolic central blood pressures resulted to be significantly related to SphygmoCor-assessed central systolic (r = 0.65 p <0.0001 and diastolic (r = 0.84 p<0.0001 blood pressures. The model showed a significant overestimation of systolic pressure (+7.8 (-2.2;14 mmHg, p = 0.0003 and a significant underestimation of diastolic values (-3.2 (-7.5;1.6, p = 0.004, which imply a significant overestimation of central pulse pressure. Interestingly, model prediction errors mirror the mean errors reported in large meta-analysis characterizing the use of the SphygmoCor when non-invasive calibration is performed.In conclusion, multi-scale mathematical model predictions result to be significantly related to SphygmoCor ones. Model-predicted systolic and diastolic aortic pressure resulted in difference of less than 10 mmHg in the 51% and 84% of the subjects, respectively, when compared with SphygmoCor-obtained pressures.

  4. On the propagation of the pressure pulse due to an unconfined gas cloud explosion

    International Nuclear Information System (INIS)

    Essers, J.A.

    1985-01-01

    A critical analysis of flow models used in computer codes for the simulation of the propagation in air of a pressure pulse due to a gas cloud explosion is presented. In particular, weaknesses of simple linear acoustic model are pointed out, and a more reliable non-linear isentropic model is proposed. A simple one-dimensional theory is used to evaluate as a function of the relative overpressure the speed of an incident normal shock-wave, as well as the strength and speed of the wave after reflection on a simplified rigid obstacle. Results obtained with the different models are compared to those obtained from the full Euler equations. A theoretical analysis of pulse deformation during its propagation is presented, and the ability of each model to correctly simulate that purely non-linear phenomenon is discussed. In particular, the formation of a sharp pressure pulse (shock-up phenomenon) is analyzed in detail. From the analysis, the accuracy of the linear acoustic model for the evaluation of strength and speed of incident and reflected waves is found to be quite poor except for very weak overpressures. Additionally, such a model is completely unable to simulate pulse deformations. As a result, it should be expected to lead to important errors in the simulation of pulse interaction with non-rigid obstacles, even at very weak overpressures. As opposed to that very simple model, the proposed non-linear isentropic model is found to lead to an excellent accuracy in the prediction of all wave characteristics mentioned above and in the simulation of pulse deformation if overpressure is not too large. (author)

  5. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  6. Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study).

    Science.gov (United States)

    García-Ortiz, Luis; Gómez-Marcos, Manuel A; Martín-Moreiras, Javier; González-Elena, Luis J; Recio-Rodriguez, Jose I; Castaño-Sánchez, Yolanda; Grandes, Gonzalo; Martínez-Salgado, Carlos

    2009-08-01

    To analyse the relationship between various parameters derived from ambulatory blood pressure monitoring (ABPM) and vascular, cardiac and renal target organ damage. A cross-sectional, descriptive study. It included 353 patients with short-term or recently diagnosed hypertension. ABPM, carotid intima-media thickness (IMT), Cornell voltage-duration product (Cornell VDP), glomerular filtration rate and albumin/creatinine ratio to assess vascular, cardiac and renal damage. Two hundred and twenty-three patients (63.2%) were males, aged 56.12+/-11.21 years. The nocturnal fall in blood pressure was 11.33+/-8.41, with a dipper pattern in 49.0% (173), nondipper in 30.3% (107), extreme dipper in 12.7% (45) and riser in 7.9% (28). The IMT was lower in the extreme dipper (0.716+/-0.096 mm) and better in the riser pattern (0.794+/-0.122 mm) (P<0.05). The Cornell VDP and albumin/creatinine ratio were higher in the riser pattern (1818.94+/-1798.63 mm/ms and 140.78+/-366.38 mg/g, respectively) than in the other patterns. In the multivariate analysis after adjusting for age, sex and antihypertensive treatment, with IMT as dependent variable the 24-h pulse pressure (beta = 0.003), with Cornell VDP the rest pulse pressure (beta = 12.04), and with the albumin/creatinine ratio the percentage of nocturnal fall in systolic blood pressure (beta = -3.59), the rest heart rate (beta = 1.83) and the standard deviation of 24-h systolic blood pressure (beta = 5.30) remain within the equation. The estimated pulse pressure with ABPM is a predictor of vascular and cardiac organ damage. The nocturnal fall and the standard deviation in 24-h systolic blood pressure measured with the ABPM is a predictor of renal damage.

  7. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  8. Dynamic calibration and validation of an accelerometer force balance for hypersonic lifting models.

    Science.gov (United States)

    Singh, Prakash; Trivedi, Sharad; Menezes, Viren; Hosseini, Hamid

    2014-01-01

    An accelerometer-based force balance was designed and developed for the measurement of drag, lift, and rolling moment on a blunt-nosed, flapped delta wing in a short-duration hypersonic shock tunnel. Calibration and validation of the balance were carried out by a convolution technique using hammer pulse test and surface pressure measurements. In the hammer pulse test, a known impulse was applied to the model in the appropriate direction using an impulse hammer, and the corresponding output of the balance (acceleration) was recorded. Fast Fourier Transform (FFT) was operated on the output of the balance to generate a system response function, relating the signal output to the corresponding load input. Impulse response functions for three components of the balance, namely, axial, normal, and angular, were obtained for a range of input load. The angular system response function was corresponding to rolling of the model. The impulse response functions thus obtained, through dynamic calibration, were operated on the output (signals) of the balance under hypersonic aerodynamic loading conditions in the tunnel to get the time history of the unknown aerodynamic forces and moments acting on the model. Surface pressure measurements were carried out on the model using high frequency pressure transducers, and forces and moments were deduced thereon. Tests were carried out at model angles of incidence of 0, 5, 10, and 15 degrees. A good agreement was observed among the results of different experimental methods. The balance developed is a comprehensive force/moment measurement device that can be used on complex, lifting, aerodynamic geometries in ground-based hypersonic test facilities.

  9. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  10. Applicability of Pulse Pressure Variation during Unstable Hemodynamic Events in the Intensive Care Unit: A Five-Day Prospective Multicenter Study

    Directory of Open Access Journals (Sweden)

    Bertrand Delannoy

    2016-01-01

    Full Text Available Pulse pressure variation can predict fluid responsiveness in strict applicability conditions. The purpose of this study was to describe the clinical applicability of pulse pressure variation during episodes of patient hemodynamic instability in the intensive care unit. We conducted a five-day, seven-center prospective study that included patients presenting with an unstable hemodynamic event. The six predefined inclusion criteria for pulse pressure variation applicability were as follows: mechanical ventilation, tidal volume >7 mL/kg, sinus rhythm, no spontaneous breath, heart rate/respiratory rate ratio >3.6, absence of right ventricular dysfunction, or severe valvulopathy. Seventy-three patients presented at least one unstable hemodynamic event, with a total of 163 unstable hemodynamic events. The six predefined criteria for the applicability of pulse pressure variation were completely present in only 7% of these. This data indicates that PPV should only be used alongside a strong understanding of the relevant physiology and applicability criteria. Although these exclusion criteria appear to be profound, they likely represent an absolute contraindication of use for only a minority of critical care patients.

  11. Twenty-Four-Hour Central Pulse Pressure for Cardiovascular Events Prediction in a Low-Cardiovascular-Risk Population: Results From the Bordeaux Cohort.

    Science.gov (United States)

    Cremer, Antoine; Boulestreau, Romain; Gaillard, Prune; Lainé, Marion; Papaioannou, Georgios; Gosse, Philippe

    2018-02-23

    Central blood pressure (BP) is a promising marker to identify subjects with higher cardiovascular risk than expected by traditional risk factors. Significant results have been obtained in populations with high cardiovascular risk, but little is known about low-cardiovascular-risk patients, although the differences between central and peripheral BP (amplification) are usually greater in this population. The study aim was to evaluate central BP over 24 hours for cardiovascular event prediction in hypertensive subjects with low cardiovascular risk. Peripheral and central BPs were recorded during clinical visits and over 24 hours in hypertensive patients with low cardiovascular risk (Systematic Coronary Risk Evaluation ≤5%). Our primary end point is the occurrence of a cardiovascular event during follow-up. To assess the potential interest in central pulse pressure over 24 hours, we performed Cox proportional hazard models analysis and comparison of area under the curves using the contrast test for peripheral and central BP. A cohort of 703 hypertensive subjects from Bordeaux were included. After the first 24 hours of BP measurement, the subjects were then followed up for an average of 112.5±70 months. We recorded 65 cardiovascular events during follow-up. Amplification was found to be significantly associated with cardiovascular events when added to peripheral 24-hour pulse pressure ( P =0.0259). The area under the curve of 24-hour central pulse pressure is significantly more important than area under the curve of office BP ( P =0.0296), and there is a trend of superiority with the area under the curve of peripheral 24-hour pulse pressure. Central pulse pressure over 24 hours improves the prediction of cardiovascular events for hypertensive patients with low cardiovascular risk compared to peripheral pulse pressure. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. An accurate calibration method for high pressure vibrating tube densimeters in the density interval (700 to 1600) kg . m-3

    International Nuclear Information System (INIS)

    Sanmamed, Yolanda A.; Dopazo-Paz, Ana; Gonzalez-Salgado, Diego; Troncoso, Jacobo; Romani, Luis

    2009-01-01

    A calibration procedure of vibrating tube densimeters for density measurement of liquids in the intervals (700 to 1600) kg . m -3 , (283.15 to 323.15) K, and (0.1 to 60) MPa is presented. It is based on the modelization of the vibrating tube as a thick-tube clamped at one end (cantilever) whose stress and thermal behaviour follows the ideas proposed in the Forced Path Mechanical Calibration model (FPMC). Model parameters are determined using two calibration fluids with densities certified at atmospheric pressure (dodecane and tetracholoroethylene) and a third one with densities known as a function of pressure (water). It is applied to the Anton Paar 512P densimeter, obtaining density measurements with an expanded uncertainty less than 0.2 kg . m -3 in the working intervals. This accuracy comes from the combination of several factors: densimeter behaves linearly in the working density interval, densities of both calibration fluids cover that interval and they have a very low uncertainty, and the mechanical behaviour of the tube is well characterized by the considered model. The main application of this method is the precise measurement of high density fluids for which most of the calibration procedures are inaccurate.

  13. Application of Quasi-Heat-Pulse Solutions for Luikov’s Equations of Heat and Moisture Transfer for Calibrating and Utilizing Thermal Properties Apparatus

    Science.gov (United States)

    Mark A. Dietenberger; Charles R. Boardman

    2014-01-01

    Several years ago the Laplace transform solutions of Luikov’s differential equations were presented for one-dimensional heat and moisture transfer in porous hydroscopic orthotropic materials for the boundary condition of a gradual heat pulse applied to both surfaces of a flat slab. This paper presents calibration methods and data for the K-tester 637 (Lasercomp),...

  14. Bruce and Darlington power pulse and pressure tube integrity programs -status 1995

    Energy Technology Data Exchange (ETDEWEB)

    Field, G J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Wylie, J [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    The optimum solution to pressure tube fretting at the inlet of the Bruce and Darlington channels, a concern which became very serious following inspections in early 1992, is to remove the inlet bundle and operate with a 12 fuel bundle channel. During analysis of this operating mode a `power pulse` was identified which could occur during an inlet header break where all the fuel in the channel moved rapidly to the inlet of the channel. The pulse was unacceptable and the units were derated until solutions could be implemented. A number of solutions were identified and each station has begun implementation of their specific solution. Implementation has not been without problems and this paper provides a status report on the progress to date of the long bundle implementation solution for Bruce B and Darlington and the fuelling with the flow solution being implemented at Bruce A. Both types of solution have a significant impact on the original concern, fretting of the pressure tube. (author). 1 ref., 6 figs.

  15. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  16. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  17. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  18. Comparing the Effect of Labetalol versus Morphine on Controlling Blood Pressure and Pulse Rate During Emergence from Anesthesia after Craniotomy

    Directory of Open Access Journals (Sweden)

    Mohammadali Attari

    2017-01-01

    Full Text Available Background: Emergence from anesthesia is associated with sympathetic stimulation, increase in pulse and blood pressure. There are different methods, but the most appropriate method should be selected regarding the differences in nationalities. This study aimed to compare the efficacy of morphine and labetalol in controlling blood pressure and pulse during emergence from anesthesia in brain tumors craniotomy. Materials and Methods: This study was conducted at Al-Zahra Hospital of Isfahan - Iran on 60 patients suffering from brain tumor candidated for craniotomy and randomly classified into two groups of 30. One group received labetalol with dose of 10 mg over 10 min from 45 min before finishing dressing and then 0.75 mg/min until 35 min later; another group received morphine in bolus dose of 0.1 mg/kg during 2–3 min. Blood pressure and pulse were measured every 10 min over 40 min. After operation, they were measured every 5 min over 15 min. Results: The morphine group had higher systolic (133.3 ± 18.8 and diastolic blood pressure (87.1 ± 13.6 (P = 0.021 and 0.028, respectively at extubation and during 45 min before dressing, the diastolic blood pressure was significantly higher in compares with labetalol (75.3 ± 10.5 (P < 0.05. And extubation time was significantly shorter in labetalol group (7.7 ± 0.84 (P < 0.001. Pulse had no significant difference in both groups. In labetalol group, blood pressure and pulse fluctuations were more stable. Conclusion: Administration of labetalol 45 min before finishing dressing can significantly control blood pressure during emergence from anesthesia and also shorten the time of extubation during emergence in patients undergoing craniotomy.

  19. Sensor Calibration Design Based on D-Optimality Criterion

    Directory of Open Access Journals (Sweden)

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  20. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun

    2015-01-01

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions

  1. Kinematic parameter calibration method for industrial robot manipulator using the relative position

    International Nuclear Information System (INIS)

    Ha, In Chul

    2008-01-01

    A new calibration method for industrial robot system calibration on a manufacturing floor is presented in this paper. To calibrate the robot system, a laser sensor to measure the distance between robot tool and measurement surface is attached to the robot end-effector and a grid is established in the floor. Given two position command pulses for a robot manipulator and using the position difference between two command pulses, the relative position measurement calibration method will find the real robot kinematic parameters. The procedures developed have been applied to an industrial robot. Finally, the effects of the models used to calibrate the robot are discussed. This calibration method represents an effective, low cost and feasible technique for the industrial robot calibration in lab. projects and industrial environments

  2. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  3. Feasibility Study Of Pressure Pulsing Pipeline Unplugging Technologies For Hanford

    International Nuclear Information System (INIS)

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-01-01

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging

  4. Evaluated Rayleigh integrals for pulsed planar expanding ring sources

    International Nuclear Information System (INIS)

    Warshaw, S.I.

    1985-01-01

    Time-domain analytic and semianalytic pressure fields acoustically radiated from expanding pulsed ring sources imbedded in a planar rigid baffle have been calculated. The source functions are radially symmetric delta-function distributions whose amplitude and argument have simple functional dependencies on radius and time. Certain cases yield closed analytic results, while others result in elliptic integrals, which are evaluated to high accuracy by Gauss-Chebyshev and modified Gauss-Legendre quadrature. These results are of value for calibrating computer simulations and convolution procedures, and estimating fields from more complex planar radiators. 3 refs., 4 figs

  5. Arterial pressure measurement: Is the envelope curve of the oscillometric method influenced by arterial stiffness?

    International Nuclear Information System (INIS)

    Gelido, G; Angiletta, S; Pujalte, A; Quiroga, P; Cornes, P; Craiem, D

    2007-01-01

    Measurement of peripheral arterial pressure using the oscillometric method is commonly used by professionals as well as by patients in their homes. This non invasive automatic method is fast, efficient and the required equipment is affordable with a low cost. The measurement method consists of obtaining parameters from a calibrated decreasing curve that is modulated by heart beats witch appear when arterial pressure reaches the cuff pressure. Diastolic, mean and systolic pressures are obtained calculating particular instants from the heart beats envelope curve. In this article we analyze the envelope of this amplified curve to find out if its morphology is related to arterial stiffness in patients. We found, in 33 volunteers, that the envelope waveform width correlates to systolic pressure (r=0.4, p<0.05), to pulse pressure (r=0.6, p<0.05) and to pulse pressure normalized to systolic pressure (r=0.6, p<0.05). We believe that the morphology of the heart beats envelope curve obtained with the oscillometric method for peripheral pressure measurement depends on arterial stiffness and can be used to enhance pressure measurements

  6. Consumer acceptance of high-pressure processing and pulsed-electric-field

    DEFF Research Database (Denmark)

    Olsen, Nina Veflen; Grunert, Klaus G.; Sonne, Anne-Mette

    2010-01-01

    New products and new processing techniques are continuously developed in the food industry. While food scientists may focus on the technical novelty and applaud the progress of science, consumers are often conservative and sceptical towards changes. The advantages that a new processing technology...... has to offer, do not necessarily guarantee the success of a product in the market place. Consumer acceptance depends on whether consumers perceive that there are specific benefits associated with the product. This review focuses specifically on how high-pressure processing (HPP) and pulsed...

  7. Traceable calibration for a digital real-time oscilloscope with time interleaving architecture

    Science.gov (United States)

    Kim, Dongju; Lee, Joo-Gwang; Lee, Dong-Joon; Cho, Chihyun

    2018-01-01

    Impairments of analog-to-digital converters (ADCs) used in digital real-time oscilloscopes (DRTO) have caused inevitable signal distortions in measurements. To calibrate these errors with traceability, we propose a novel method that consists of two steps. First, each transfer function of the ADCs is measured using pulse trains from a photodiode calibrated up to 110 GHz. Each data set of the ADCs is superimposed to convert the repetitive pulse to a single pulse to solve the under-sampling problem of the separated data depending on each ADC. Then, the signals of the device under test (DUT) are also separated and superimposed depending on the ADCs, and they are calibrated in the frequency domain based on the measured transfer functions. After a calibration process, the data set is reconverted to the time domain to achieve traceable calibration. To verify our method, we have measured the output of another 70 GHz photodiode with a calibrated DRTO. In terms of results, time-interleaved errors are suppressed by more than 24 dB up to the bandwidth of the DRTO.

  8. The effects of balneotherapy on blood pressure and pulse in osteoarthritis patients with hypertension.

    Science.gov (United States)

    Umay, Ebru; Tezelli, Mustafa Kemal; Meshur, Mehmet; Umay, Serkan

    2013-01-01

    Balneotherapy is a treatment modality that uses the physical and chemical effects of water, including thermomineral, acratothermal, and acratopegal waters. Although balneotherapy is an ancient treatment method that has a limited use within current treatment modalities, it is still widely popular with the public. Studies usually have reported that balneotherapy is associated with an increased risk of complications, especially in patients with hypertension (HT). The research team intended this study to evaluate the effects of balneotherapy on peripheral, arterial blood pressure and pulse in osteoarthritis (OA) patients with HT, compared to normotensive patients. For the current study, the research team examined the medical records of 5814 patients who were hospitalized and treated for OA at the team's institution between 2008 and 2010. This examination involved a review of the evaluation form that a nurse had obtained when those patients entered the hospital. This study was done at a balneotherapy hospital. Participants were 2090 individuals, including 1036 (49.6%) with primary (essential) HT and 1054 (50.4%) normotensives, with OA of the lumbosacral region, knee, hand, and foot. All participants received balneotherapy at the same time every day (10:00-10:30 AM) for 20 min/d, 5 d/wk, for a total duration of 15 d. Following balneotherapy, all participants performed an exercise program consisting of range of motion (ROM) and stretching exercises. Measurements of pulse and systolic and diastolic blood pressures were recorded before treatment and after 15 sessions of balneotherapy. Within-group and between-group comparisons of results of pulse and systolic and diastolic blood pressure measurements were performed. The study found a significant reduction after treatment in systolic and diastolic blood pressures in both normotensive and HT participants. Moreover, the reduction in diastolic blood pressure was noted to be greater in the HT group (P = .046). Balneotherapy may

  9. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  10. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  11. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  12. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  13. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    International Nuclear Information System (INIS)

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process.

  14. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    Science.gov (United States)

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  15. A Novel Interpretation for Arterial Pulse Pressure Amplification in Health and Disease

    Directory of Open Access Journals (Sweden)

    Manuel R. Alfonso

    2018-01-01

    Full Text Available Arterial pressure waves have been described in one dimension using several approaches, such as lumped (Windkessel or distributed (using Navier-Stokes equations models. An alternative approach consists of modeling blood pressure waves using a Korteweg-de Vries (KdV equation and representing pressure waves as combinations of solitons. This model captures many key features of wave propagation in the systemic network and, in particular, pulse pressure amplification (PPA, which is a mechanical biomarker of cardiovascular risk. The main objective of this work is to compare the propagation dynamics described by a KdV equation in a human-like arterial tree using acquired pressure waves. Furthermore, we analyzed the ability of our model to reproduce induced elastic changes in PPA due to different pathological conditions. To this end, numerical simulations were performed using acquired central pressure signals from different subject groups (young, adults, and hypertensive as input and then comparing the output of the model with measured radial artery pressure waveforms. Pathological conditions were modeled as changes in arterial elasticity (E. Numerical results showed that the model was able to propagate acquired pressure waveforms and to reproduce PPA variations as a consequence of elastic changes. Calculated elasticity for each group was in accordance with the existing literature.

  16. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    International Nuclear Information System (INIS)

    Chen Baozhen; Huang Zuqia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  17. Relations between diabetes, blood pressure and aortic pulse wave velocity in haemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjærgaard, Krista Dybtved; Dzeko, Mirela

    (HD) and 32 HD patients with DM (HD+DM). The SphygmoCor system was used for estimation of PWV. HD-duration, age, gender and BP medication were similar in the two groups. Mean DM-duration was 23±11 years and 25(78%) had type 2 DM. HD+DM had higher BMI (26±5 vs. 29±5 kg/m2, p=0.02), systolic BP (142......Diabetes (DM) is common in haemodialysis (HD) patients and affects both blood pressure (BP) and arterial stiffness. Carotid femoral pulse wave velocity (PWV) reflects the stiffness of the aorta and is regarded as a strong risk factor for cardiovascular (CV) mortality in HD patients. However, PWV......±20 vs. 152±21 mmHg, p=0.02) and pulse pressure (65±17 vs. 80±18 mmHg, p2.5 in HD and 12.3±3.1 m/s in HD+DM. The mean PWV difference HD vs. HD+DM was 3.1(1.9-4.3)m/s, p

  18. Computer code for the analysis of destructive pressure generation process during a fuel failure accident, PULSE-2

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1978-03-01

    The computer code PULSE-2 has been developed for the analysis of pressure pulse generation process when hot fuel particles come into contact with the coolant in a fuel rod failure accident. In the program, it is assumed that hot fuel fragments mix with the coolant instantly and homogeneously in the failure region. Then, the rapid vaporization of the coolant and transient pressure rise in failure region, and the movement of ejected coolant slugs are calculated. The effect of a fuel-particle size distribution is taken into consideration. Heat conduction in the fuel particles and heat transfer at fuel-coolant interface are calculated. Temperature, pressure and void fraction in the mixed region are calculated from the average enthalpy. With physical property subroutines for liquid sodium and water, the model is usable for both LMFBR and LWR conditions. (auth.)

  19. Pulse Pressure, Instead of Brachium-Ankle Pulse Wave Velocity, is Associated with Reduced Kidney Function in a Chinese Han Population.

    Science.gov (United States)

    Jia, Linpei; Zhang, Weiguang; Ma, Jie; Chen, Xizhao; Chen, Lei; Li, Zuoxiang; Cai, Guangyan; Huang, Jing; Zhang, Jinping; Bai, Xiaojuan; Feng, Zhe; Sun, Xuefeng; Chen, Xiangmei

    2017-01-01

    In this study, we aim to investigate the association between renal function and arterial stiffness in a Chinese Han population, and further to discuss the effects of smoking on renal function. We collected the data of the brachium-ankle pulse wave velocity (baPWV), blood pressure, blood chemistry and smoking status. Then, the multiple linear regression was done to explore the relationship between estimated glomerular filtration (eGFR) and baPWV. Further, the parameters were compared among the four groups divided according to the quartiles of baPWV. Finally, the baPWV, eGFR and albuminuria values were compared between smokers and non-smokers. baPWV is associated with eGFR in the correlation analysis and univariate linear regression model. After adjustment, the pulse pressure (PP) instead of baPWV showed a significant association with eGFR. Nevertheless, the eGFR values differed among the four baPWV groups; the baPWV values were significantly higher in the subjects at the CKD (eGFRfunction. Smokers have worse arterial stiffness and worse renal function. © 2017 The Author(s)Published by S. Karger AG, Basel.

  20. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  1. System for calibration of SPEAR transport line toroids

    International Nuclear Information System (INIS)

    Huang, T.V.; Smith, H.; Crook, K.

    1977-01-01

    A one nanosecond pulse generator was developed for calibration of the intensity monitors (toroids) in the SPEAR transport lines. The generator, located at the toroid, is simple, low cost and resistant to radiation. The generator and its connection to the standard SLAC toroid calibration system are described

  2. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  3. Effects of aging on calibration and response time of nuclear plant pressure transmitters

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1991-01-01

    This paper presents the key results of an experimental research project conducted for the Nuclear Regulatory Commission to quantify the effects of normal aging on static and dynamic performance of nuclear grade pressure, level, and flow transmitters (hereafter referred to as pressure transmitters). The project involved laboratory testing of representative pressure transmitters manufactured by Barton, Foxboro, Rosemount, and Tobar (or Veritrak) companies. These manufacturers provide the four most commonly used pressure transmitters in the safety systems of US nuclear power plants. The transmitters were tested under normal aging conditions as opposed to accelerated aging, even though accelerated aging will be used in the last few months of the project to determine the weak links and failure modes of the transmitters. The project has been performed in two phases. The Phase 1 project which was a six month feasibility study has been completed and the results published in NUREG/CR-5383. The Phase 2 project is still underway with the final report due in the fall of 1991. The project has focused on the following areas: (1) effects of aging on calibration stability; (2) effects of aging on response time; (3) study of individual components of pressure transmitters that are sensitive to aging degradation; (4) sensing line blockages due to solidification of boron, formation of sludge, freezing, and other effects; (5) search of licensee event reports and component reliability databases for failures of safety-related pressure transmitters; and (6) oil loss syndrome in Rosemount pressure transmitters

  4. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    Science.gov (United States)

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  5. Exposure-rate calibration using large-area calibration pads

    International Nuclear Information System (INIS)

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data

  6. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  7. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Bell, P; Griffith, R; Hagans, K; Lerche, R; Allen, C; Davies, T; Janson, F; Justin, R; Marshall, B; Sweningsen, O

    2004-01-01

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  8. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M

    2014-12-11

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  9. Effects of Roselle on arterial pulse pressure and left ventricular hypertrophy in hypertensive patients.

    Science.gov (United States)

    Al-Shafei, Ahmad I; El-Gendy, Ola A

    2013-12-01

    To characterize the effects of regular Roselle ingestion on blood pressure and left ventricular hypertrophy (LVH) in patients with established moderate essential hypertension. This non-randomized quasi-experimental study was conducted in Kafr El-Shaikh, Egypt, for 8 weeks, from September 2012 to November 2012. The effects of a 4-week period of regular Roselle ingestion followed by a 4-week recovery period on systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and heart rates (HR) was studied in 2 equal, gender- and age-matched groups (n=50 each; average age - 50+/-5 years) of normotensive subjects, and patients with moderate essential hypertension. Electrocardiographic assessments of LVH were also made prior to, and at the end of both treatment and recovery periods. Pulse pressure (PP) significantly fell from baseline values by 10.9% (normotensive group [NG]), 21.2% (hypertensive group [HG]); SBP by 10% (NG), 19.6% (HG); DBP by 9.5% (NG), 18.7% (HG), and HR by 14.6% (NG), 17.1% (HG) by the end of week 4 of treatment. Following treatment cessation, SBP, DBP, PP, and HR returned to pretreatment levels over 4 weeks. Before intervention, none of the normotensive subjects, but 14 hypertensive patients showed LVH. However, Roselle treatment was associated with regression of LVH in 10 patients with only 4 patients showing LVH after 4 weeks of treatment. This became 10 patients 4 weeks after ceasing treatment. These findings empirically suggest favorable cardiovascular effects of Roselle in patients with established moderate essential hypertension.

  10. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  11. Analysis of physiological (pao/sub 2/, pulse and blood pressure) changes during modified ect under general anaesthesia

    International Nuclear Information System (INIS)

    Shah, M.; Shah, H.A.; Shah, F.S.

    2015-01-01

    To study the changes in physiological parameters i e PAO2, pulse and blood pressure changes during ECT under GA. Study Design: Quasi-experimental study. Place and Duration of Study: Department of Psychiatry and Department of Anaesthesiology, Combined Military Hospital Abbottabad from Sep 2009 to Feb 2010. Patients and Methods: A total of 50 patients with depression were given four separate ECT sessions each. All patients were anaesthetized using propofol 180-200 mg I/V and suxamethonium 50 mg i e 0.75-1 mg per kg I/V without atropine. They were stratified according to physiological changes including PAO2, pulse and blood pressure at 1, 2 and 5 min after ECT. Oxygen saturation was measured using a pulse oximeter, which measures saturations in the range of 65-100%. Results: Age range was 19-65 years; mean 46 years (SD+-13). Mean diastolic BP before ECT was 84.72 that decreased post ECT ie 78.02 and 77.46 and 74.44 at interval of 1, 2 and 5 minute respectively. Post-ECT pulse and PAO2 behaved similarly. Post ECT systolic BP decreased at 1 and 5 minutes. Pulse rate decreased after ECT. Conclusion: ECT under propofol is one of the most effective and safe modality of treatment for psychiatric patients under the supervision of qualified psychiatrists and anaesthesiologists and it gives more stable hemodynamic changes. (author)

  12. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  13. Calibration apparatus for precise barometers and vacuum gauges

    International Nuclear Information System (INIS)

    Woo, S.Y.; Choi, I.M.; Lee, Y.J.; Hong, S.S.; Chung, K.H.

    2004-01-01

    In order to calibrate highly accurate absolute pressure gauges, such as barometers and vacuum gauges, laser, or ultrasonic mercury manometers have been used. However, the complexity and cost of manometers have greatly reduced the use of this method in most calibration laboratories. As a substitute, a gas-operated pressure balance is used to calibrate precise gauges. In such cases, many commercially available pressure balances are unsuitable because the necessary exposure of the piston, cylinder, and masses to the atmosphere causes contamination problems and allows dust particles into the gap between the piston and cylinder. In this article, a weight-loading device is described that allows masses to be changed in situ without breaking the vacuum. This device makes it possible to add or remove weights easily during the calibration, thereby greatly reducing the time between observations. Using this device, we efficiently calibrated a precise quartz resonance barometer (Paroscientific, model 760-16B) over a pressure range of 940-1050 h Pa and a precise vacuum gauge (MKS, CDG 100 Torr) over a pressure range of 0-100 h Pa

  14. A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats.

    Science.gov (United States)

    Spurgin, Kurt A; Kaprelian, Anthony; Gutierrez, Roberto; Jha, Vidyasagar; Wilson, Christopher G; Dobyns, Abigail; Xu, Karen H; Curras-Collazo, Margarita C

    2017-02-01

    The purpose of this study was to develop a method for applying calibrated manual massage pressures by using commonly available, inexpensive sphygmomanometer parts and validate the use of this approach as a quantitative method of applying massage therapy to rodents. Massage pressures were monitored by using a modified neonatal blood pressure (BP) cuff attached to an aneroid gauge. Lightly anesthetized rats were stroked on the ventral abdomen for 5 minutes at pressures of 20 mm Hg and 40 mm Hg. Blood pressure was monitored noninvasively for 20 minutes following massage therapy at 5-minute intervals. Interexaminer reliability was assessed by applying 20 mm Hg and 40 mm Hg pressures to a digital scale in the presence or absence of the pressure gauge. With the use of this method, we observed good interexaminer reliability, with intraclass coefficients of 0.989 versus 0.624 in blinded controls. In Long-Evans rats, systolic BP dropped by an average of 9.86% ± 0.27% following application of 40 mm Hg massage pressure. Similar effects were seen following 20 mm Hg pressure (6.52% ± 1.7%), although latency to effect was greater than at 40 mm Hg. Sprague-Dawley rats behaved similarly to Long-Evans rats. Low-frequency/high-frequency ratio, a widely-used index of autonomic tone in cardiovascular regulation, showed a significant increase within 5 minutes after 40 mm Hg massage pressure was applied. The calibrated massage method was shown to be a reproducible method for applying massage pressures in rodents and lowering BP. Copyright © 2016. Published by Elsevier Inc.

  15. PULSE WAVE VELOCITY AND CENTRAL AORTIC PRESSURE IN OBESE CHILDREN ACCORDING TO THE NON-INVASIVE ARTERIOGRAPHY RESULTS

    Directory of Open Access Journals (Sweden)

    O. V. Kozhevnikova

    2013-01-01

    Full Text Available The article presents information value of non-invasive arteriography, which reveals early signs of cardiovascular pathology formation in children, using a large number of trials in children. The authors examined predictors of cardiovascular catastrophes’ development, confirmed in adults: aortic wall’s stiffness, central aortic pressure and pulse pressure – that have not been sufficiently studied in children yet. The article shows that the high-technology method of non-invasive arteriography allows revealing changes of these parameters in children on the preclinical stage. It also shows their correlation with body mass index, fatty hepatosis, direct correlation of weight gain with connection of pulse wave velocity and central blood pressure and importance of follow-up evaluation of these parameters. Heterogeneity of the group of obese children in terms of these parameters is a premise for development of individual approach to control and prevention of cardiovascular complications’ development risk in childhood.

  16. Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment.

    Science.gov (United States)

    Stea, Francesco; Bozec, Erwan; Millasseau, Sandrine; Khettab, Hakim; Boutouyrie, Pierre; Laurent, Stéphane

    2014-04-01

    The Complior device (Alam Medical, France) was used in epidemiological studies which established pulse wave velocity (PWV) as a cardiovascular risk marker. Central pressure is related, but complementary to PWV and also associated to cardiovascular outcomes. The new Complior Analyse measures both PWV and central blood pressure during the same acquisition. The aim of this study was to compare PWV values from Complior Analyse with the previous Complior SP (PWVcs) and with Sphygmocor (PWVscr; AtCor, Australia), and to compare central systolic pressure from Complior Analyse and Sphygmocor. Peripheral and central pressures and PWV were measured with the three devices in 112 patients. PWV measurements from Complior Analyse were analysed using two foot-detection algorithms (PWVca_it and PWVca_cs). Both radial (ao-SBPscr) and carotid (car-SBPscr) approaches from Sphygmocor were compared to carotid Complior Analyse measurements (car-SBPca). The same distance and same calibrating pressures were used for all devices. PWVca_it was strongly correlated to PWVscr (R(2) = 0.93, P < 0.001) with a difference of 0.0 ± 0.7  m/s. PWVca_cs was also correlated to PWVcs (R(2) = 0.90, P < 0.001) with a difference of 0.1 ± 0.7  m/s. Central systolic pressures were strongly correlated. The difference between car-SBPca and ao-SBPscr was 3.1 ± 4.2  mmHg (P < 0.001), statistically equivalent to the difference between car-SBPscr and ao-SBPscr (3.9 ± 5.8  mmHg, P < 0.001), whilst the difference between car-SBPca and car-SBPscr was negligible (-0.7 ± 5.6  mmHg, P = NS). The new Complior Analyse device provides equivalent results for PWV and central pressure values to the Sphygmocor and Complior SP. It reaches Association for the Advancement of Medical Instrumentation standard for central blood pressure and grades as excellent for PWV on the Artery Society criteria. It can be interchanged with existing devices.

  17. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    Science.gov (United States)

    2001-10-25

    adrenalin) or vasodilating (Nipride or Nitromex) medicines. Also painkillers and anesthetics (Oxanest, Diprivan, Fentanyl and Rapifen) may have affected...the measurements. It is hard to distinguish the effects of medication and assess their relation to blood pressure errors and pulse shapes...CONCLUSION During this study, 51 cardiac operated patients were measured to define the effects of arterial stiffening on the accuracy of the

  18. Computation of the effect of pipe plasticity on pressure-pulse propagation in a fluid system

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1975-04-01

    A simple computational model is developed for incorporating the effect of elastic-plastic deformation of piping on pressure-transient propagation in a fluid system. A computer program (PLWV) is described that incorporates this structural interaction model into a one-dimensional method-of-characteristics procedure for fluid-hammer analysis. Computed results are shown to be in good agreement with available experimental data. The most significant effect of plastic deformation is to limit the peak pressure of a pulse leaving a pipe to approximately the yield pressure of the pipe, if the pipe is sufficiently long. 7 references. (U.S.)

  19. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  20. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... temperature-equilibrated and temperature-monitored calibration salt solutions in containers that seal...

  1. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  2. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  3. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  4. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  5. Study on the characteristics of barrier free surface discharge driven by repetitive nanosecond pulses at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Pang; Qiaogen, Zhang [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kun, He [China Electric Power Research Institute, Beijing 100192 (China); Chunliang, Liu [State Key Laboratory for Physical Electronics and Devices, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-15

    Nanosecond pulsed plasma has an enormous potential in many applications. In this paper, the characteristics of barrier free nanosecond pulsed surface discharge are investigated by the use of an actuator with a strip-strip film electrode configuration, including the effect of electrode width and the gap distance on the plasma morphology and electrical characteristics at atmospheric pressure. It was found that it is relative easier to generate a quasi uniform discharge with a thinner electrode width and a smaller gap distance. The underlying physical mechanism was also discussed. Besides that, the influence of airflow on repetitive pulsed surface discharge was examined. By comparing to the discharge produced by two different pulse waveforms in airflows, we found that the discharge driven by a faster pulse behaves more stable. Finally, a model was developed to analyze the interaction of the airflow and the discharge channels.

  6. Compact optical technique for streak camera calibration

    International Nuclear Information System (INIS)

    Bell, Perry; Griffith, Roger; Hagans, Karla; Lerche, Richard; Allen, Curt; Davies, Terence; Janson, Frans; Justin, Ronald; Marshall, Bruce; Sweningsen, Oliver

    2004-01-01

    To produce accurate data from optical streak cameras requires accurate temporal calibration sources. We have reproduced an older technology for generating optical timing marks that had been lost due to component availability. Many improvements have been made which allow the modern units to service a much larger need. Optical calibrators are now available that produce optical pulse trains of 780 nm wavelength light at frequencies ranging from 0.1 to 10 GHz, with individual pulse widths of approximately 25 ps full width half maximum. Future plans include the development of single units that produce multiple frequencies to cover a wide temporal range, and that are fully controllable via an RS232 interface

  7. Compact optical technique for streak camera calibration

    Science.gov (United States)

    Bell, Perry; Griffith, Roger; Hagans, Karla; Lerche, Richard; Allen, Curt; Davies, Terence; Janson, Frans; Justin, Ronald; Marshall, Bruce; Sweningsen, Oliver

    2004-10-01

    To produce accurate data from optical streak cameras requires accurate temporal calibration sources. We have reproduced an older technology for generating optical timing marks that had been lost due to component availability. Many improvements have been made which allow the modern units to service a much larger need. Optical calibrators are now available that produce optical pulse trains of 780 nm wavelength light at frequencies ranging from 0.1 to 10 GHz, with individual pulse widths of approximately 25 ps full width half maximum. Future plans include the development of single units that produce multiple frequencies to cover a wide temporal range, and that are fully controllable via an RS232 interface.

  8. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  9. Social support and loneliness in college students: effects on pulse pressure reactivity to acute stress.

    Science.gov (United States)

    O'Donovan, Aoife; Hughes, Brian

    2007-01-01

    Socially supportive relationships at university may buffer against psychological stress in students, particularly in those experiencing loneliness. To examine the relation of social support at university and loneliness with pulse pressure (PP) reactivity to acute psychological stress in a sample of first-year undergraduate students. Sixty-five female, adolescent, first-year university students. Pulse pressure (PP) was calculated as the arithmetic difference between systolic blood pressure and diastolic blood pressure, which were measured during a resting baseline and during a stressful reading task. The difference between baseline and reading task PP represents PP reactivity. The Social Support at University Scale (SSUS) was used to assess social support availability in university, and the Revised UCLA Loneliness Scale was used to assess loneliness. Hierarchical linear regression was used to examine main and interactive effects of SSUS and loneliness on PP change scores, and simple slopes were computed to assist in the interpretation of interaction effects. Social support at university was associated with lower PP reactivity in students reporting medium (t = -2.03, p = .04) or high levels of loneliness (t = -2.93, p = .004), but not in those reporting low levels of loneliness (t = -0.20, p = .83). Psychosocial interventions designed to increase social support available at university, and targeted at students experiencing loneliness may buffer against the harmful effects of acute stressors in lonely first-year students.

  10. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2012-03-01

    Full Text Available High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. However, a large number of scientific researches have been dedicated to investigation of impact of these methods on changes in constituents like milk fat, milk proteins and lactose as well as changes in mechanisms like renneting properties and coagulation of milk. The aim of this research was to give an overview of changes in milk constituents induced by high hydrostatic pressure, ultrasonification and pulsed electric field treatments as well as to suggest how these changes could improve conventional processes in the dairy industry.

  11. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index

    DEFF Research Database (Denmark)

    Fuglsang, S; Bendtsen, F; Christensen, E

    2001-01-01

    Arterial function may be altered in patients with cirrhosis. We determined compliance of the arterial tree (C(1)) in relation to systemic and splanchnic hemodynamic derangement and clinical variables. C(1) and the stroke volume-pulse pressure index (SV/PP) were significantly higher (+62% and +40%...... predictors of SV/PP (P abnormalities in the arterial compliance of these patients....

  12. New calibration technique for KCD-based megavoltage imaging

    Science.gov (United States)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The

  13. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  14. Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter

    Science.gov (United States)

    Hibert, Kurt James

    Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the

  15. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  16. Calibration simulation. A calibration Monte-Carlo program for the OPAL jet chamber

    International Nuclear Information System (INIS)

    Biebel, O.

    1989-12-01

    A calibration Monte Carlo program has been developed as a tool to investigate the interdependence of track reconstruction and calibration constants. Three categories of calibration effects have been considered: The precise knowledge of sense wire positions, necessary to reconstruct the particle trajectories in the jet chamber. Included are the staggering and the sag of the sense wires as well as tilts and rotations of their support structures. The various contributions to the measured drift time, with special emphasis on the aberration due to the track angle and the presence of a transverse magnetic field. A very precise knowledge of the drift velocity and the Lorentz angle of the drift paths with respect to the drift field is also required. The effects degrading particle identification via energy loss dE/dx. Impurities of the gas mixture and saturation effects depending on the track angle as well as the influence of the pulse shaping-electronics have been studied. These effects have been parametrised with coefficients corresponding to the calibration constants required for track reconstruction. Excellent agreement with the input data has been achieved when determining calibration constants from Monte Carlo data generated with these parametrisations. (orig.) [de

  17. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  18. The Precise Determination of Vascular Lumen and Stent Diameters: Correlation Among Calibrated Angiography, Intravascular Ultrasound, and Pressure-Fixed Specimens

    International Nuclear Information System (INIS)

    Froelich, Jens J.; Hoppe, Martin; Nahrstedt, Christoph; Barth, Klemens H.; Wagner, H. Joachim; Klose, Klaus J.

    1997-01-01

    Purpose: Luminal diameters measured in vivo by calibrated-catheter angiography and by intravascular ultrasound were correlated with those obtained from pressure-fixed histologic cross-sections to determine the accuracy of both methods. Methods: Angiographic and endosonographic diameter measurements were performed in the center of stents placed in the iliac arteries of 10 miniature pigs and were compared with luminal and stent diameters in postmortem, pressure-fixed, histologic cross-sections from identical locations. Results: Compared with histologic diameters, magnification-corrected angiographic measurements still magnified vascular luminal diameters by 0.7 ± 0.71 mm (r= 0.41, Pearson; p 0.5, Wilcoxon, matched pairs). Similarly, stent diameters correlated well between endosonographic and histologic measurements (r= 0.91; p= 0.002), and less well between angiographic and histologic diameters (r= 0.62; p= 0.002). Conclusion: Since calibrated angiography still overestimates vascular lumina, endosonography is the preferred technique for accurate in vivo measurements

  19. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  20. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  1. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-01-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  2. High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: Preliminary investigation of Tl3PSe4

    International Nuclear Information System (INIS)

    Alkire, R.W.; Larson, A.C.; Vergamini, P.J.; Schirber, J.E.; Morosin, B.

    1985-01-01

    A new technique is described for performing high-pressure single-crystal neutron diffraction [up to 20 kbar (2GPa) at room temperature], using a BeCu pressure cell, an area detector and the Los Alamos National Laboratory pulsed neutron source. Success of this method depends on the increase in information available with a multi-wavelength pulse neutron source, a novel orientation of a cylindrically symmetric pressure cell with its axis coincident with the neutron beam and a specific crystal orientation within the pressure cell. Bragg scattering from the pressure cell is avoided and background for a given 2theta is constant. For a crystal of orthorhombic or higher symmetry oriented with the incident beam passing midway between the major lattice vectors, it will be possible to refine a complete three-dimensional structure with data collected from only one pressure loading. Preliminary investigations of Tl 3 PSe 4 lattice parameters (space group Pcmn) at 15(1)kbar yielded linear compressibilities (. 1000 in kbar -1 ) of Ksub(a) = 1.05(8), Ksub(b) = 1.50(10), Ksub(c) = 1.20(8). The anisotropic compressibility is explained by examination of the ambient-pressure room-temperature structure. (orig.)

  3. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  4. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  5. Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure.

    Science.gov (United States)

    Rodríguez-Calleja, J M; Cebrián, G; Condón, S; Mañas, P

    2006-05-01

    To study and compare the resistance of 15 Staphylococcus aureus isolates to heat, pulsed electric field (PEF) and ultrasound (UW) under pressure (manosonication, MS). Survival curves to heat (58 degrees C), to PEF (22 kV cm(-1), 2 micros square wave pulses) and to UW under pressure (117 microm, 20 kHz, 200 kPa) were obtained and inactivation parameters (decimal reduction times for heat and UW under pressure, and b-values for PEF) were calculated. A wide resistance variation to heat treatment, but not to PEF and MS, was observed amongst the 15 strains. There was no relationship between the resistances to the three physical agents studied. Staphylococcus aureus was relatively resistant to MS but sensitive to PEF. Heat resistance varied with strain and was positively correlated to carotenoid pigment content. Results would help in defining safe food preservation processes. Care should be taken to choose the most adequate strain of S. aureus to model food preservation processing.

  6. Gamma counter calibration system

    International Nuclear Information System (INIS)

    1977-01-01

    A method and apparatus are described for the calibration of a gamma radiation measurement instrument to be used over any of a number of different absolute energy ranges. The method includes the steps of adjusting the overall signal gain associated with pulses which are derived from detected gamma rays, until the instrument is calibrated for a particular absolute energy range; then storing parameter settings corresponding to the adjusted overall signal gain, and repeating the process for other desired absolute energy ranges. The stored settings can be subsequently retrieved and reapplied so that test measurements can be made using a selected one of the absolute energy ranges. Means are provided for adjusting the overall signal gain and a specific technique is disclosed for making coarse, then fine adjustments to the signal gain, for rapid convergence of the required calibration settings. (C.F.)

  7. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    Science.gov (United States)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  8. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)

    2017-04-15

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.

  9. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    International Nuclear Information System (INIS)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Fatouraee, Nasser; Saben, Hazhir

    2017-01-01

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes

  10. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    Science.gov (United States)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  11. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  12. About application of n-InAs and n-CdAs2 samples as reper and calibrator of pressure

    International Nuclear Information System (INIS)

    Mollayev, A.Yu.; Saypulayeva, S.L.; Arslanov, R.K.; Alibekov, A.G.; Abakarova, N.S.

    2010-01-01

    In monocrystallin samples n-InAs and n-CdAs 2 was measured the ρ(P) at the hydrostatic pressures up to 9 GPa and room temperatures with pressure rise and releasing. As a result two reference points were obtained for n-InAs and for n-CdAs 2 there were get four reference points in crystallographic direction and three points in another direction. The present work is the continuation of researches of perspective semiconductor materials, that were began in the institute of physics of Daghestan scientific scientific center of Russian Academy of Sciences with the aim of forming data bank that can be used either at making pressure transmitters for calibration of high pressure apparatus or as command elements for automatization of processes of synthesis of supersolids and precious stone raw materials

  13. Experimental and theoretical investigations on the dynamic response of EBR-II ducts under pressure pulse loading

    International Nuclear Information System (INIS)

    Chopra, P.S.; Srinivas, S.

    1975-01-01

    In order to assess the potential damage to hexagonal subassembly ducts (cans) that may result from rapid gas release from a failed element the EBR-II project has conducted experiments and analyses. Additional experimental and analytical investigations are now being conducted to assure fail-safety of the ducts. Fail-safety is defined as the ability of a duct to withstand pressure pulses from failed elements during all reactor conditions without damage to adjacent ducts or any other problems in fuel handling. The results of 93 EBR-II duct tests conducted primarily by Koenig have been reported previously. The results of empirical correlations of some of these tests to determine the influence of several variables on the pressure pulse experienced by a duct and on the duct deformation are presented. The variables include the type of gas contained in the simulated element (tube), the element and duct materials, the presence or absence of flow restrictors in the element, and the way gas was released. 8 references. (auth)

  14. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  15. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    International Nuclear Information System (INIS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-01-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La 0.4 Ca 0.6 MnO 3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10 −1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  16. Association of pulse wave velocity and pulse pressure with decline in kidney function.

    Science.gov (United States)

    Kim, Chang Seong; Kim, Ha Yeon; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2014-05-01

    The association between arterial stiffness and decline in kidney function in patients with mild to moderate chronic kidney disease (CKD) is not well established. This study investigated whether pulse wave velocity (PWV) and pulse pressure (PP) are independently associated with glomerular filtration rate (GFR) and rapid decline in kidney function in early CKD. Carotid femoral PWV (cfPWV), brachial-ankle PWV (baPWV), and PP were measured in a cohort of 913 patients (mean age, 63±10 years; baseline estimated GFR, 84±18 mL/min/1.73 m(2) ). Estimated GFR was measured at baseline and at follow-up. The renal outcome examined was rapid decline in kidney function (estimated GFR loss, >3 mL/min/1.73 m(2) per year). The median follow-up duration was 3.2 years. Multivariable adjusted linear regression model indicated that arterial PWV (both cfPWV and baPWV) and PP increased as estimated GFR declined, but neither was associated with kidney function after adjustment for various covariates. Multivariable logistic regression analysis found that cfPWV and baPWV were not associated with rapid decline in kidney function (odds ratio [OR], 1.39, 95% confidence interval [CI], 0.41-4.65; OR, 2.51, 95% CI, 0.66-9.46, respectively), but PP was (OR, 1.22, 95% CI, 1.01-1.48; P=.045). Arterial stiffness assessed using cfPWV and baPWV was not correlated with lower estimated GFR and rapid decline in kidney function after adjustment for various confounders. Thus, PP is an independent risk factor for rapid decline in kidney function in populations with relatively preserved kidney function (estimated GFR ≥30 mL/min/1.73 m(2) ). ©2014 Wiley Periodicals, Inc.

  17. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Science.gov (United States)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  18. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  19. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  20. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  1. Pulse Pressure, Instead of Brachium-Ankle Pulse Wave Velocity, is Associated with Reduced Kidney Function in a Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Linpei Jia

    2017-03-01

    Full Text Available Background/Aims: In this study, we aim to investigate the association between renal function and arterial stiffness in a Chinese Han population, and further to discuss the effects of smoking on renal function. Methods: We collected the data of the brachium-ankle pulse wave velocity (baPWV, blood pressure, blood chemistry and smoking status. Then, the multiple linear regression was done to explore the relationship between estimated glomerular filtration (eGFR and baPWV. Further, the parameters were compared among the four groups divided according to the quartiles of baPWV. Finally, the baPWV, eGFR and albuminuria values were compared between smokers and non-smokers. Results: baPWV is associated with eGFR in the correlation analysis and univariate linear regression model. After adjustment, the pulse pressure (PP instead of baPWV showed a significant association with eGFR. Nevertheless, the eGFR values differed among the four baPWV groups; the baPWV values were significantly higher in the subjects at the CKD (eGFR<60 mL/min/1.73 m2 and the early CKD stage (eGFR60–80 mL/min/1.73 m2. The baPWV values and the ratio of proteinuria were significantly increased in smokers. Conclusion: PP but not baPWV is a predictor of declined renal function. Smokers have worse arterial stiffness and worse renal function.

  2. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  3. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); Canales-Ramos, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790 (Mexico); Villagrán-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico)

    2017-05-01

    Highlights: • Background pressure plays an important role in NPs formation and its characteristics. • The NPs diameter and their size dispersion are smaller when irradiating in vacuum. • The plasmon resonance shifts ∼15 nm to higher frequencies when irradiating in vacuum. • Film partial ablation cannot be neglected for thickness in the range 40–80 nm. • In situ optical techniques monitor the timescale of the process and ablation dynamics. - Abstract: Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10{sup −5} Torr). We studied the effect of the laser fluence (200–400 mJ/cm{sup 2}), thickness of the starting film (∼40–80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  4. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  5. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  6. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Larstorp, Anne Cecilie K; Ariansen, Inger; Gjesdal, Knut

    2012-01-01

    , and mean arterial pressure. When evaluated in the same model, the predictive effect of systolic and diastolic blood pressures together was similar to that of PP. In this population of patients with hypertension and left ventricular hypertrophy, PP was the strongest single blood pressure predictor of new......Previous studies have found pulse pressure (PP), a marker of arterial stiffness, to be an independent predictor of atrial fibrillation (AF) in general and hypertensive populations. We examined whether PP predicted new-onset AF in comparison with other blood pressure components in the Losartan...... Intervention For Endpoint reduction in hypertension study, a double-blind, randomized (losartan versus atenolol), parallel-group study, including 9193 patients with hypertension and electrocardiographic left ventricular hypertrophy. In 8810 patients with neither a history of AF nor AF at baseline, Minnesota...

  7. In-Flight Pitot-Static Calibration

    Science.gov (United States)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  8. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-12-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10{sup −1} mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  9. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures.

    Science.gov (United States)

    Leach, Julia M; Mancini, Martina; Peterka, Robert J; Hayes, Tamara L; Horak, Fay B

    2014-09-29

    The Nintendo Wii balance board (WBB) has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation) research domains. Although the WBB has been proposed as an alternative to the "gold standard" laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP) measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP) to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz). Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB's CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway direction. There was no difference in error across the 12 WBB's, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB's CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB's CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 2-6 mm (before calibration) to 0.5-2 mm (after calibration). WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain) CoP sway measures, from -10.5% (before calibration) to -0.05% (after calibration) (percent errors averaged across all sway measures and in both sway directions). In this study, we characterized the WBB's CoP measurement error under controlled, dynamic

  10. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures

    Directory of Open Access Journals (Sweden)

    Julia M. Leach

    2014-09-01

    Full Text Available The Nintendo Wii balance board (WBB has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation research domains. Although the WBB has been proposed as an alternative to the “gold standard” laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz. Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB’s CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML (compared to the anteroposterior (AP sway direction. There was no difference in error across the 12 WBB’s, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB’s CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB’s CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error from 2–6 mm (before calibration to 0.5–2 mm (after calibration. WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain CoP sway measures, from −10.5% (before calibration to −0.05% (after calibration (percent errors averaged across all sway measures and in both sway directions. In this study, we characterized the WBB’s CoP measurement error

  11. Job strain associated with increases in ambulatory blood and pulse pressure during and after work hours among female hotel room cleaners.

    Science.gov (United States)

    Feaster, Matt; Krause, Niklas

    2018-06-01

    Previously documented elevated hypertension rates among Las Vegas hotel room cleaners are hypothesized to be associated with job strain. Job strain was assessed by questionnaire. Ambulatory blood pressure (ABP) was recorded among 419 female cleaners from five hotels during 18 waking hours. Multiple linear regression models assessed associations of job strain with ABP and pulse pressure for 18-h, work hours, and after work hours. Higher job strain was associated with increased 18-h systolic ABP, after work hours systolic ABP, and ambulatory pulse pressure. Dependents at home but not social support at work attenuated effects. Among hypertensive workers, job strain effects were partially buffered by anti-hypertensive medication. High job strain is positively associated with blood pressure among female hotel workers suggesting potential for primary prevention at work. Work organizational changes, stress management, and active ABP surveillance and hypertension management should be considered for integrated intervention programs. © 2018 Wiley Periodicals, Inc.

  12. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  13. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  14. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    Science.gov (United States)

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  15. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  16. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production

    DEFF Research Database (Denmark)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G.

    2009-01-01

    on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline...

  17. New Acquisition System for the PSR Beam Pulse Charge Monitor

    International Nuclear Information System (INIS)

    Sellyey, William C.; Lewis, Paul S.

    2004-01-01

    A Pearson 1010 current monitor toroid has been in use for many years to measure the charge per bunch being delivered from the LANSCE Proton Storage Ring (PSR) to the Lujan Center's spallation neutron source. Improved electronics have been developed to process the toroid's signal. The new system generates a calibrated measurement of charge per pulse and is network-enabled to provide remote access to charge, current and other data via EPICS. It is experimentally demonstrated that accurate charge measurements can be made on calibration pulses that contain frequency components well above what is contained in a typical beam pulse. The new electronics consists of a National Instruments (NI) PXI-1002 chassis that contains a PXI-8176 controller, a PXI-5112 100-MS/s digitizer, and a PXI-6602 scalar and digital I/O module. The 8176 runs under the NI Real Time operating system and was programmed to integrate proton pulse waveforms acquired by the 5112 digitizer. For each beam pulse a 50-kHz pulse stream proportional to the pulse charge is generated by the 6602 and this real time information is distributed to all experimental areas

  18. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    International Nuclear Information System (INIS)

    Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-01-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects

  19. Pressure transducers

    International Nuclear Information System (INIS)

    Gomes, A.V.

    1975-01-01

    Strain gauges pressure transducers types are presented. Models, characteristics and calibration procedures were also analysed. Initially, a theoretical study was accomplished to evaluate metallic alloys behavior on sensing elements manufacturing, and diaphragm was used as deflecting elements. Electrical models for potenciometric transducers were proposed at the beginning and subsequently comproved according our experiments. Concerning bridge transducers, existing models confirmed the conditions of linearity and sensitivity related to the electrical signal. All the work done was of help on the calibration field and pressure measurements employing unbounded strain gauge pressure transducers

  20. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    International Nuclear Information System (INIS)

    Ronald Justin; Terence Davies; Frans Janson; Bruce Marshall; Perry Bell; Daniel Kalantar; Joseph Kimbrough; Stephen Vernon; Oliver Sweningsen

    2008-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called 'comb' pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber

  1. Flux transfer events at the dayside magnetopause: Transient reconnection or magnetosheath dynamic pressure pulses?

    International Nuclear Information System (INIS)

    Lockwood, M.

    1991-01-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward

  2. The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure

    International Nuclear Information System (INIS)

    Kips, Jan; Mahieu, Dries; Fabry, Isabelle; Van Bortel, Luc; Vanmolkot, Floris; De Hoon, Jan; Vermeersch, Sebastian; Segers, Patrick

    2010-01-01

    Proper non-invasive assessment of carotid artery pressure ideally uses waveforms recorded at two anatomical locations: the brachial and the carotid artery. Calibrated diameter distension waveforms could provide a more widely applicable alternative for local arterial pressure assessment than applanation tonometry. This approach might be of particular use at the brachial artery, where the feasibility of a reliable tonometric measurement has been questioned. The aim of this study was to evaluate an approach based on distension waveforms obtained at the brachial and carotid arteries. This approach will be compared to traditional pulse pressures obtained through tonometry at both the carotid and brachial arteries (used as a reference) and the more recently proposed approach of combining tonometric readings at the brachial artery with linearly or exponentially calibrated distension curves at the carotid artery. Local brachial and carotid diameter distension and tonometry waveforms were recorded in 148 subjects (119 women; aged 19–59 years). The morphology of the waveforms was compared by the form factor and the root-mean-squared error. The difference between the reference carotid PP and the PP obtained from brachial and carotid distension waveforms was smaller (0.9 (4.9) mmHg or 2.3%) than the difference between the reference carotid PP and the estimates obtained using a tonometric and a distension waveform (−4.8 (2.5) mmHg for the approach using brachial tonometry and linearly scaled carotid distension, and 2.7 (6.8) mmHg when using exponentially scaled carotid distension waves). We therefore recommend to stick to one technique on both the brachial and the carotid artery, either tonometry or distension, when assessing carotid blood pressure non-invasively

  3. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    OpenAIRE

    Irena Jeličić; Katarina Lisak; Rajka Božanić

    2012-01-01

    High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF) belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. ...

  4. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    Science.gov (United States)

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  5. The calibrated laparoscopic Heller myotomy with fundoplication.

    Science.gov (United States)

    Di Martino, Natale; Marano, Luigi; Torelli, Francesco; Schettino, Michele; Porfidia, Raffaele; Reda, Gianmarco; Grassia, Michele; Petrillo, Marianna; Braccio, Bartolomeo

    2013-01-01

    Esophageal achalasia is the most common primary esophageal motor disorder. Laparoscopic Heller's myotomy combined with fundoplication represents the treatment of choice for this disease, achieving good results in about 90% of patients. However, about 10% of treated patients refer persistent or recurrent dysphagia. Many Authors showed that this failure rate is related to inadequate myotomy. To verify, from experimental to clinical study, the modifications induced by Heller's myotomy of the esophago- gastric junction on LES pressure (LES-P profile, using a computerized manometric system. From 2002 to 2010 105 patients with achalasia underwent laparoscopic calibrated Heller myotomy followed by antireflux surgery. The calibrated Heller myotomy was extended for at least 2.5 cm on the esophagus and for 3 cm on the gastric side. Each step was evaluated by intraoperative manometry. Moreover, intraoperative manometry and endoscopy were used to calibrate the fundoplication. The preoperative mean LES-P was 37.73 ± 12.21. After esophageal and gastric myotomy the mean pressure drop was 21.3% and 91.9%, respectively. No mortality was reported. Laparoscopic calibrated Heller myotomy with fundoplication achieves a good outcome in the surgical treatment of achalasia. The use of intraoperative manometry enables an adequate calibration of myotomy, being effective in the evaluation of the complete pressure drop, avoiding too long esophageal myotomy and, especially, too short gastric myotomy, that may be the cause of surgical failure.

  6. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  7. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  8. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study.

    Science.gov (United States)

    Kitagawa, Noriyuki; Ushigome, Emi; Matsumoto, Shinobu; Oyabu, Chikako; Ushigome, Hidetaka; Yokota, Isao; Asano, Mai; Tanaka, Muhei; Yamazaki, Masahiro; Fukui, Michiaki

    2018-03-01

    This cross-sectional multicenter study was designed to evaluate the threshold value of home pulse pressure (PP) and home systolic blood pressure (SBP) predicting the arterial stiffness in 876 patients with type 2 diabetes. We measured the area under the receiver-operating characteristic curve (AUC) and estimated the ability of home PP to identify arterial stiffness using Youden-Index defined cut-off point. The arterial stiffness was measured using the brachial-ankle pulse wave velocity (baPWV). AUC for arterial stiffness in morning PP was significantly greater than that in morning SBP (P AUC for arterial stiffness in evening PP was also significantly greater than that in evening SBP (P < .001). The optimal cut-off points for morning PP and evening PP, which predicted arterial stiffness, were 54.6 and 56.9 mm Hg, respectively. Our findings indicate that we should pay more attention to increased home PP in patients with type 2 diabetes. ©2018 Wiley Periodicals, Inc.

  9. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    Science.gov (United States)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  10. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds : a prospective observational study

    NARCIS (Netherlands)

    Vos, Jaap Jan; Poterman, Marieke; Papineau Salm, Pieternel; Van Amsterdam, Kai; Struys, Michel M. R. F.; Scheeren, Thomas W. L.; Kalmar, Alain F.

    2015-01-01

    Pulse pressure variation (PPV) and stroke volume variation (SVV) are dynamic preload variables that can be measured noninvasively to assess fluid responsiveness (FR) in anesthetized patients with mechanical ventilation. Few studies have examined the effectiveness of predicting FR according to the

  11. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events.

    Science.gov (United States)

    Loeza-Quintana, Tzitziki; Adamowicz, Sarah J

    2018-02-01

    During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.

  12. Pulse-wave morphology and pulse-wave velocity in healthy human volunteers

    DEFF Research Database (Denmark)

    Frimodt-Møller, M; Nielsen, A H; Kamper, A-L

    2006-01-01

    as smoking caused significant changes in both PWA and PWV parameters and an inter-arm difference was observed. Intra- and interobserver reproducibility was good. CONCLUSIONS: Pulse-wave measurements by applanation tonometry should be undertaken in the same arm during fasting and smoking abstinence.......OBJECTIVE: Applanation tonometry for pulse-wave analysis (PWA) and determination of pulse-wave velocity (PWV) is a non-invasive method for assessment of the central aortic pressure waveform and indices of arterial stiffness. The objective of this study was to examine the influence of eating...... and smoking on PWA and PWV measurements in order to establish standard examination conditions. Furthermore, intra- and interobserver reproducibility and the effects of varying the site of measurements were observed. MATERIAL AND METHODS: Duplicate measurements of the radial pressure waveform...

  13. Retinal vascular calibres are significantly associated with cardiovascular risk factors

    DEFF Research Database (Denmark)

    von Hanno, T.; Bertelsen, G.; Sjølie, Anne K.

    2014-01-01

    . Association between retinal vessel calibre and the cardiovascular risk factors was assessed by multivariable linear and logistic regression analyses. Results: Retinal arteriolar calibre was independently associated with age, blood pressure, HbA1c and smoking in women and men, and with HDL cholesterol in men......Purpose: To describe the association between retinal vascular calibres and cardiovascular risk factors. Methods: Population-based cross-sectional study including 6353 participants of the TromsO Eye Study in Norway aged 38-87years. Retinal arteriolar calibre (central retinal artery equivalent...... cardiovascular risk factors were independently associated with retinal vascular calibre, with stronger effect of HDL cholesterol and BMI in men than in women. Blood pressure and smoking contributed most to the explained variance....

  14. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  15. Development of a Cardiovascular Simulator for Studying Pulse Diagnosis Mechanisms

    Directory of Open Access Journals (Sweden)

    Min Jang

    2017-01-01

    Full Text Available This research was undertaken to develop a cardiovascular simulator for use in the study of pulse diagnosis. The physical (i.e., pulse wave transmission and reflection and physiological (i.e., systolic and diastolic pressure, pulse pressure, and mean pressure characteristics of the radial pulse wave were reproduced by our simulator. The simulator consisted of an arterial component and a pulse-generating component. Computer simulation was used to simplify the arterial component while maintaining the elastic modulus and artery size. To improve the reflected wave characteristics, a palmar arch was incorporated within the simulator. The simulated radial pulse showed good agreement with clinical data.

  16. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    International Nuclear Information System (INIS)

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-01-01

    The absorption of three lines [P(20), 944.2 cm -1 ; P(14), 949.2 cm -1 ; and R(24), 978.5 cm -1 ] of the pulsed CO 2 laser (00 0 1--10 0 0 transition) by SiH 4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO 2 laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials

  17. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  18. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    Science.gov (United States)

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  19. Review of control rod calibration methods for irradiated AGRs

    Energy Technology Data Exchange (ETDEWEB)

    Telford, A. R.R.

    1975-10-15

    Methods of calibrating control rods with particular reference to irradiated CAGR are surveyed. Some systematic spatial effects are found and an estimate of their magnitude made. It is concluded that control rod oscillation provides a promising method of calibrating rods at power which is as yet untried on CAGR. Also the rod drop using inverse kinetics provides a rod calibration but spatial effects may be large and these would be difficult to correct theoretically. The pulsed neutron technique provides a calibration route with small errors due to spatial effects provided a suitable K-tube can be developed. The xenon transient method is shown to have spatial effects which have not needed consideration in earlier reactors but which in CAGR would need very careful evaluation.

  20. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; David, Adrian; Lin, Weinan; Wu, Tao

    2014-01-01

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our

  1. Increased pulse pressure is associated with left atrial enlargement in resistant hypertensive patients.

    Science.gov (United States)

    Armario, Pedro; Oliveras, Anna; Hernández-Del-Rey, Raquel; Suárez, Carmen; Martell, Nieves; Ruilope, Luis M; De La Sierra, Alejandro

    2013-02-01

    Resistant hypertension (RH) is frequently associated with a high prevalence of target organ damage, which impairs the prognosis of these patients. Considering cardiac alterations in RH, most attention has been devoted to left ventricular hypertrophy (LVH), but data concerning left atrial enlargement (LAE) is less known. This cross-sectional study assessed the factors associated with LAE, with special focus on blood pressure (BP) estimates obtained by ambulatory blood pressure monitoring (ABPM), in 250 patients with RH, aged 64 ± 11 years. LAE and LVH were observed in 10.0% (95% CI 6.3-13.7) and 57.1% (95% CI 50.8-63.5) of patients, respectively. Compared with patients with normal atrium size, those exhibiting LAE were older, more frequently women, had elevated pulse pressure (PP) measured both at the office and by ABPM, and showed higher prevalence of LVH (83% vs 54%; p = 0.016). In a logistic regression analysis, adjusting for age, gender, body mass index, left ventricular mass index and BP pressure estimates, night-time PP was independently associated with LAE (OR for 5 mmHg = 1.28, 95% CI 1.24-1.32; p = 0.001). In conclusion, besides classical determinants of LAE, such as age and LVH, an elevated night-time PP was independently associated with LAE in patients with RH.

  2. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    Science.gov (United States)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  3. Measurement of DNA double-strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: calibration by means of 125I decay

    International Nuclear Information System (INIS)

    Iliakis, G.E.; Cicilioni, O.; Metzger, L.

    1991-01-01

    Experiments were performed to calibrate a recently developed pulsed field gel electrophoresis assay, the asymmetric field inversion gel electrophoresis (AFIGE), for the measurement of double-strand breaks (dsb) in the DNA of mammalian cells. Calibration was carried out by means of 125 I decay accumulation, under conditions preventing repair, based on the observation that each 125 I decay in the DNA produces approximately one dsb. Results suggest that that observed fluctuations in the fraction of DNA activity released (FAR) per Gy throughout the cycle reflect cell-cycle-associated differences in the physicochemical properties of the DNA molecules that alter their electrophoretic mobility, rather than variations in the induction of dsb per Gy, i.e. the sensitivity of the assay fluctuates throughout the cycle. (author)

  4. Nonlinear behaviors in a pulsed dielectric barrier discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiao; Wang Yanhui, E-mail: wangyh@dlut.edu.cn; Wang Dezhen

    2011-08-01

    In this paper, the temporal nonlinear behaviors of pulsed dielectric barrier discharge in atmospheric helium are studied numerically by a one-dimensional fluid model. The results show that the common single-period pulsed discharge with two current pulses per single voltage pulse can take place over a broad parameter range. The rising and falling times of the voltage pulse can affect the discharge characteristics greatly. When the discharge is ignited by a pulse voltage with long rising and falling times, a single-period pulsed discharge with multiple current peaks can be observed. Under appropriate rising and falling times of the voltage pulse, a stable period-two discharge can occur over wide frequency and voltage ranges. Also this period-two discharge can exhibit different current and voltage characteristics with changing the duty cycle. With other parameters fixed, the pulsed DBD could be driven to chaos through period-doubling route by increasing either the falling time or the frequency of voltage pulse.

  5. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2008-11-15

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient.

  6. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2008-01-01

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient

  7. The characteristic calibration of the plastic scintillation detector for neutron diagnostic

    CERN Document Server

    Chen Hong Su

    2002-01-01

    The author presents the characteristic of the plastic scintillation detector used for pulse neutron diagnostic. The detection efficiency and sensitivity of the detector to DT neutron have been calibrated by the K-400 accelerator and by the pulse neutron tube, separately. The detection efficiency from the experiment is in agreement with that from calculation in the range of experimental errors

  8. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes - a cross-sectional study

    DEFF Research Database (Denmark)

    Theilade, Simone; Lajer, Maria Stenkil; Hansen, Tine Willum

    2013-01-01

    BACKGROUND: Non-invasive measurements of 24 hour ambulatory central aortic systolic pressure (24 h-CASP) and central pulse pressure (24 h-CPP) are now feasible. We evaluate the relationship between 24 h central blood pressure and diabetes-related complications in patients with type 1 diabetes.......68) and 3.72 (1.85-7.47) and autonomic dysfunction: 3.25 (1.65-6.41), 1.64 (1.12-2.39) and 2.89 (1.54-5.42). CONCLUSIONS: 24 h-CASP and 24 h-CPP was higher in patients vs. controls and increased with diabetic complications independently of covariates. Furthermore, 24 h-CASP was stronger associated....... METHODS: The study was cross-sectional, including 715 subjects: 86 controls (C), 69 patients with short diabetes duration (diabetes (≥ 10 years) and normoalbuminuria (LN), 163...

  9. Outcome-driven thresholds for ambulatory pulse pressure in 9938 participants recruited from 11 populations

    DEFF Research Database (Denmark)

    Gu, Yu-Mei; Thijs, Lutgarde; Li, Yan

    2014-01-01

    Evidence-based thresholds for risk stratification based on pulse pressure (PP) are currently unavailable. To derive outcome-driven thresholds for the 24-hour ambulatory PP, we analyzed 9938 participants randomly recruited from 11 populations (47.3% women). After age stratification (... interval of the HRs associated with stepwise increasing PP levels crossed unity at 64 mm Hg. While accounting for all covariables, the top tenth of PP contributed less than 0.3% (generalized R(2) statistic) to the overall risk among the elderly. Thus, in randomly recruited people, ambulatory PP does...

  10. Transition between trickle flow and pulse flow in a cocurrent gas-liquid trickle-bed reactor at elevated pressures

    NARCIS (Netherlands)

    Wammes, W.J.A.; Mechielsen, S.J.; Westerterp, K.R.

    1992-01-01

    The effect of reactor pressure in the range of 0.2–2.0 MPa on the transition between the trickle-flow and the pulse-flow regime has been investigated for the non-foaming water—nitrogen and aqueous 40% ethyleneglycol—nitrogen systems. Most models and flow charts which are all based on atmospheric

  11. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communication lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated

  12. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  13. Calibration-free optical chemical sensors

    Science.gov (United States)

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  14. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    Science.gov (United States)

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  15. A Pulse Wave Velocity Based Method to Assess the Mean Arterial Blood Pressure Limits of Autoregulation in Peripheral Arteries

    Directory of Open Access Journals (Sweden)

    Ananya Tripathi

    2017-11-01

    Full Text Available Background: Constant blood flow despite changes in blood pressure, a phenomenon called autoregulation, has been demonstrated for various organ systems. We hypothesized that by changing hydrostatic pressures in peripheral arteries, we can establish these limits of autoregulation in peripheral arteries based on local pulse wave velocity (PWV.Methods: Electrocardiogram and plethysmograph waveforms were recorded at the left and right index fingers in 18 healthy volunteers. Each subject changed their left arm position, keeping the right arm stationary. Pulse arrival times (PAT at both fingers were measured and used to calculate PWV. We calculated ΔPAT (ΔPWV, the differences between the left and right PATs (PWVs, and compared them to the respective calculated blood pressure at the left index fingertip to derive the limits of autoregulation.Results: ΔPAT decreased and ΔPWV increased exponentially at low blood pressures in the fingertip up to a blood pressure of 70 mmHg, after which changes in ΔPAT and ΔPWV were minimal. The empirically chosen 20 mmHg window (75–95 mmHg was confirmed to be within the autoregulatory limit (slope = 0.097, p = 0.56. ΔPAT and ΔPWV within a 20 mmHg moving window were not significantly different from the respective data points within the control 75–95 mmHg window when the pressure at the fingertip was between 56 and 110 mmHg for ΔPAT and between 57 and 112 mmHg for ΔPWV.Conclusions: Changes in hydrostatic pressure due to changes in arm position significantly affect peripheral arterial stiffness as assessed by ΔPAT and ΔPWV, allowing us to estimate peripheral autoregulation limits based on PWV.

  16. Relation of pulse pressure to long-distance gait speed in community-dwelling older adults: Findings from the LIFE-P study

    Science.gov (United States)

    Reduced long-distance gait speed, a measure of physical function, is associated with falls, late-life disability, hospitalization/institutionalization and cardiovascular morbidity and mortality. Aging is also accompanied by a widening of pulse pressure (PP) that contributes to ventricular-vascular ...

  17. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  18. Effectiveness of Pulse Oximetry Versus Doppler for Tourniquet Monitoring.

    Science.gov (United States)

    Wall, Piper L; Buising, Charisse M; Grulke, Lisa; Troester, Alexander; Bianchina, Nicholas; White, Shannon; Freymark, Rosemarie; Hassan, Ali; Hopkins, James W; Renner, Catherine Hackett; Sahr, Sheryl M

    Pulse oximeters are common and include arterial pulse detection as part of their methodology. The authors investigated the possible usefulness of pulse oximeters for monitoring extremity tourniquet arterial occlusion. Tactical Ratcheting Medical Tourniquets were tightened to the least Doppler-determined occluding pressure at mid-thigh or mid-arm locations on one limb at a time on all four limbs of 15 volunteers. A randomized block design was used to determine the placement locations of three pulse oximeter sensors on the relevant digits. The times and pressures of pulsatile signal absences and returns were recorded for 200 seconds, with the tourniquet being tightened only when the Doppler ultrasound and all three pulse oximeters had pulsatile signals present (pulsatile waveform traces for the pulse oximeters). From the first Doppler signal absence to tourniquet release, toe-located pulse oximeters missed Doppler signal presence 41% to 50% of the times (discrete 1-second intervals) and missed 39% to 49% of the pressure points (discrete 1mmHg intervals); fingerlocated pulse oximeters had miss rates of 11% to 15% of the times and 13% to 19% of the pressure points. On toes, the pulse oximeter ranges of sensitivity and specificity for Doppler pulse detection were 71% to 90% and 44% to 51%, and on fingers, the respective ranges were 65% to 77% and 78% to 83%. Use of a pulse oximeter to monitor limb tourniquet effectiveness will result in some instances of an undetected weak arterial pulse being present. If a pulse oximeter waveform is obtained from a location distal to a tourniquet, the tourniquet should be tightened. If a pulsatile waveform is not detected, vigilance should be maintained. 2017.

  19. Precision calibration of calorimeter electronics in the D0 liquid argon/uranium particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.L.

    1991-12-01

    The ability to cross calibrate thousands of channels of detector electronics is of prime importance. This paper will describe the system used to deliver and distribute a 300 nanosecond pulse across 50,000 channels of electronics with better than 0.25% difference between channels from a location more than 200 feet away. The system is used for both cross calibration and functionality checking, (i.e., missing channels). Design of a fixed width pulse generator of high stability is presented as a key ingredient in the system`s overall performance. In addition, the design of a controlled impedance distribution system is discussed. 2 refs.

  20. Models of WO x films growth during pulsed laser deposition at elevated pressures of reactive gas

    Science.gov (United States)

    Gnedovets, A. G.; Fominski, V. Y.; Nevolin, V. N.; Romanov, R. I.; Fominski, D. V.; Soloviev, A. A.

    2017-12-01

    The films of tungsten oxides were prepared by pulsed laser ablation of W target in a reactive gas atmosphere (air of laboratory humidity). Optical analysis and ion signal measurements for the laser plume allowed to recognise a threshold gas pressure that suppresses the deposition of non-scattered atomic flux from the plume. When the pressure exceeds about 40 Pa, the films grow due to the deposition of species that could be formed in collisions of W atoms with reactive molecules (e.g., O2). Kinetic Monte Carlo method was used for modelling film growth. Comparison of the model structures with the experimentally prepared films has shown that the growth mechanism of ballistic deposition at a pressure of 40 Pa could be changed on the diffusion limited aggregation at a pressure of ~100 Pa. Thus, a cauliflower structure of the film transformed to a web-like structure. For good correlation of experimental and model structures of WO x , a dimension of structural elements in the model should coincide with W-O cluster size.

  1. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  2. Fast neutron activating detectors for pulsed flow measurements

    International Nuclear Information System (INIS)

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.

    1979-01-01

    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  3. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    Directory of Open Access Journals (Sweden)

    Jae-Young Shin

    2016-09-01

    Full Text Available Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, si

  4. Evaluation of pressure in a plasma produced by laser ablation of steel

    Science.gov (United States)

    Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric

    2018-05-01

    We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.

  5. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  6. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  7. The design and realization of calibration apparatus for measuring the concentration of radon in three models

    Energy Technology Data Exchange (ETDEWEB)

    Huiping, Guo [The Second Artillery Engineering College, Xi' an (China)

    2007-06-15

    For satisfying calibration request of radon measure in the laboratory, the calibration apparatus for radon activity measure is designed and realized. The calibration apparatus can auto-control and auto-measure in three models. sequent mode, pulse mode and constant mode. The stability and reliability of the calibration apparatus was tested under the three models. The experimental result shows that the apparatus can provides an adjustable and steady radon activity concentration environment for the research of radon and its progeny and for the calibration of its measure. (authors)

  8. Hot-Wire Calibration at Low Velocities: Revisiting the Vortex Shedding Method

    Directory of Open Access Journals (Sweden)

    Sohrab S. Sattarzadeh

    2013-01-01

    Full Text Available The necessity to calibrate hot-wire probes against a known velocity causes problems at low velocities, due to the inherent inaccuracy of pressure transducers at low differential pressures. The vortex shedding calibration method is in this respect a recommended technique to obtain calibration data at low velocities, due to its simplicity and accuracy. However, it has mainly been applied in a low and narrow Reynolds number range known as the laminar vortex shedding regime. Here, on the other hand, we propose to utilize the irregular vortex shedding regime and show where the probe needs to be placed with respect to the cylinder in order to obtain unambiguous calibration data.

  9. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  10. Status of pulse tube development at CEA/SBT

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.

    1994-01-01

    Interest in the pulse tube comes from its potential for high reliability and low level of induced vibration. A numerical model has been developed to provide a tool for practical design. It has been successfully validated against the experimental results obtained with a single stage double inlet pulse tube which has achieved a temperature of 28 K at a frequency of a few Hz. Further developments have demonstrated the capability of operating a pulse tube at higher frequencies in association with a Stirling pressure oscillator. Current projects include coaxial geometry for miniature pulse tubes with linear resonant pressure oscillators. A 4 K multistaged pulse tube is also in development. (authors). 5 figs., 12 refs

  11. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge

    International Nuclear Information System (INIS)

    Sirse, N; Ellingboe, A R; Jeon, M H; Yeom, G Y

    2014-01-01

    Time-resolved electron density, n e , is measured in a low pressure pulsed two-frequency capacitively coupled plasma discharge sustained in Ar and in Ar/CF 4 /O 2 (80 : 10 : 10) gas mixture using a floating resonance hairpin probe. The top electrode is powered by 60 MHz in pulse mode and the bottom electrode is powered by 2 MHz in continuous wave mode. The dependence of time-resolved n e on the low frequency (LF) and high frequency (HF) power levels, operating gas pressure, pulse repetition frequency (PRF) and duty cycle are investigated. It is found that the steady state n e in the long on-phase is greatly influenced by the HF power level and slightly affected by the LF power level in both Ar and Ar/CF 4 /O 2 plasma. The decay time of n e is slow (∼30–90 µs) in the case of Ar plasma and strongly depends on the LF power level, whereas in the case of Ar/CF 4 /O 2 gas mixture it is very fast (∼15 µs) and marginally dependent on LF power level. In Ar plasma the steady state n e is increasing with a rise in operating gas pressure, however, in Ar/CF 4 /O 2 plasma it first increases with gas pressure reaching to the maximum (at 20 mTorr) value and then decreases. The pressure dependence of decay time constant mimics the pressure variation of steady state n e . Furthermore, it is observed that the on-phase electron density is greatly affected by changing the PRF and duty cycle. This effect is more prominent in Ar/CF 4 /O 2 plasma when compared to Ar discharge. In addition, n e is observed to overshoot the steady state densities in the beginning of the on-phase in Ar/CF 4 /O 2 gas mixture, but this effect is either small or absent in the case of Ar plasma. (paper)

  12. The electronic calibration of the ECAL-CMS

    International Nuclear Information System (INIS)

    Baek, Y.; Boget, D.; Ditta, J.; Fouque, N.; Mendiburu, J.P.

    1999-11-01

    We present a calibration system developed at LAPP (Annecy-le-Vieux, France) for the electronics of the CMS electromagnetic calorimeter. The system, remotely controlled from the control room, produces a current pulse at the input of the preamplifiers of the read out chain. The pulse amplitude is fixed by a 10 bits DAC and its shape has an exponential decay. It has been founded in DMILL 0.8 μm technology. For the injection part, no shift is measurable up to 10 14 neutrons/cm 2 and 400 krad in γ irradiation. We describe here the system, the different chips that have been founded and the results of the measurements. (authors)

  13. Method of making self-calibrated displacement measurements

    International Nuclear Information System (INIS)

    Pedersen, H.N.

    1977-01-01

    A method for monitoring the displacement of an object having an acoustically reflective surface at least partially submerged in an acoustically conductive medium is described. The reflective surface is designed to have a stepped interface responsive to an incident acoustic pulse to provide separate discrete reflected pulses to a receiving transducer. The difference in the time of flight of the reflected acoustic signals corresponds to the known step height and the time of travel of the signals to the receiving transducer provides a measure of the displacement of the object. Accordingly, the reference step length enables simultaneous calibration of each displacement measurement. 3 claims, 3 figures

  14. The volume of the carotid bodies and blood pressure variability and pulse pressure in patients with essential hypertension

    International Nuclear Information System (INIS)

    Jaźwiec, P.; Gać, P.; Poręba, M.; Sobieszczańska, M.; Mazur, G.; Poręba, R.

    2016-01-01

    Aim: To assess the relationship between the volume of the carotid bodies (V rCB+lCB ) examined by means of computed tomography angiography (CTA) and blood pressure variability and pulse pressure (PP) in 24-hour ambulatory blood pressure monitoring (ABPM) in patients with essential hypertension. Materials and methods: A group of 52 patients with essential hypertension was examined (mean age: 68.32±12.31 years), the sizes of carotid bodies were measured by means of carotid artery CTA, and 24-hour ABPM was carried out. The 24-hour ABPM established systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), PP, SBP variability (SBPV), and DBP variability (DBPV). Results: SBP, MAP, and SBPV were significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median, as well as in the group of hypertension patients with oversized carotid bodies, than in the group of hypertension patients with normal V rCB+lCB . Moreover, the PP was statistically significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median. The existence of statistically significant positive linear relationships was revealed between V rCB+lCB and SBP, PP, and SBPV. A higher body mass index, older age, smoking, and higher V rCB+lCB are independent risk factors increasing SBPV in the research group. Conclusion: A positive relationship between the size of the carotid bodies and variability of the SBP and PP is observed in patients with essential hypertension. - Highlights: • Purpose. Determination of the relationships: V rCB+lCB vs. BPV and V rCB+lCB vs. PP. • Positive linear correlations were documented between V rCB+lCB and SBP, PP and SBPV. • Higher BMI, age, V rCB+lCB and smoking are independent risk factor of increased SBPV.

  15. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.

    Science.gov (United States)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A

    2014-08-05

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  16. The Fundamentals of the Air Sampler Calibration-Verification Process

    International Nuclear Information System (INIS)

    Gavila, F.M.

    2011-01-01

    The calibration of an air sampling instrument using a reference air flow calibrator requires attention to scientific detail in order to establish that the instrument's reported values are correctly stated and valid under the actual operating conditions of the air sampling instrument. The primary objective of an air flow calibration-verification is to ensure that the device under test (DUT) is within the manufacturer's stated accuracy range of temperature, pressure and humidity conditions under which the instrument was designed to operate. The DUT output values are compared to those obtained from a reference instrument (REF) measuring the sample physical parameter that the DUT is measuring. An accurate comparison of air flow rates or air volumes requires that the comparison of the DUT and REF values be made under the same temperature and pressure conditions. It is absolutely necessary that the REF be more accurate than the DUT; otherwise, it can not be considered a reference instrument. The REF should be at least twice as accurate and, if possible, it should be four times as accurate as the DUT. Upon confirmation that the DUT meets the manufacturer's accuracy criteria, the technician must place a calibration sticker or label indicating the date of calibration, the expiration date of the calibration and an authorized signature. If it is a limited-use instrument, the label should state the limited-use operating range. The serial number and model number of the instrument should also be shown on the calibration sticker. A specific calibration file for each instrument by serial number should be kept in the calibration laboratory file records. Instruments that display gas flow or gas volume values corrected to a reference temperature and pressure are very desirable. The ideal situation is when both the DUT and the REF output flow rate or volume values are at the same conditions of T and P. The calibration-verification is, then, a simple process. The credibility of an air

  17. Precision calibration of calorimeter electronics in the D0 liquid argon/uranium particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.L.

    1991-12-01

    The ability to cross calibrate thousands of channels of detector electronics is of prime importance. This paper will describe the system used to deliver and distribute a 300 nanosecond pulse across 50,000 channels of electronics with better than 0.25% difference between channels from a location more than 200 feet away. The system is used for both cross calibration and functionality checking, (i.e., missing channels). Design of a fixed width pulse generator of high stability is presented as a key ingredient in the system's overall performance. In addition, the design of a controlled impedance distribution system is discussed. 2 refs.

  18. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    Science.gov (United States)

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  20. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  1. Vessel calibration for accurate material accountancy at RRP

    International Nuclear Information System (INIS)

    Yanagisawa, Yuu; Ono, Sawako; Iwamoto, Tomonori

    2004-01-01

    RRP has a 800t·Upr capacity a year to re-process, where would be handled a large amount of nuclear materials as solution. A large scale plant like RRP will require accurate materials accountancy system, so that the vessel calibration with high-precision is very important as initial vessel calibration before operation. In order to obtain the calibration curve, it is needed well-known each the increment volume related with liquid height. Then we performed at least 2 or 3 times run with water for vessel calibration and careful evaluation for the calibration data should be needed. We performed vessel calibration overall 210 vessels, and the calibration of 81 vessels including IAT and OAT were held under presence of JSGO and IAEA inspectors taking into account importance on the material accountancy. This paper describes outline of the initial vessel calibration and calibration results based on back pressure measurement with dip tubes. (author)

  2. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  3. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  4. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  5. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    International Nuclear Information System (INIS)

    Ribière, M.; D'Almeida, T.; Gaufridy de Dortan, F. de; Maulois, M.; Delbos, C.; Garrigues, A.; Cessenat, O.; Azaïs, B.

    2016-01-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 10"1"0" cm"−"3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  6. General theory for thermal pulses of finite amplitude in nuclear shell-burnings

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y

    1978-09-01

    Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.

  7. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    Science.gov (United States)

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 μN with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively.

  8. The sensitivity calibration of the ultra-fast quench plastic scintillation detector for D-T neutrons

    International Nuclear Information System (INIS)

    Tang Changhuan; Yan Meiqiong; Xie Chaomei

    1998-01-01

    The authors introduce some characteristics of ultra-fast quench plastic scintillation detectors. When the detectors are composed of different scintillators, light guides and microchannel plate photomultiplier tube (MCP-PMT), their sensitivities to D-T neutrons are calibrated by a pulse neutron tube with a neutron pulse width about 10 ns

  9. An experimental investigation on the pressure characteristics of high speed self-resonating pulsed waterjets influenced by feeding pipe diameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Kang, Dong; Ding, Xiao Long; Wang, Xiao Huan; Fang, Zhen Long [School of Power and Mechanical Engineering, Wuhan University, Hubei Province (China)

    2016-11-15

    The destructive power of a continuous waterjet issuing from a nozzle can be greatly enhanced by generating self-resonance in the nozzle assembly to produce a Self-resonating pulsed waterjet (SRPW). To further improve the performance of SRPW, effects of feeding pipe diameter on the pressure characteristics were experimentally investigated by measuring and analyzing the axial pressure oscillation peaks and amplitudes. Four organ-pipe nozzles of different chamber lengths and three feeding pipes of different diameters were employed. Results show that feeding pipe diameter cannot change the feature of SRPW of having an optimum standoff distance, but it slightly changes the oscillating frequency of the jet. It is also found that feeding pipe diameter significantly affects the magnitudes of pressure oscillation peak and amplitude, largely depending on the pump pressure and standoff distance. The enhancement or attenuation of the pressure oscillation peak and amplitude can be differently affected by the same feeding pipe diameter.

  10. Comparison of Electrostatic Fins with Piezoelectric Impact Hammer Techniques to Extend Impulse Calibration Range of a Torsional Thrust Stand (Preprint)

    Science.gov (United States)

    2011-03-23

    prac- tical max impulse to 1mNs. The newly developed Piezo - electric Impact Hammer (PIH) calibration system over- comes geometric limits of ESC...the fins to behave as part of an LRC circuit which results in voltage oscillations. By adding a resistor in series between the pulse generator and...series resistor as well as the effects of no loading on the pulse generator. III. PIEZOELECTRIC IMPACT HAMMER SYSTEM The second calibration method tested

  11. A simple optical spectral calibration technique for pulsed THz sources

    NARCIS (Netherlands)

    Wijnen, F.J.P.; G. Berden,; Jongma, R.T.

    2010-01-01

    We have quantified the sensitivity of a simple method to measurethe frequency spectrum of pulsed terahertz (THz) radiation. The THzpulses are upconverted to the optical regime by sideband generation in a zinctelluride (ZnTe) crystal using a continuous wave (cw) narrow-bandwidthnear-infrared laser. A

  12. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.

    Science.gov (United States)

    Stens, Jurre; Oeben, Jeroen; Van Dusseldorp, Ab A; Boer, Christa

    2016-10-01

    Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland-Altman analysis of SVV and PPV showed a bias of -0.3 ± 3.0 % with limits of agreement ranging from -5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.

  13. Calibration of new measuring systems to detect emissions of radioactive noble gases

    International Nuclear Information System (INIS)

    Winkelmann, I.; Kreiner, H.J.

    1977-12-01

    This report describes the calibration of different systems for the integral measurement of radioactive noble gases and the calibration of a measuring chamber for the detection of individual nuclides of radioactive noble gases in the gaseous effluent of nuclear power plants. For these measuring chambers the calibration factors for Kr-85 and Xe-133 are given as well as the detection limits to be obtained with these measuring systems for several radioactive noble gases present in the gaseous effluent at the stack of nuclear power plants. Calibration factors for Kr-85 and Xe-133 and the detection limits of this measuring method for the detections of individual nuclides of radioactive noble gases in air samples are defined taken wirh a high pressure compressor in pressure flasks an measured on a Ge(Li)-semiconductor spectrometer (pressure flask measuring method). A measuring equipment is described and calibrated which allows simultaneous measurement of activity concentration of radioactive noble gases and radioactive aerosols with a sensitivity of 2 x 10 -7 Ci/m 3 for radioactive gases and 1 x 10 -9 Ci/m 3 for radioactive particulates at a background radiation of 1 R/h. This paper is an additional report to our STH-Bericht 3/76, 'Calibration of measuring equipment for monitoring of gaseous effluents from nuclear power plants', which specifies a procedure for the calibration of measuring chambers for monitoring of gaseous radioactive effluents from nuclear power plants /1/. The calibration system used here makes it possible to simultaneously calibrate several noble gas measuring devices. (orig.) [de

  14. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  15. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  16. Experiences in troubleshooting of neutron rem monitor electronics and its subsequent calibration

    International Nuclear Information System (INIS)

    Maithani, Atul; Dash, Amit Kumar; Vijayasekaran, P.; Mathews, Geo; Ajoy, K.C.; Dhanasekaran, A.

    2014-01-01

    This paper deals with the troubleshooting of the signal processing and counting electronics of two no's of Neutron Rem monitors and its subsequent calibration. Electronics servicing with respect to detection of fault in the circuit board, replacement of faulty ICs, circuits (Analog and Digital) tracing and installation of new rechargeable battery pack was done. Electronic calibration using Test pulse generator was carried out for dose rate measurements, amplitude measurements and discriminator level setting. Serial communication settings were checked with both HyperTerminal and software for the monitors. Neutron Source calibration was also carried out for both the monitors. (author)

  17. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    Science.gov (United States)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  18. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    Science.gov (United States)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  19. 40 CFR 90.424 - Dilute sampling procedures-CVS calibration.

    Science.gov (United States)

    2010-07-01

    ... calibration. 90.424 Section 90.424 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... “true” value) for the CVS calibration. (Note: In no case should an upstream screen or other restriction... Parameter Symbol Units Sensor-readout tolerances Barometric pressure (corrected) PB kPa ±.340 kPa. Ambient...

  20. Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Directory of Open Access Journals (Sweden)

    Amann Matthias

    2007-11-01

    Full Text Available Abstract Background Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (COPAC measurement by the pulmonary artery catheter (PAC. However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (COAP device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU using COPAC as the method of reference. Methods We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years, who required both arterial and pulmonary artery pressure monitoring. COPAC measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while COAP values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman. Results A total of 164 coupled measurements were obtained. Absolute values of COPAC ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min. The bias and limits of agreement between COPAC and COAP for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between COPAC and COAP was 49.3%. The bias between percentage changes in COPAC (ΔCOPAC and percentage changes in COAP (ΔCOAP for consecutive measurements was -0.70% ± 32.28%. COPAC and COAP showed a Pearson correlation coefficient of 0.58 (p PAC and ΔCOAP was 0.46 (p Conclusion Although the COAP algorithm shows a minimal bias with COPAC over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore, the used algorithm (V 1.03 failed to

  1. Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Science.gov (United States)

    Prasser, Christopher; Bele, Sylvia; Keyl, Cornelius; Schweiger, Stefan; Trabold, Benedikt; Amann, Matthias; Welnhofer, Julia; Wiesenack, Christoph

    2007-01-01

    Background Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (COPAC) measurement by the pulmonary artery catheter (PAC). However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (COAP) device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA) only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU) using COPAC as the method of reference. Methods We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years), who required both arterial and pulmonary artery pressure monitoring. COPAC measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while COAP values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman. Results A total of 164 coupled measurements were obtained. Absolute values of COPAC ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min). The bias and limits of agreement between COPAC and COAP for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between COPAC and COAP was 49.3%. The bias between percentage changes in COPAC (ΔCOPAC) and percentage changes in COAP (ΔCOAP) for consecutive measurements was -0.70% ± 32.28%. COPAC and COAP showed a Pearson correlation coefficient of 0.58 (p < 0.01), while the correlation coefficient between ΔCOPAC and ΔCOAP was 0.46 (p < 0.01). Conclusion Although the COAP algorithm shows a minimal bias with COPAC over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore

  2. Calibration of new I and C at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, Martin; Jurickova, Monika

    2011-01-01

    The paper describes a calibration of the new instrumentation and control (I and C) at the VR-1 training reactor in Prague. The I and C uses uncompensated fission chambers for the power measurement that operate in a pulse or a DC current and a Campbell regime, according to the reactor power. The pulse regime uses discrimination for the avoidance of gamma and noise influence of the measurement. The DC current regime employs a logarithmic amplifier to cover the whole reactor DC current power range with only one electronic circuit. The system computer calculates the real power from the logarithmic data. The Campbell regime is based on evaluation of the root mean square (RMS) value of the neutron noise. The calculated power from Campbell range is based on the square value of the RMS neutron noise data. All data for the power calculation are stored in computer flash memories. To set proper data there, it was necessary to carry out the calibration of the I and C. At first, the proper discrimination value was found while examining the spectrum of the neutron signal from the chamber. The constants for the DC current and Campbell calculations were determined from an independent reactor power measurement. The independent power measuring system that was used for the calibration was accomplished by a compensated current chamber with an electrometer. The calculated calibration constants were stored in the computer flash memories, and the calibrated system was again successfully compared with the independent power measuring system. Finally, proper gamma discrimination of the Campbell system was carefully checked.

  3. A study of new pulse auscultation system.

    Science.gov (United States)

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  4. Linear pulse amplifier

    International Nuclear Information System (INIS)

    Tjutju, R.L.

    1977-01-01

    Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)

  5. The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nyenge, R.L. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Physics Department, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The aim of this study was to investigate the influence of substrate temperature and argon deposition pressure on the structure, morphology and photoluminescence emission (PL) properties of pulsed laser deposited thin films of CaS:Eu{sup 2+}. The PL intensity improved significantly upon reaching substrate temperature of 650 °C. The (200) peak gradually became the preferred orientation. The increase in PL intensity as well as surface roughness is attributed to improved crystallinity and higher growth rates, respectively. The best PL intensity as a function of deposition pressure was obtained at an argon pressure of 80 mTorr. The initial increase and eventual drop in PL intensity as deposition pressure increases is ascribed to the changes in growth rates.

  6. Construction of calibration curve for accountancy tank

    International Nuclear Information System (INIS)

    Kato, Takayuki; Goto, Yoshiki; Nidaira, Kazuo

    2009-01-01

    Tanks are equipped in a reprocessing plant for accounting solution of nuclear material. The careful measurement of volume in tanks is very important to implement rigorous accounting of nuclear material. The calibration curve relating the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes. Several calibration curves are usually employed, but it's not explicitly decided how many segment are used, where to select segment, or what should be the degree of polynomial curve. These parameters, i.e., segment and degree of polynomial curve are mutually interrelated to give the better performance of calibration curve. Here we present the construction technique of giving optimum calibration curves and their characteristics. (author)

  7. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  8. CryoSat-2: Post launch performance of SIRAL-2 and its calibration/validation

    Science.gov (United States)

    Cullen, Robert; Francis, Richard; Davidson, Malcolm; Wingham, Duncan

    2010-05-01

    1. INTRODUCTION The main payload of CryoSat-2 [1], SIRAL (Synthetic interferometric radar altimeter), is a Ku band pulse-width limited radar altimeter which transmits pulses at a high pulse repetition frequency thus making received echoes phase coherent and suitable for azimuth processing [2]. The azimuth processing in conjunction with correction for slant range improves along track resolution to about 250 meters which is a significant improvement over traditional pulse-width limited systems such as Envisat RA-2, [3]. CryoSat-2 will be launched on 25th February 2010 and this paper describes the pre and post launch measures of CryoSat/SIRAL performance and the status of mission validation planning. 2. SIRAL PERFORMANCE: INTERNAL AND EXTERNAL CALIBRATION Phase coherent pulse-width limited radar altimeters such as SIRAL-2 pose a new challenge when considering a strategy for calibration. Along with the need to generate the well understood corrections for transfer function amplitude with respect to frequency, gain and instrument path delay there is also a need to provide corrections for transfer function phase with respect to frequency and AGC setting, phase variation across bursts of pulses. Furthermore, since some components of these radars are temperature sensitive one needs to be careful when the deciding how often calibrations are performed whilst not impacting mission performance. Several internal calibration ground processors have been developed to model imperfections within the CryoSat-2 radar altimeter (SIRAL-2) hardware and reduce their effect from the science data stream via the use of calibration correction auxiliary products within the ground segment. We present the methods and results used to model and remove imperfections and describe the baseline for usage of SIRAL-2 calibration modes during the commissioning phase and the operational exploitation phases of the mission. Additionally we present early results derived from external calibration of SIRAL via

  9. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  10. Impact of laser pulse duration on the reduction of intraocular pressure during selective laser trabeculoplasty.

    Science.gov (United States)

    Stunf Pukl, Spela; Drnovšek-Olup, Brigita

    2018-02-01

    To evaluate the efficacy of selective laser trabeculoplasty (SLT) to lower intraocular pressure (IOP) in patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or ocular hypertension (OHT), when performed with laser pulse duration of 1 ns compared with standard 3-5 ns. Bilateral SLT with a 532 nm Q-switched neodymium-doped yttrium aluminium garnet laser was conducted in 30 patients (60 eyes) with POAG (n = 5), NTG (n = 2) or OHT (n = 23). Pulse duration was 1 ns in the right eye (30 eyes; cases) and 3-5 ns in all left eyes (controls). Main outcome measures were IOP at 1 h, 1 day, 8 weeks and 6 months, and the rate of adverse ocular tissue reactions in all eyes. Mean 1 ns and 3-5 ns SLT IOPs were 24.1 and 24.3 mmHg, respectively, at baseline. No statistically significant difference in mean 1 ns and 3-5 ns SLT IOP was observed at 1 h (P = 0.761), 1 day (P = 0.758), 8 weeks (P = 0.352) and 6 months postoperatively (P = 0.879). No significant difference in postoperative anterior chamber inflammation was observed between the eyes (P = 0.529). Treatment with both laser pulse durations resulted in minor ultrastructural changes in the drainage angle. SLT performed with a 1 ns laser pulse duration does not appear to be inferior to SLT performed with the standard 3-5 ns duration at lowering IOP in treatment-naïve patients with POAG, NTG or OHT.

  11. Inter-arm Blood Pressure Difference and its Relationship with Retinal Microvascular Calibres in Young Individuals: The African-PREDICT Study.

    Science.gov (United States)

    Strauss, Michél; Smith, Wayne; Schutte, Aletta E

    2016-08-01

    Bilateral systolic blood pressure (SBP) differences > 10mmHg is a common finding in clinical practice. Such BP differences in older individuals are associated with peripheral vascular disease, linked to microvascular dysfunction. Investigating retinal vessel calibres could provide insight into systemic microvascular function and may predict cardiovascular outcomes. Therefore we investigated the link between inter-arm systolic blood pressure differences (IASBPD) and the retinal microvasculature to determine the usefulness of IASBPD as an early marker of microvascular changes. In this cross-sectional study, we used data from 403 apparently healthy participants (20-30 years) (42% men; 49% black) taking part in the African-PREDICT study. Participants underwent retinal vessel imaging, anthropometric measurements and blood sampling. Brachial BP was measured sequentially in both arms to determine the mean IASBPD. Participants were stratified into two groups with an IASBPD difference in characteristics being a higher right arm SBP in the latter group (p=0.005). We found no association between IASBPD and retinal vessel calibres in any group. Less than 2% of the variance in IASBPD was explained by potential risk factors, with only SBP associating independently with IASBPD (β=115; p=0.039). In a young population an increased IASBPD is not related to retinal vessel diameters suggesting that it does not reflect early microvascular alterations. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  12. Concerning the generation of very high pressures for EOS studies with ultra-high power laser pulses

    International Nuclear Information System (INIS)

    Wood, L.L.; Keeler, R.N.; Nuckolls, J.H.

    1977-07-01

    The use of basic physical and geometric principles, coupled with current laser technology, seems likely to extend experimental hyperbaric physics investigations from the megabar region into the portions of parameter space in which the ideal (degenerate) Fermi gas approximation is valid for even the highest Z materials. Implosions and speed-multiplying rectilinear stacks of flat plates seem particularly apt techniques for the near-term, transient attainment of pressure of 10 9 atmospheres in the laboratory, and laser-energized pulsed x-ray ''cameras'' appear suitable for analyzing the basic properties of matter under such conditions

  13. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  14. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  15. An integrated calibration system for liquid argon calorimetry

    CERN Document Server

    Marschalkowski, E; Mense, T; Nürnberger, H A; Schäfer, U

    1999-01-01

    A novel technical solution for an integrated version of the pulse generator of a calibration system for liquid argon calorimeters is presented. It consists of a differential amplifier with automatic offset compensation, a current mirror and a switching logic. These components are integrated on an ASIC chip in CMOS technology. The technical realisation as well as results on the performance are presented. (author)

  16. A method for calibrating coil constants by using the free induction decay of noble gases

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-07-01

    Full Text Available We propose a precise method to calibrate the coil constants of spin-precession gyroscopes and optical atomic magnetometers. This method is based on measuring the initial amplitude of Free Induction Decay (FID of noble gases, from which the π/2 pulse duration can be calculated, since it is inversely proportional to the amplitude of the π/2 pulse. Therefore, the coil constants can be calibrated by measuring the π/2 pulse duration. Compared with the method based on the Larmor precession frequency of atoms, our method can avoid the effect of the pump and probe powers. We experimentally validated the method in a Nuclear Magnetic Resonance Gyroscope (NMRG, and the experimental results show that the coil constants are 436.63±0.04 nT/mA and 428.94±0.02 nT/mA in the x and y directions, respectively.

  17. F-16D Pacer Calibration Techniques (SPEED PACER)

    Science.gov (United States)

    2012-07-01

    from the calibration FTTs and therefore, would add flight hours to accomplish. Other variables used in creation of the total costs are as follows: F-16... ZULU Time --- ∆ static source error correction n/d Δ Psic static pressure instrument error correction inHg Δ Ptic total pressure

  18. Effect of upper body position on arterial stiffness: influence of hydrostatic pressure and autonomic function.

    Science.gov (United States)

    Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo

    2017-12-01

    To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.

  19. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  20. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  1. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.

    Science.gov (United States)

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-14

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations' vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.

  2. Measuring systolic arterial blood pressure. Possible errors from extension tubes or disposable transducer domes.

    Science.gov (United States)

    Rothe, C F; Kim, K C

    1980-11-01

    The purpose of this study was to evaluate the magnitude of possible error in the measurement of systolic blood pressure if disposable, built-in diaphragm, transducer domes or long extension tubes between the patient and pressure transducer are used. Sinusoidal or arterial pressure patterns were generated with specially designed equipment. With a long extension tube or trapped air bubbles, the resonant frequency of the catheter system was reduced so that the arterial pulse was amplified as it acted on the transducer and, thus, gave an erroneously high systolic pressure measurement. The authors found this error to be as much as 20 mm Hg. Trapped air bubbles, not stopcocks or connections, per se, lead to poor fidelity. The utility of a continuous catheter flush system (Sorenson, Intraflow) to estimate the resonant frequency and degree of damping of a catheter-transducer system is described, as are possibly erroneous conclusions. Given a rough estimate of the resonant frequency of a catheter-transducer system and the magnitude of overshoot in response to a pulse, the authors present a table to predict the magnitude of probable error. These studies confirm the variability and unreliability of static calibration that may occur using some safety diaphragm domes and show that the system frequency response is decreased if air bubbles are trapped between the diaphragms. The authors conclude that regular procedures should be established to evaluate the accuracy of the pressure measuring systems in use, the transducer should be placed as close to the patient as possible, the air bubbles should be assiduously eliminated from the system.

  3. A primary standard for low-g shock calibration by laser interferometry

    Science.gov (United States)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-07-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He-Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s-2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1.

  4. A primary standard for low-g shock calibration by laser interferometry

    International Nuclear Information System (INIS)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-01-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He–Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s −2  and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1. (paper)

  5. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  6. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-01-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  7. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  8. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  9. Analysis of the dynamic response of a double rupture disc assembly to simulated sodium-water reaction pressure pulses

    International Nuclear Information System (INIS)

    Leonard, J.R.

    1980-03-01

    A series of double rupture disc experiments were conducted in 1979 to evaluate the dynamic response characteristics of this pressure relief apparatus. The tests were performed in a facility with water simulating sodium and rising pressure pulses representative of the pressure increase resulting from a water/steam leak from a steam generator into sodium in the intermediate heat transport system of a breeder reactor power plant. Maximum source pressures ranged in magnitude from 50 psi to 800 psi. Dynamic response characteristics of each of the two rupture discs were similar to those observed in larger scale sodium-water experiments conducted in the Series I and Series II Large Leak Test Program at the Energy Technology Engineering Center. The SRI double rupture disc dynamic behavior was found to be consistent and amendable to modelling in the TRANSWRAP II computer code. A series of correlations which represent rupture disc buckling parameters were developed for use in the TRANSWRAP II code. The semi-empirical modeling of the rupture discs in the TRANSWRAP II code showed very good agreement with the experimental results

  10. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  11. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    Science.gov (United States)

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  12. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    Science.gov (United States)

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  13. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  14. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  15. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  16. A Fast Calibration System for SiPM Based Scintillator HCAL Detector

    CERN Document Server

    Polak, I

    2015-01-01

    with mid-range a fixed-intensity light pulse. The full SiPM response function is cross-checked by varying the light intensity from zero to the saturation level. In calibration systems we developed, we concentrate especially on the aspect a high dynamic range of pre...

  17. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial

  18. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  19. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  20. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  1. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  2. Pulsed-DC selfsputtering of copper

    Science.gov (United States)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  3. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K, E-mail: duten@lspm.cnrs.fr [LSPM-CNRS UPR 3407, Universite Paris Nord, 90 Avenue J.B. Clement, 93430 Villetaneuse (France)

    2011-10-19

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  4. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  5. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K

    2011-01-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  6. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  7. Skew redundant MEMS IMU calibration using a Kalman filter

    International Nuclear Information System (INIS)

    Jafari, M; Sahebjameyan, M; Moshiri, B; Najafabadi, T A

    2015-01-01

    In this paper, a novel calibration procedure for skew redundant inertial measurement units (SRIMUs) based on micro-electro mechanical systems (MEMS) is proposed. A general model of the SRIMU measurements is derived which contains the effects of bias, scale factor error and misalignments. For more accuracy, the effect of lever arms of the accelerometers to the center of the table are modeled and compensated in the calibration procedure. Two separate Kalman filters (KFs) are proposed to perform the estimation of error parameters for gyroscopes and accelerometers. The predictive error minimization (PEM) stochastic modeling method is used to simultaneously model the effect of bias instability and random walk noise on the calibration Kalman filters to diminish the biased estimations. The proposed procedure is simulated numerically and has expected experimental results. The calibration maneuvers are applied using a two-axis angle turntable in a way that the persistency of excitation (PE) condition for parameter estimation is met. For this purpose, a trapezoidal calibration profile is utilized to excite different deterministic error parameters of the accelerometers and a pulse profile is used for the gyroscopes. Furthermore, to evaluate the performance of the proposed KF calibration method, a conventional least squares (LS) calibration procedure is derived for the SRIMUs and the simulation and experimental results compare the functionality of the two proposed methods with each other. (paper)

  8. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  9. A Simple Accelerometer Calibrator

    International Nuclear Information System (INIS)

    Salam, R A; Islamy, M R F; Khairurrijal; Munir, M M; Latief, H; Irsyam, M

    2016-01-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. (paper)

  10. Measurement of intraocular pressure using the NT-4000: a new non-contact tonometer equipped with pulse synchronous measurement function.

    Science.gov (United States)

    Yaoeda, Kiyoshi; Shirakashi, Motohiro; Fukushima, Atsushi; Funaki, Shigeo; Funaki, Haruko; Ofuchi, Nobutaka; Nakatsue, Tomoko; Abe, Haruki

    2005-06-01

    NT-4000 (Nidek Co. Ltd., Gamagori, Japan) is a new non-contact tonometer (NCT) equipped with pulse synchronous measurement function that can measure intraocular pressure (IOP) synchronized with the ocular pulse. The purpose of this study was to evaluate the usefulness of NT-4000 in normal subjects and in patients with glaucoma and ocular hypertension. This study included 175 eyes of 175 subjects. Firstly, the IOP was measured using NT-4000 without the pulse synchronous measurement function (NTn). Secondly, the IOP at peak, middle, and trough phases of the pulse signal were measured using NT-4000 with the pulse synchronous measurement function (NTp, NTm, NTt, respectively). Additionally, the IOP was measured with Goldmann applanation tonometer (GT). The coefficient of variation (CV) of three readings in the NCT measurements was used to evaluate the intra-session reproducibility. Statistical comparisons were performed using Wilcoxon signed rank test and one-way analysis of variance with Scheffe's test. Linear regression analysis was used to calculate correlation coefficients. P values less than 0.05 were accepted as statistically significant. The CV of NTn, NTp, NTm, and NTt were 6.4%, 5.5%, 4.9%, and 5.2%, respectively. The CV of NTp, NTm, and NTt were significantly smaller than that of NTn (P = 0.007, P < 0.001, P < 0.001, respectively). NTp was significantly higher than NTt (P = 0.038). GT was significantly correlated with NTn, NTp, NTm, and NTt (r = 0.898, P < 0.001; r = 0.912, P < 0.001; r = 0.908, P < 0.001; r = 0.900, P < 0.001, respectively). NT-4000 can detect the fluctuation of IOP associated with the ocular pulse.

  11. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    International Nuclear Information System (INIS)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der; Palomares, J M

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n e , is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T e , is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n e values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) x 10 19 m -3 , whereas the n e value (2 ± 0.5) x 10 19 m -3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (∼10 20 m -3 ). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T e values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  12. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  13. [The source and factors that influence tracheal pulse oximetry signal].

    Science.gov (United States)

    Fan, Xiao-hua; Wei, Wei; Wang, Jian; Mu, Ling; Wang, Li

    2010-03-01

    To investigate the source and factors that influence tracheal pulse oximetry signal. The adult mongrel dog was intubated after anesthesia. The tracheal tube was modified by attaching a disposable pediatric pulse oximeter to the cuff. The chest of the dog was cut open and a red light from the tracheal oximeter was aligned with the deeper artery. The changes in tracheal pulse oxygen saturation (SptO2) signal were observed after the deeper artery was blocked temporarily. The photoplethysmography (PPG) and readings were recorded at different intracuff pressures. The influence of mechanical ventilation on the signal was also tested and compared with pulse oxygen saturation (SpO2). The SptO2 signal disappeared after deeper artery was blocked. The SptO2 signal changed with different intracuff pressures (P signal appeared under 20-60 cm H2O of intracuff pressure than under 0-10 cm H2O of intracuff pressure(P signal under a condition with mechanical ventilation differed from that without mechanical ventilation (P signal is primarily derived from deeper arteries around the trachea, not from the tracheal wall. Both intracuff pressures and mechanical ventilation can influence SptO2 signal. The SptO2 signal under 20-60 cm H2O of intracuff pressure is stronger than that under 0-10 em H2O of intracuff pressure. Mechanical ventilation mainly changes PPG.

  14. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure

  15. Pulse height non-linearity in LaBr3:Ce crystal for gamma ray spectrometry and imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Bennati, P.; Ridolfi, S.; Scafe, R.; Orsolini Cencelli, V.; De Notaristefani, F.; Fabbri, A.; Navarria, F.L.; Lanconelli, N.; Moschini, G.; Boccaccio, P.

    2011-01-01

    In this paper the response in term of pulse height linearity of two Hamamatsu photomultipliers is investigated, when coupled to a LaBr 3 :Ce scintillation crystal. The two photodetectors have high quantum efficiency and in particular 30% for R6231-01 and 42% for R7600-200 tube. The substantial difference is in the dynode structure, linear focused and metal channel for R6231 and R7600 respectively. In this work in order to verify the non-linearity effects on the pulse height distribution, due principally to the high and fast light production of LaBr 3 :Ce scintillator, we propose a 'peak by peak' procedure to calibrate the pulse height distribution. Utilizing a specific fragmentation of the calibration curve in subsets, the calculated energy values are very similar for both PMTs. This result confirmed the potentiality of the procedure to highlight the non-linearity effects on pulse height distribution.

  16. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Lee

    2017-01-01

    Full Text Available Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  17. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1994-01-01

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n) 0 . The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density N st.p , defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as N st.p ∝ p 21/4 τ -3/4 . This pressure scaling disagrees with the p 3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density n e of free electrons becomes larger than the density N st.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  18. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  19. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  20. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    idea of pressure gain combustion (i.e., combustion with gain in total pressure across the combustor as opposed to pressure-loss combustion experienced in constant pressure devices like conventional gas turbine combustors) is gaining popularity for propulsion devices [2]. Thus pulse combustors, which provide a practical ...

  1. Association of Pulse Pressure with Serum TNF-α and Neutrophil Count in the Elderly

    Directory of Open Access Journals (Sweden)

    Eriko Yamada

    2014-01-01

    Full Text Available Aims. Elevated pulse pressure (PP has been reported to be a risk factor for type 2 diabetes in elderly patients with hypertension. Methods. Cross-sectional relationships of PP with known risk factors for type 2 diabetes and inflammatory markers were examined in 150 elderly community-dwelling women, 79 women (52.7% of whom had hypertension. Results. Systolic blood pressure (standardized β, 0.775, log tumor necrosis factor-α (TNF-α, standardized β, 0.110, age (standardized β, 0.140, and neutrophil count (standardized β, 0.114 emerged as determinants of PP independent of high-sensitivity C-reactive protein, interleukin-6, monocyte count, plasminogen activator inhibitor-1, homeostasis model assessment of insulin resistance, HDL-cholesterol, and adiponectin (R2 = 0.772. Conclusions. The present studies have demonstrated an independent association of higher PP with higher TNF-α, a marker of insulin resistance, and neutrophil count in community-living elderly women and suggest that insulin resistance and chronic low-grade inflammation may in part be responsible for the association between high PP and incident type 2 diabetes found in elderly patients with hypertension.

  2. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  3. Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.

    Science.gov (United States)

    Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M

    2018-01-17

    In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.

  4. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Science.gov (United States)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  5. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  6. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    Science.gov (United States)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  7. Statistical Validation of Calibrated Wind Data Collected From NOAA's Hurricane Hunter Aircraft

    Science.gov (United States)

    Graham, K.; Sears, I. T.; Holmes, M.; Henning, R. G.; Damiano, A. B.; Parrish, J. R.; Flaherty, P. T.

    2015-12-01

    Obtaining accurate in situ meteorological measurements from the NOAA G-IV Hurricane Hunter Aircraft currently requires annual wind calibration flights. This project attempts to demonstrate whether an alternate method to wind calibration flights can be implemented using data collected from many previous hurricane, winter storm, and surveying flights. Wind derivations require using airplane attack and slip angles, airplane pitch, pressure differentials, dynamic pressures, ground speeds, true air speeds, and several other variables measured by instruments on the aircraft. Through the use of linear regression models, future wind measurements may be fit to past statistical models. This method of wind calibration could replace the need for annual wind calibration flights, decreasing NOAA expenses and providing more accurate data. This would help to ensure all data users have reliable data and ultimately contribute to NOAA's goal of building of a Weather Ready Nation.

  8. A piezo-bar pressure probe

    Science.gov (United States)

    Friend, W. H.; Murphy, C. L.; Shanfield, I.

    1967-01-01

    Piezo-bar pressure type probe measures the impact velocity or pressure of a moving debris cloud. It measures pressures up to 200,000 psi and peak pressures may be recorded with a total pulse duration between 5 and 65 musec.

  9. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Hiltebrand, Luzius B; Fukui, Kimiko; Cohen, Delphine; Hager, Helmut; Kurz, Andrea M

    2006-10-01

    We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.

  10. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  11. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement?

    Science.gov (United States)

    Zheng, Dingchang; Amoore, John N; Mieke, Stephan; Murray, Alan

    2011-10-01

    Cuff pressure deflation rate influences blood pressure (BP) measurement. However, there is little quantitative clinical evidence on its effect. Oscillometric pulses recorded from 75 subjects at the recommended deflation rate of 2-3 mmHg per second were analyzed. Some pulses were removed to realize six faster rates (2-7 times faster than the original). Systolic, diastolic, and mean arterial blood pressures (SBP, DBP, MAP) were determined from the original and six reconstructed oscillometric waveforms. Manual measurement was based on the appearance of oscillometric pulse peaks, and automatic measurement on two model envelopes (linear and polynomial) fitted to the sequence of oscillometric pulse amplitudes. The effects of deflation rate on BP determination and within-subject BP variability were analyzed. For SBP and DBP determined from the manual measurement, different deflation rates resulted in significant changes (both p deflation rate effect (all p > 0.3). Faster deflation increased the within-subject BP variability (all p deflation rate, and for the automatic model-based techniques, the deflation rate had little effect.

  12. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    International Nuclear Information System (INIS)

    Byrne, D.P.

    1986-01-01

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE 10 mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 μs, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations ≥ 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs

  13. Measurement of Aortic Pulse Wave Velocity With a Connected Bathroom Scale.

    Science.gov (United States)

    Campo, David; Khettab, Hakim; Yu, Roger; Genain, Nicolas; Edouard, Paul; Buard, Nadine; Boutouyrie, Pierre

    2017-09-01

    Measurement of arterial stiffness should be more available. Our aim was to show that aortic pulse wave velocity can be reliably measured with a bathroom scale combining the principles of ballistocardiography (BCG) and impedance plethysmography on a single foot. The calibration of the bathroom scale was conducted on a group of 106 individuals. The aortic pulse wave velocity was measured with the SphygmoCor in the supine position. Three consecutive measurements were then performed on the Withings scale in the standing position. This aorta-leg pulse transit time (alPTT) was then converted into a velocity with the additional input of the height of the person. Agreement between the SphygmoCor and the bathroom scale so calibrated is assessed on a separate group of 86 individuals, following the same protocol. The bias is 0.25 m·s-1 and the SE 1.39 m·s-1. This agreement with Sphygmocor is "acceptable" according to the ARTERY classification. The alPTT correlated well with cfPTT with (Spearman) R = 0.73 in pooled population (cal 0.79, val 0.66). The aorta-leg pulse wave velocity correlated with carotid-femoral pulse wave velocity with R = 0.76 (cal 0.80, val 0.70). Estimation of the aortic pulse wave velocity is feasible with a bathroom scale. Further investigations are needed to improve the repeatability of measurements and to test their accuracy in different populations and conditions. © The Author 2017. Published by Oxford University Press on behalf of American Journal of Hypertension.

  14. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  15. Circuit designs for measuring reactor period, peak power, and pulse fluence on TRIGA and other pulse reactor

    International Nuclear Information System (INIS)

    Meyer, R.D.; Thome, F.V.; Williams, R.L.

    1976-01-01

    Inexpensive circuits for use in evaluating reactor pulse prompt period, peak power, and pulse fluence (NVT) are presented. In addition to low cost, these circuits are easily assembled and calibrated and operate with a high degree of accuracy. The positive period measuring system has been used in evaluating reactivity additions as small as 5 cents (with an accuracy of ±0.1 cents) and as large as $4.50 (accuracy ±2 cents). Reactor peak power is measured digitally with a system accuracy of ±0.04% of a 10 Volt input (±4 mV). The NVT circuit measures over a 2-1/2 decade range, has 3 place resolution and an accuracy of better than 1%. (author)

  16. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  17. Calibrating Accelerometers Using an Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  18. Calibration-free sensor for pressure and H2O concentration in headspace of sterile vial using tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Cai, Tingdong; Gao, Guangzhen; Liu, Ying

    2013-11-10

    Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.

  19. Pancreas tumor interstitial pressure catheter measurement

    Science.gov (United States)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  20. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  1. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  2. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  3. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  4. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  5. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  6. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  7. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  8. Pulse testing in the presence of wellbore storage and skin effects

    Energy Technology Data Exchange (ETDEWEB)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  9. Does the pulse pressure in people of European, African and South Asian descent differ? A systematic review and meta-analysis of UK data

    NARCIS (Netherlands)

    Agyemang, C.; Bhopal, R.; Redekop, W. K.

    2007-01-01

    The aim of this study was to assess whether the pulse pressures (PPs) in people of African and South Asian descent differ from those of the European-origin White (henceforth, White) in the UK. A systematic literature review was carried out using MEDLINE 1966-2006 and EMBASE 1980-2006. The

  10. Eliminating the human element and the drudgery from control-rod calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, L; Wang, H -K [Univ. of California, Berkeley (United States)

    1974-07-01

    The Berkeley TRIGA Mark III Reactor has three distinct reflector arrangements, depending on the position of the core in the pool. The control rods must be calibrated in each position, making 12 rod calibrations required, in all. To eliminate the human element and the drudgery involved in this repetitious task, a computer-assisted semi-automatic method has been devised to perform the necessary period methods, and to produce the resultant rod-calibration curves. The method is based on the use of a signal from the linear-power-channel recorder to feed a voltage comparator which generates a pulse at a preselected voltage 'B' and also at '1.50V'. The 2 pulses are used to start and stop pulses for an electronic timer, which easily measures the time difference to 0.01 second. The comparator actually consists of two such pulse-pair generating circuits, so that 2 measurements of t{sub 50} can be obtained on each range of the linear-power channel. Before the comparator is used for a series of rod calibrations, the voltage discrimination levels are checked with a precision voltage source to verify that they are set at 3.50, 5.25, 6.00, and 9.00 volts. Corrections in the discrimination levels can be made by means of front-panel potentiometer adjustments. As voltage is gradually increased past each of the pre-set discrimination levels, a panel light comes on, indicating that a pulse has been formed. The comparator circuit also accepts a reset command from a push button held in the hand of the reactor operator, which command is then converted into an electrical reset signal for the electronic timer. The system provides non-prejudiced measurements for t{sub 50} as short as 5 seconds, with no concern about pen lag. The only manipulation of the data is to determine the best value of t{sub 50}, which is done by averaging those values which agree to within 0.1 second. The program ''RODCALN'' is used to calculate the rod worth remaining (in dollar units) versus control rod position

  11. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    /mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

  12. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  13. A self-calibrating optomechanical force sensor with femtonewton resolution

    International Nuclear Information System (INIS)

    Melcher, John; Stirling, Julian; Pratt, Jon R.; Shaw, Gordon A.; Cervantes, Felipe Guzmán

    2014-01-01

    We report the development of an ultrasensitive optomechanical sensor designed to improve the accuracy and precision of force measurements with atomic force microscopy. The sensors reach quality factors of 4.3 × 10 6 and force resolution on the femtonewton scale at room temperature. Self-calibration of the sensor is accomplished using radiation pressure to create a reference force. Self-calibration enables in situ calibration of the sensor in extreme environments, such as cryogenic ultra-high vacuum. The senor technology presents a viable route to force measurements at the atomic scale with uncertainties below the percent level

  14. A self-calibrating optomechanical force sensor with femtonewton resolution

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, John, E-mail: john.melcher@nist.gov; Stirling, Julian; Pratt, Jon R.; Shaw, Gordon A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Cervantes, Felipe Guzmán [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2014-12-08

    We report the development of an ultrasensitive optomechanical sensor designed to improve the accuracy and precision of force measurements with atomic force microscopy. The sensors reach quality factors of 4.3 × 10{sup 6} and force resolution on the femtonewton scale at room temperature. Self-calibration of the sensor is accomplished using radiation pressure to create a reference force. Self-calibration enables in situ calibration of the sensor in extreme environments, such as cryogenic ultra-high vacuum. The senor technology presents a viable route to force measurements at the atomic scale with uncertainties below the percent level.

  15. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  16. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... is not completely linear as a function of the ambient pressure....

  17. FTIR Calibration Methods and Issues

    Science.gov (United States)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  18. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  19. Reliability of blood pressure parameters for dry weight estimation in hemodialysis patients.

    Science.gov (United States)

    Susantitaphong, Paweena; Laowaloet, Suthanit; Tiranathanagul, Khajohn; Chulakadabba, Adhisabandh; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Tungsanga, Kriang; Eiam-Ong, Somchai

    2013-02-01

    Chronic volume overload resulting from interdialytic weight gain and inadequate fluid removal plays a significant role in poorly controlled high blood pressure. Although bioimpedance has been introduced as an accurate method for assessing hydration status, the instrument is not available in general hemodialysis (HEMO) centers. This study was conducted to explore the correlation between hydration status measured by bioimpedance and blood pressure parameters in chronic HEMO patients. Multifrequency bioimpedance analysis was used to determine pre- and post-dialysis hydration status in 32 stable HEMO patients. Extracellular water/total body water (ECW/TBW) determined by sum of segments from bioimpedance analysis was used as an index of hydration status. The mean age was 57.9 ± 16.4 years. The mean dry weight and body mass index were 57.7 ± 14.5 kg and 22.3 ± 4.7 kg/m(2), respectively. Pre-dialysis ECW/TBW was significantly correlated with only pulse pressure (r = 0.5, P = 0.003) whereas post-dialysis ECW/TBW had significant correlations with pulse pressure, systolic blood pressure, and diastolic blood pressure (r = 0.6, P = 0.001, r = 0.4, P = 0.04, r = -0.4, and P = 0.02, respectively). After dialysis, the mean values of ECW/TBW, systolic blood pressure, mean arterial pressure, and pulse pressure were significantly decreased. ECW/TBW was used to classify the patients into normohydration (≤ 0.4) and overhydration (>0.4) groups. Systolic blood pressure, mean arterial pressure, and pulse pressure significantly reduced after dialysis in the normohydration group but did not significantly change in the overhydration group. Pre-dialysis pulse pressure, post-dialysis pulse pressure, and post-dialysis systolic blood pressure in the overhydration group were significantly higher than normohydration group. Due to the simplicity and cost, blood pressure parameters, especially pulse pressure, might be a simple reference for clinicians to determine hydration status in HEMO

  20. 40 CFR 86.1319-90 - CVS calibration.

    Science.gov (United States)

    2010-07-01

    ....1319-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... “true” value) for the CVS calibration. (Note: In no case should an upstream screen or other restriction... Data Measurements Parameter Symbol Units Sensor-readout tolerances Barometric pressure (corrected) PB...

  1. A comparison between the pathophysiology of multiple sclerosis and normal pressure hydrocephalus: is pulse wave encephalopathy a component of MS?

    Science.gov (United States)

    Bateman, Grant A; Lechner-Scott, Jeannette; Lea, Rodney A

    2016-09-22

    It has been suggested there is a chronic neurodegenerative disorder, underlying the pathophysiology of multiple sclerosis (MS), which is distinct from the more obvious immune-mediated attack on the white matter. Limited data exists indicating there is an alteration in pulse wave propagation within the craniospinal cavity in MS, similar to the findings in normal pressure hydrocephalus (NPH). It is hypothesized MS may harbor pulse wave encephalopathy. The purpose of this study is to compare blood flow and pulse wave measurements in MS patients with a cohort of NPH patients and control subjects, to test this hypothesis. Twenty patients with MS underwent magnetic resonance (MR) flow quantification techniques. Mean blood flow and stroke volume were measured in the arterial inflow and venous out flow from the sagittal (SSS) and straight sinus (ST). The arteriovenous delay (AVD) was defined. The results were compared with both age-matched controls and NPH patients. In MS there was a 35 % reduction in arteriovenous delay and a 5 % reduction in the percentage of the arterial inflow returning via the sagittal sinus compared to age matched controls. There was an alteration in pulse wave propagation, with a 26 % increase in arterial stroke volume but 30 % reduction in SSS and ST stroke volume. The AVD and blood flow changes were in the same direction to those of NPH patients. There are blood flow and pulsation propagation changes in MS patients which are similar to those of NPH patients. The findings would be consistent with an underlying pulse wave encephalopathy component in MS.

  2. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  3. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  4. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    Science.gov (United States)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  5. Instrument calibration reduction through on-line monitoring in the USA. Annex IV

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2008-01-01

    Nuclear power plants are required to calibrate important instruments once every fuel cycle. This requirement dates back more than 30 years, when commercial nuclear power plants began to operate. Based on calibration data accumulated over this period, it has been determined that the calibration of some instruments, such as pressure transmitters, do not drift enough to warrant calibration as often as once every fuel cycle. This fact, combined with human resources limitations and reduced maintenance budgets, has provided the motivation for the nuclear industry to develop new technologies for identifying drifting instruments during plant operation. Implementing these technologies allows calibration efforts to be focused on the instruments that have drifted out of tolerance, as opposed to current practice, which calls for calibration verification of almost all instruments every fuel cycle. To date, an array of technologies, referred to collectively as 'on-line calibration monitoring', has been developed to meet this objective. These technologies are based on identifying outlier sensors using techniques that compare a particular sensor's output to a calculated estimate of the actual process the sensor is measuring. If on-line monitoring data are collected during plant startup and/or shutdown periods as well as normal operation, the on-line monitoring approach can help verify the calibration of instruments over their entire operating range. Although on-line calibration monitoring is applicable to most sensors and can cover an entire instrument channel, the main application of this approach in nuclear power plants is currently for pressure transmitters (including level and flow transmitters). (author)

  6. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  7. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  8. Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species

    Science.gov (United States)

    Webster, C. R.

    1982-01-01

    Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.

  9. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  10. Development and optimization of a device for diferencial pressure measurement

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1980-01-01

    The measurements of reduced values of diferencial pressure, are studied. Several situations are described where the diferencial pressure accurate measurement is necessary in routine works in the Thermohydraulic Laboratory, as well as, the major pressure measurement devices and their respective range are studied. The development of a device for diferencial pressure measurement followed by the design development of the calibration bench covering the foreseen range, start up tests realization, optimization, calibration, performance analysis and conclusions, is showed. (Author) [pt

  11. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure

    International Nuclear Information System (INIS)

    Zheng, Dingchang; Murray, Alan

    2011-01-01

    A new arterial distensibility measurement technique was assessed in 100 healthy normotensive subjects. Arterial transmural pressures on the whole right arm were reduced with a 50 cm long cuff inflated to 10, 20, 30 and 40 mmHg. The electrocardiogram, and finger and ear photoplethysmograms were recorded simultaneously. Arm pulse propagation time, pulse wave velocity (PWV) and arterial volume distensibility were determined. With a 40 mmHg reduction in transmural pressure, arm pulse propagation time increased from 61 to 83 ms, PWV decreased from 12 to 8 m s −1 and arterial distensibility increased from 0.102% to 0.232% per mmHg (all P < 0.0001). At all cuff pressures, arterial distensibility was significantly related to resting mean arterial pressure (MAP), diastolic blood pressure (DBP) and age, and for systolic blood pressure at 30 and 40 mmHg (all P < 0.05). At 40 mmHg cuff pressure, arterial distensibility fell by 54% for a MAP increase from 75 to 105 mmHg, 57% for a DBP increase from 60 to 90 mmHg and 47% for an age increase from 20 to 70 years. These changes were more than double than those without cuff pressure. Our technique showed that systemic volume distensibility of the peripheral arm artery reduced with age, with a greater effect at higher external and lower transmural pressures

  12. Local Intraarterial Thrombolysis: In Vitro Comparison Between Automatic and Manual Pulse-Spray Infusion

    International Nuclear Information System (INIS)

    Froelich, Jens J.; Freymann, Christina; Hoppe, Martin; Thiel, Thomas; Wagner, H. Joachim; Barth, Klemens H.; Klose, Klaus J.

    1996-01-01

    Purpose: Manual and automatic pulse-spray infusion techniques are compared in vitro to evaluate the efficacy of thrombolysis and the distribution of urokinase and saline solution within thrombus using a pulse-spray catheter. Methods: A pulse-spray catheter was introduced into a human thrombus within a stenotic flow model. Automatic and manual pulsed infusion of urokinase and automatic pulsed infusion of saline solution were compared. To quantify the efficacy of thrombolysis, pressure gradients were recorded proximal and distal to the thrombus and during the course of infusion. Distribution of infused urokinase was assessed radiographically. Results: The fastest and most homogeneous dissolution of the thrombus was achieved with automatic pulsed infusion of urokinase, shown by decreasing transthrombotic pressure gradients (p < 0.001, Wilcoxon, matched pairs). Manual pulsed infusion of urokinase or saline solution resulted in inhomogeneous thrombus dissolution and delayed thrombolysis. Conclusion: Application of automatic pulse-spray injectors seems beneficial for more effective and homogeneous intraarterial pulse-spray thrombolysis when compared with conventional manual pulsed technique

  13. An investigation of methods for free-field comparison calibration of measurement microphones

    DEFF Research Database (Denmark)

    Barrera-Figueroa, Salvador; Moreno Pescador, Guillermo; Jacobsen, Finn

    2010-01-01

    Free-field comparison calibration of measurement microphones requires that a calibrated reference microphone and a test microphone are exposed to the same sound pressure in a free field. The output voltages of the microphones can be measured either sequentially or simultaneously. The sequential...... method requires the sound field to have good temporal stability. The simultaneous method requires instead that the sound pressure is the same in the positions where the microphones are placed. In this paper the results of the application of the two methods are compared. A third combined method...

  14. The laser-based calibration system of delta spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Malakhov, A.I. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Anisimov, Yu.S. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Gmuca, S. [Inst. of Physics, SAS, Bratislava (Slovakia); Kizka, V.A. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Kliman, J. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Inst. of Physics, SAS, Bratislava (Slovakia); Krasnov, V.A. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Kurepin, A.B. [Inst. for Nuclear Research RAS, Moscow (Russian Federation); Kuznetsov, S.N. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Livanov, A.N. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Matousek, V. [Inst. of Physics, SAS, Bratislava (Slovakia); Morhac, M. [Inst. of Physics, SAS, Bratislava (Slovakia)]. E-mail: Miroslav.Morhac@savba.sk; Turzo, I. [Inst. of Physics, SAS, Bratislava (Slovakia)

    2006-10-15

    We present a report on a laser calibration system of DELTA spectrometer that has been designed and developed in the Laboratory of High Energies, JINR, Dubna. The system is intended for monitoring and continuous stabilization of the outputs of the detectors of the spectrometer. The UV nitrogen pulse laser along with optical filters, collection of optical fibers and plastic scintillators serving for conversion of UV light pulses to longer wavelength and for diffusion of the light beam to illuminate 300 photomultipliers are used. We stabilize the positions of laser peaks by corrections of high voltages of the corresponding photomultipliers. The proposed system allows one to accomplish the stabilization during the experiment with the use of the same electronics. The control software together with the first results from test runs are described as well.

  15. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  16. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  17. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E

    2015-01-01

    This work introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from detection of the burst of neutrons. An improvement of more than one order of magnitude in the accuracy of a paraffin wax moderated 3 He-filled tube is obtained by using this methodology with respect to previous calibration methods. (paper)

  18. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  19. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  20. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.