WorldWideScience

Sample records for calibrated pressure pulses

  1. Calibration of the laser induced pressure pulse method when using a semiconducting electrode as the laser target

    International Nuclear Information System (INIS)

    Space charge distributions can directly be qualitatively estimated from a laser induced pressure pulse (LIPP) signal. To obtain precise quantitative space charge density, calibration of the LIPP method is necessary which requires an ideal measured signal. However, when a carbon loaded polymer electrode is used as the laser target, a long signal tail can be found. The cause of the signal tail is analyzed in this study and two methods are proposed to correct the experimental signals. According to the calibration procedure introduced, space charge density is obtained respectively by using the two correction methods. Finally, the calculated results are compared and the validity of the calibration and correction methods is confirmed. The correction and calibration procedures proposed can be extended to piezoelectric induced pressure pulse and pulsed electroacoustic methods. (paper)

  2. Calibration of the laser induced pressure pulse method when using a semiconducting electrode as the laser target

    OpenAIRE

    Ma, Peng; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2016-01-01

    Space charge distributions can directly be qualitatively estimated from a laser induced pressure pulse (LIPP) signal. To obtain precise quantitative space charge density, calibration of the LIPP method is necessary which requires an ideal measured signal. However, when a carbon loaded polymer electrode is used as the laser target, a long signal tail can be found. The cause of the signal tail is analyzed in this study and two methods are proposed to correct the experimental signals. According ...

  3. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... as well as pressure and intensity measurements in front of a 128 element commercial convex medical transducer are compared to the simulations. Results show that the models can predict the pressure from the piezoceramic disks with a root mean square (rms) error of 11.2% to 36.2% with a 2 dB amplitude...

  4. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    Science.gov (United States)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  5. Noninvasive tracking of systolic arterial blood pressure using pulse transit time measured with ECG and carotid doppler signals with intermittent calibration

    OpenAIRE

    Fujita, Yoshihisa

    2016-01-01

    We have developed a non-invasive blood pressure measurement system using pulse transit time (PTT) from the heart to the common carotid artery, measured by using an electrocardiogram (ECG) R-wave and carotid arterial Doppler signals at the anterior neck. In this study, we examined the validity of our system by comparing PTT derived systolic blood pressure (Dopp_SBP) with invasive radial systolic arterial pressure (Inv_SBP) with calibration every 15 min in the ICU setting.Methods: 17 patients u...

  6. Pulse Pressure in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Jiri Parenica

    2012-02-01

    Full Text Available The review presents basic information about the pulse pressure. The variables related to pulse pressure are briefly explained - arterial stiffness, arterial compliance, pulse wave velocity, pulse pressure amplification and augmentation index. We present some recent trials and observational studies that show the importance of pulse pressure in clinical practice. Briefly the possibilities of influencing the pulse pressure are discussed.

  7. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  8. Probability based calibration of pressure coefficients

    DEFF Research Database (Denmark)

    Hansen, Svend Ole; Pedersen, Marie Louise; Sørensen, John Dalsgaard

    2015-01-01

    not depend on the type of variable action. A probability based calibration of pressure coefficients have been carried out using pressure measurements on the standard CAARC building modelled on scale of 1:383. The extreme pressures measured on the CAARC building model in the wind tunnel have been fitted...

  9. Computerized Techniques for Calibrating Pressure Balances

    Science.gov (United States)

    Simpson, D. I.

    1994-01-01

    Pressure balances are generally calibrated by the cross-floating technique, where the forces acting on two similar devices in hydrostatic equilibrium are compared. It is a skilled and time-consuming process which has not previously lent itself to significant automation; computers have mostly been used only to calculate results after measurements have been taken. The objective of the present work was to develop real-time computerized measurement techniques to ease the calibration task, which would fully integrate into a single package with versatile software for calculating and displaying results. The calibration process is now conducted by studying graphical computer displays which derive their inputs from differential-pressure transducers and capacitance or optical displacement sensors. The mass imbalance between oil-operated pressure balances is calculated by interpolating between changes in piston rate-of-fall. Differential-pressure transducers are used to estimate mass imbalances between gas-operated balances, and a quick in situ method for determining their sensitivity has been developed. The new techniques have been successfully applied to a variety of pressure balance designs and substantial reductions in calibration times have been achieved. Reduced levels of scatter have revealed small systematic differences between gauge and absolute modes of operation.

  10. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    Science.gov (United States)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  11. Bandpass calibration of a wideband spectrometer using pulse injection

    CERN Document Server

    Patra, Nipanjana; Ekers, Ron; Roberts, Paul

    2015-01-01

    We present a novel time domain concept for determining the bandpass response of a system by injecting a nanosecond pulse and capturing the system voltage output. A pulse of sub-nanosecond duration contains all frequency components with constant amplitude up to 1~GHz. Hence, this method can accurately determine the system bandpass response to a broadband signal. A train of pulses are coherently accumulated providing very high signal-to-noise calibration. The basic concept is demonstrated using a pulse generator-accumulator setup realised in a Bedlam board which is a high speed digital signal processing unit. The same system was used at the Parkes Radio Telescope between 2--13 October 2013 and we demonstrate its powerful diagnostic capability. We also present some initial test data from this experiment.

  12. Calibrated Pulse-Thermography Procedure for Inspecting HDPE

    Directory of Open Access Journals (Sweden)

    Mohammed A. Omar

    2008-01-01

    Full Text Available This manuscript discusses the application of a pulse-thermography modality to evaluate the integrity of a high-density polyethylene HDPE joint for delamination, in nonintrusive manner. The inspected HDPE structure is a twin-cup shape, molded through extrusion, and the inspection system comprises a high-intensity, short-duration radiation pulse to excite thermal emission; the text calibrates the experiment settings (pulse duration, and detector sampling rate to accommodate HDPE bulks thermal response. The acquired thermal scans are processed through new contrast computation named “self-referencing”, to investigate the joint tensile strength and further map its adhesion interface in real-time. The proposed system (hardware, software combination performance is assessed through an ultrasound C-scan validation and further benchmarked using a standard pulse phase thermography (PPT routine.

  13. Measurement of the pressure pulse from a detonating explosive

    International Nuclear Information System (INIS)

    A series of experiments has been carried out to determine the pressure pulse exiting from a polymethylmethacrylate (PMMA) plate, of varying thickness, subject to the shock pulse exerted by a detonating charge of fixed mass. This calibration will define a new donor explosive and inert gap material for use in one of the qualification tests for energetic materials, the large scale gap test. The peak pressure was recorded on the central axis of the attenuator using calibrated piezoresistive manganin gauges as a function of the quantity of PMMA applied to the output of the donor charge. The stress history within the PMMA was measured as a function of run distance and the peak pressure plotted against thickness as a calibration. The shock front was known to have curvature and a measurement of this was attempted. The behaviour of the transmitted shock at small gap thicknesses was shown to be anomalous since the front was partially in a reactive and partially within an inert medium

  14. Supratentorial pressures. Part II: Intracerebral pulse waves.

    Science.gov (United States)

    Miller, J D; Peeler, D F; Pattisapu, J; Parent, A D

    1987-09-01

    Intracerebral pulse waves were recorded in cat and monkey while intracranial pressure (ICP) manipulations were performed. The intracerebral pulse waves appeared comparable to cerebrospinal fluid (CSF) pulsations. The wave forms were divided into multiple smaller waves, designated P1 to P4. The P1 component was primarily of arterial origin and was accentuated by increasing ICP unrelated to increased venous pressure, most commonly from a mass lesion. Bilateral carotid occlusion resulted in decreased amplitude of P1. Venous hypertension from jugular venous or sagittal sinus occlusion, on the other hand, accentuated waves P2 and P3 more than P1. This is consistent with a Starling resistor model of the cerebral venous system in which mass lesions may compress low-pressure veins and accentuate the arterial pressure-dependent P1 wave, whereas venous hypertension causes increased prominence of the later P2 and P3 waves. PMID:2891069

  15. Peristaltic pump-based low range pressure sensor calibration system

    Science.gov (United States)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  16. Peristaltic pump-based low range pressure sensor calibration system

    International Nuclear Information System (INIS)

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory

  17. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. PMID:26628178

  18. Peristaltic pump-based low range pressure sensor calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Vinayakumar, K. B. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India); Naveen Kumar, G.; Rajanna, K., E-mail: kraj@isu.iisc.ernet.in, E-mail: krajanna2011@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Nayak, M. M. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 5600012 (India); Dinesh, N. S. [Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India)

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  19. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  20. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  1. Single Pulse Calibration of Magnetic Field Sensors Using Mobile 43 kJ Facility

    Directory of Open Access Journals (Sweden)

    Grainys Audrius

    2015-10-01

    Full Text Available In this work we present a mobile 43 kJ pulsed magnetic field facility for single pulse calibration of magnetic field sensors. The magnetic field generator is capable of generating magnetic fields up to 40 T with pulse durations in the range of 0.3-2 ms. The high power crowbar circuit is used for the reverse voltage protection and pulse shaping purposes. The structure, the development challenges and the implemented solutions to improve the facility for the calibration of the magnetic field sensors are overviewed. The experimental data of the application of the proposed generator for the calibration of manganite magnetic field sensors are presented.

  2. Pressure calibrants in the hydrothermal diamond-anvil cell

    Science.gov (United States)

    Chou, I.-Ming

    2007-01-01

    Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr

  3. Characterization and calibration of the central arterial pressure waveform obtained from vibrocardiographic signal

    Science.gov (United States)

    Casacanditella, L.; Cosoli, G.; Casaccia, S.; Rohrbaugh, J. W.; Scalise, L.; Tomasini, E. P.

    2016-06-01

    Laser Doppler Vibrometry (LDV) has been demonstrated to be a non-contact technique with high sensitivity, able to measure the skin vibrations related to cardiac activity. The obtainable mechanical signal (i.e. a velocity signal), VibroCardioGram (VCG), is able to provide significant physiological parameters, such as Heart Rate (HR). In this work, the authors aim to present a non-contact measurement method to obtain the arterial blood pressure signal from the mechanical vibrations assessed by LDV, in a central district of the arterial tree, such as carotid artery. In fact, in this way it is possible to indirectly assess Central Arterial Blood Pressure (CABP), which indicates the hemodynamic load on the heart, so that it is considered an important index predicting the cardiac risk of a subject. The measurement setup involves the use of an oscillometric cuff, to measure peripheral blood pressure at the radial artery level. Diastolic and Mean Arterial Pressure (MAP) at radial level were used to calibrate the integrated LDV signal (i.e. a displacement signal). As regard calibration, an exponential mathematical model was adopted to derive the pressure waveform from the displacement of the vessel detected by LDV. Results show an average difference of around 20% between systolic pressure measured at brachial level (i.e. peripheral pressure value) and systolic pressure derived from VCG signal measured over the carotid artery (i.e. central pressure). This is a physiological difference, consistent with the literature about the physiological increase of Systolic Blood Pressure (SBP) and Pressure Pulse (PP) at increased distances from the heart. However, this non-contact technique is affected by movement artifacts and by reflection phenomena not related to the studied vessel and so it is necessary to account of such issues in the results.

  4. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    Science.gov (United States)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  5. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    OpenAIRE

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.; Quick, Christopher M.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systol...

  6. TRANSMISSION BEHAVIOR OF MUD-PRESSURE PULSE ALONG WELL BORE

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-shan; LI Bo; YUE Yu-quan

    2007-01-01

    In oil and gas industry, mud-pulse telemetry has been widely used to obtain directional data, drilling parameters, formation evaluation data and safety data, etc. Generally, the drilling mud in most current models was considered to be a single-phase fluid through which the mud pulses travel, despite the fact that the drilling mud is composed of two or more phases. In this article, a multiphase flow formula was proposed to calculate the mud-pulse velocity as mud solids and free-gas content change, and a mathematical model was put forward to simulate the dynamic-transmission behavior of the mud-pressure pulse or waves. Compared to conventional methods, the present model provides more accurate mud-pulse attenuation, and the dynamic-transmission behavior of drilling-mud pulses along well bores can also be easily examined. The model is valuable in improving the existing mud-pulse systems and developing new drilling-mud pulse systems.

  7. Effect of pressure pulse on geomagnetic field oscillations

    Science.gov (United States)

    Sinha, A. K.; Rajaram, R.

    The effect of solar wind pressure pulse on geomagnetic field oscillations has been computed by using Green's function technique. The dominance of toroidal oscillations during dawn/dusk sectors appears to be natural consequences of solar wind pressure pulse and may not be attributed to K-H instability at the magnetopause boundary caused by velocity shear. Pressure pulse generates surface waves at the magnetopause boundary and couples to the field oscillations to give rise such effects. The paper adopts the 3-dimensional approach to explain the phenomena.

  8. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    Science.gov (United States)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  9. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system. PMID:27225558

  10. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  11. Nuclear reactor pulse calibration using a CdZnTe electro-optic radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A., E-mail: knelson1@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Geuther, Jeffrey A. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Neihart, James L.; Riedel, Todd A. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Rojeski, Ronald A. [Nanometrics, Inc., 1550 Buckeye Drive, Milpitas, CA 95035 (United States); Saddler, Jeffrey L. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Schmidt, Aaron J.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2012-07-15

    A CdZnTe electro-optic radiation detector was used to calibrate nuclear reactor pulses. The standard configuration of the Pockels cell has collimated light passing through an optically transparent CdZnTe crystal located between crossed polarizers. The transmitted light was focused onto an IR sensitive photodiode. Calibrations of reactor pulses were performed using the CdZnTe Pockels cell by measuring the change in the photodiode current, repeated 10 times for each set of reactor pulses, set between 1.00 and 2.50 dollars in 0.50 increments of reactivity. - Highlights: Black-Right-Pointing-Pointer We demonstrated the first use of an electro-optic device to trace reactor pulses in real-time. Black-Right-Pointing-Pointer We examined the changes in photodiode current for different reactivity insertions. Black-Right-Pointing-Pointer Created a linear best fit line from the data set to predict peak pulse powers.

  12. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao; S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); A.P. D (Adamo Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung; A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,60

  13. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V.; Verwoert, Germaine C.; O'Reilly, Paul F.; Shi, Gang; Johnson, Toby; Johnson, Andrew D.; Bochud, Murielle; Rice, Kenneth M.; Henneman, Peter; Smith, Albert V.; Ehret, Georg B.; Amin, Najaf; Larson, Martin G.; Mooser, Vincent; Hadley, David; Doerr, Marcus; Bis, Joshua C.; Aspelund, Thor; Esko, Tonu; Janssens, A. Cecile J. W.; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U.; Webster, Rebecca J.; Zhang, Feng; Peden, John F.; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I.; Trompet, Stella; Bragg-Gresham, Jennifer L.; Alizadeh, Behrooz Z.; Chambers, John C.; Guo, Xiuqing; Lehtimaki, Terho; Kuehnel, Brigitte; Lopez, Lorna M.; Polasek, Ozren; Boban, Mladen; Nelson, Christopher P.; Morrison, Alanna C.; Pihur, Vasyl; Ganesh, Santhi K.; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U. S.; Rivadeneira, Fernando; Sijbrands, Eric J. G.; Uitterlinden, Andre G.; Hwang, Shih-Jen; Vasan, Ramachandran S.; Wang, Thomas J.; Bergmann, Sven; Vollenweider, Peter; Waeber, Gerard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L.; Kroemer, Heyo K.; Voelker, Uwe; Voelzke, Henry; Glazer, Nicole L.; Taylor, Kent D.; Harris, Tamara B.; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Ines; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sober, Siim; Lu, Xiaowen; Nolte, Ilja M.; Penninx, Brenda W.; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F.; Melander, Olle; O'Donnell, Christopher J.; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M.; Facheris, Maurizio; Collins, Francis S.; Bergman, Richard N.; Beilby, John P.; Hung, Joseph; Musk, A. William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S.; Navarro, Pau; Wild, Sarah H.; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J. C.; Willemsen, Gonneke; Parker, Alex N.; Rose, Lynda M.; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M.; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L.; Kahonen, Mika; Viikari, Jorma; Doering, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M.; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H.; 't Hoen, Peter A. C.; Koenig, Inke R.; Felix, Janine F.; Clarke, Robert; Hopewell, Jemma C.; Ongen, Halit; Breteler, Monique; Debette, Stephanie; DeStefano, Anita L.; Fornage, Myriam; Mitchell, Gary F.; Smith, Nicholas L.; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J.; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J.; Wichmann, H-Erich; Raitakari, Olli T.; Palmas, Walter; Kooner, Jaspal S.; Stolk, Ronald P.; Jukema, J. Wouter; Wright, Alan F.; Boomsma, Dorret I.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wilson, James F.; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D.; Palmer, Lyle J.; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J. F.; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J.; Oostra, Ben A.; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P.; Beckmann, Jacques S.; Witteman, Jacqueline C. M.; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M.; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R.; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B.; Psaty, Bruce M.; Caulfield, Mark J.; Rao, Dabeeru C.; Tobin, Martin D.; Elliott, Paul; van Duijn, Cornelia M.

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we

  14. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V; Verwoert, Germaine C; O'Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile J W; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U S; Rivadeneira, Fernando; Sijbrands, Eric J G; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O'Donnell, Christopher J; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J C; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; Hoen, Peter A C 't; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; Destefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J F; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline C M; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C; Tobin, Martin D; Elliott, Paul; van Duijn, Cornelia M

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we ident

  15. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    OpenAIRE

    Vappou, J.; Luo, J; Okajima, K.; Di Tullio, M; Konofagou, E E

    2011-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound sig...

  16. Light pulse laser source for calibration of multi-channel photorecording systems

    International Nuclear Information System (INIS)

    A source of nanosecond light flashes based on nitrogen laser with transverse discharge simUlating particle passage through radiation coUnters is described. The source is intended for amplitude calibration of multichan.nel systems with number of channels > or approximately 103. Heterogeneity of light signal in all the channels is approximately 10%. Amplitude scattering of pulses is +- 2.5% (half-width by half-height) at pulse duration of approximately 5 ns (on half of amplitude)

  17. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    International Nuclear Information System (INIS)

    Central blood pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce pulse wave-based ultrasound manometry (PWUM) as a simple-to-use, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local pulse wave velocity. The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7±16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 < r < 0.98). A significant bias of 4.7 mmHg was found between PWUM and tonometry. PWUM is a highly translational method that can be easily integrated in clinical ultrasound imaging systems. It provides an estimate of the pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries

  18. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  19. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Energy Technology Data Exchange (ETDEWEB)

    Buzrul, S; Largeteau, A; Demazeau, G [ICMCB, CNRS, Universite Bordeaux 1, site de l' ENSCPB, 87 avenue du Dr. A. Schweitzer, 33608 PESSAC cedex (France); Alpas, H [Food Engineering Department, Middle East Technical University, 06531, Ankara (Turkey)], E-mail: sbuzrul@metu.edu.tr

    2008-07-15

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  20. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    Science.gov (United States)

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2. PMID:27587156

  1. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water at an ex...... the compressive pulse, but the effect is shortlived. We presume that diffusion of non-condensable gas from the cavitation nuclei into the liquid at compression, and back again later, is responsible for the changes of tensile strength....

  2. Development of a Calibration and Monitoring System for GD-1 High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    王俊席; 杨林; 冯静; 冒晓建; 卓斌

    2004-01-01

    Based on CAN calibration protocol, a new calibration and monitoring system was developed for the GD1 high pressure common rail diesel engine. CAN driver block, monitoring program and calibration program for this system were designed respectively. The inquiry mode was used in the monitoring program and the interrupt mode was used in calibration program. The calibration program was designed in structural programming model. This system provides a reliable, accurate and quick CAN bus between ECU and PC, with baud rate up to 500Kbit/s.The implementation of the compatible and universal CAN calibration protocol makes it easy to displace the system and its function modules. It also provides friendly, compatible and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system was successfully used in a GD-1 high pressure common rail diesel engine and the engine performance and exhaust emissions were significantly improved.

  3. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: brian.mccarthy@tyndall.ie [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-08-17

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  4. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Science.gov (United States)

    McCarthy, B. M.; O'Flynn, B.; Mathewson, A.

    2011-08-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  5. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  6. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study

    OpenAIRE

    Daudel, Fritz; Tüller, David; Krähenbühl, Stefanie; Jakob, Stephan M; Takala, Jukka

    2010-01-01

    Introduction We found that pulse pressure variation (PPV) did not predict volume responsiveness in patients with increased pulmonary artery pressure. This study tests the hypothesis that PPV does not predict fluid responsiveness during an endotoxin-induced acute increase in pulmonary artery pressure and right ventricular loading. Methods Pigs were subjected to endotoxemia (0.4 μg/kg/hour lipopolysaccharide), followed by volume expansion, subsequent hemorrhage (20% of estimated blood volume), ...

  7. Digital pressure ulcer after pulse oximetry [Digitales Druckulkus nach Pulsoxymetrie

    Directory of Open Access Journals (Sweden)

    Zeplin, Philip H.

    2013-06-01

    Full Text Available [english] In emergency medical service, in intensive care unit and anaesthesia oxygenation is monitored with pulse oximetry apparatus. Pulse oximetry probe is usually attached to the finger, toe or earlobe. To the best of our knowledge this is the first case report describing the occurrence of a pressure ulcer after finger pulse oximetry measurement.[german] Sowohl in der Notfall- und Intensivmedizin als auch in der Anästhesie wird die Sauerstoffsättigung des Blutes mit Pulsoxymetern ermittelt. Diese Pulsoxymeter werden üblicherweise an den Fingern, den Zehen oder dem Ohrläppchen angebracht. Wir beschreiben einen Fall, bei dem es nach Anlage eines Fingerclip-Pulsoxymeters zur Ausbildung eines operationsbedürftigen Druckulkus kam.

  8. Novel Method for Processing the Dynamic Calibration Signal of Pressure Sensor.

    Science.gov (United States)

    Wang, Zhongyu; Li, Qiang; Wang, Zhuoran; Yan, Hu

    2015-07-21

    Dynamic calibration is one of the important ways to acquire the dynamic performance parameters of a pressure sensor. This research focuses on the processing method for the output of calibrated pressure sensor, and mainly attempts to solve the problem of extracting the true information of step response under strong interference noise. A dynamic calibration system based on a shock tube is established to excite the time-domain response signal of a calibrated pressure sensor. A key processing on difference modeling is applied for the obtained signal, and several generating sequences are established. A fusion process for the generating sequences is then undertaken, and the true information of the step response of the calibrated pressure sensor can be obtained. Finally, by implementing the common QR decomposition method to deal with the true information, a dynamic model characterizing the dynamic performance of the calibrated pressure sensor is established. A typical pressure sensor was used to perform calibration tests and a frequency-domain experiment for the sensor was also conducted. Results show that the proposed method could effectively filter strong interference noise in the output of the sensor and the corresponding dynamic model could effectively characterize the dynamic performance of the pressure sensor.

  9. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  10. Feasibility Study Of Pressure Pulsing Pipeline Unplugging Technologies For Hanford

    International Nuclear Information System (INIS)

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging

  11. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  12. Precise calibration of LIGO test mass actuators using photon radiation pressure

    CERN Document Server

    Goetz, E; Erickson, S; Savage, R L; González, G; Kawabe, K; Landry, M; Marka, S; O'Reilly, B; Riles, K; Sigg, D; Willems, P

    2009-01-01

    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic defor...

  13. Voltage-To-Frequency Converter For Pressure Calibration

    Science.gov (United States)

    Sealey, Bradley S.; Mitchell, Michael

    1993-01-01

    Measurements of pressures on walls of wind tunnels and on surfaces of models in wind tunnels made with help of electronically scanned pressure-measurement (ESP) system. Voltage-to-frequency converter circuit, designed to convert 0- to 5-Vdc analog output voltage from high-line-pressure, low-differential-pressure standard to required frequency range. Enables selection of wider variety of high-accuracy pressure standards to enhance accuracy of measurement of ESP instrumentation while requiring little modification of manufacturer's system and no modification of operating software of system. Useful primarily in wind-tunnel instrumentation and readily adaptable to commercial instruments currently in use.

  14. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...% uncertainty. You may perform the linearity verification for temperature measurement systems with thermocouples...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... quantities that are NIST-traceable within 0.5% uncertainty. (2) Temperature. We recommend digital...

  15. Calibration of the modified Electrical Low-Pressure Impactor (ELPI) for use with pressurized pharmaceutical aerosols.

    Science.gov (United States)

    Kotian, Reshma; Peart, Joanne; Bryner, Joan; Byron, Peter R

    2009-03-01

    The modified Electrical Low Pressure Impactor (ELPI) is currently being used in several laboratories to determine inherent electrostatic charge of pharmaceutical aerosols as a function of their particle size. However, the ELPI appears to underestimate the aerodynamic particle size distributions (aPSDs) of pressurized metered dose inhalers (pMDIs), casting doubt upon the manufacturer's calibration. In the present study, four commercially available pMDIs with a range of aPSDs were used to recalibrate cutoff diameters (d50s) of the ELPI stages using a reference ACI. Particle size analyses were performed in a mensurated ACI and a calibrated modified ELPI (n = 5); stage coating was employed in both instruments. The ACI data were fitted to a lognormal cumulative distribution function by nonlinear regression analysis. Best estimates for mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) for each pMDI were obtained and used in combination with impaction results from the modified ELPI to determine new d50s for each of the ELPI stages by numerical methods. Ventolin HFA was employed to validate the new ELPI d50 values. The curve-fitting procedure produced excellent fits of the ACI data for all the calibration pMDIs, which were well modeled as mono-modal and lognormally distributed. The mean d50s obtained following recalibration of the modified ELPI were found to deviate increasingly from the manufacturer-supplied values as aerodynamic diameter decreased. Ventolin HFA's MMAD determined using the modified ELPI with the manufacturer-supplied d50s was 2.06 +/- 0.08 microm. The MMAD calculated using the recalibrated d50s was 2.63 +/- 0.09 microm, which was statistically indistinguishable (p = 0.0852) from that determined for Ventolin HFA using the ACI (2.73 +/- 0.09 microm). In the absence of a comprehensive recalibration of the ELPI using monodisperse aerosols, the mean d50s for stages 4-12 of ELPI reported offer a practical way of analyzing the a

  16. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients.

    Science.gov (United States)

    Scully, Christopher G; Gomatam, Shanti; Forrest, Shawn; Strauss, David G

    2016-10-01

    We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland-Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were -1.85 to 1.66 L/min for 1 h maximum calibration time compared to -2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.

  17. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  18. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2015-05-01

    Full Text Available Multi-pulsed high hydrostatic pressure (mpHHP treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  19. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age.

    Science.gov (United States)

    Mohiuddin, Mohammad W; Rihani, Ryan J; Laine, Glen A; Quick, Christopher M

    2012-07-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (C(tot)) and increases in total peripheral resistance (R(tot)) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (c(ph)) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in c(ph) do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in c(ph) cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), R(tot), C(tot), and c(ph) to mimic the reported changes in these parameters from age 30 to 70. Then, c(ph) was theoretically maintained constant, while C(tot), R(tot), and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, C(tot), R(tot), and CO were theoretically maintained constant, and c(ph) was increased. The predicted increase in PP was negligible. We found that increases in c(ph) have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in C(tot). PMID:22561301

  20. Observations of Seafloor Vertical Deformation on Axial Seamount with the Self-Calibrating Pressure Recorder

    Science.gov (United States)

    Cook, M. J.; Sasagawa, G. S.; Zumberge, M. A.

    2015-12-01

    A geodetic pressure gauge, the Self-Calibrating Pressure Recorder (SCPR), was deployed on Axial Seamount on September 7, 2013. The device performs in situ pressure calibrations every 10 days by applying a time-invariant reference pressure from a piston gauge (also known as a deadweight calibrator) to continuously recording quartz pressure gauges through a hydraulic valve. The reference pressure measurements are then used to estimate and correct for the inherent drift in the quartz resonant seafloor pressure gauges. Pressure data are collected at 100 s integration intervals. A small subset of a year-long data set was recovered via an acoustic modem in August 2014. Using three epoch measurements, the pressure rate of change from September 2013 to August 2014 was -4.1 to -4.2 kPa/year, equivalent to uplift of 41- 42 cm/year. Other pressure time series and micro-bathymetric repeat surveys are in rough agreement with this SCPR rate. The instrument is scheduled for recovery in August 2015; the anticipated data collection interval spans the eruption on April 24, 2015. We present the drift-corrected pressure series and constraints estimated for magma supply rates during the inflation, eruption, and post-eruptive phases.

  1. Systolic arterial pressure determination by a new pulse monitor technique.

    Science.gov (United States)

    Wong, D T; Volgyesi, G A; Bissonnette, B

    1992-07-01

    The Doppler ultrasound (DUS) technique is a widely accepted non-invasive technique to estimate systolic blood pressure (SBP) accurately in paediatric patients. The DUS has a number of limitations. A new pulse monitor, Mr Pulse (MP), operating on the principle of a finger plethysmograph, was developed to offer an alternative technique to estimate SBP. From 104 paired SBP measurements taken in 16 paediatric patients undergoing general anaesthesia, SBP determined by the MP technique correlated closely with that by the standard DUS technique (r2 = 0.98). Analysis of degree of agreement performed indicated that there was good agreement between SBP obtained by the MP and the DUS techniques. The mean +/- standard deviation of differences in paired SBP values between the two measurement techniques was 0.55 +/- 3.59 mmHg. Mr Pulse is as accurate as the DUS technique in estimating SBP and has the advantage of less critical sensor positioning as it is not subject to electrical interference. It has no electrical hazard. PMID:1643685

  2. Relativistic electron accelerations associated with the interplanetary pressure pulse

    Science.gov (United States)

    Miyoshi, Yoshizumi; Saito, Shinji; Matsumoto, Yosuke; Hayashi, Masahiro; Amano, Takanobu; Seki, Kanako

    2016-04-01

    The radiation belt electron fluxes are highly variable, and various time scales for the flux enhancements are observed. The rapid flux enhancements of the outer belt electrons have been observed associated with the solar wind pressure pulse. In order to investigate such rapid flux enhancements, we conduct the code-coupling simulations of GEMSIS-RB test particle simulation [Saito et al., 2010] and GEMSIS-GM global MHD simulation [Matsumoto et al., 2010]. The GEMSIS-RB simulation calculates the 3-dimentional guiding-center motion of a number of test particles in the electric/magnetic fields provided from the GEMSIS-GM. After the arrival of the pressure pulse, the outer belt electrons in the dayside moves inward due to the drift resonance with inductive electric fields of the fast mode waves. Some of electrons are strongly accelerated within a few ten minutes and spiral patterns of drifted electrons can be observed. We may discuss the possibility to identify such selected acceleration of relativistic electrons by Van Allen Probes and upcoming ERG satellite.

  3. Relationship between stroke volume and pulse pressure during blood volume perturbation: a mathematical analysis.

    Science.gov (United States)

    Bighamian, Ramin; Hahn, Jin-Oh

    2014-01-01

    Arterial pulse pressure has been widely used as surrogate of stroke volume, for example, in the guidance of fluid therapy. However, recent experimental investigations suggest that arterial pulse pressure is not linearly proportional to stroke volume. However, mechanisms underlying the relation between the two have not been clearly understood. The goal of this study was to elucidate how arterial pulse pressure and stroke volume respond to a perturbation in the left ventricular blood volume based on a systematic mathematical analysis. Both our mathematical analysis and experimental data showed that the relative change in arterial pulse pressure due to a left ventricular blood volume perturbation was consistently smaller than the corresponding relative change in stroke volume, due to the nonlinear left ventricular pressure-volume relation during diastole that reduces the sensitivity of arterial pulse pressure to perturbations in the left ventricular blood volume. Therefore, arterial pulse pressure must be used with care when used as surrogate of stroke volume in guiding fluid therapy.

  4. Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins

    DEFF Research Database (Denmark)

    Wu, Yili; Zhang, Dongfeng; Pang, Zengchang;

    2015-01-01

    Systolic and diastolic blood pressure, pulse pressure (PP), and body mass index (BMI) are heritable traits in human metabolic health but their common genetic and environmental backgrounds are not well investigated. The aim of this article was to explore the phenotypic and genetic associations among...... PP, systolic blood pressure (SBP), diastolic blood pressure (DBP), and BMI. The studied sample contained 615 twin pairs (17-84 years) collected in the Qingdao municipality. Univariate and multivariate structural equation models were fitted for assessing the genetic and environmental contributions...... multivariate model estimated (1) high genetic correlations for DBP with SBP (0.87), PP with SBP (0.75); (2) low-moderate genetic correlations between PP and DBP (0.32), each BP component and BMI (0.24-0.37); (3) moderate unique environmental correlation for PP with SBP (0.68) and SBP with DBP (0.63); (4) there...

  5. Central Pulse Pressure in Chronic Kidney Disease: A CRIC Ancillary Study

    Science.gov (United States)

    Townsend, Raymond R.; Chirinos, Julio A.; Parsa, Afshin; Weir, Matthew A.; Sozio, Stephen M.; Lash, James P.; Chen, Jing; Steigerwalt, Susan P.; Go, Alan S.; Hsu, Chi-yuan; Rafey, Mohammed; Wright, Jackson T.; Duckworth, Mark J.; Gadegbeku, Crystal A.; Joffe, Marshall P.

    2010-01-01

    Central pulse pressure can be non-invasively derived using the radial artery tonometric methods. Knowledge of central pressure profiles has predicted cardiovascular morbidity and mortality in several populations of patients, particularly those with known coronary artery disease and those receiving dialysis. Few data exist characterizing central pressure profiles in patients with mild-moderate chronic kidney disease who are not on dialysis. We measured central pulse pressure cross-sectionally in 2531 participants in the Chronic Renal Insufficiency Cohort study to determine correlates of the magnitude of central pulse pressure in the setting of chronic kidney disease. Tertiles of central pulse pressure (CPP) were 51 mmHg with an overall mean (± S.D.) of 46 ± 19 mmHg. Multivariable regression identified the following independent correlates of central pulse pressure: age, gender, diabetes mellitus, heart rate (negatively correlated), glycosylated hemoglobin, hemoglobin, glucose and PTH concentrations. Additional adjustment for brachial mean arterial pressure and brachial pulse pressure showed associations for age, gender, diabetes, weight and heart rate. Discrete intervals of brachial pulse pressure stratification showed substantial overlap within the associated central pulse pressure values. The large size of this unique chronic kidney disease cohort provides an ideal situation to study the role of brachial and central pressure measurements in kidney disease progression and cardiovascular disease incidence. PMID:20660819

  6. Measurement and Calibration of Centrifugal Compressor Pressure Scanning Instrumentation

    OpenAIRE

    Rivas, Jose R; Lou, Fangyuan; Harrison, Herbert "Trey"; Key, Nicole

    2015-01-01

    The compressor is a key component of a jet engine necessary to compress air for the combustion process. Research to optimize compressor efficiency through the understanding of air flow behavior has led to increased efforts in creating modern compressor test facilities. In collaboration with Honeywell, the High Speed Compressor facility at Zucrow Laboratories has built a centrifugal compressor test cell with instrumentation to measure the temperatures and pressures of the air flow. This facili...

  7. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  8. Hot-wire calibration in a nonisothermal incompressible pressure variant flow

    Science.gov (United States)

    Hugo, Ronald J.; Nowlin, Scott R.; Eaton, Frank D.; Bishop, Kenneth P.; McCrae, Kimberley A.

    1999-08-01

    The calibration procedure for a hot-wire anemometer system operating in a non-isothermal pressure-variant flow field is presented. Sensing of atmospheric velocity and temperature fluctuations from an altitude-variant platform using hot- wire anemometry equipment operating in both constant- temperature and constant-current modes requires calibration for velocity, temperature, and atmospheric pressure variations. Calibration tests to provide the range of velocity, temperature and pressure variations anticipated during Air Force Research Lab, Directed Energy Directorate- sponsored kite/tethered-balloon experiments were conducted and the result of these tests presented. The calibration tests were performed by placing the kite/tethered-balloon sensor package on a vehicle and driving from Kirtland AFB, NM to the top of Sandia Crest, a 10678 ft mountain range to the east of Albuquerque, NM. By varying the velocity of the van and conducting the test at different times of the day, variations in velocity, temperature and pressure within the range of those encountered during the kite/tethered-balloon experiments were obtained. The method of collapsing the calibration data is presented. Problems associated with collecting hot-wire anemometry data in a non-laboratory environment are discussed. Example data sets of temperature and velocity collected during the kite/tethered-balloon experiments are presented.

  9. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    OpenAIRE

    Baruch, Martin C; Kalantari, Kambiz; Gerdt, David W; Adkins, Charles M

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five ...

  10. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  11. Experimental techniques for ballistic pressure measurements and recent development in means of calibration

    Science.gov (United States)

    Elkarous, L.; Coghe, F.; Pirlot, M.; Golinval, J. C.

    2013-09-01

    This paper presents a study carried out with the commonly used experimental techniques of ballistic pressure measurement. The comparison criteria were the peak chamber pressure and its standard deviation inside specific weapon/ammunition system configurations. It is impossible to determine exactly how precise either crusher, direct or conformal transducer methods are, as there is no way to know exactly what the actual pressure is; Nevertheless, the combined use of these measuring techniques could improve accuracy. Furthermore, a particular attention has been devoted to the problem of calibration. Calibration of crusher gauges and piezoelectric transducers is paramount and an essential task for a correct determination of the pressure inside a weapon. This topic has not been completely addressed yet and still requires further investigation. In this work, state of the art calibration methods are presented together with their specific aspects. Many solutions have been developed to satisfy this demand; nevertheless current systems do not cover the whole range of needs, calling for further development effort. In this work, research being carried out for the development of suitable practical calibration methods will be presented. The behavior of copper crushers under different high strain rates by the use of the Split Hopkinson Pressure Bars (SHPB) technique is investigated in particular. The Johnson-Cook model was employed as suitable model for the numerical study using FEM code

  12. Experimental techniques for ballistic pressure measurements and recent development in means of calibration

    International Nuclear Information System (INIS)

    This paper presents a study carried out with the commonly used experimental techniques of ballistic pressure measurement. The comparison criteria were the peak chamber pressure and its standard deviation inside specific weapon/ammunition system configurations. It is impossible to determine exactly how precise either crusher, direct or conformal transducer methods are, as there is no way to know exactly what the actual pressure is; Nevertheless, the combined use of these measuring techniques could improve accuracy. Furthermore, a particular attention has been devoted to the problem of calibration. Calibration of crusher gauges and piezoelectric transducers is paramount and an essential task for a correct determination of the pressure inside a weapon. This topic has not been completely addressed yet and still requires further investigation. In this work, state of the art calibration methods are presented together with their specific aspects. Many solutions have been developed to satisfy this demand; nevertheless current systems do not cover the whole range of needs, calling for further development effort. In this work, research being carried out for the development of suitable practical calibration methods will be presented. The behavior of copper crushers under different high strain rates by the use of the Split Hopkinson Pressure Bars (SHPB) technique is investigated in particular. The Johnson-Cook model was employed as suitable model for the numerical study using FEM code

  13. Design of low-power hybrid digital pulse width modulator with piecewise calibration scheme

    Science.gov (United States)

    Zhen, Shaowei; Hou, Sijian; Gan, Wubing; Chen, Jingbo; Luo, Ping; Zhang, Bo

    2015-12-01

    A low-power hybrid digital pulse width modulator (DPWM) is proposed in the paper. Owing to the piecewise calibration scheme, the delay time of delay line is locked to target frequency. The delay line consists of two piecewise lines with different control codes. The delay time of each cell in one sub-delay-line is longer than the last significant bit (LSB) of DPWM, while the delay time of each cell in the other sub-delay-line is shorter than LSB. Optimum linearity is realised with minimum standard cells. Simulation results show that the differential nonlinearity and integral nonlinearity are improved from 5.1 to 0.4 and from 5 to 1.3, respectively. The DPWM is fully synthesised and fabricated in a 90-nm CMOS process. The proposed DPWM occupies a silicon area of 0.01 mm2, with 31.5 μw core power consumption. Experimental results are shown to demonstrate the 2-MHz, 10-bit resolution implementation. Pulse width histogram is firstly introduced to characterise the linearity of the DPWM.

  14. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  15. Wind tunnel calibration of 5-hole pressure probes for application to wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L.J.; Robinson, M.C.

    1998-05-01

    A method to quantify the local inflow vector on a rotating turbine blade using a 5-hole static pressure probe was developed at the National Wind Technology Center. The technique permits quantification of dynamic pressure, angle-of-attack and cross-flow-angle to magnitudes of {+-} 40{degree} in any inflow direction parallel to the probe centerline. A description of the static and dynamic calibration procedure, iteration sequence for data reduction, and field results are included.

  16. Characteristics of wind pressure pulse on large-span flat roofs

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; CAO Zheng-gang; WU Yue

    2009-01-01

    The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span fiat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separa tion region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.

  17. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...... to determine activation energies for reactions of importance in reactor chemistry. The activation energy of the reaction e−aq+e−aq has been determined to be 22 kJ·mol−1 (5.3 kcal·mol−1) in good agreement with literature values. Furthermore, the activation energies of the reactions Cu2++OH (13.3 kJ·mol−1, 3.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...

  18. Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults

    OpenAIRE

    Chen, Diliang; Chen, Fei; Murray, Alan; Zheng, Dingchang

    2016-01-01

    Background Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and K...

  19. Pasteurization of fruit juices by means of a pulsed high pressure process.

    Science.gov (United States)

    Donsì, Giorgio; Ferrari, Giovanna; Maresca, Paola

    2010-04-01

    The use of pulsed high hydrostatic pressure was investigated as a possible approach to stabilize foodstuffs. The objective of this article was to investigate the effect of the main processing variables (pressure [150 to 300 MPa], temperature levels [25 to 50 degrees C], and pulse number [1 to 10]) on the sanitation of nonpasteurized clear Annurca apple juice as well as freshly-squeezed clear orange juice. The aim of the article was the optimization of the process parameters in step-wise pressure treatment (pressure holding time of each pulse: 60 s, compression rate: 10.5 MPa/s, decompression time: 2 to 5s). The shelf life of the samples, processed at optimized conditions, was evaluated in terms of microbiological stability and quality retention. According to our experimental results, the efficiency of pulsed high pressure processes depends on the combination of pulse holding time and number of pulses. The pulsed high pressure cycles have no additive or synergetic effect on microbial count. The efficacy of the single pulses decreases with the increase of the pulse number and pressure level. Therefore the first pulse cycle is more effective than the following ones. By coupling moderate heating to high pressure, the lethality of the process increases but thermal degradation of the products can be detected. The optimization of the process condition thus results in a compromise between the reduction of the pressure value, due to the synergetic temperature action, and the achievement of quality of the final production. The juices processed under optimal processing conditions show a minimum shelf life of 21 d at a storage temperature of 4 degrees C.

  20. Pasteurization of fruit juices by means of a pulsed high pressure process.

    Science.gov (United States)

    Donsì, Giorgio; Ferrari, Giovanna; Maresca, Paola

    2010-04-01

    The use of pulsed high hydrostatic pressure was investigated as a possible approach to stabilize foodstuffs. The objective of this article was to investigate the effect of the main processing variables (pressure [150 to 300 MPa], temperature levels [25 to 50 degrees C], and pulse number [1 to 10]) on the sanitation of nonpasteurized clear Annurca apple juice as well as freshly-squeezed clear orange juice. The aim of the article was the optimization of the process parameters in step-wise pressure treatment (pressure holding time of each pulse: 60 s, compression rate: 10.5 MPa/s, decompression time: 2 to 5s). The shelf life of the samples, processed at optimized conditions, was evaluated in terms of microbiological stability and quality retention. According to our experimental results, the efficiency of pulsed high pressure processes depends on the combination of pulse holding time and number of pulses. The pulsed high pressure cycles have no additive or synergetic effect on microbial count. The efficacy of the single pulses decreases with the increase of the pulse number and pressure level. Therefore the first pulse cycle is more effective than the following ones. By coupling moderate heating to high pressure, the lethality of the process increases but thermal degradation of the products can be detected. The optimization of the process condition thus results in a compromise between the reduction of the pressure value, due to the synergetic temperature action, and the achievement of quality of the final production. The juices processed under optimal processing conditions show a minimum shelf life of 21 d at a storage temperature of 4 degrees C. PMID:20492291

  1. Hydrostatic pressure and temperature calibration based on phase diagram of bismuth

    Science.gov (United States)

    Wang, Zhigang; Liu, Yonggang; Bi, Yan; Song, Wei; Xie, Hongsen

    2012-06-01

    Under high-temperature and high pressure (HTHP) experiments, materials of small elastic modulus deform easily, and the length of the sample can be hardly predicted which lead to failure of ultrasonic velocity measurement. In this paper, a hydrostatic assembly of the sample for ultrasonic measurements is designed under HPHT, which can prevent plastic deformation. According to the abrupt change of travel time of the sample across the different phase boundaries of bismuth, the correspondent relation of sample pressure and oil pressure of multi-anvil apparatus can be calibrated, and the relation of sample temperature and temperature measured by thermocouple can also be determined. Sample pressure under high temperature is also determined by ultrasonic results. It is believed that the new sample assembly of hydrostatic pressure is valid and feasible for ultrasonic experiments under HTHP.

  2. Characteristics of SF6 Switch with a Small Gap under High Pressure and Nanosecond Pulse

    Institute of Scientific and Technical Information of China (English)

    TANG Junping; QIU Aici; BO Haiwang; DONG Qinxiao; HE Xiaoping

    2009-01-01

    Structural design and tests on the characteristics of the SFs gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime. The breakdown voltage and breakdown delay of a number of switches with different geometries, gas pressures and pulse waveforms were investigated.Experimental results suggested that the breakdown voltage increases linearly with the gas pressure,and the breakdown delay decreases with an increase in the gas pressure and a reduction in the gap distance of the switch under the same applied pulse. By using this kind of switch with a gap of 3 mm as a peaking switch, a pulse generator can provide an output voltage with a peak voltage of 300 kV and a risetime of 3 ns on a resistance load of 150 Ω.

  3. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Zhou, D.; Lu, Y.; Kang, Y.; Zhao, Y.; Wang, X. [Chongqing University, Chongqing (China)

    2009-09-15

    Mine gas extraction in China is difficult due to the as micro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. The three dynamic effects can be found in low-permeability coal seams. A new pulsed water jet with 200-1000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas absorption rate also decreased. Application results show that gas adsorption rate decreased by 30-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods. 11 refs., 5 figs., 2 tabs.

  4. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; ZHOU Dong-ping; LU Yi-yu; KANG Yong; ZHAO Yu; WANG Xiao-chuan

    2009-01-01

    Mine gas extraction in China is difficult due to the characteristics such as mi-cro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. What's more, the three dynamic effects can be found in low-perme-ability coal seams. A new pulsed water jet with 200-1 000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas ab-sorption rate also decreased. Application results show that gas adsorption rate decreased by 30%-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods.

  5. A time-delay calibrated method for cornea hysteresis and intraocular pressure measurement

    Science.gov (United States)

    Wang, Kuo-Jen; Tsai, Che-Liang; Wang, Wai; Hsu, Long; Hsu, Ken-Yuh

    2016-04-01

    The presence of cornea hysteresis (CH) in characterizing the intraocular pressure (IOP) of a human eye deteriorates the accuracy of IOP. To suppress CH, the pressure gauge of a tonometer must be located as close as possible to the cornea. However, this arrangement is unpractical because appropriate working distance to the cornea is required. In this paper, a time-delay calibrated (TDC) method is proposed to counteract the undesired effect of CH in characterizing the IOP. Employing this TDC method, the CH approaches to zero for most eyes measured.

  6. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  7. Effects of pressure and gas-jet thickness on the generation of attosecond pulse

    International Nuclear Information System (INIS)

    We investigate how the intensity and duration of an attosecond pulse generated from high-order harmonic generation are affected by the pressure and thickness of the gas jet by taking into account the macroscopic propagation of both fundamental and harmonic fields. Our simulations show that, limited by the propagation effects, especially the absorption of harmonics, the intensity of an attosecond pulse cannot be improved by just independently increasing the gas pressure or the medium length. On the other hand, due to good phase-matching conditions, the duration of a generated attosecond pulse can be improved by changing the gas pressure. (atomic and molecular physics)

  8. Cerebrospinal fluid pulse pressure amplitude during lumbar infusion in idiopathic normal pressure hydrocephalus can predict response to shunting

    Directory of Open Access Journals (Sweden)

    Brean Are

    2010-02-01

    Full Text Available Abstract Background We have previously seen that idiopathic normal pressure hydrocephalus (iNPH patients having elevated intracranial pressure (ICP pulse amplitude consistently respond to shunt surgery. In this study we explored how the cerebrospinal fluid pressure (CSFP pulse amplitude determined during lumbar infusion testing, correlates with ICP pulse amplitude determined during over-night ICP monitoring and with response to shunt surgery. Our goal was to establish a more reliable screening procedure for selecting iNPH patients for shunt surgery using lumbar intrathecal infusion. Methods The study population consisted of all iNPH patients undergoing both diagnostic lumbar infusion testing and continuous over-night ICP monitoring during the period 2002-2007. The severity of iNPH was assessed using our NPH grading scale before surgery and 12 months after shunting. The CSFP pulse was characterized from the amplitude of single pressure waves. Results Totally 62 iNPH patients were included, 45 of them underwent shunt surgery, in whom 78% were shunt responders. Among the 45 shunted patients, resistance to CSF outflow (Rout was elevated (≥ 12 mmHg/ml/min in 44. The ICP pulse amplitude recorded over-night was elevated (i.e. mean ICP wave amplitude ≥ 4 mmHg in 68% of patients; 92% of these were shunt responders. In those with elevated overnight ICP pulse amplitude, we found also elevated CSFP pulse amplitude recorded during lumbar infusion testing, both during the opening phase following lumbar puncture and during a standardized period of lumbar infusion (15 ml Ringer over 10 min. The clinical response to shunting after 1 year strongly associated with the over-night ICP pulse amplitude, and also with the pulsatile CSFP during the period of lumbar infusion. Elevated CSFP pulse amplitude during lumbar infusion thus predicted shunt response with sensitivity of 88 and specificity of 60 (positive and negative predictive values of 89 and 60

  9. Arterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.

    Science.gov (United States)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. PMID:19940350

  10. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  11. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    Science.gov (United States)

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation. PMID:18798652

  12. Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV

    NARCIS (Netherlands)

    Blinde, P.L.; Lynch, K.P.; Schrijer, F.F.J.; Van Oudheusden, B.W.

    2015-01-01

    A tomographic four-pulse PIV system is used in a transonic axisymmetric base flow experiment at a nominal free stream Mach number of 0.7, with the objective to obtain flow acceleration and pressure data. The PIV system, consisting of two double-pulse lasers and twelve cameras, allows acquiring two v

  13. Reflectance pulse oximetry at the forehead of newborns : The influence of varying pressure on the probe

    NARCIS (Netherlands)

    Dassel, ACM; Graaff, R; Zijlstra, WG; Aarnoudse, JG

    1996-01-01

    Objective: Transmission pulse oximetry (TPO) is not a practical method of intrapartum fetal monitoring of arterial oxygen saturation. Reflectance pulse oximetry (RPO) requires a sensor applied to the skin of the fetal head and may be a useful technique. During labor, various degrees of pressure will

  14. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice

    Science.gov (United States)

    Avsaroglu, M. D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G.

    2015-04-01

    This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100 ppb). Then, the samples were processed 5 min at different pressure treatments (300-500 MPa) in combination with different temperatures (30-50°C) and pulses (6 pulses × 50 s and 2 pulses × 150 s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.

  15. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-01

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  16. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    International Nuclear Information System (INIS)

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst

  17. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Guo, Ying; Shi, Yuncheng [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China)

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  18. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  19. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    Science.gov (United States)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  20. Elevated pulse pressure is associated with hemolysis, proteinuria and chronic kidney disease in sickle cell disease.

    Directory of Open Access Journals (Sweden)

    Enrico M Novelli

    Full Text Available A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661 enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02 and high hemolytic index (beta  =  1.53, p = 0.002 in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02, and with proteinuria (beta  =  2.52, p  =  0.04. These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses.

  1. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  2. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation

    International Nuclear Information System (INIS)

    Long-ns-duration, single pulse laser-induced breakdown spectroscopy (LIBS) is known to be an effective method to observe well resolved spectra from samples immersed in water at high hydrostatic pressures. The aim of this study is to investigate whether the signals obtained using this method are suitable for quantitative analysis of chemical composition. Six certified brass alloys consisting of copper (Cu), zinc (Zn) and lead (Pb) were measured underwater using a laser pulse of duration 250 ns, and their compositions were determined using calibration-free LIBS (CF-LIBS) and corrected CF-LIBS (CCF-LIBS) methods. The mass fractions of Cu and Zn calculated using CF-LIBS showed better agreement with the certified values than those determined using CCF-LIBS, with relative errors of Cu 4.2 ± 3.3 % and Zn 7.2 ± 6.4 %. From the results, it can be said that the difference of preferential evaporation and ablation among elements does not need to be considered for underwater measurements with the long-pulse LIBS setup used in this work. While the results indicate that the CF-LIBS method can be applied for in situ quantitative analysis of major elements with concentrations > ~ 10 %, the mass fractions determined for Pb, with concentrations < 5 % had large relative errors, suggesting that an alternative method is required to quantify minor elements. - Highlights: • The spectra of submerged metal alloys obtained using a long pulse is suitable for CF-LIBS. • CF-LIBS determines the mass fractions of major elements of submerged brass targets in water. • The compositions of Cu and Zn are determined within 10 % relative error. • The preferential evaporation and ablation among elements do not have a significant influence on the quantitative analysis of brass samples submerged in water using a long-ns-duration laser pulse

  3. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomoko, E-mail: takahas@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Thornton, Blair [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ohki, Koichi [OK Lab. Co., Ltd. 8-7-3 Shimorenjyaku, Mitaka, Tokyo 181-0013 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2015-09-01

    Long-ns-duration, single pulse laser-induced breakdown spectroscopy (LIBS) is known to be an effective method to observe well resolved spectra from samples immersed in water at high hydrostatic pressures. The aim of this study is to investigate whether the signals obtained using this method are suitable for quantitative analysis of chemical composition. Six certified brass alloys consisting of copper (Cu), zinc (Zn) and lead (Pb) were measured underwater using a laser pulse of duration 250 ns, and their compositions were determined using calibration-free LIBS (CF-LIBS) and corrected CF-LIBS (CCF-LIBS) methods. The mass fractions of Cu and Zn calculated using CF-LIBS showed better agreement with the certified values than those determined using CCF-LIBS, with relative errors of Cu 4.2 ± 3.3 % and Zn 7.2 ± 6.4 %. From the results, it can be said that the difference of preferential evaporation and ablation among elements does not need to be considered for underwater measurements with the long-pulse LIBS setup used in this work. While the results indicate that the CF-LIBS method can be applied for in situ quantitative analysis of major elements with concentrations > ~ 10 %, the mass fractions determined for Pb, with concentrations < 5 % had large relative errors, suggesting that an alternative method is required to quantify minor elements. - Highlights: • The spectra of submerged metal alloys obtained using a long pulse is suitable for CF-LIBS. • CF-LIBS determines the mass fractions of major elements of submerged brass targets in water. • The compositions of Cu and Zn are determined within 10 % relative error. • The preferential evaporation and ablation among elements do not have a significant influence on the quantitative analysis of brass samples submerged in water using a long-ns-duration laser pulse.

  4. Short-pulse high-power microwave breakdown at high pressures

    International Nuclear Information System (INIS)

    The fluid model is proposed to investigate the gas breakdown driven by a short-pulse (such as a Gaussian pulse) high-power microwave at high pressures. However, the fluid model requires specification of the electron energy distribution function (EEDF); the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium. We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision (PIC-MCC) model. As a result, the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures, and the obtained results are very well matched with those of the PIC-MCC simulations. The time evolution of a non-rectangular pulse breakdown in gas, obtained by the fluid model with the EEDF from Bolsig+, is presented and analyzed at different pressures. In addition, the effect of the incident pulse shape on the gas breakdown is discussed. (paper)

  5. Short-pulse high-power microwave breakdown at high pressures

    Institute of Scientific and Technical Information of China (English)

    赵朋程; 廖成; 冯菊

    2015-01-01

    The fluid model is proposed to investigate the gas breakdown driven by the short-pulse (such as Gaussian pulse) high-power microwave at high pressures. However, the fluid model requires specification of the electron energy distribution function (EEDF);the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium. We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision (PIC-MCC) model. As a result, the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+, is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures, and the obtained results are very well matched with those of the PIC-MCC simulations. The time evolution of a non-rectangular pulse breakdown in gas, obtained by the fluid model with the EEDF from Bolsig+, is presented and analyzed at different pressures. In addition, the effect of the incident pulse shape on the gas breakdown is discussed.

  6. Pressure tunable cascaded third order nonlinearity and temporal pulse switching

    DEFF Research Database (Denmark)

    Eilenberger, Falk; Bache, Morten; Minardi, Stefano;

    2013-01-01

    Effects based on the χ(3)-nonlinearity are arguably the most commonly discussed nonlinear interactions in photonics. In the description of pulse propagation, however, the generation of the third harmonic (TH) is commonly neglected, because it is strongly phase mismatched in most materials...

  7. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  8. a New Approach of Dynamic Blood Pressure Measurement Based on the Time Domain Analysis of the Pulse Wave

    Science.gov (United States)

    Zimei, Su; Wei, Xu; Hui, Yu; Fei, Du; Jicun, Wang; Kexin, Xu

    2009-08-01

    In this study the pulse wave characteristics were used as a new approach to measure the human blood pressure. Based the principle of pulse wave and theory of the elastic vascular, the authors analyzed the characteristic of the pulse waveforms and revealed the characteristics points which could be used to represent the blood pressure. In this investigation the relevant mathematical feature was used to identify the relationship between the blood pressure and pulse wave parameters in a more accurate way. It also provided an experimental basis to carry out continuing non-invasive blood pressure monitoring using the pulse wave method.

  9. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    International Nuclear Information System (INIS)

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter 10 (particulate matter with an aerodynamic diameter 2.5 was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8–6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM2.5 were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  10. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  11. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  12. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    CERN Document Server

    Lee, H S; Choi, J H; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, K W; Kim, S C; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, J K; Leonard, D S; Li, J; Myung, S S; Olsen, S L; So, J H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with similar result from a neutron reactor demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source.

  13. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate

    OpenAIRE

    Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J.; Sun, Mingui

    2014-01-01

    It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-ba...

  14. Effect of Inflammation on the Relationship of Pulse Pressure and Mortality in Haemodialysis

    OpenAIRE

    Banerjee, Debasish; Collins, Allan J; Herzog, Charles A.

    2012-01-01

    Background/Aim The effect of hypertension on mortality in haemodialysis patients is controversial and can be confounded by non-traditional risk factors like systemic inflammation. This study examined the effect of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) on mortality in haemodialysis patients, separately with and without markers of systemic inflammation. Methods Data from the United States Renal Data System were analysed for 9,862 patients receivi...

  15. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  16. Study of relationship between pulse pressure and mortality from all the causes, CVD and CVA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To determine the relationship between pulse pressure and mortality from all the causes: CVD and CVA. Methods: The cohort consisted of the beneficiaries from Korea Medical Insurance Corporation (KMIC) aged 40 and older who had taken health examination and completed the questionnaire inquiring of health habits and past medical history in 1992 or 1993. The number of cohort members was 698,796, and they were followed up from 1st January, 1994 until 31st December, 2000. The primary sources of the data used in this study were the death benefit record and health examination file of KMIC. In the case that the information about the cause of death was unknown in the death benefit record, it was checked from the death registry of National statistical Office and the inpatient data of KMIC. There were 37439 deaths during the follow-up period. Results: A linear relationship between pulse pressure and mortality from all the causes, cardiovascular disease and cerebrovascular disease, was determined in both genders, the whole population and age groups, in the hypertensive and normotensive ( P< 0. 01). Pulse pressure and mortality from all the causes, CVD and CVA increased ( P <0.01). Pulse pressure was significantly associated with a relatively high risk of mortality from all the causes, CVD and CVA in the whole population, both genders, all age groups, the hypertensive and normotensive after adjusted to age, gender, body mass index, blood sugar, serum total cholesterol, AST, ALT, urine protein, urine glucose, alcohol drinking and cigarette smoking ( P< 0.01). Conclusion: Pulse pressure shows linear relationship with the mortality from all the causes,CVD and CVA. Pulse pressure appears to be a single measure of blood pressure in predicting mortality from all the causes,CVD and CVA, even in the hypertensive and normotensive.

  17. Explosive Processes on Cathode while Forming Nanosecond Pulsed Discharge of High Pressure

    Directory of Open Access Journals (Sweden)

    A. Hashimov

    2012-01-01

    Full Text Available The paper is devoted to research of cathode surfaces with different curvature radius (r = 1–8 mm while forming nanosecond pulsed discharge in dense air. Influence of field and air pressure heterogeneity rate in gas gap on size of micro-craters being formed on working cathode surface after pulsed effect has been shown in the paper. The paper reveals a maximum expansion of separate micro-crater size on cathode surface with small curvature radius.

  18. Simulation and modeling of pressure pulse propagation in fluids inside drill strings

    OpenAIRE

    Namuq, Mohammed Ali

    2013-01-01

    Modern bottom-hole assemblies are equipped with various sensors which measure the geological and directional information of the borehole while drilling. It is very crucial to get the measured downhole information to the surface in real time in order to be able to monitor, steer and optimize the drilling process while drilling. The transmission of the information to the surface is most commonly carried out by coded pressure pulses (the technology called mud pulse telemetry) which propagate thr...

  19. Some characteristics of the digitization pulses from high pressure neon-helium flash tubes

    International Nuclear Information System (INIS)

    Characteristics of the digitization output pulses from high pressure neon-helium flash tubes were studied under various operation conditions using square ultra-high voltage pulses. Properties reported by previous workers were compared. Two discharge mechanisms, the Townsend avalanche discharge and the streamer discharge, were observed to occur in sequence in some events. The output waveforms for both discharge mechanisms were studied in detail. The charge induced on a detecting probe was also estimated from the measured data. (Auth.)

  20. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    OpenAIRE

    Cappa, F.; Guglielmi, Y.; J. Rutqvist; Tsang, C.-F.; Thoraval, A.

    2008-01-01

    Water Resources Research, v. 44, p. W11408, 2008. http://dx.doi.org/10.1029/2008WR007015; International audience; The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow-fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equip...

  1. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures

    Directory of Open Access Journals (Sweden)

    Julia M. Leach

    2014-09-01

    Full Text Available The Nintendo Wii balance board (WBB has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation research domains. Although the WBB has been proposed as an alternative to the “gold standard” laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz. Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB’s CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML (compared to the anteroposterior (AP sway direction. There was no difference in error across the 12 WBB’s, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB’s CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB’s CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error from 2–6 mm (before calibration to 0.5–2 mm (after calibration. WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain CoP sway measures, from −10.5% (before calibration to −0.05% (after calibration (percent errors averaged across all sway measures and in both sway directions. In this study, we characterized the WBB’s CoP measurement error

  2. Ionospheric Response to Solar Wind Pressure Pulses Under Northward IMF Conditions

    Directory of Open Access Journals (Sweden)

    Kan Liou

    2013-01-01

    Full Text Available Enhancements of aurora and auroral electrojets in response to sudden compression of the magnetosphere by shocks/pressure pulses are well known and have been attributed by some to compression-enhanced magnetic field reconnection. To examine such a view, we analyze a fortuitous event that is comprised of a series of pressure pulses (< 20 min on November 8, 2000. These pressure pulses were preceded by a large, northward interplanetary magnetic field (IMF that lasted more than 15 hours such that effects from reconnection can be minimized. Auroral images acquired by ultraviolet imager on board the Polar satellite clearly show intensifications of the aurora that occurred first near local noon and progressively extended from dayside to nightside. The area-integrated global auroral power reached ~30 gigawatts (GW. It is also found that the global auroral power is well correlated with the solar wind dynamic pressure (correlation coefficient r ~0.90, rather than the change in the solar wind dynamic pressure. In-situ measurements of particle data from the Defense Meteorological Satellite Program satellite indicate that the magnetospheric source for the pressure-enhanced auroras is most likely the central plasma sheet. Other ionospheric parameters such as the auroral electrojet (AE index, magnetic storm index (Sym-H, and the cross polarcap potential drop also show a one-to-one correspondence to the pressure pulses. In one instance the auroral electrojets AE index reached more than 200 nT, the cross polar-cap potential drop (Φpc inferred from the SuperDARN radar network ionospheric plasma convection increased to ~60 kV. The observed increases in the auroral emissions, AE, and polar cap potential were not associated with substorms. Our result strongly suggests that solar wind pressure pulses are an important source of geomagnetic activity during northward IMF periods.

  3. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  4. Influence of Pulse Pressure on Seed Quality and Yield of Buckwheat (Fagopyrum esculentum Moench.

    Directory of Open Access Journals (Sweden)

    Elena Nefed'eva

    2013-09-01

    Full Text Available A method of pre-sowing treatment of seeds by pulse pressure which is characterized by high intensity and accuracy of dosage has been proposed. Pulse pressures in the range of 11-29 MPa did not lead to acute lethality determined by phosphorescence at room temperature. So there was no elimination of unproductive individuals but pulse pressure stimulated physiological processes in seeds and plants, leading to increased yield. Changes of germination, growth, and distribution of substances as well as plant productivity were observed. Generalization and analysis of experimental results demonstrated zones in dose-dependent area, such as the zone of hormesis (11-17 MPa, transitional zone (20-26 MPa and stress zone (29 MPa and more.

  5. Revised calibration of the Sm:SrB4O7 pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    International Nuclear Information System (INIS)

    The pressure-induced shift of Sm:SrB4O7 fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51)−14.3 − 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  6. Gas flow effects on the submicrosecond pulsed atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    The influence of gas flow on the discharge characteristics in the submicrosecond pulsed dielectric barrier discharge at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. The convection-transport mechanism of the plasma species caused by a longitudinal gas flow was integrated into flux equation. Two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a subnormal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism.

  7. Calibrating mars orbiter laser altimeter pulse widths at mars science laboratory candidate landing sites

    OpenAIRE

    Poole, W.; Muller, J.-P.; S. Gupta; Grindrod, Peter M.

    2014-01-01

    Accurate estimates of surface roughness allow quantitative comparisons between planetary terrains. These comparisons enable us to improve our understanding of commonly occurring surface processes, and develop a more complete analysis of candidate landing and roving sites. A (secondary) science goal of the Mars Orbiter Laser Altimeter was to map surface roughness within the laser footprint using the backscatter pulse-widths of individual pulses, at finer scales than can be derived from the ele...

  8. Influence of the abrupt area change on the pressure pulse expansion

    International Nuclear Information System (INIS)

    The sudden valve closure in the pipeline system causes a large pressure pulse. The pulse expands along the pipe and reflects from the obstruction such as, close end, valve, water tank, ... Every such obstruction can be described as abrupt area change and has different effects on pressure pulse expansion. In certain circumstances phase transition and two phase flow appears which complicates the problem. Two phase flow surface is a new object for pressure pulse reflection and deformation and also it appears to be a source of new pressure pulses. A fluid flow is described with conservative equations (continuity, momentum and energy equation) which are completed with state equation. The problem was calculated as one-dimensional with the excluded gravitational force, neglected friction force and heat transfer. The problem is calculated by method of characteristics (MOC).In the model the pipe system is separated into two parts which each one has constant cross section. Each part has its own nodalization. Those parts are gathered in the abrupt area change point with special conservative equations in the integral form. When phase transition occurs the supposition that all vapour gathers in one bubble across the whole cross section is used. That simplifies the problem and it is further calculated as single-phase. For controlling and comparing the results the same problem was calculated with the RELAP5 program, which calculates on two-phase base with semi implicit scheme. (author)

  9. Pressure pulse induced-damage in live biological samples

    Directory of Open Access Journals (Sweden)

    Rankin S.M.

    2012-08-01

    Full Text Available Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast on live biological samples is critical for improving clinical outcomes. To analyze the effects of blast waves upon the cellular structures and the underlying physiological and biochemical changes, we have constructed an experimental platform capable of delivering compression waves, of amplitudes relevant to blast, to cell suspensions in a contained environment. Initial characterization of the system shows that cell cultures can be subjected to high-intensity compression waves up to 15 MPa in pressure and duration of 80 ± 10μs. Studies of mouse mesenchymal stem cells subjected to two different pressure impulses were analysed by cell counting, cell viability assays and microscopic evaluation: the experiments present evidence suggestive of increased levels of damage and loss of cellular integrity compared to uncompressed cell cultures.

  10. On the pressure wave problem in liquid metal targets for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    A liquid metal target for a pulsed spallation source was modelled on the computer to investigate the effect of the high instantaneous power deposition (60 KJ in 1 μs) on the pressure in the liquid and the resulting stress on the container. It was found that for the short pulse duration the resulting stress would be likely to exceed the allowable design stress for steels of the HT-9 type with low nickel content. Adding a small volume fraction of gas bubbles might be a way to suppress almost completely the generation of pressure waves. (author) 12 figs., 5 refs

  11. Needling Neiguan (P 6) for Treatment of Low Pulse Pressure Syndrome-- A Report of 31 Cases

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To observe the impact of needling Neiguan (P 6) on the cardiovascular functional status in low pulse pressure syndrome. Method: 49 eligible patients were randomly assigned to a acupuncture group with bilateral Neiguan (P 6) needled for successive 3 days, and a medication group given a daily 20 mL of Shenmai Injectio intravenously dripped for successive 6 days. The blood pressure, pulse pressure, stroke volume (SV), cardiac output(CO)/min, left ventricle work index (LVWI), mean arterial pressure (MAP), total peripheral resistance (TPR), coronary perfusion pressure (CPP), pulmonary arterial wedge pressure (PAWP), effective blood volume (BV), blood viscosity (N), microcirculation half renewal rate (MHR), and cardiac muscle blood volume (CMBV) were determined before and after the treatment, which were compared with the parameters obtained in 23 healthy subjects. Results: The decreased pulse pressure of all patients before treatment (P<0.01) increased significantly after treatment (P<0.001). The levels of SV, CO, LVWI, PAWP, BV, MHR and CMBV were lowed when compared with the healthy subjects before treatment (P<0.01), but all of them significantly increased after treatment (P<0.01). The increased CPP, TPR and N before treatment (P<0.01) were decreased after treatment (P<0.01). Conclusion: The therapeutic effect of acupuncture at point Neiguan (P 6) was better than medication though some of the indexes showed no significant difference (P<0.05).

  12. Non-invasive measurement of the blood pressure pulse using multiple PPGs

    Science.gov (United States)

    Seymour, John; Pennington, Gary

    Heart disease, the leading cause of death in the US, may be spotted early on by looking at photoplethysmogram (PPG) data. This experiment explores a new method of continuously monitoring the blood pressure pulse with PPG data. In contrast to the traditional sphygmomanometer (cuff) method, which yields only the systolic and diastolic pressure during measurement, this method tracks the blood pressure pulse wave in a non-invasive continuous manner. This procedure allows for fast, inexpensive, and detailed analysis of the patient's blood pressure implementable on a large scale. We also explore the second derivative of the PPG data. In combination with the above method, the patient's heart risk can be effectively detected. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics, Towson University.

  13. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    Science.gov (United States)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  14. Flux transfer events at the dayside magnetopause: transient reconnection or magnetosheath dynamic pressure pulses?

    OpenAIRE

    Lockwood, Mike

    1991-01-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed “flux transfer events” (FTEs), are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features ...

  15. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Nobuhiko eAkazawa

    2015-10-01

    Full Text Available Central arterial blood pressure (BP is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine healthy postmenopausal women (age: 61 ± 2 years participated in a 12-week aerobic exercise training regimen. Before and after the training, each subjects performed a single bout of cycling at ventilatory thresholds for 30 min. We evaluated the post-exercise aortic BP response, which was estimated via the general transfer function from applanation tonometry. After the initial pre-training aerobic exercise session, aortic BP did not change significantly: however, aortic pulse pressure and augmentation pressure were significantly attenuated after the single aerobic exercise session following the 12-week training regimen. The present study demonstrated that a regular aerobic exercise training regimen induced the post-exercise reduction of aortic pulse pressure and augmentation pressure. Regular aerobic exercise training may enhance post-exercise reduction in aortic BP.

  16. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.

    Science.gov (United States)

    Lowe, A; Harrison, W; El-Aklouk, E; Ruygrok, P; Al-Jumaily, A M

    2009-09-18

    Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. The model assumptions are particularly applicable to the measurement method and result in a time-domain relation with two parameters, namely, the wave propagation transit time and the reflection coefficient at the cuff. Central pressures estimated by the model were derived from completely automatic, non-invasive measurement of brachial blood pressure and suprasystolic waveform and were compared to simultaneous invasive catheter measurements in 16 subjects. Systolic blood pressure agreement, mean (standard deviation) of difference was -1 (7)mmHg. Diastolic blood pressure agreement was 4 (4)mmHg. Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation. PMID:19665136

  17. Study on improving the permeability of soft coal seam with high pressure pulsed water jet

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Hong Li; Yi-Yu Lu; Yu Zhao; Yong Kang; Dong-Ping Zhou [Chongqing University (China)

    2008-12-15

    A new idea of improving the permeability of soft coal seams and increasing the rate of gas release by drilling and splitting the coal seam is presented. Based on the rock dynamic damage model, the dynamic damage properties and the fracture field's dynamic evolution mechanism were studied by theoretical analyses and numerical simulation of the condition of instantaneous dynamic load and flexible impact of a high pressure pulsed water jet. The results show that the effect of the impact, denudation and vibration caused coal to crack and improved permeability. A pulsed water jet gas drainage system has been developed and applied successfully in a typical mine rich in gas and of low permeability in Chongqing. The application demonstrates the high pressure pulsed water jet has effectively improved seam permeability with the drainage flux amounting to 7.8 times per 100 m of drainage hole. 8 refs., 6 figs.

  18. Evidence for the propagation of 2D pressure pulses in lipid monolayers near the phase transition

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    The existence and propagation of acoustic pressure pulses on lipid monolayers at the air/water-interfaces are directly observed by simple mechanical detection. The pulses are excited by small amounts of solvents added to the monolayer from the air phase. Employing a deliberate control of the lipid interface compressibility k, we can show that the pulses propagate at velocities, which are precisely reflecting the nonlinear behavior of the interface. This is manifested by a pronounced minimum of the sound velocity in the monolayer phase transition regime, while ranging up to 1.5 m/s at high lateral pressures. Motivated by the ubiquitous presence of lipid interfaces in biology, we propose the demonstrated sound propagation as an efficient and fast way of communication and protein modulation along nerves, between cells and biological units being controlled by the physical state of the interfaces.

  19. Simultaneously Propagating Voltage and Pressure Pulses in Lipid Monolayers of pork brain and synthetic lipids

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions, individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, whose controllable thermodynamic state enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing timeresolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0,1 to 3mV...

  20. Calibration of pulse transit time through a cable for EAS experiments

    CERN Document Server

    Xiang-Li, Qian; Cun-Feng, Feng; Zhao-Yang, Feng; Quan-Bu, Gou; Yi-Qing, Guo; Hong-Bo, Hu; Cheng, Liu; Zheng, Wang; Liang, Xue; Xue-Yao, Zhang; Yi, Zhang

    2013-01-01

    In ground-based extensive air shower experiments, the direction and energy are reconstructed by measuring the relative arrival time of secondary particles, and the energy they deposit. The measurement precision of the arrival time is crucial for determination of the angular resolution. For this purpose, we need to obtain a precise relative time offset for each detector, and to apply the calibration process. The time offset is associated with the photomultiplier tube, cable, relevant electronic circuits, etc. In view of the transit time through long cables being heavily dependent on the ambient temperature, a real-time calibration method for the cable transit time is investigated in this paper. Even with a poor-resolution time-to-digital converter, this method can achieve high precision. This has been successfully demonstrated with the Front-End-Electronic board used in the Daya Bay neutrino experiment.

  1. REFLECTANCE PULSE OXIMETRY AT THE FOREHEAD IMPROVES BY PRESSURE ON THE PROBE

    NARCIS (Netherlands)

    DASSEL, ACM; GRAAFF, R; SIKKEMA, M; ZIJLSTRA, WG; AARNOUDSE, JG

    1995-01-01

    In this study, we investigated the possibility of improving reflectance (back-scatter) pulse oximetry measurements by pressure applied to the probe. Optimal signal detection, with the probe applied to an easily accessible location, is important to prevent erroneous oxygen saturation readouts. At the

  2. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  3. Evolution of the Pulse Width in Dielectric Barrier Atmospheric Pressure Discharge

    Institute of Scientific and Technical Information of China (English)

    宋新新; 谭震宇; 陈波; 张远涛; 李清泉

    2012-01-01

    A study of the evolution of the pulse width in homogeneous dielectric barrier dis- charge at atmospheric pressure with helium as the working gas is reported by using a one- dimensional fluid model. In this paper, a new computational method is presented to estimate the pulse width through calculating the time interval between the breakdown voltage and the extinguishing voltage. The effects on the discharge characteristics of the applied voltage and exci- tation frequency are studied based on the computational data. The results of the simulation show that the pulse width is observed to be narrower and the time intervals between two consecutive current pulses decrease with increasing amplitude and excitation frequency, which indicates that the homogeneous discharge is susceptible to the filamentary mode. The simulation results support the conclusion that in order to restrain the transition from the glow mode to filamentary mode, the applied voltage and excitation frequency should be kept within an appropriate range.

  4. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index

    DEFF Research Database (Denmark)

    Fuglsang, S; Bendtsen, F; Christensen, E;

    2001-01-01

    Arterial function may be altered in patients with cirrhosis. We determined compliance of the arterial tree (C(1)) in relation to systemic and splanchnic hemodynamic derangement and clinical variables. C(1) and the stroke volume-pulse pressure index (SV/PP) were significantly higher (+62% and +40....../PP on one side and age, sex, body weight, portal pressure, systemic hemodynamics, biochemical variables, and severity of disease on the other. In the multiple-regression analysis, sex, age, mean arterial blood pressure, systemic vascular resistance, and biochemical variables were significant independent...

  5. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim;

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  6. Serum lipids and apolipoprotein B values, blood pressure and pulse rate in anorexia nervosa.

    Science.gov (United States)

    Sánchez-Muniz, F J; Marcos, A; Varela, P

    1991-01-01

    Some risk factors associated with coronary heart disease (CHD) were evaluated in patients with different types of anorexia nervosa (AN). Anthropometric parameters, serum cholesterol, triglycerides and apoprotein (apo) B values, blood pressure and pulse rate were tested in 29 young female patients and 16 controls. Cholesterol, triglycerides and apo B were higher at the acute period of the illness (AN1), whereas at the chronic period the values of these parameters tended to normalize. Triglycerides were higher in patients who binge ate (bulimarexia). Systolic blood pressure decreased in all types of AN, while diastolic blood pressure decreased only in AN1; pulse rate was not altered. According to cholesterol and apo B values, AN patients may be at risk of CHD if they remain at low body weight. PMID:1855497

  7. Comparison of oscillometric and intra-arterial blood pressure and pulse measurement.

    Science.gov (United States)

    Rithalia, S V; Edwards, D

    1994-01-01

    Non-invasive oscillometric blood pressure and pulse measured by an Omron HEM-703CP monitor were compared with arterial values obtained from direct measurements of the radial artery. An excellent correlation and agreement was found between the two methods (systolic r = 0.99; diastolic r = 0.97; pulse r = 0.99), although there was some variability among individual subjects. The range of difference between them was 0 to 10 mmHg for systolic and -6 to +5 mmHg for diastolic pressures. When tested on the bench using the Metron QA-1280 non-invasive blood pressure analyser the HEM-703CP monitor rarely exhibited errors exceeding 2-3 mmHg over a measurement range of 50-200 mmHg. PMID:7776359

  8. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    Science.gov (United States)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  9. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107–108 cm s−1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  10. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  11. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor

    Science.gov (United States)

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-01-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer’s daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07–0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  12. Pulsed Discharge Effects on Bacteria Inactivation in Low-Pressure Radio-Frequency Oxygen Plasma

    Science.gov (United States)

    Vicoveanu, Dragos; Ohtsu, Yasunori; Fujita, Hiroharu

    2008-02-01

    The sporicidal effects of low-pressure radio frequency (RF) discharges in oxygen, produced by the application of continuous and pulsed RF power, were evaluated. For all cases, the survival curves showed a biphasic evolution. The maximum efficiency for bacteria sterilization was obtained when the RF power was injected in the continuous wave mode, while in the pulsed mode the lowest treatment temperature was ensured. The inactivation rates were calculated from the microorganism survival curves and their dependencies on the pulse characteristics (i.e., pulse frequency and duty cycle) were compared with those of the plasma parameters. The results indicated that the inactivation rate corresponding to the first phase of the survival curves is related to the time-averaged intensity of the light emission by the excited neutral atoms in the pulsed plasma, whereas the inactivation rate calculated from the second slope of the survival curves and the time-averaged plasma density have similar behaviors, when the pulse parameters were modified.

  13. Numerical predictions of pressure pulses in a Francis pump turbine with misali-gned guide vanes

    Institute of Scientific and Technical Information of China (English)

    肖业祥; 王正伟; 张瑾; 罗永要

    2014-01-01

    Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior.

  14. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    Directory of Open Access Journals (Sweden)

    M.U.R. Naidu

    2012-01-01

    Full Text Available Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood pressures were recorded in a randomised manner using both the oscillometric and tonometric devices. All recordings were performed 10 minutes after the patient lying comfortably in a noise-free temperature-controlled room. The test was performed between 09 am and 10 am after overnight fast. A minimum of three measurements were performed by the same skilled and trained operator. From the raw data obtained with two devices, software calculated the final vascular parameters. Results: A total of 49 patients (8 women and 41 men, of mean age 40.5 years (range: 19-81 years participated in the present study. After transforming the brachial pressures into aortic pressures, the correlation coefficient between the Aortic Systolic Pressure (ASP values obtained with two methods was 0.9796 (P<0.0001. The mean difference between ASP with two methods was 0.3 mm Hg. Similarly, Aortic Diastolic Pressure (ADP values obtained with two methods also correlated significantly with correlation coefficient of 0.9769 (P<0.0001. The mean difference of ADP was 0.2 mm Hg. In case of Aortic Pulse Pressure (APP, the mean difference was 0.1 mm Hg. All parameters of central aortic pressures obtained with two methods correlated significantly. Conclusion: The new method of transforming the Carotid Femoral PWV (cfPWV and brachial blood pressure values into aortic blood pressure values seems to be reasonably good. The significant correlation between the values obtained by tonometric device and

  15. Pulse, dc and ac breakdown in high pressure gas discharge lamps

    International Nuclear Information System (INIS)

    An optical study of pulse, dc, and ac (50-400 kHz) ignition of metal halide lamps has been performed by investigating intensified CCD camera images of the discharges. The ceramic lamp burners were filled with xenon gas at pressures of 300 and 700 mbar. In comparison with dc and pulse ignition, igniting with an ac voltage decreases the ignition voltage by up to 56% and the breakdown time scales get much longer (∼10-3 s compared with ∼10-7 s for pulse ignition). Increasing the ac frequency decreases the ignition voltages and changes the ionization channel shapes. External irradiation of UV light can have either an increasing or a decreasing effect on ignition voltages

  16. Correlation between Cigarette Smoking and Blood Pressure and Pulse Pressure among Teachers Residing in Shiraz, Southern Iran

    Directory of Open Access Journals (Sweden)

    F Abtahi

    2011-09-01

    Full Text Available Background: Hypertension (HTN affects nearly 26% of the adult population worldwide. Assessment of factors which influence blood pressure is a major topic for public health. One of these preventable risk factors is smoking. Methods: This cross-sectional study was conducted on 3115 (1842 [59.1%] females teachers from Shiraz. The participants aged between 21 and 73 years. A questionnaire was used to collect data on several cardiovascular disease risk factors including smoking and blood pressure. Results: The prevalence of smoking in our study group was 5.85%; 1.52% of the studied participants were ex-smokers. The prevalence of pre-HTN and HTN (JNC VII was 42.6% and 18.2%, respectively. HTN was more prevalent among men and elderly people. Pre-HTN was more prevalent in smokers but HTN was more frequent in non-smokers. The mean rang of systolic and diastolic HTN, and pulse pressure was greater in heavy smokers than those who smoked <20 packs year, although the difference was not statically significant. Conclusion: The relation between the smoking status and blood pressure is not yet obvious. However, it seems that cessation or at least reduction in the amount of smoking would significantly decrease blood pressure.

  17. Numerical simulation of pressure waves in the cochlea induced by a microwave pulse.

    Science.gov (United States)

    Yitzhak, Nir M; Ruppin, Raphael; Hareuveny, Ronen

    2014-10-01

    The pressure waves developing at the cochlea by the irradiation of the body with a plane wave microwave pulse are obtained by numerical simulation, employing a two-step finite-difference time-domain (FDTD) algorithm. First, the specific absorption rate (SAR) distribution is obtained by solving the Maxwell equations on a FDTD grid. Second, the temperature rise due to this SAR distribution is used to formulate the thermoelastic equations of motion, which are discretized and solved by the FDTD method. The calculations are performed for anatomically based full body human models, as well as for a head model. The dependence of the pressure amplitude at the cochlea on the frequency, the direction of propagation, and the polarization of the incident electromagnetic radiation, as well as on the pulse width, was investigated.

  18. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  19. Effect of confounding factors on blood pressure estimation using pulse arrival time

    International Nuclear Information System (INIS)

    Two confounding factors were selected and analyzed in blood pressure estimation using pulse arrival time (PAT) for each individual. The heart rate was used as the confounding factor for the cardiac cycle, and the duration from the maximum derivative point to the dicrotic peak (TDB) in the photoplethysmogram was used as another confounding factor representing arterial stiffness. By considering these factors with PAT in multiple regression analysis, the performance of blood pressure estimation is enhanced significantly in the diastolic phase as well as in the systolic phase. The reproducibility of this method was also validated with formerly obtained regression equations from the training set. The correlation between estimated and measured blood pressure decreased a little, but the validity was still maintained (r ≅ 0.8). This shows the value of the method in non-intrusive blood pressure estimation for individual patients and may be useful for various applications

  20. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    Science.gov (United States)

    Yu, Jin-Lu; He, Li-Ming; Ding, Wei; Wang, Yu-Qian; Du, Chun

    2013-05-01

    Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.

  1. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    Institute of Scientific and Technical Information of China (English)

    Yu Jin-Lu; He Li-Ming; Ding Wei; Wang Yu-Qian; Du Chun

    2013-01-01

    Based on the nonequilibrium plasma dynamics of air discharge,a dynamic model of zero-dimensional plasma is established by combining the component density equation,the Boltzmann equation,and the energy transfer equation.The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated.The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms,O3 molecules,N2(A3) molecules in excited states,and NO molecules.It increases at first and then decreases with the increase of air pressure.On the other hand,the peak values of particle number density for N2(B3)and N2(C3) molecules in excited states are only slightly affected by the air pressure.

  2. Damage of cellular material under simultaneous application of pressure and pulsed electric field

    CERN Document Server

    Bazhal, M I; Vorobev, E I

    2000-01-01

    Influence of pulsed electric field (PEF) simultaneous to pressure treatment on moisture expression from fine-cut cellular raw material has been investigated. Dependencies of specific conductivity $\\sigma$, liquid yield $Y$, instantaneous flow rate $v$ and qualitative juice characteristics at different modes of PEF treatment are discussed. Three main consolidation phases were observed in a case of mechanical expression. A unified approach is proposed for liquid yield data analysis allowing to reduce the data scattering caused by differences in the quality of samples. Simultaneous application of pressure and PEF treatment allows to reveal a passive form of electrical damage. Pressure provokes the damage of defected cells, enhances diffusion migration of moisture in porous cellular material and depresses the cell resealing processes. PEF application at a moment when a sample specific electrical conductivity reaches minimum and pressure achieves its constant value seemed to be the most optimal.

  3. Central blood pressure assessment using 24-hour brachial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Muiesan ML

    2014-10-01

    Full Text Available Maria Lorenza Muiesan, Massimo Salvetti, Fabio Bertacchini, Claudia Agabiti-Rosei, Giulia Maruelli, Efrem Colonetti, Anna Paini Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy Abstract: This review describes the use of central blood pressure (BP measurements during ambulatory monitoring, using noninvasive devices. The principles of measuring central BP by applanation tonometry and by oscillometry are reported, and information on device validation studies is described. The pathophysiological basis for the differences between brachial and aortic pressure is discussed. The currently available methods for central aortic pressure measurement are relatively accurate, and their use has important clinical implications, such as improving diagnostic and prognostic stratification of hypertension and providing a more accurate assessment of the effect of treatment on BP. Keywords: aortic blood pressure measurements, ambulatory monitoring, pulse wave analysis

  4. Pulse Pressure magnifies the effect of COMT Val158Met on 15 Year Episodic Memory Trajectories

    OpenAIRE

    Persson, Ninni; Lavebratt, Catharina; Sundström, Anna; Fischer, Håkan

    2016-01-01

    We investigated whether a physiological marker of cardiovascular health, pulse pressure (PP), and age magnified the effect of the functional COMT Val158Met (rs4680) polymorphism on 15-years cognitive trajectories [episodic memory (EM), visuospatial ability, and semantic memory] using data from 1585 non-demented adults from the Betula study. A multiple-group latent growth curve model was specified to gauge individual differences in change, and average trends therein. The allelic variants showe...

  5. Aging, Vascular Risk and Cognition: Blood Glucose, Pulse Pressure, and Cognitive Performance in Healthy Adults

    OpenAIRE

    Dahle, Cheryl L.; Jacobs, Bradley S.; Raz, Naftali

    2009-01-01

    Advanced age is associated with decline in many areas of cognition as well as increased frequency of vascular disease. Well-described risk factors for vascular disease such as diabetes and arterial hypertension have been linked to cognitive deficits beyond those associated with aging. To examine whether vascular health indices such as fasting blood glucose levels and arterial pulse pressure can predict subtle deficits in age-sensitive abilities, we studied 104 healthy adults (age 18 to 78 yea...

  6. Development of a Pulsed Pressure-Based Technique for Cavitation Damage Study

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [ORNL; Wang, Jy-An John [ORNL; Liu, Yun [ORNL; Wang, Hong [ORNL

    2012-01-01

    Cavitation occurs in many fluid systems and can lead to severe material damage. To assist the study of cavitation damage, a novel testing method utilizing pulsed pressure was developed. In this talk, the scientific background and the technical approach of this development are present and preliminary testing results are discussed. It is expected that this technique can be used to evaluate cavitation damage under various testing conditions including harsh environments such as those relevant to geothermal power generation.

  7. Pulsed Supersonic Beams from High Pressure Source: Simulation Results and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    U. Even

    2014-01-01

    Full Text Available Pulsed beams, originating from a high pressure, fast acting valve equipped with a shaped nozzle, can now be generated at high repetition rates and with moderate vacuum pumping speeds. The high intensity beams are discussed, together with the skimmer requirements that must be met in order to propagate the skimmed beams in a high-vacuum environment without significant disruption of the beam or substantial increases in beam temperature.

  8. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index

    DEFF Research Database (Denmark)

    Henriksen, J H; Fuglsang, Stefan; Bendtsen, Flemming;

    2001-01-01

    Arterial function may be altered in patients with cirrhosis. We determined compliance of the arterial tree (C(1)) in relation to systemic and splanchnic hemodynamic derangement and clinical variables. C(1) and the stroke volume-pulse pressure index (SV/PP) were significantly higher (+62% and +40...... predictors of SV/PP (P index seems to reflect abnormalities in the arterial compliance of these patients....

  9. Non-invasive continuous arterial pressure and pulse pressure variation measured with Nexfin(®) in patients following major upper abdominal surgery: a comparative study.

    Science.gov (United States)

    de Wilde, R B P; de Wit, F; Geerts, B F; van Vliet, A L; Aarts, L P H J; Vuyk, J; Jansen, J R C

    2016-07-01

    We compared the accuracy and precision of the non-invasive Nexfin(®) device for determining systolic, diastolic, mean arterial pressure and pulse pressure variation, with arterial blood pressure values measured from a radial artery catheter in 19 patients following upper abdominal surgery. Measurements were taken at baseline and following fluid loading. Pooled data results of the arterial blood pressures showed no difference between the two measurement modalities. Bland-Altman analysis of pulse pressure variation showed significant differences between values obtained from the radial artery catheter and Nexfin finger cuff technology (mean (SD) 1.49 (2.09)%, p agreement -2.71% to 5.69%). The effect of volume expansion on pulse pressure variation was identical between methods (concordance correlation coefficient 0.848). We consider the Nexfin monitor system to be acceptable for use in patients after major upper abdominal surgery without major cardiovascular compromise or haemodynamic support. PMID:27291598

  10. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  11. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  12. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    Science.gov (United States)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  13. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy.

    Science.gov (United States)

    Fernández, J E; Durán, P J; Palomo, M J; Diaz-Espejo, A; Chamorro, V; Girón, I F

    2006-06-01

    The compensation heat pulse method is widely used to estimate sap flow in conducting organs of woody plants. Being an invasive technique, calibration is crucial to derive correction factors for accurately estimating the sap flow value from the measured heat pulse velocity. We compared the results of excision and perfusion calibration experiments made with mature olive (Olea europaea L. 'Manzanilla de Sevilla'), plum (Prunus domestica L. 'Songal') and orange (Citrus sinensis (L.) Osbeck. 'Cadenero') trees. The calibration experiments were designed according to current knowledge on the application of the technique and the analysis of measured heat pulse velocities. Data on xylem characteristics were obtained from the experimental trees and related to the results of the calibration experiments. The most accurate sap flow values were obtained by assuming a wound width of 2.0 mm for olive and 2.4 mm for plum and orange. Although the three possible methods of integrating the sap velocity profiles produced similar results for all three species, the best results were obtained by calculating sap flow as the weighted sum of the product of sap velocity and the associated sapwood area across the four sensors of the heat-pulse-velocity probes. Anatomical observations showed that the xylem of the studied species can be considered thermally homogeneous. Vessel lumen diameter in orange trees was about twice that in the olive and plum, but vessel density was less than half. Total vessel lumen area per transverse section of xylem tissue was greater in plum than in the other species. These and other anatomical and hydraulic differences may account for the different calibration results obtained for each species. PMID:16510387

  14. Using Short Pulse Lasers to Address Frontiers in High Pressure Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wildmann, K.; Springer, P.T.; Cauble, R.; Foord, M.E.; Guethlein, G.; Ng, A.; Patel, P.K.; Price, D.F.; Rogers, F.J; Wicks, S.C.

    1999-08-10

    Having laser intensities of 10{sup 21} W/cm{sup 2} yield electrical field strengths of 10{sup 12} V/cm which is comparable to the field strength at the K-shell of neon. Instant field ionization becomes part of the laser-matter interaction allowing to transfer most of the photons momenta directly onto the ions by driving an electrostatic shock through the target equivalent to pressures of several 100 Gbar. Utilization of these high-pressure conditions in form of equation of state measurements, however, strongly depends on the contrast of the femtosecond laser pulse. Currently, the Livermore USP and JanUSP lasers reach contrast values up to 10{sup 8}. This is sufficient to explore near-isochorically heated materials at moderate intensities (10{sup 13}-10{sup 15} W/cm{sup 2}) attaining pressures around 100 Mbar.

  15. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    International Nuclear Information System (INIS)

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect

  16. Fiber optic based heart-rate and pulse pressure shape monitor

    Science.gov (United States)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  17. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; YE Huanhuan; ZHANG Jiao; WANG Qi; ZHANG Jie; WANG Dezhen

    2016-01-01

    In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.

  18. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Science.gov (United States)

    Wang, Yanhui; Ye, Huanhuan; Zhang, Jiao; Wang, Qi; Zhang, Jie; Wang, Dezhen

    2016-05-01

    In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied. supported by National Natural Science Foundation of China (No. 11405022)

  19. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  20. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed. PMID:17629247

  1. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response

    Directory of Open Access Journals (Sweden)

    Liu Hao-Li

    2012-11-01

    Full Text Available Abstract Background High-intensity focused-ultrasound (HIFU has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs, may also trigger an antitumor immunological response and inhibit tumor growth. Methods A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa with MBs to increase the permeability of tumor microvasculature. Results Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg tumor infiltrating lymphocytes (TILs and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL. The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Conclusions Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  2. Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence-Snyder, Marion; Scaffidi, Jonathan P.; Pearman, William F.; Gordon, Christopher M.; Angel, S. Michael

    2014-09-01

    Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) with a collinear laser beam orientation is shown for high-pressure bulk aqueous solutions (up to 50 bar) along with bubble and plasma images. These investigations reveal that the emission plasma is quenched much more rapidly in solution requiring much shorter detector gate delays than for typical LIBS measurements in air. Also, the emission is inversely proportional to solution pressure, and the most intense emission at all pressures occurs when the laser-induced vapor bubble is at a maximum diameter. It is also shown that the laser-induced bubble grows initially at the same rate for all solution pressures, collapsing more quickly as the pressure is increased. Intense emission is best obtained for conditions where the laser-induced bubble formed by the first laser pulse is small and spherically shaped. - Highlights: • Collinear double-pulse LIBS is shown for 50 bar bulk aqueous solutions. • LIBS plasma in solution is much more rapidly quenched than a LIBS plasma in air. • For DP LIBS, the emission is inversely proportional to solution pressure. • Laser-induced bubble growth rate is the same at all solution pressures. • Large spherical laser-induced bubbles produce the strongest DP LIBS emission.

  3. The solar wind pressure pulse as a ring current source in the disturbed magnetosphere

    Science.gov (United States)

    Kalegaev, Vladimir; Vlasova, Natalia; Nazarkov, Ilya

    2016-07-01

    The solar wind pressure and IMF are the most important factors of interplanetary medium disturbing the Earth's magnetosphere. They determine the momentum/energy transfer inside the magnetopause. The relative dynamics of solar wind pressure and IMF controls the development of the different storm-time magnetospheric currents during disturbances. While the southward turning of IMF is well-known magnetic storm source, the role of the strong pressure pulse under northward IMF is not enough studied. We present the results of studying the solar wind pressure influence on the magnetospheric structure during events on 21-22 January 2005 and 22-23 June 2015 when the main phase of geomagnetic storms developed under IMF Bz>0. Joint analysis of experimental and modeling data was carried out. Equatorial ion fluxes of 30-80 keV protons of the storm time equatorial belt (STEB) measured by low-altitude polar sun-synchronous NOAA POES satellites were used to estimate the ring current evolution. The magnetic field of the large-scale magnetospheric currents was calculated in terms of the paraboloid model of the magnetospheric geomagnetic field A2000. It was found that ring current development during the early main phase of the magnetic storms was provided not only large-scale magnetospheric convection but also by extremely strong solar wind dynamical impact. Interplanetary shock caused intensive trapped particle non-adiabatic radial motion to the lover L-shells during SSC and subsequent ring current enhancement similar to that taking place due to particle injection from the tail. The extreme solar wind pressure pulse can produce the ring current enhancement even under the northward orientation of the interplanetary magnetic field.

  4. Synthesis of Crystalline Carbon Nitride Thin Films by Pulsed Arc Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHI Changyong; MA Zhibin

    2007-01-01

    The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure.The X-ray diffraction(XRD)patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and β-C3N4 crystallites.Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.

  5. Consumer acceptance of high-pressure processing and pulsed-electric-field

    DEFF Research Database (Denmark)

    Olsen, Nina Veflen; Grunert, Klaus G.; Sonne, Anne-Mette

    2010-01-01

    has to offer, do not necessarily guarantee the success of a product in the market place. Consumer acceptance depends on whether consumers perceive that there are specific benefits associated with the product. This review focuses specifically on how high-pressure processing (HPP) and pulsed......New products and new processing techniques are continuously developed in the food industry. While food scientists may focus on the technical novelty and applaud the progress of science, consumers are often conservative and sceptical towards changes. The advantages that a new processing technology...

  6. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures

    Science.gov (United States)

    Chelluri, Bhanu; Barber, John P.

    1999-07-01

    The full-density consolidation of powders into net-shape parts yields high green strength, low shrinkage, short sinter times, superior mechanical properties, and low manufacturing costs. The conventional lowcost, single-press, single-sinter process typically densifies powders at less than 65 percent green density. This article describes the Magnepress™ process, a powder-processing technique wherein pulsed magnetic pressures consolidate powders into full-density parts without admixed lubricants or binders. The Magnepress technique is especially suitable for producing net-shape products with radial symmetry (e.g., rods, cylindrical parts with internal features, tubular shapes, and high aspect-ratio specimens).

  7. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K, E-mail: duten@lspm.cnrs.fr [LSPM-CNRS UPR 3407, Universite Paris Nord, 90 Avenue J.B. Clement, 93430 Villetaneuse (France)

    2011-10-19

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  8. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  9. Influence of oxygen partial pressure on the properties of pulsed laser deposited nanocrystalline zirconia thin films

    International Nuclear Information System (INIS)

    ZrO2 thin films were deposited at various oxygen partial pressures (2.0 x 10-5-3.5 x 10-1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 x 10-5-3.5 x 10-1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 x 10-5 mbar is 1.3 nm while it is 3.2 nm at 3.5 x 10-1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 x 10-5 to 3.5 x 10-1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.

  10. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Science.gov (United States)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  11. Elasticity of MgO to 11 GPa with an independent absolute pressure scale: Implications for pressure calibration

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.; Woody, K; Kung, J

    2006-01-01

    P and S wave velocities and unit cell parameters (density) of MgO are measured simultaneously up to 11 GPa using combined ultrasonic interferometry and in situ X-ray diffraction techniques. The elastic bulk and shear moduli as well as their pressure derivatives are obtained by fitting the measured velocity and density data to the third-order finite strain equations, yielding K0S = 163.5(11) GPa, K'0S = 4.20(10), G0 = 129.8(6) GPa, and G'0 = 2.42(6), independent of pressure. These properties are subsequently used in a Birch-Murnaghan equation of state to determine the sample pressures at the observed strains. Comparison of the 300K isothermal compression of MgO indicates that current pressure scales from recent studies are in better than 1.5% agreement. We find that pressures derived from secondary pressure standards (NaCl, ruby fluorescence) at 300K are lower than those from current MgO scales by 5-8% ({approx}6% on average) in the entire pressure range of the current experiment. If this is taken into account, discrepancy in previous static compression studies on MgO at 300K can be reconciled, and a better agreement with the present study can be achieved.

  12. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  13. Vapor film collapse triggered by external pressure pulse and the fragmentation of melt droplet in FCIs

    Institute of Scientific and Technical Information of China (English)

    LIN Qian; TONG Lili; CAO Xuewu; KRIVENTSEV Vladimir

    2008-01-01

    The fragmentation process of high-temperature molten drop is a key factor to determine the ratio heat transferred to power in FCIs,which estimates the possible damage degree during the hypothetical severe accident in the nuclear reactors.In this paper,the fragmentation process of melt droplet in FCIs is investigated by theoretic analysis.The fragmentation mechanism is studied when an external pressure pulse applied to a melt droplet,which is surrounded by vapor film.The vapor film collapse which induces fragmentation of melt droplet is analyzed and modeled.And then the generated pressure is calculated.The vapor film collapse model is introduced to fragmentation correlation,and the predicted fragment size is calculated and compared with experimental data.The result shows that the developed model can predict the diameter of fragments and can be used to calculate the fragmentation process appreciatively.

  14. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    Science.gov (United States)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  15. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    Science.gov (United States)

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  16. Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure

    Science.gov (United States)

    Nurhuda, Muhammad; Suda, Akira; Midorikawa, Katsumi; Hatayama, Masatoshi; Nagasaka, Keigo

    2003-09-01

    We investigate the dynamics of femtosecond laser pulses propagating in a hollow fiber filled with argon, through a full numerical solution of the nonlinear Schrödinger equation. The simulation results show that, if the intensity is low and no ionization takes place, the spatial profile of the beam does not change very much so that its propagation model may be simplified to a one-dimensional model. If the intensity is high and ionization takes place, the spatial dynamics as well as temporal dynamics become very complicated because of self-focusing and defocusing. It is found that, for the same value of the B integral, self-focusing inside a hollow fiber can be substantially suspended by a differential gas pressure technique, where the gas pressure is set to be a minimum at the entrance and then increased with the propagation distance. Numerical simulations show that using such a technique, the energy transmitted during propagation inside hollow fiber is significantly enhanced, and the spatial phase is also improved.

  17. Cuff width alters the amplitude envelope of wrist cuff pressure pulse waveforms

    International Nuclear Information System (INIS)

    The accuracy of noninvasive blood pressure (BP) measurement with any method is affected by cuff width. Measurement with a too narrow cuff overestimates BP and measurement with a too wide cuff underestimates BP. Automatic wrist cuff BP monitors use permanently attached narrow cuffs with bladders about 6 cm wide. Such narrow cuffs should result in under-cuffing for wrist circumferences larger than 15 cm. The objective of this qualitative study was to show that a narrow wrist cuff results in increased BP values when a cuff pulse amplitude ratio algorithm is used. According to the algorithm used in this study, systolic pressure (SBP) corresponds to the point of 50% of maximal amplitude; for diastolic pressure (DBP) the ratio is 70%. Data were acquired from 12 volunteers in the sitting position. The mean wrist circumference was 18 cm. The acquired cuff pulse data were used to compute SBP, mean pressure (MAP) and DBP. The mean values for a 6 cm cuff were SBP = 144 mmHg, MAP = 104 mmHg and DBP = 88 mmHg. The values for a 10 cm cuff were SBP = 128 mmHg, MAP = 93 mmHg and DBP = 78 mmHg. The reference BP values were SBP = 132 mmHg, MAP = 96 mmHg and DBP = 80 mmHg. All narrow (6 cm) cuff BP values were higher than wide (10 cm) cuff or reference BP values. The results indicate that wider wrist cuffs may be desirable for more accurate and reliable BP measurement with wrist monitors. (note)

  18. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-ε4.

    Science.gov (United States)

    Nation, Daniel A; Preis, Sarah R; Beiser, Alexa; Bangen, Katherine J; Delano-Wood, Lisa; Lamar, Melissa; Libon, David J; Seshadri, Sudha; Wolf, Philip A; Au, Rhoda

    2016-01-01

    We investigated whether midlife pulse pressure is associated with brain atrophy and cognitive decline, and whether the association was modified by apolipoprotein-E ε4 (APOE-ε4) and hypertension. Participants (549 stroke-free and dementia-free Framingham Offspring Cohort Study participants, age range=55.0 to 64.9 y) underwent baseline neuropsychological and magnetic resonance imaging (subset, n=454) evaluations with 5- to 7-year follow-up. Regression analyses investigated associations between baseline pulse pressure (systolic-diastolic pressure) and cognition, total cerebral volume and temporal horn ventricular volume (as an index of smaller hippocampal volume) at follow-up, and longitudinal change in these measures. Interactions with APOE-ε4 and hypertension were assessed. Covariates included age, sex, education, assessment interval, and interim stroke. In the total sample, baseline pulse pressure was associated with worse executive ability, lower total cerebral volume, and greater temporal horn ventricular volume 5 to 7 years later, and longitudinal decline in executive ability and increase in temporal horn ventricular volume. Among APOE-ε4 carriers only, baseline pulse pressure was associated with longitudinal decline in visuospatial organization. Findings indicate arterial stiffening, indexed by pulse pressure, may play a role in early cognitive decline and brain atrophy in mid to late life, particularly among APOE-ε4 carriers. PMID:27556935

  19. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  20. A volume pulsed corona formed during nanosecond pulsed periodic discharge of negative polarity in narrow gaps with airflow at atmospheric pressure

    Science.gov (United States)

    Lepekhin, N. M.; Priseko, Yu. S.; Puresev, N. I.; Filippov, V. G.

    2014-06-01

    A volume mode of spatially homogeneous nanosecond pulsed-periodic corona discharge of negative polarity has been obtained using an edge-to-edge electrode geometry in narrow gaps with airflow at atmospheric pressure and natural humidity. The parameters of discharge are estimated, and a factor limiting the power deposited in discharge is determined.

  1. Experimental investigation and calibration of surface pressure modeling for trailing edge noise

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2011-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model....

  2. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  3. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  4. 压力仪表校验系统设计研究%Pressure gauge calibration system design research

    Institute of Scientific and Technical Information of China (English)

    刘玺

    2012-01-01

    首先介绍了当前行业内压力表校验系统的研究现状,并分析了当前压力仪表检定的发展方向,最后重点对压力仪表校验系统设计,从系统的需求分析出发进行了分析和研究.%This paper firstly introduces the current status of industry within pressure gauge calibration system application, through literature methodology, and analyzed the current pressure gauge verification research situation and developing direction. The research content is discussed on the basis of research of main purpose and topic research. With related system design theory of pressure gauge calibration system design, from the system of needs analysis, this paper summarized the system based on the basic function requirement. Through system design, this paper expounds the basic theory of system design should meet the basic principles.

  5. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    International Nuclear Information System (INIS)

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–MPu curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content MPu, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses

  6. Increased pulse pressure is associated with left atrial enlargement in resistant hypertensive patients.

    Science.gov (United States)

    Armario, Pedro; Oliveras, Anna; Hernández-Del-Rey, Raquel; Suárez, Carmen; Martell, Nieves; Ruilope, Luis M; De La Sierra, Alejandro

    2013-02-01

    Resistant hypertension (RH) is frequently associated with a high prevalence of target organ damage, which impairs the prognosis of these patients. Considering cardiac alterations in RH, most attention has been devoted to left ventricular hypertrophy (LVH), but data concerning left atrial enlargement (LAE) is less known. This cross-sectional study assessed the factors associated with LAE, with special focus on blood pressure (BP) estimates obtained by ambulatory blood pressure monitoring (ABPM), in 250 patients with RH, aged 64 ± 11 years. LAE and LVH were observed in 10.0% (95% CI 6.3-13.7) and 57.1% (95% CI 50.8-63.5) of patients, respectively. Compared with patients with normal atrium size, those exhibiting LAE were older, more frequently women, had elevated pulse pressure (PP) measured both at the office and by ABPM, and showed higher prevalence of LVH (83% vs 54%; p = 0.016). In a logistic regression analysis, adjusting for age, gender, body mass index, left ventricular mass index and BP pressure estimates, night-time PP was independently associated with LAE (OR for 5 mmHg = 1.28, 95% CI 1.24-1.32; p = 0.001). In conclusion, besides classical determinants of LAE, such as age and LVH, an elevated night-time PP was independently associated with LAE in patients with RH. PMID:23305454

  7. Implantable reflectance pulse transit time blood pressure sensor with oximetry capability

    Science.gov (United States)

    Fiala, J.; Gehrke, R.; Theodor, M.; Bingger, P.; Förster, K.; Heilmann, C.; Beyersdorf, F.; Zappe, H.; Seifert, A.

    2010-04-01

    We present a novel implantable multi-wavelength reflectance sensor for the measurement of blood pressure with pulse transit time (PTT). Continuous long-term monitoring of blood pressure and arterial oxygen saturation is vital for medical diagnostics and the ensuing therapy of cardiovascular diseases. Conventional cuff-based blood pressure monitors do not provide continuous data and put severe constraints on the patients' daily lives. An implantable sensor would eliminate such problems. The new biocompatible sensor is placed subcutaneously on blood perfused tissue. The PTT is calculated by photoplethysmograms and the ECG-signal, that is recorded with intracorporal electrodes. In addition, the sensor detects the arterial oxygen saturation. An ensuing spectralphotometric analysis of the light intensity changes delivers data on the concentration of dysfunctional hemoglobin derivatives. Experimental measurements showed a clear correlation between the estimated PTT and the systolic blood pressure reference. These initial results demonstrate the potential of the sensor as part of an fully implantable sensor system for the longterm-monitoring of cardiovascular parameters.

  8. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.

    Science.gov (United States)

    Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2012-11-01

    This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.

  9. Efficacy of pulsed electromagnetic field therapy in healing of pressure ulcers: A randomized control trial

    Directory of Open Access Journals (Sweden)

    Gupta Anupam

    2009-12-01

    Full Text Available Background : Pressure ulcers are one of the most common complications in health care settings. Still there are no optimal protocols to manage the pressure ulcers. Aim : To assess the effectiveness of pulsed electromagnetic field therapy (PEMF in healing of pressure ulcers in patients with neurological disorders. Design : Randomized double blind control trial. Setting : Neurological rehabilitation department in a university research hospital. Participants : Twelve patients (M:F, 9:3 having neurological disorders, with age between 12-50 years (mean 30.16611.32 yrs and 24 pressure ulcers. Intervention : Six patients with 13 ulcers received PEMF therapy and the remaining 6 patients with 11 ulcers received sham treatment, for 30 sessions (45 minutes each using the equipment ′Pulsatron′. The frequency of PEMF was set at 1 Hz with sine waves and current intensity of 30 mili ampere. Whole body exposure was given in both the groups. Outcome Measures : Bates-Jensen wound assessment tool (BJWAT score was used as main outcome measure and scores at the end of session were compared with initial scores and analyzed. Similarly National Pressure Ulcer Advisory Panel (NPUAP scores were compared and analyzed as secondary outcome measure. Results : Thirteen ulcers were in stage IV and 11 were in stage III at the start of the study. Significant healing of ulcers was noted, BJWAT scores, in both the treatment and sham groups (P < 0.001 and 0.003 respectively at the completion of the study. However, when comparing between the groups, healing was not significant (P = 0.361. Similarly trend was noted with NPUAP scores with no significant difference between the treatment and sham groups (P = 0.649 at the completion of study. Conclusions : No significant difference in pressure ulcer healing was observed between PEMF treatment and sham group in this study.

  10. 无线压力采集仪校准装置研究%Design of a Calibration Device for Wireless Pressure Acquisition Instruments

    Institute of Scientific and Technical Information of China (English)

    周四清; 吴双双; 曾麟; 宋扬

    2015-01-01

    Wireless pressure acquisition instruments are widely used for calibrating pressure sterilization and other pressure vessel. The ap-plication temperature of wireless pressure acquisition instruments is different from other pressure instruments. A kind of calibration device was de-signed for wireless pressure acquisition instruments. The device adopts three-section temperature control and automatic pressure regulation, and can be used for automatic calibration of wireless pressure acquisition instruments. The experimental results show that the uncertainty of the device can meet the requirement of the wireless pressure acquisition calibration.%无线压力采集仪使用环境温度与常规测量仪表存在较大差异。为解决无线压力采集仪在不同温度下的压力校准需求,设计了无线压力采集仪校准装置。该装置采用了三段控温的干式恒温炉以及自动压力调节,实现了各温度下的压力自动校准。试验结果表明:该装置功能及测量不确定度满足现有无线压力采集仪的校准对装置的要求,可应用于无线压力采集仪的校准。

  11. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    Science.gov (United States)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  12. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  13. Very High Pressure Single Pulse Shock Tube Studies of Aromatic Species

    Energy Technology Data Exchange (ETDEWEB)

    Brezinsky, K.

    2006-11-28

    The principal focus of this research program is aimed at understanding the oxidation and pyrolysis chemistry of primary aromatic molecules and radicals with the goal of developing a comprehensive kinetic model at conditions that are relevant to practical combustion devices. A very high pressure single pulse shock tube is used to obtain experimental data over a wide pressure range in the high pressure regime, 5-1000 bars, at pre-flame temperatures for fuel pyrolysis and oxidation over a broad spectrum of equivalence ratios. Stable species sampled from the shock tube are analyzed using standard chromatographic techniques using GC/MS-PDD and GC/TCD-FID. Experimental data from the HPST (stable species profiles) and data from other laboratories (if available) are simulated using kinetic models (if available) to develop a comprehensive model that can describe aromatics oxidation and pyrolysis over a wide range of experimental conditions. The shock tube has been heated (1000C) recently to minimize effects due to condensation of aromatic, polycyclic and other heavy species. Work during this grant period has focused on 7 main areas summarized in the final technical report.

  14. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    Science.gov (United States)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  15. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  16. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determi...

  17. Single-pulse CARS spectra in solid propellant combustion at atmosphere pressure

    Institute of Scientific and Technical Information of China (English)

    Zhiyun Hu(胡志云); Jingru Liu(刘晶儒); Zhenrong Zhang(张振荣); Xiaowei Guan(关小伟); Meisheng Huang(黄梅生); Xisheng Ye(叶锡生)

    2003-01-01

    The unstable-resonator spatially enhanced detection (USED) coherent anti-stokes Raman spectroscopy (CARS) measurements of temperature and N2 concentration in the combustion of solid propellant at atmosphere pressure are reported. The USED CARS measurement system has a high spatial solution of ~ 0.1 mm in diameter and 3 mm in length, and permits instantaneous measurement at 10-Hz rate. The single-pulse N2 Q-branch CARS spectra have been obtained from the propellant combustion. The temperatures and N2 concentrations of the propellant flame at different height have been achieved by fitting the experimental data to theoretical spectra. The results indicate that the temperature is up to~2500 K with N2 concentration in a range from 10% to 26%.

  18. Growth process of nanostructured silver films pulsed laser ablated in high-pressure inert gas

    International Nuclear Information System (INIS)

    The growth process of silver thin films deposited by pulsed laser ablation in a controlled inert gas atmosphere was investigated. A pure silver target was ablated in Ar atmosphere, at pressures ranging between 10 and 100 Pa, higher than usually adopted for thin film deposition, at different numbers of laser shots. All of the other experimental conditions such as the laser (KrF, wavelength 248 nm), the fluence of 2.0 J cm-2, the target to substrate distance of 35 mm, and the temperature (295 K) of the substrates were kept fixed. The morphological properties of the films were investigated by transmission and scanning electron microscopies (TEM, SEM). Film formation results from coalescence on the substrate of near-spherical silver clusters landing as isolated particles with size in the few nanometers range. From a visual inspection of TEM pictures of the films deposited under different conditions, well-separated stages of film growth are identified.

  19. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  20. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.

    Science.gov (United States)

    Patzak, Andreas; Mendoza, Yuri; Gesche, Heiko; Konermann, Martin

    2015-01-01

    Continuous blood pressure (BP) measurement allows the investigation of transient changes in BP and thus may give insights into mechanisms of BP control. We validated a continuous, non-invasive BP measurement based on the pulse transit time (PTT), i.e., BP(PTT), by comparing it with the intra-arterial BP (BP(i.a.)) measurement. Twelve subjects (five females and seven males) were included. BP(i.a.) was obtained from the radial artery using a system from ReCor Medical. Systolic and diastolic BP were calculated using the PTT (BP(PTT), SOMNOscreen). (PTT) was determined from the electrocardiogram and the peripheral pulse wave. The BP was modulated by application of increasing doses of dobutamine (5, 10, 20 μg/kg body mass). Systolic BP(PTT) and systolic BP(i.a.) correlated significantly (R = 0.94). The limits of agreement in the Bland-Altman plot were ± 19 mmHg; the mean values differed by 1 mmHg. The correlation coefficient for the diastolic BP measurements was R = 0.42. The limits of agreement in the Bland-Altman plot were ± 18 mmHg, with a mean difference of 5 mmHg in favour of the BP(PTT). The study demonstrates a significant correlation between the measurement methods for systolic BP. The results encourage the application of PTT-based BP measurement for the evaluation of BP dynamics and pathological BP changes. PMID:25857601

  1. Development of a functional relationship between port pressures and flow properties for the calibration and application of multihole probes to highly three-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Pisasale, A.J.; Ahmed, N.A. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, 2052, Sydney (Australia)

    2004-03-01

    It is common in the calibration of multihole probes to curve-fit the calibration data in order to determine a relationship between measured port pressures and flow properties. The parameters used in these techniques typically lack a theoretical background. In this article, a functional relationship is developed, based on theoretical considerations, that relates the port pressure directly to the flow properties and details a procedure that enables flow properties to be determined from the measured pressures of the multihole probe. The method is simple, easy to implement and provides a better understanding of the multihole probe operation in a three-dimensional flow. (orig.)

  2. Reference values of central blood pressure and pulse wave velocity in relation with 24 hours ambulatory blood pressure monitoring in Belgian healthy young subjects

    OpenAIRE

    Saint-Remy, Annie; Krzesinski, Jean-Marie

    2010-01-01

    The present study aimed to define reference values of central blood pressure (cBP) and Pulse Wave Velocity (PWV) together with 24H ABPM in healthy normotensive young adults before starring a follow-up of their CV profile modifications over time. Peer reviewed

  3. Reference values of central blood pressure and pulse wave velocity in relations with 24 hours ambulatory blood pressure monitoring in Belgian normotensive young subjects

    OpenAIRE

    Saint-Remy, Annie; Krzesinski, Jean-Marie

    2010-01-01

    The present study aimed to define reference values of central blood pressure (cBP) and Pulse Wave Velocity (PWV) together with 24H APPM in healththy normotensive young adults before starting a follow-up of their CV profile modifications over time. Peer reviewed

  4. Pressure-dependent calibration of the OH and HO2 channels of a FAGE HOx instrument using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)

    Science.gov (United States)

    Winiberg, F. A. F.; Smith, S. C.; Bejan, I.; Brumby, C. A.; Ingham, T.; Malkin, T. L.; Orr, S. C.; Heard, D. E.; Seakins, P. W.

    2015-02-01

    The calibration of field instruments used to measure concentrations of OH and HO2 worldwide has traditionally relied on a single method utilising the photolysis of water vapour in air in a flow tube at atmospheric pressure. Here the calibration of two FAGE (fluorescence assay by gaseous expansion) apparatuses designed for HOx (OH and HO2) measurements have been investigated as a function of external pressure using two different laser systems. The conventional method of generating known concentrations of HOx from H2O vapour photolysis in a turbulent flow tube impinging just outside the FAGE sample inlet has been used to study instrument sensitivity as a function of internal fluorescence cell pressure (1.8-3.8 mbar). An increase in the calibration constants CHO and CHO2 with pressure was observed, and an empirical linear regression of the data was used to describe the trends, with ΔCHO = (17 ± 11) % and ΔCHO2 = (31.6 ± 4.4)% increase per millibar air (uncertainties quoted to 2σ). Presented here are the first direct measurements of the FAGE calibration constants as a function of external pressure (440-1000 mbar) in a controlled environment using the University of Leeds HIRAC chamber (Highly Instrumented Reactor for Atmospheric Chemistry). Two methods were used: the temporal decay of hydrocarbons for calibration of OH, and the kinetics of the second-order recombination of HO2 for HO2 calibrations. Over comparable conditions for the FAGE cell, the two alternative methods are in good agreement with the conventional method, with the average ratio of calibration factors (conventional : alternative) across the entire pressure range, COH(conv)/COH(alt) = 1.19 ± 0.26 and CHO2(conv)/CHO2(alt) = 0.96 ± 0.18 (2σ). These alternative calibration methods currently have comparable systematic uncertainties to the conventional method: ~ 28% and ~ 41% for the alternative OH and HO2 calibration methods respectively compared to 35% for the H2O vapour photolysis method; ways in

  5. Effect of nitrogen pressure on optical properties and microstructure of diamond-like carbon films grown by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    DING Xu-Li; LI Qing-Shan; KONG Xiang-he

    2009-01-01

    The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there are some globose particles on the films surface with the rise of nitrogen pressures. The microstructure of the films is characterized using Raman spectroscopy.

  6. Pulse pressure variation and stroke volume variation under different inhaled concentrations of isoflurane, sevoflurane and desflurane in pigs undergoing hemorrhage

    Directory of Open Access Journals (Sweden)

    Alexandre Hideaki Oshiro

    2015-12-01

    Full Text Available OBJECTIVES: Inhalant anesthesia induces dose-dependent cardiovascular depression, but whether fluid responsiveness is differentially influenced by the inhalant agent and plasma volemia remains unknown. The aim of this study was to compare the effects of isoflurane, sevoflurane and desflurane on pulse pressure variation and stroke volume variation in pigs undergoing hemorrhage. METHODS: Twenty-five pigs were randomly anesthetized with isoflurane, sevoflurane or desflurane. Hemodynamic and echocardiographic data were registered sequentially at minimum alveolar concentrations of 1.00 (M1, 1.25 (M2, and 1.00 (M3. Then, following withdrawal of 30% of the estimated blood volume, these data were registered at a minimum alveolar concentrations of 1.00 (M4 and 1.25 (M5. RESULTS: The minimum alveolar concentration increase from 1.00 to 1.25 (M2 decreased the cardiac index and increased the central venous pressure, but only modest changes in mean arterial pressure, pulse pressure variation and stroke volume variation were observed in all groups from M1 to M2. A significant decrease in mean arterial pressure was only observed with desflurane. Following blood loss (M4, pulse pressure variation, stroke volume variation and central venous pressure increased (p <0.001 and mean arterial pressure decreased in all groups. Under hypovolemia, the cardiac index decreased with the increase of anesthesia depth in a similar manner in all groups. CONCLUSION: The effects of desflurane, sevoflurane and isoflurane on pulse pressure variation and stroke volume variation were not different during normovolemia or hypovolemia.

  7. Pulse wave myelopathy: An update of an hypothesis highlighting the similarities between syringomyelia and normal pressure hydrocephalus.

    Science.gov (United States)

    Bateman, Grant A

    2015-12-01

    Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature.

  8. Association of Pulse Pressure with Serum TNF-α and Neutrophil Count in the Elderly

    Directory of Open Access Journals (Sweden)

    Eriko Yamada

    2014-01-01

    Full Text Available Aims. Elevated pulse pressure (PP has been reported to be a risk factor for type 2 diabetes in elderly patients with hypertension. Methods. Cross-sectional relationships of PP with known risk factors for type 2 diabetes and inflammatory markers were examined in 150 elderly community-dwelling women, 79 women (52.7% of whom had hypertension. Results. Systolic blood pressure (standardized β, 0.775, log tumor necrosis factor-α (TNF-α, standardized β, 0.110, age (standardized β, 0.140, and neutrophil count (standardized β, 0.114 emerged as determinants of PP independent of high-sensitivity C-reactive protein, interleukin-6, monocyte count, plasminogen activator inhibitor-1, homeostasis model assessment of insulin resistance, HDL-cholesterol, and adiponectin (R2 = 0.772. Conclusions. The present studies have demonstrated an independent association of higher PP with higher TNF-α, a marker of insulin resistance, and neutrophil count in community-living elderly women and suggest that insulin resistance and chronic low-grade inflammation may in part be responsible for the association between high PP and incident type 2 diabetes found in elderly patients with hypertension.

  9. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  10. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    International Nuclear Information System (INIS)

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  11. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    Science.gov (United States)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  12. Strong Solar Wind Dynamic Pressure Pulses: Interplanetary Sources and Their Impacts on Geosynchronous Magnetic Fields

    Science.gov (United States)

    Zuo, Pingbing; Feng, Xueshang; Xie, Yanqiong; Wang, Yi; Xu, Xiaojun

    2015-10-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  13. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    Science.gov (United States)

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-10-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  14. Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge

    Science.gov (United States)

    Pan, Jie; Li, Li; Chen, Bo; Song, Yuzhi; Zhao, Yuefeng; Xiu, Xianwu

    2016-06-01

    The atmospheric-pressure CF4 plasma has the high application potential in the field of semiconductor fabrication since it can combine the excellent capability for the CF4 plasma etching with the easy atmospheric-pressure operation. In this work, the fluid model has been carried out to numerically research evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. The computational results show that the averaged electron temperature dramatically increases during the rising and the falling phases of the applied voltage pulse, and then swiftly decreases. The discharge current density has the waveform of two bipolar short pulses. The electrons and CF3 + ions form the cathode sheath at the discharge duration. However, the CF3 - and F- negative ions take the place of the electrons to sustain the cathode sheath of the CF4 discharge plasma at the time interval between the two bipolar discharge pulses. During the time interval of the two adjacent applied voltage pulses the discharge region is the quasi-neutral plasma region, and meanwhile CF2 + and CF3 - are the dominated charged species. Moreover, F and CF3 maintain the relatively stable high densities and uniform axial distributions during the whole period of the applied voltage.

  15. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Hiltebrand, Luzius B; Fukui, Kimiko; Cohen, Delphine; Hager, Helmut; Kurz, Andrea M

    2006-10-01

    We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss. PMID:16980887

  16. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n)0. The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density Nst.p, defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as Nst.p ∝ p21/4τ-3/4. This pressure scaling disagrees with the p3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density ne of free electrons becomes larger than the density Nst.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  17. Effect of Inflammation on the Relationship of Pulse Pressure and Mortality in Haemodialysis

    Directory of Open Access Journals (Sweden)

    Debasish Banerjee

    2012-01-01

    Full Text Available Background/Aim: The effect of hypertension on mortality in haemodialysis patients is controversial and can be confounded by non-traditional risk factors like systemic inflammation. This study examined the effect of systolic blood pressure (SBP, diastolic blood pressure (DBP, and pulse pressure (PP on mortality in haemodialysis patients, separately with and without markers of systemic inflammation. Methods:Data from the United States Renal Data System were analysed for 9,862 patients receiving haemodialysis on December 31, 1993, followed through May 2005. Results: In Cox regression analysis, increased age, diabetes, low albumin, high white blood count, low cholesterol, low haemoglobin, high phosphate, low DBP, and cardiovascular comorbidity were associated with high mortality, but SBP was not. Elevated PP adjusted for SBP, age, diabetes, haemoglobin, albumin, cholesterol, calcium, phosphate, parathyroid hormone, and white blood count was associated with higher mortality [adjusted hazard ratio, PP 1.006 (95% confidence interval, CI, 1.002–1.010; SBP 0.993 (95% CI 0.990–0.996]. In dual models, PP adjusted for SBP then DBP was associated with higher mortality [PP 1.029 (95% CI 1.027–1.032; SBP 0.981 (95% CI 0.979–0.983; PP 1.010 (95% CI 1.008–1.011; DBP 0.981 (95% CI 0.979–0.983]. Increasing PP deciles >70 mm Hg were associated with increasing mortality in the absence of markers of systemic inflammation (white blood count >10 × 109/l, albumin Conclusion: PP was a better indicator of adverse outcome than DBP or SBP. Inflammation-associated injury may mask the effect of PP on mortality in haemodialysis patients.

  18. High-pressure CO/sub 2/ laser with a nonself-sustaining discharge ionized by repetitively pulsed UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, E.A.; Pis' mennyi, V.D.; Rakhimov, A.T.

    1979-02-01

    Lasing was obtained in a high-pressure CO/sub 2/ laser (250 Torr) in a periodic nonself-sustaining discharge regime controlled by UV radiation spark sources. It was shown that the use of pulse-periodic UV radiation sources enables a quasicontinuous laser operating regime to be set up.

  19. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.

    Science.gov (United States)

    Li, Yanjun; Wang, Zengli; Zhang, Lin; Yang, Xianglin; Song, Jinzhong

    2014-06-01

    The continuous and noninvasive blood pressure (BP) measurement based on pulse transit time (PTT) doesn't need cuff and could monitor BP in real time for a long period. However, PTT is just a time index derived from electrocardiogram (ECG) and photoplethysmogram (PPG), while BP-related information within the PPG waveform has seldom been taken into consideration. We hypothesized that PPG waveform feature might be useful for BP estimation. Nine healthy subjects took part in an exercise stress test, including baseline resting, exercise on bicycle ergometry and recovering resting. ECG of lead V5 and PPG from left finger were collected simultaneously, and systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded from a cuff sphygmometer on the right wrist. The correlation coefficients were obtained between BP (SBP, DBP and pulse pressure (PP)) and PPG morphological indices (total 15 indices in terms of waveform amplitude, time span and area ratio). Five PPG indices were correlated with both SBP and PP (absolute value of correlation coefficient |r| > 0.6) and were further tested for the capability to BP estimation, which were: (1) PTTA, time delay between the R peak of ECG and the foot point of PPG; (2) RSD, time ratio of systole to diastole; (3) RtArea, area ratio of systole to diastole; (4) TmBB, time span of PPG cycle; (5) TmCA, diastolic duration. Comparisons were made between the measured BP and the estimated BP by regression lines and quadratic curve fitting, respectively. As a result, the mean errors of SBP liner fitting with RSD, RtArea, TmBB and TmCA respectively were 5.5, 5.4, 5.2, 5.1 mmHg, which were smaller than that with PTTA of 5.8 mmHg. And the mean errors of SBP quadratic curve fitting with RSD, RtArea, TmBB and TmCA were all 5.1 mmHg, which were smaller than that with PTTA of 5.7 mmHg. The mean errors of multiple regression for SBP, PP and DBP was 4.7, 4.7, 3.5 mmHg respectively, which were more accurate than the regression with

  20. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Larstorp, Anne Cecilie K; Ariansen, Inger; Gjesdal, Knut;

    2012-01-01

    Previous studies have found pulse pressure (PP), a marker of arterial stiffness, to be an independent predictor of atrial fibrillation (AF) in general and hypertensive populations. We examined whether PP predicted new-onset AF in comparison with other blood pressure components in the Losartan...... coding of electrocardiograms confirmed new-onset AF in 353 patients (4.0%) during mean 4.9 years of follow-up. In multivariate Cox regression analyses, baseline and in-treatment PP and baseline and in-treatment systolic blood pressure predicted new-onset AF, independent of baseline age, height, weight......, and Framingham Risk Score; sex, race, and treatment allocation; and in-treatment heart rate and Cornell product. PP was the strongest single blood pressure predictor of new-onset AF determined by the decrease in the -2 Log likelihood statistic, in comparison with systolic blood pressure, diastolic blood pressure...

  1. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: • Increase in hydrophobicity on PMMA is achieved after the DBD treatment in CF4, and the water contact angle can increase from 68° to 100° after treatment. • Nanosecond-pulse DBD is used for the surface treatment and the power density is about 114.8 mW/cm2. • The effects of applied voltage, CF4 flow, and time on plasma treatment are investigated. • Plasma treatment causes morphological change, significantly increases the roughness of the surface, and introduces fluorine-containing groups into the polymethylmethacrylate surface. • Hydrophobic behavior of the treated PMMA surface is slightly affected by the aging effect. - Abstract: Nanosecond-pulse dielectric barrier discharge (DBD) can provide non-thermal plasmas with extremely high energy and high density, which can result in a series of complicated physical and chemical reactions in the surface treatment of polymers. Therefore, in this paper, hydrophobic treatment of polymethylmethacrylate (PMMA) surface is conducted by nanosecond-pulse DBD in carbon tetrafluoride (CF4) at atmospheric pressure. Investigations on surface morphology and chemical composition before and after the DBD treatment in CF4 are conducted with the contact angle measurement, atomic force microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometer. The effects of the applied voltage, CF4 flow rate, and treatment time on the hydrophobic modification are studied. Results show that the contact angles of the treated PMMA surface increases with the applied voltage, and it could be greatly affected by the CF4 flow rate and the treatment time. The water contact angle can increase from 68° to 100° after the treatment. Furthermore, both surface morphology and chemical composition of the PMMA samples are changed. Both the increase of the surface roughness and the occurrence of fluorine-containing functional groups on the PMMA surface treated by DBD in CF4 lead to the hydrophobicity improvement of

  2. Virtual Instrument for Calibration of Multiple Vehicle Pressure Sensor%多路车用压力传感器校准虚拟仪表

    Institute of Scientific and Technical Information of China (English)

    宁金跃; 胡景春; 郭昊庆

    2013-01-01

    运用虚拟仪器软件LabVIEW开发了多路压力传感器校准系统,介绍了压力传感器校准系统的构架,分析了利用LabVIEW控制系统硬件的方法,同时提出了对绝对压力传感器MLX90808和相对压力传感器MLX90807未编程状态的的校准方法和已编程状态的标定方法.设计的系统实现了自动化控制,压力传感器校准精度高,控制界面友好,操作方便.%This paper developed the calibration system for multi-channel pressure sensor with the virtual instrument software LabVIEW.The paper introduced the architecture of press sensor calibration system,analyzed the method of controlling system hardware with the LabVIEW.And it proposed a calibration method in unprogrammed state and the calibration method in the programmed state for absolute pressure sensor MLX90808 and relative pressure sensor MLX90807.The design system achieves automatic control,high calibration accuracy for the pressure sensor,and friendly software interface which is easy to operate.

  3. Monounsaturated fatty acid, carbohydrate intake, and diabetes status are associated with arterial pulse pressure

    Directory of Open Access Journals (Sweden)

    Vaccaro Joan A

    2011-11-01

    Full Text Available Abstract Background Diabetes is a global epidemic. Cardiovascular disease (CVD is one of the most prevalent consequences of diabetes. Nutrition is considered a modifiable risk factor for CVD, particularly for individuals with diabetes; albeit, there is little consensus on the role of carbohydrates, proteins and fats for arterial health for persons with or without diabetes. In this study, we examined the association of macronutrients with arterial pulse pressure (APP, a surrogate measure of arterial health by diabetes status and race. Methods Participants were 892 Mexican Americans (MA, 1059 Black, non-Hispanics (BNH and 2473 White, non-Hispanics (WNH with and without diabetes of a weighted sample from the National Nutrition and Health Examination Survey (NHANES 2007-2008. The cross-sectional analysis was performed with IBM-SPSS version 18 with the complex sample analysis module. The two-year sample weight for the sub-sample with laboratory values was applied to reduce bias and approximate a nationally, representative sample. Arterial stiffness was assessed by arterial pulse pressure (APP. Results APP was higher for MA [B = 0.063 (95% CI 0.015 to 0.111, p = 0.013] and BNH [B = 0.044 (95% CI 0.006 to 0.082, p = 0.018] than WNH, controlling for diabetes, age, gender, body mass index (BMI, fiber intake, energy intake (Kcal and smoking. A two-way interaction of diabetes by carbohydrate intake (grams was inversely associated with APP [B = -1.18 (95% CI -0.178 to -0.058, p = 0.001], controlling for race, age, gender, BMI, Kcal and smoking. BNH with diabetes who consumed more mono-unsaturated fatty acids (MUFA than WNH with diabetes had lower APP [B = -0.112 (95%CI-0.179 to -0.045, p = 0.003] adjusting for saturated fatty acids, Kcal, age, gender, BMI and smoking. Conclusion Higher MUFA and carbohydrate intake for persons with diabetes reflecting lower APP may be due to replacement of saturated fats with CHO and MUFA. The associations of APP with

  4. Effects of oxygen pressure on La_3Ga_5SiO_(14) thin films grown by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    张雯; 王继扬; 季振国; 李红霞; 娄垚; 姚淑华

    2010-01-01

    La3Ga5SiO14 thin films were grown on Si(100) substrates by pulsed laser deposition at several oxygen pressures(5,10,and 20 Pa).The effects of oxygen pressure on the structural and morphological characteristics of the films were investigated using X-ray diffraction,atomic force microscopy,and scanning electron microscopy.X-ray diffraction results showed the intensity of lines from crystallites oriented along the(300) and(220) planes increased as the oxygen pressure was increased to 20 Pa.The deposited films ...

  5. Chart-Recorded Capillary Pulse Pressure Measurement as an Unobtrusive Means of Detecting Unspecified Frame-Specific Flaws in Programmed Instruction Sequences: An Experimental Study. Final Report.

    Science.gov (United States)

    Fraley, Lawrence E., Jr.

    Capillary pulse pressure measurement may have potential as a covert but direct means of determining a subject's level of affect as he encounters the frame-by-frame content of programed instruction. An experiment was designed which called for recording the capillary pulse pressure of subjects as they worked through some programed instruction…

  6. Multiscale simulation of atmospheric pressure pulsed discharges used in polymer surface functionalization

    Science.gov (United States)

    Bhoj, Ananth N.

    Atmospheric pressure pulsed plasma discharges are widely used for surface functionalization or treatment of commodity polymers to improve properties such as adhesion and wettability. Newer applications include textile fabric treatment to improve color fastness and biomedical surface functionalization. In this work, an unstructured mesh-based two-dimensional Plasma Equipment Model (PEM) was developed to investigate the physical and chemical processes in these discharges, which occur on temporal and spatial scales spanning many orders of magnitude and affect their interaction with polymer surfaces. Better insight into these processes will enable the tailoring and optimization of processing conditions. Transient phenomena (time variation of plasma properties) during breakdown in atmospheric pressure discharges are addressed, since the spatial distribution of radicals generated in the discharge is determined by the dynamics of breakdown. The breakdown dynamics is governed by a multitude of physical and chemical processes such as reaction kinetics, photoionization, electron energy transport, charged species and neutral transport. The ability to address non-equilibrium electron energy transport in plasma discharges was developed by enhancing an existing electron Monte-Carlo simulation to address multiple regions of nonequilibrium, and was demonstrated for breakdown in high pressure discharges. A high degree of uniformity in surface treatment is important for value-added materials. Increasing the proximity of reactive plasma produced species to the surface enables better uniformity, especially with polymers having complex surface shapes. The propagation of atmospheric pressure discharges in microchannels, such as those used in lab-on-a-chip devices was investigated to determine the possibility of producing reactive gas-phase radicals within small spaces, close to the surfaces requiring treatment. An integrated surface kinetics module was developed to address the

  7. Design of Pulse Calibration in NMR Logging Instrument%核磁共振测井仪脉冲刻度设计

    Institute of Scientific and Technical Information of China (English)

    吴磊; 程晶晶; 孔力; 张本庭

    2011-01-01

    A method of pulse calibration in NMR( nuclear magnetic resonance)logging instrument was proposed based on the device's principle and application characterizations. Moreover, in order to implement the method,a transmitter module was designed, which included two transmitters. The global pulse magnitude could be controlled by changing the phase difference between the two transmitters, which would avoid the dangerous of changing the high voltage directly. In this way,the pulse could be calibrated well. The performances of the method and transmitter module were proved through experiment,which provided the basis for the instrument to get high SNR(signal-to-noise ratio).%通过分析核磁共振测井仪器原理,结合其应用特点,提出了一种激励脉冲的刻度方法.同时,设计了一套包含两个发射支路的核磁共振测井仪发射机,通过改变两路发射脉冲相位差控制脉冲的总幅度,避免了使用直接改变供电高压控制脉冲幅度带来的危险,实现了脉冲的刻度.实验证明:所设计方法和电路能准确刻度脉冲,为仪器获得高的信噪比奠定了基础.

  8. Effect of Pulse Pressure Treatment on Content of Protein and Some Sugars in Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Violetta Pavlova

    2013-12-01

    Full Text Available Seeds of hard wheat (Triticum durum were treated by pulse pressure (PP, generated by shock wave. Protein content was determined by spectroscopy in the nearest infrared point of the spectrum (NIR. HPLC was used for determining glucose level in samples. Moisture of control seeds was 14.2%. It was not changed in PP 11 MPa samples and was decreased by PP 29 MPa (12.8%; that indicated the damage of seeds. Protein content in control sample was 16.5%. The index was not changed by PP 11 MPa (16.9%, but it increased under PP 29 MPa (17.2% due to the degradation of starch and relative elevation of protein level. Glucose content in PP 11 MPa samples was less than the control level, probably, due to the acceleration of amino-carbonyl reaction. PP 29 MPa promoted the increase of glucose content due to non-enzymatic starch hydrolysis activation. Thus PP 11 MPa made minor damages without the accumulation of glucose, but PP 29 MPa promoted the ageing due to the accumulation of glucose.

  9. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  10. Relations between diabetes, blood pressure and aortic pulse wave velocity in haemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjærgaard, Krista Dybtved; Dzeko, Mirela;

    Diabetes (DM) is common in haemodialysis (HD) patients and affects both blood pressure (BP) and arterial stiffness. Carotid femoral pulse wave velocity (PWV) reflects the stiffness of the aorta and is regarded as a strong risk factor for cardiovascular (CV) mortality in HD patients. However, PWV...... is highly influenced by the BP-level. Higher PWV-values among HD patients with DM could reflect a higher BP-level rather than increased arterial stiffness. The aim of this study was to investigate the effect of DM on BP and PWV in a group of HD patients. BP and PWV were measured in 66 HD patients without DM...... (HD) and 32 HD patients with DM (HD+DM). The SphygmoCor system was used for estimation of PWV. HD-duration, age, gender and BP medication were similar in the two groups. Mean DM-duration was 23±11 years and 25(78%) had type 2 DM. HD+DM had higher BMI (26±5 vs. 29±5 kg/m2, p=0.02), systolic BP (142...

  11. Electrode Erosion in Pulsed Arc for Generating Air Meso-Plasma Jet under Atmospheric Pressure

    Science.gov (United States)

    Shiki, Hajime; Motoki, Junpei; Takikawa, Hirofumi; Sakakibara, Tateki; Nishimura, Yoshimi; Hishida, Shigeji; Okawa, Takashi; Ootsuka, Takeshi

    Various materials of the rod electrode were examined in pulsed arc of PEN-Jet (Plasma ENergized-Jet) with working gas of air, which can be used for the surface treatment under atmospheric pressure. The erosion of the rod electrode was measured and it surface was observed. The amount of erosion and surface appearance were found to be different for the materials, input power and energizing time. Tungsten (W) rod electrode was oxidized immediately after starting the discharge and tungsten oxide (WO3) powder was generated over the side surface of electrode tip. This powder contaminated the treating surface. Copper (Cu) rod electrode was also oxidized immediately and CuO/Cu2O multi-layer was formed on the electrode surface. However, the erosion of Cu electrode was quite small. Platinum (Pt) and iridium (20 wt%)-contained-platinum (Pt-Ir) rod electrode were not oxidized and their erosions were significantly small. This indicated that they could be employed for keeping the constant electrode-gap and processing the surface treatment without contamination due to electrode erosion.

  12. Plastic Deformation and Rupture of Ring-Stiffened Cylinders under Localized Pressure Pulse Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1994-01-01

    Full Text Available An analytical solution for the dynamic plastic deformation of a ring-stiffened cylindrical shell subject to high intensity pressure pulse loading is presented. By using an analogy between a cylindrical shell that undergoes large plastic deformation and a rigid-plastic string resting on a rigid-plastic foundation, one derives closed-form solutions for the transient and final deflection profiles and fracture initiation of the shell. Discrete masses' and springs are used to describe the ring stiffeners in the stiffened shell. The problem of finding the transient deflection profile of the central bay is reduced to solving an inhomogeneous wave equation with inhomogeneous boundary conditions using the method of eigenfunction expansion. The overall deflection profile consists of both global (stiffener and local (bay components. This division of the shell deflection profile reveals a complex interplay between the motions of the stiffener and the bay. Furthermore, a parametric study on a ring-stiffened shell damaged by a succession of underwater explosions shows that the string-on-foundation model with ring stiffeners described by lumped masses and springs is a promising method of analyzing the structure.

  13. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  14. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-Zhen; HUANG Zu-Qia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and Phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  15. Pulsed positive discharges in air at moderate pressures near a dielectric rod

    Science.gov (United States)

    Dubinova, A.; Trienekens, D.; Ebert, U.; Nijdam, S.; Christen, T.

    2016-10-01

    We study pulsed positive discharges in air in a cylindrically symmetric setup with an electrode needle close (about 1 mm) above the top of a dielectric cylindrical rod of 4 mm in diameter mounted at its bottom on a grounded plate electrode. We present ICCD (intensified charge-coupled device) pictures and evaluations of experiments as well as simulations with a fluid discharge model; the simulations use cylindrical symmetry. In the experiments, there is an initial inception cloud phase, where the cylindrical symmetry is maintained, and later a streamer phase, where it is broken spontaneously. At 75-150 mbar, discharges with cylindrical symmetry are not attracted to the dielectric rod, but move away from it. The dielectric rod plays the sole role of an obstacle that shades (in the context of photoionization) a cone-shaped part of the inception cloud; the cone size is determined by the geometry of the setup. The material properties of the dielectric rod, such as its dielectric permittivity and the efficiency of the photon induced secondary electron emission do not have a noticeable effect. This is due to the abundance of photoionization in air, which supplies a positive discharge with free electrons and allows it to propagate along the electric field lines. Using some simple field calculations, we show that field enhancement due to dielectric polarization does not play a significant role in our geometry as long as the discharge maintains its cylindrical symmetry. The field component towards the rod is insufficiently enhanced to cause the discharge to move towards the rod. Any additional electrons produced by the dielectric surface do not influence this discharge morphology. This interpretation is supported by both experiments and simulations. At higher pressures (400-600 mbar) or for larger gaps between the needle and the dielectric rod, the inception cloud reaches its maximal radius within the gap between needle and rod and destabilizes there. In those cases

  16. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes%Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    Institute of Scientific and Technical Information of China (English)

    邵涛; 于洋; 章程; 姜慧; 严萍; 周远翔

    2011-01-01

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.

  17. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure.

    Science.gov (United States)

    Thorin-Trescases, Nathalie; Thorin, Eric

    2016-05-01

    The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches. PMID:26961664

  18. Effects of candesartan in hypertensive patients with type 2 diabetes mellitus on inflammatory parameters and their relationship to pulse pressure

    Directory of Open Access Journals (Sweden)

    Sakamoto Masaya

    2012-10-01

    Full Text Available Abstract Background Angiotensin receptor blockers (ARBs are reported to provide direct protection to many organs by controlling inflammation and decreasing oxidant stress in patients without arteriosclerosis. This study aimed to evaluate (1 whether an ARB (candesartan decreases values for inflammatory parameters in hypertensive patients with type 2 diabetes mellitus of long duration accompanied by arteriosclerosis and (2 whether there any predictors of which patients would receive the benefits of organ protection by candesartan. Methods We administered candesartan therapy (12 mg daily for 6 months and evaluated whether there was improvement in serum inflammatory parameters high molecular weight adiponectin (HMW-ADN, plasminogen activator inhibitor-1 (PAI-1, highly sensitive C-reactive protein (Hs-CRP, vascular cell adhesion molecule-1 (VCAM-1 in serum and urinary-8-hydroxydeoxyguanosine (U-8-OHdG. We then analyzed the relationship between the degree of lowering of blood pressure and inflammatory factors and the relationship between pulse pressure and inflammatory factors. Finally, we analyzed predictive factors in patients who received the protective benefit of candesartan. Results After 6 months of treatment, significant improvements from baseline values were observed in all patients in HMW-ADN and PAI-1 but not in Hs-CRP, VCAM-1 and U-8-OHdG. Multilinear regression analysis was performed to determine which factors could best predict changes in HMW-ADN and PAI-1. Changes in blood pressure were not significant predictors of changes in metabolic factors in all patients. We found that the group with baseline pulse pressure Conclusions Candesartan improved inflammatory parameters (HMW-ADN and PAI-1 in hypertensive patients with type 2 diabetes mellitus of long duration independent of blood pressure changes. Patients with pulse pressure Trial registration UMIN000007921

  19. Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure

    International Nuclear Information System (INIS)

    This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

  20. Calibration of nylon organic chemical integrative samplers and sentinel samplers for quantitative measurement of pulsed aquatic exposures.

    Science.gov (United States)

    Morrison, Shane A; Belden, Jason B

    2016-06-01

    Environmental exposures often occur through short, pulsed events; therefore, the ability to accurately measure these toxicologically-relevant concentrations is important. Three different integrative passive sampler configurations were evaluated under different flow and pulsed exposure conditions for the measurement of current-use pesticides (n=19), polyaromatic hydrocarbons (n=10), and personal care products (n=5) spanning a broad range of hydrophobicities (log Kow 1.5-7.6). Two modified POCIS-style samplers were investigated using macroporous nylon mesh membranes (35μm pores) and two different sorbent materials (i.e. Oasis HLB and Dowex Optipore L-493). A recently developed design, the Sentinel Sampler (ABS Materials), utilizing Osorb media enclosed within stainless steel mesh (145μm pores), was also investigated. Relatively high sampling rates (Rs) were achieved for all sampler configurations during the short eight-day exposure (4300-27mL/d). Under flow conditions, median Rs were approximately 5-10 times higher for POCIS-style samplers and 27 times higher for Sentinel Samplers, as compared to static conditions. The ability of samplers to rapidly measure hydrophobic contaminants may be a trade off with increased flow dependence. Analyte accumulation was integrative under pulsed and continuous exposures for POCIS-style samplers with mean difference between treatments of 11% and 33%; however, accumulation into Sentinel Samplers was more variable. Collectively, results show that reducing membrane limitations allows for rapid, integrative accumulation of a broad range of analytes even under pulsed exposures. As such, these sampler designs may be suitable for monitoring environmental substances that have short aquatic half-lives. PMID:27139214

  1. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    International Nuclear Information System (INIS)

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen. (physics of gases, plasmas, and electric discharges)

  2. Pulse pressure variation and stroke volume variation under different inhaled concentrations of isoflurane, sevoflurane and desflurane in pigs undergoing hemorrhage

    OpenAIRE

    Alexandre Hideaki Oshiro; Denise Aya Otsuki; Hamaji, Marcelo Waldir M; Rosa, Kaleizu T; Keila Kazue Ida; Fantoni, Denise T.; José Otavio Costa Auler Jr

    2015-01-01

    OBJECTIVES: Inhalant anesthesia induces dose-dependent cardiovascular depression, but whether fluid responsiveness is differentially influenced by the inhalant agent and plasma volemia remains unknown. The aim of this study was to compare the effects of isoflurane, sevoflurane and desflurane on pulse pressure variation and stroke volume variation in pigs undergoing hemorrhage. METHODS: Twenty-five pigs were randomly anesthetized with isoflurane, sevoflurane or desflurane. Hemodynamic and ech...

  3. The Relationship among Pulse Wave Velocity, Ankle-Brachial Pressure Index and Heart Rate Variability in Adult Males

    OpenAIRE

    Ahn, Jeong-Hwan; Kong, Mihee

    2011-01-01

    Background Pulse wave velocity (PWV) and ankle-brachial pressure index (ABI) are non-invasive tools to measure atherosclerosis and arterial stiffness. Heart rate variability (HRV) has proven to be a non-invasive powerful tool in the investigation of the autonomic cardiovascular control. Therefore, the purpose of this study was to determine the relationship among PWV, ABI, and HRV parameters in adult males. Methods The study was carried out with 117 males who visited a health care center from ...

  4. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin.

    Science.gov (United States)

    Han, Geum-Jun; Kim, Jae-Hoon; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Seo, Deog-Gyu; Son, Ho-Hyun; Cho, Byeong-Hoon

    2014-12-01

    This study investigated the effect of low-power, non-thermal atmospheric pressure plasma (NT-APP) treatments, in pulsed and conventional modes, on the adhesion of resin composite to dentin and on the durability of the bond between resin composite and dentin. A pencil-type NT-APP jet was applied in pulsed and conventional modes to acid-etched dentin. The microtensile bond strength (MTBS) of resin composite to dentin was evaluated at 24 h and after thermocycling in one control group (no plasma) and in two experimental groups (pulsed plasma and conventional plasma groups) using the Scotchbond Multi-Purpose Plus Adhesive System. Data were analyzed using two-factor repeated-measures anova and Weibull statistics. Fractured surfaces and the bonded interfaces were evaluated using a field-emission scanning electron microscope. Although there were no significant differences between the plasma treatment groups, the plasma treatment improved the MTBS compared with the control group. After thermocycling, the MTBS did not decrease in the control or conventional plasma group but increased in the pulsed plasma group. Thermocycling increased the Weibull moduli of plasma-treated groups. In conclusion, plasma treatment using NT-APP improved the adhesion of resin composite to dentin. Using a pulsed energy source, the energy delivered to the dentin was effectively reduced without any reduction in bond strength or durability.

  5. 探讨全自动压力检定相关技术的使用%The use of full automatic pressure calibration related technology

    Institute of Scientific and Technical Information of China (English)

    李志俊; 王震; 徐潇旭; 沈超

    2015-01-01

    how to make better use of automatic pressure calibration instrument, first of all need to understand technical advantages, its structure principle and identification methods, the need for automatic pressure tester and non comparison between automatic pressure calibration instrument, the use of more efficient automatic pressure test instrument. Automatic pressure calibration instrument error can not be generated non automatic verification instrument is in the examination process, such as examination records, data processing, error calculation mistakes, so how to properly use the automatic pressure calibration instrument is one of the way to avoid human errors.%如何更好的对全自动压力检定仪进行使用,首先需要明白它的技术优势、结构原理、鉴定方法,需要对全自动压力检定仪和非全自动压力检定仪之间作比较,更高效率的使用全自动压力检定仪。全自动压力检定仪不会产生非全自动检定仪在检定过程中的误差,比如检定记录、数据处理、计算失误等等误差,所以如何正确使用全自动压力检定仪是避免人为因素误差的办法之一。

  6. In-situ calibration of pulsed eddy current detection of cracks at fasteners in CP-140 aircraft

    Science.gov (United States)

    Underhill, Ross; Stott, Colette; Krause, Thomas W.

    2016-02-01

    The use of the Smallest Half Volume (SHV) robust statistics method and the Mahalanobis distance to blindly distinguish fasteners with cracks from fasteners without is examined. Pulsed eddy current data obtained from CP140 Aurora wing structures is used to test the approach. It is shown that the method can achieve levels of detection very close to those obtained when the same measurement technique is applied with full knowledge of which fasteners have no cracks. The method is applicable to a broad range of similar situations when an objective hit/miss criterion is used.

  7. Small gas bubble experiment for mitigation of cavitation damage and pressure waves in short-pulse mercury spallation targets

    International Nuclear Information System (INIS)

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center–Weapons Neutron Research (LANSCE–WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated small bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 μm in radius with achieved gas volume fractions in the 10−5–10−4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was pitting damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was to one-third that of stagnant mercury. Other data collected included surface motion tracking by three Laser Doppler Vibrometers (LDV), test loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones

  8. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, Mark W [ORNL; Felde, David K [ORNL; Sangrey, Robert L [ORNL; Abdou, Ashraf A [ORNL; West, David L [ORNL; Shea, Thomas J [ORNL; Hasegawa, Shoichi [Japan Atomic Energy Agency (JAEA); Kogawa, Hiroyuki [Japan Atomic Energy Agency (JAEA); Naoe, Dr. Takashi [Japan Atomic Energy Agency (JAEA); Farny, Dr. Caleb H. [Boston University; Kaminsky, Andrew L [ORNL

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  9. IMPACT OF SHORT TERM TRAINING OF ANULOM VILOM PRANAYAM ON BLOOD PRESSURE AND PULSE RATE IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    Dandekar Pradnya Deepak

    2013-04-01

    Full Text Available In present scenario, Yoga is becoming most popular science due to its positive effect on health. To achieve preventive, curative and rehabilitative aspects of health, Yoga draws the attention of large group of people. Prana (energy and Ayam (to expand or control form the word Pranayam. Pranayam is a technique to control or expand the energy in body. Practice of Pranayam has been known to modulate cardiac autonomic status with an improvement in cardio-respiratory functions. Keeping this in view, the present study designed to determine whether Anulom- Vilom Pranayam followed by Shawasan has immediate effect on pulse rate, systolic and diastolic blood pressure. Thirty normal healthy subjects aged between 17-20 years, volunteered for this study. All the selected physiological parameters were measured before and after performing ‘Anulom – Vilom Pranayama’ followed by Shawasan for four weeks. Experimental group showed a significant decline in Systolic Blood Pressure (p<0.021. On other hand there was no significant change in Diastolic Blood Pressure and pulse rate, though it showed slight decrease. Our study indicates that, short-term training of ‘Anulom- Vilom Pranayam ‘shows significant decrease in Systolic Blood Pressure. Control of breathing process to make it deep and prolong by doing alternate nostril breathing with slow and rhythmic manner brings about balance in autonomous nervous system. In addition, practice of Anulom- Vilom pranayama for short-term duration could get better parasympathetic control over the heart.

  10. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Directory of Open Access Journals (Sweden)

    Grus Franz-H

    2004-03-01

    Full Text Available Abstract Background The new Ocular Dynamic Contour Tonometer (DCT, investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland allows simultaneous recording of intraocular pressure (IOP and ocular pulse amplitude (OPA. It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens®, a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland. Methods Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens®, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens®. Results No difference (P = 0.09 was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg. The IOP values of SmartLens® (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg were significantly higher (P = 0.0008 both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg were significantly lower (P = 0.0003 than those obtained by SmartLens® (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg. Conclusions DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens® (contact lens tonometry gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens® provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.

  11. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  12. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    Science.gov (United States)

    Ribière, M.; Cessenat, O.; d'Almeida, T.; de Gaufridy de Dortan, F.; Maulois, M.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-03-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 1010 cm-3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  13. Effect of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume and reaction time.

    Science.gov (United States)

    Sudsuang, R; Chentanez, V; Veluvan, K

    1991-09-01

    Serum cortisol and total protein levels, blood pressure, heart rate, lung volume, and reaction time were studied in 52 males 20-25 years of age practicing Dhammakaya Buddhist meditation, and in 30 males of the same age group not practicing meditation. It was found that after meditation, serum cortisol levels were significantly reduced, serum total protein level significantly increased, and systolic pressure, diastolic pressure and pulse rate significantly reduced. Vital capacity, tidal volume and maximal voluntary ventilation were significantly lower after meditation than before. There were also significant decreases in reaction time after mediation practice. The percentage decrease in reaction time during meditation was 22%, while in subjects untrained in meditation, the percentage decrease was only 7%. Results from these studies indicate that practising Dhammakaya Buddhist meditation produces biochemical and physiological changes and reduces the reaction time. PMID:1801007

  14. Laser diagnostics on atmospheric-pressure low-temperature helium pulsed plasmas in room- and cryogenic-temperature environments

    Science.gov (United States)

    Sakakibara, Noritaka; Muneoka, Hitoshi; Urabe, Keiichiro; Yasui, Ryoma; Terashima, Kazuo

    2015-09-01

    In atmospheric-pressure low- temperature plasmas, the control of the plasma gas temperature (Tg) by a few kelvin is considered to be crucial for their applications to novel materials processing such as bio-materials. However, there have been only few studies that focused on the influence of Tg on the plasma characteristics. On the other hand, it was reported that helium metastables played a key role in the dependency of chemical reactions on Tg in helium-nitrogen plasmas. In this study, laser diagnostics were carried out in atmospheric-pressure helium pulsed plasmas near or below room temperature, at 340 -100 K. Parallel electrodes of copper rods (diameter: 2 mm) with a gap distance of 535 μm were used and pulsed discharges with a pulse width of a few hundred nanoseconds were generated inside a reactor. The density and lifetime of helium metastables were estimated by laser absorption spectroscopy measurements and Tg was evaluated by near-infrared laser heterodyne interferometry measurements. At 300 K, the helium metastable density was 1.5 × 1013 cm-3 while the lifetime was 3.1 μs, and increase in Tg was up to 70 K. Dependency of the density and lifetime of helium metastables on Tg was observed and also discussed.

  15. Determinants of Invasively Measured Aortic Pulse Pressure and its Relationship with B-type Natriuretic Peptides in Stable Patients with Preserved Left Ventricular Systolic Function

    OpenAIRE

    Jarkovsky, J; J. Parenica; R. Miklik; M. Pavkova Goldbergova; P. Kala; L. Malaskova; Z. Cermakova; M. Poloczek; M. Vytiska; L. Kubková; S. Littnerova; K. Helanová; I. Parenicova; L. Dostalova; P. Kubena

    2012-01-01

    Background: Wide aortic pulse pressure (PP) and levels of natriuretic peptides were repeatedly demonstrated as predictors of cardiovascular morbidity and mortality even in a population without a history of heart disease. The aim of the work was to find determinants of invasively measured aortic pulse pressure and B-type natriuretic peptide (BNP), and a relationship of both markers in stable patients undergoing diagnostic coronary angiography with preserved left ventricle systolic function.Pop...

  16. Change in pulse pressure/stroke index in response to sustained blood pressure reduction and its impact on left ventricular mass and geometry changes: the life study

    DEFF Research Database (Denmark)

    Palmieri, V.; Bella, J.N.; Gerdts, E.;

    2008-01-01

    BACKGROUND: In cross-sectional data in hypertensive subjects, brachial pulse pressure (PP)/Doppler stroke index (SVi), (PP/SVi) correlates weakly but significantly with left ventricular (LV) mass and relative wall thickness (RWT). METHODS: In the Losartan Intervention For End-point reduction...... in hypertension (LIFE) study, we evaluated the impact of antihypertensive treatment on change of PP/SVi as raw indicator of systemic arterial stiffness, and further explored the impact of the change in PP/SVi on the change in LV mass and RWT. RESULTS: Compared to baseline, mean PP/SVi reduction was -13% at year 1...... and not statistically significant at year 2 follow-up. Losartan- or atenolol-based treatments were associated with comparable reduction of PP/SVi. At year 2 follow-up, reduced PP/SVi was associated with greater reductions in mean blood pressure (BP) and heart rate and greater increase in SVi, but not with lower LV mass...

  17. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  18. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    International Nuclear Information System (INIS)

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies

  19. Experimental Investigation of Nozzle Effects on Thrust and Inlet Pressure of an Air-breathing Pulse Detonation Engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenjuan; FAN Wei; ZHANG Quan; PENG Changxin; YUAN Cheng; YAN Chuanjun

    2012-01-01

    Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally.An APDE with 68 mm in diameter and 2 050 mm in length is operated using gasoline/air mixture.Straight nozzle,converging nozzle,converging-diverging nozzle and diverging nozzle are tested.The results show that thrust augmentation of converging-diverging nozzle,diverging nozzle or straight nozzle is better than that of converging nozzle on the whole.Thrust augmentation of straight nozzle is worse than those of converging-diverging nozzle and diverging nozzle.Thrust augmentations of diverging nozzle with larger expansion ratio and converging-diverging nozzle with larger throat area range from 20% to 40%on tested frequencies and are bener than those of congeneric other nozzles respectively.Nozzle effects on inlet pressure are also researched.At each frequency it is indicated that filling pressures and average peak pressures of inlet with diverging nozzle and converging-diverging nozzle with large throat cross section area are higher than those with straight nozzle and converging nozzle.Pressures near thrust wall increase in an increase order from without nozzle,with diverging nozzle,straight nozzle and converging-diverging nozzle to converging nozzle.

  20. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference m

  1. Investigation of HEPA filters subjected to tornado pressure pulses. Initial structural testing

    International Nuclear Information System (INIS)

    Initial results from a program to determine response of 610- x 610-mm (24- x 24-in.) HEPA filters to tornado-induced pressure transients are described. Filters were structurally tested by subjecting them to 20.7-kPa (3-psi) pressure differentials at pressurization rates from 6.9 kPa/s (1 psi/s) to 34.5 kPa/s (5 psi/s). Two sizes of filters were used in the tests: 149 mm (57/8 in.) thick and 292 mm (111/2 in.) thick. The 149-mm (57/8 in.-) thick filters failed catastrophically at 20.7-kPa (3-psi) pressure differentials. Pressure drop across the filters, not pressurization rate, appears to be the primary cause of failure. The 292-mm- (111/2-in.) thick filters were also tested with the above pressurization rates. These units failed by breakage of the folded downstream ends of the fiber mat. Of four 292-mm- (111/2-in.-) thick filters tested, a 20.7-kPa (3-psi) pressure differential produced failure at the lowest and highest pressurization rates, but not at two intermediate rates. Additional tests will be required to determine a possible relationship between structural failure and pressurization rate. Flow-resistance data were also obtained for the 610- x 610-mm (24- x 24-in.) filters. Other activities described concern construction of small-scale particulate-loading and pressure-testing devices. These devices will be used to test 203- x 203-mm (8- x 8-in.) filters so that methods of testing and instrumentation requirements can be established for the full-scale tests. Progress is also reported on the data acquisition systems, the laser instrumentation system, and the construction of a building over the facility test section

  2. Continuous Monitoring of Cerebrovascular Reactivity Using Pulse Waveform of Intracranial Pressure

    NARCIS (Netherlands)

    Aries, M.J.H.; Czosnyka, Marek; Budohoski, Karol P.; Kolias, Angelos G.; Radolovich, Danila K.; Lavinio, Andrea; Pickard, John D.; Smielewski, Peter

    2012-01-01

    Guidelines for the management of traumatic brain injury (TBI) call for the development of accurate methods for assessment of the relationship between cerebral perfusion pressure (CPP) and cerebral autoregulation and to determine the influence of quantitative indices of pressure autoregulation on out

  3. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    Energy Technology Data Exchange (ETDEWEB)

    Ni, L.; Skala, K. [Paul Scherrer Institute, Villingen (Switzerland)

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  4. Strong Solar Wind Dynamic Pressure Pulses during Solar Cycle 23 and Their Impacts on Geosynchronous Magnetic Fields

    Science.gov (United States)

    Zuo, P.

    2015-12-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. In this investigation, we first present a statistical study on the properties of strong dynamic pressure pulses in the solar wind during solar cycle 23. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here we found that, a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, being stronger at the noon sector.

  5. Influence of Surface Resistivity and Temperature on Variation with Time of Current Pulses in Air at Optimum Pressure

    Directory of Open Access Journals (Sweden)

    S.G. Pimpale

    1977-04-01

    Full Text Available The variation of discharge current pulses with the surface nature of electrodes has been investigated by producing discharge in the intense ionizing zone of two ozonizers (A&B containing pure, dry air at a pressure of 4 & 10mm of mercury respectively. The course of reaction in the tube A showed that the periodic rise and fall of discharge counts through a series of recurrences whose amplitude varied randomly. During this reaction, steady potential, temperature of the electrolytic bath, counting time and pulse height were kept fixed. The phenomenon obtained for both the tubes is produced within a critical range of conditions. The results have been interpreted on the basis of activated adsorption at a temperature of 90 degree and 100 degree Centigrade and discussed on the theoretical grounds of change of surface resistivity upon the glass walls. Use of different coatings on annular surface in the same system with appropriate levels of electrolytic solution for a definite value of height-pulses and temperature, etc. shows significant variations in the discharge counts.

  6. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoquan, E-mail: zqchen@aust.edu.cn [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Yin, Zhixiang, E-mail: zxyin66@163.com; Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Xia, Guangqing; Liu, Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Kudryavtsev, A. A. [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  7. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  8. Study of pulsed neonxenon VUV radiating low pressure plasmas for mercury free fluorescent sign optimization

    OpenAIRE

    Robert, E.; Point, S; Dozias, S; Viladrosa, R; Pouvesle, J M

    2010-01-01

    Abstract This work deals with the study and optimization of mercury free fluorescent discharge tubes for publicity lightning applications. The experimental set up allows for the time resolved spectroscopy from 110 nm up to 900 nm, the photometric characterization in a large volume integrating sphere, and the current and voltage measurement of microsecond duration signals delivered by lab-developed pulsed drivers. The glow and afterglow radiative process analysis indicates that the best per...

  9. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    Science.gov (United States)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  10. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    Science.gov (United States)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  11. Effect of oxygen partial pressure on optical properties of gadolinium oxide thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gadolinium oxide (Gd2O3) is a rare earth oxide existing in three different phases such as cubic, monoclinic and hexagonal structure at ambient pressure. Properties such as high thermal and chemical stability, wide band gap and high dielectric constant (∼16) make it a suitable candidate material for protective coating, optical coating and dielectric material in CMOS, as well as in device applications. Gd2O3 thin films were deposited on quartz substrates at different oxygen partial pressures and at a substrate temperature of 573 K by pulsed laser deposition. XRD pattern shows the presence of both monoclinic and cubic phases of gadolinium oxide. Optical properties of the films such as transmittance and absorbance were measured by UV-Vis spectrophotometer. The oxygen partial pressure during deposition seems to affect the optical properties such as refractive index and transmittance. For instance, the films show a strong absorption at ∼216 nm and a decrease in transmittance value from 80% to 70% with decrease in oxygen partial pressure. (author)

  12. Effect of substrate temperature and oxygen partial pressure on phase transformation in zirconia thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    In the present work zirconia thin films were deposited on Si (100) and quartz substrates using pulsed laser deposition method, with the aim to understand the effect of substrate temperature and oxygen partial pressure on the formation of tetragonal and monoclinic phases of zirconia thin films. The substrate temperature and oxygen partial pressure was varied from 300 to 973 K and 2 x 10-2 to 2x10-5 mbar respectively. It is observed that the volume fraction of the monoclinic phase decreases with increasing substrate temperature at all oxygen partial pressure. The volume fraction of monoclinic phase varies from 19 to 90% at different substrate temperature and oxygen partial pressure. Crystallite size of monoclinic phase shows an increase with increase in the substrate temperature up to 673 K and then decreases. At temperatures exceeding 673 K, the tetragonal phase is formed and is also influenced by residual stress in the films. The films processed at low substrate temperatures (< 773)show a single band gap and the films deposited at 873 K show two band gaps. The optical band gap of films containing predominantly monoclinic phase shows an increase from 5.62 eV to 5.76 eV as the substrate temperature increases from 473 to 873 K. Band gap energy of 5.20 eV corresponding to the tetragonal phase is observed for the films deposited at a temperature of 873K

  13. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    Science.gov (United States)

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied. PMID:27586733

  14. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  15. Calibration of an accountability tank by bubbling pressure method: correction factors to be taken into account; Etalonnage d`une cuve de comptabilite par mesure de pression de bullage: facteurs correctifs a prendre en compte

    Energy Technology Data Exchange (ETDEWEB)

    Cauchetier, Ph.

    1993-12-31

    To obtain the needed precision in the calibration of an accountability tank by bubbling pressure method, it requires to use very slow bubbling. The measured data (mass and pressure) must be transformed into physical sizes of the vessel (height and cubic capacity). All corrections to take in account (buoyancy, calibration curve of the sensor, density of the liquid, weight of the gas column, bubbling overpressure, temperature...) are reviewed and valuated. We give the used equations. (author). 3 figs., 1 tab., 2 refs.

  16. Experimental study on dynamic pressure pulse in direct contact condation of steam jets discharging into subcooled water

    International Nuclear Information System (INIS)

    The dynamic pressure resulting from direct contact condensation of steam jets discharging into a subcooled water has been measured as a function of steam mass flux and subcooled water temperature. Steam is discharged in a horizontal direction through four different size nozzles placed in the middle of a quenching tank, which contains water at various temperatures. Four different horizontal nozzles with an internal diameter in the range of 5∼20mm were used under the various test conditions of the steam mass flux in the wide range of 24∼1190 kg/m2-s and the pool water temperature in the range of 20∼95 .deg. C. It is observed from the test results that the amplitude of dynamic pressure pulse at condensation oscillation condition becomes greater than that at a stable condensation condition of the same pool temperature . The dynamic pressure tends to increase with pool temperature at the beginning. The amplitude reached a peak at a pool temperature around 60 ∼80.deg. C depending on nozzle size and steam mass flux and then the amplitude decrased rapidly before the pool water reached saturation temperature. The amplitude of the dynamic pressure pulse at the unstable condition reached it peak at the condition of pool temperature 60.deg. C, but the amplitude peack at the stable condition was found at around 80.deg. C. The chugging phenomena have been observed at low steam mass flux (below 80 kg/m2-s). The condensation regime map has been constructed by acoustic/visual observations and dynamic pressure behaviors. The condensation regime map consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and interfacial oscillation condensation. As the pool temperature increases above 90 .deg. C the steam discharging into a subcooled water does not condense completely in the pool and part of it escapes through the free surface of water. The transition from condensation socillations to stable

  17. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas;

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  18. Learning Experience for Calibration Speciifcation for Superconducting Pulsed Fourier Transform Nuclear Magnetic Resonance Spectrometers%超导脉冲傅里叶变换核磁共振谱仪校准规范解读

    Institute of Scientific and Technical Information of China (English)

    廖鹏; 张伟; 黄挺

    2015-01-01

    Calibration Specification for Superconducting Pulsed Fourier Transform Nuclear Magnetic Resonance Spectrometers JJF1448–2014 was conducted. Through the analysis of the main technical indicators of the superconducting pulsed Fourier transform nuclear magnetic resonance spectrometers, the reasons of ethyl benzene certified reference material,chloroform certified reference material,deuterated benzene/p-dioxane certified reference material and the features and advantages of calibration method in calibration specification JJF 1448–2014 were expounded. New standard calibration method is reasonable, the standards materials have simple structure, and can calibrate the main technical index of instruments, the efficiency was improved, it meets the most of the Fourier transform nuclear magnetic resonance (NMR) calibration requirements.%对超导脉冲傅里叶变换核磁共振谱仪校准规范JJF 1448–2014进行了解读.通过对超导脉冲傅里叶变换核磁共振谱仪主要技术指标的类型分析,说明了采用乙基苯溶液标准物质、氯仿溶液标准物质、氘代苯/p-二氧六环溶液标准物质被采用的原因及其在JJF 1448–2014校准方法中的特点及优势.新规范校准方法合理、所采用的标准物质结构简单、能够对仪器的主要技术指标进行校准,提高了效率,满足大部分傅里叶变换核磁共振的校准要求.

  19. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  20. Pulse-probe measurements in low-temperature, low-pressure SF6

    International Nuclear Information System (INIS)

    To improve understanding of multiple-photon absorption by polyatomic molecules, we have performed a series of experiments wherein a pulsed CO2 laser irradiated 0.02 to 0.08 torr samples of SF6 at 1450K. A cw probe laser monitored the time response of the induced absorption of transmission at many CO2 laser lines that are in or near the ν3 absorption of SF6. The experiments covered a 40-fold fluence range and probe times out to 4 ms. The absorbed laser radiation produces a nonthermal vibrational-energy distribution and that intermolecular vibrational-energy transfer is important at early times in redistributing the absorbed energy. The influence of other processes on the induced spectrum is discussed

  1. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  2. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ. PMID:27137045

  3. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  4. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.

    Science.gov (United States)

    Gao, Mingwu; Olivier, N Bari; Mukkamala, Ramakrishna

    2016-05-01

    Pulse transit time (PTT) measured as the time delay between invasive proximal and distal blood pressure (BP) or flow waveforms (invasive PTT [I-PTT]) tightly correlates with BP PTT estimated as the time delay between noninvasive proximal and distal arterial waveforms could therefore permit cuff-less BP monitoring. A popular noninvasive PTT estimate for this application is the time delay between ECG and photoplethysmography (PPG) waveforms (pulse arrival time [PAT]). Another estimate is the time delay between proximal and distal PPG waveforms (PPG-PTT). PAT and PPG-PTT were assessed as markers of BP over a wide physiologic range using I-PTT as a reference. Waveforms for determining I-PTT, PAT, and PPG-PTT through central arteries were measured from swine during baseline conditions and infusions of various hemodynamic drugs. Diastolic, mean, and systolic BP varied widely in each subject (group average (mean ± SE) standard deviation between 25 ± 2 and 36 ± 2 mmHg). I-PTT correlated well with all BP levels (group average R(2) values between 0.86 ± 0.03 and 0.91 ± 0.03). PPG-PTT also correlated well with all BP levels (group average R(2) values between 0.81 ± 0.03 and 0.85 ± 0.02), and its R(2) values were not significantly different from those of I-PTT PAT correlated best with systolic BP (group average R(2) value of 0.70 ± 0.04), but its R(2) values for all BP levels were significantly lower than those of I-PTT (P < 0.005) and PPG-PTT (P < 0.02). The pre-ejection period component of PAT was responsible for its inferior correlation with BP In sum, PPG-PTT was not different from I-PTT and superior to the popular PAT as a marker of BP.

  5. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production

    DEFF Research Database (Denmark)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G.;

    2009-01-01

    on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline......The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study....... Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show...

  6. The effect on blood pressure and pulse rate of first-year college students in a suggestopaedic course

    Directory of Open Access Journals (Sweden)

    Mervyn Garlick

    2013-02-01

    Full Text Available Music is an important component of suggestopaedic teaching. However, little research has been done into the kind of music which is most effective, particularly in terms of the physiological effect on students. The writer describes an experiment in which the effect on blood pressure and pulse rate on a group of students caused by various kinds of music is measured. The results are analysed and suggestions for further research in this field are made. Musiek vorm 'n belangrike komponent van suggestopediese onderrig. Daar is egter weinig navorsing gedoen om te bepaal watter soort musiek die effektiefste sal wees, vera! ten opsigte van die fisiologiese uitwerking op studente. Die skrywer beskryf 'n eksperiment waarin verskeie soorte musiek gebruik is om die uitwerking daarvan op die bloeddruk en polsslag van 'n groep studente vas te stel. Die resultate is ontleed en voorstelle vir verdere navorsing op die gebied word gemaak.

  7. Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system

    Science.gov (United States)

    Mardare, I.; Tiţa, I.; Pelin, R. I.

    2016-08-01

    There are many types of weighing in motion systems: with strain gauges, piezoelectric type, with optical fibre, capacitive etc. Although one of them proved to be reliable, many research teams all over the world are interested in finding new types or improving the existing ones. In this paper is presented a hydraulic Weigh-In-Motion sensor composed of a metal vessel filled with hydraulic oil connected to an accumulator through a pipe. Vehicle tires press on the deformable upper wall and pressure pulses generated in this way provides information about the load. In this paper are presented: a structure for an experimental model, the block diagram for numerical simulation, experimental model and some experimental results.

  8. 压力支持通气中平均吸气压与矫正食道压力的一致性分析%Agreement analysis between mean inspiratory pressure and calibrated esophageal pressure during pressure support ventilation

    Institute of Scientific and Technical Information of China (English)

    黄河; 李寅环; 岑燕遗; 施睿; 荀细辉; 王健; 陈荣昌

    2010-01-01

    目的 本研究拟以平均吸气压(Pi)计算公式Pi=5*P0.1*Ti计算Pj,探讨压力支持通气(pressure support ventilation,PSV)中Pi与矫正食道压力(Peso)的一致性.方法 12例机械通气患者,通过插入食道囊管监测食道压力,经胸壁弹性压的矫正后得到Peso.患者在PSV水平分别为0、5、10、15和20 cm H2O各通气15 min并测定P 0.1,通过方程Pi=5*P 0.1*Ti计算Pi,分析Pi与Peso的一致性.结果 一致性分析中PSV水平分别为0、5和10 cm H2O时的Pi与Peso之间的平均差值小于(Peso+Pi)/2中的最小值;PSV水平为20 cm H2O时,Pi与Peso之间的平均差值大于(Peso+Pi)/2中的最小值.结论 在较低的PSV水平时,Pi可用于PSV通气时呼吸努力的无创性评估;随着PSV水平的增加,Pi无创性评估患者呼吸努力的适用性降低.%Objective This study was designed to investigate the agreement between calibrated esophageal pressure and mean inspiratory pressure (Pi) which was calculated based on basis of the formula Pi = 5 * P0. 1 * Ti during pressure support ventilation (PSV). Methods Twelve patients mechanically ventilated were enrolled in the study. Esophageal pressure(PesoM) was monitored through insertion of esophageal balloon and corrected esophageal pressure (Peso) was acquired by subtracting elastic pressure of chest wall from PesoM. The patients were ventilated at PSV level of 0,5,10,15 and 20cm H2O in a period of 15 minutes respectively and at the end of each term P 0. 1 was measured. Pi was calculated as Pi= 5 * P 0.1 * Ti. At different PSV levels, agreement analyses were made between Pi and Peso. Results In the agreement analysis,at PSV level of 0,5 and 10 cm H2O mean difference between Pi and Peso was lower than the minimum of (Peso+Pi)/2. Whereas at PSV level of 20 cm H2O,higher than the minimum of (Peso+Pi)/2. Conclusions At relatively lower PSV levels,Pi is suitable for noninvasive assessment of respiratory effort in PSV. As PSV level increasing, theapplicability of Pi

  9. Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Microstructural and optical properties are studied systematically. • The optical properties are studied by UV–visible and photoluminescence. • The PL spectra shows two peaks correspond to bandgap of anatase and rutile. • The maximum refractive index of 2.73 is obtained for rutile phase of titania. - Abstract: Nanocrystalline titanium oxide (TiO2) thin films were deposited on silicon (1 0 0) and quartz substrates at various oxygen partial pressures (1 × 10−5 to 3.5 × 10−1 mbar) with a substrate temperature of 973 K by pulsed laser deposition. The microstructural and optical properties were characterized using Grazing incidence X-ray diffraction, atomic force microscopy, UV–visible spectroscopy and photoluminescence. The X-ray diffraction studies indicated the formation of mixed phases (anatase and rutile) at higher oxygen partial pressures (3.5 × 10−2 to 3.5 × 10−1 mbar) and strong rutile phase at lower oxygen partial pressures (1 × 10−5 to 3.5 × 10−3 mbar). The atomic force microscopy studies showed the dense and uniform distribution of nanocrystallites. The root mean square surface roughness of the films increased with increasing oxygen partial pressures. The UV–visible studies showed that the bandgap of the films increased from 3.20 eV to 3.60 eV with the increase of oxygen partial pressures. The refractive index was found to decrease from 2.73 to 2.06 (at 550 nm) as the oxygen partial pressure increased from 1.5 × 10−4 mbar to 3.5 × 10−1 mbar. The photoluminescence peaks were fitted to Gaussian function and the bandgap was found to be in the range ∼3.28–3.40 eV for anatase and 2.98–3.13 eV for rutile phases with increasing oxygen partial pressure from 1 × 10−5 to 3.5 × 10−1 mbar

  10. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  11. Delayed responses of analyte emission in a pulse-modulated direct-current argon arc at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanovic, M; Rankovic, D [Faculty of Physical Chemistry, University of Belgrade, PO Box 137, 11000 Belgrade (Serbia); Savovic, J; Pavlovic, M S; Stoiljkovic, M; Momcilovic, M, E-mail: lelas@vinca.r [Laboratory of Physical Chemistry, Institute Vinca, PO Box 522, 11001 Belgrade (Serbia)

    2010-12-15

    A pulse-modulated direct-current argon arc burning at atmospheric pressure has been investigated by analyzing temporally and spatially resolved analyte emission responses in a millisecond time domain. The arc current was a rectangular pulse modulated between 9 and 3.5 A with a modulation period of 250 ms and a low current interval of up to 50 ms. Both positive and negative step modulation in current strongly affected the analyte emission. Delayed responses of representative analytes with ionization energies ranging from 6.5 to 10 eV have been studied. Depending on the analyte ionization energy and the plasma zone observed, a sudden current change was in most cases followed by a line intensity increase. The magnitude of this increase is correlated with changes in the ionization-recombination balance, the extent of demixing and the gas dynamics processes invoked by a current modulation. For analytes with medium and low ionization energies a current drop is accompanied by a large increase in signal-to-background ratio, which opens up the possibility of the use of arc current modulation for sensitivity improvement.

  12. Evaluation of the effect of systolic blood pressure and pulse pressure on cognitive function: the Women's Health and Aging Study II.

    Directory of Open Access Journals (Sweden)

    Sevil Yasar

    Full Text Available BACKGROUND: Evidence suggests that elevated systolic blood pressure (SBP and pulse pressure (PP in midlife is associated with increased risk for cognitive impairment later in life. There is mixed evidence regarding the effects of late life elevated SBP or PP on cognitive function, and limited information on the role of female gender. METHODS/PRINCIPAL FINDINGS: Effects of SBPand PPon cognitive abilities at baseline and over a 9-year period were evaluated in 337 non-demented community-dwelling female participants over age 70 in the Women's Health and Aging Study II using logistic and Cox proportional hazards regression analyses. Participants aged 76-80 years with SBP≥160 mmHg or PP≥84 mmHg showed increased incidence of impairment on Trail Making Test-Part B (TMT, Part B, a measure of executive function, over time when compared to the control group that included participants with normal and pre-hypertensive SBP (<120 and 120-139 mmHg or participants with low PP (<68 mmHg (HR = 5.05 [95%CI = 1.42, 18.04], [HR = 5.12 [95%CI = 1.11; 23.62], respectively. Participants aged 70-75 years with PP≥71 mmHg had at least a two-fold higher incidence of impairment on HVLT-I, a measure of verbal learning, over time when compared to participants with low PP (<68 mmHg (HR = 2.44 [95%CI = 1.11, 5.39]. CONCLUSIONS/SIGNIFICANCE: Our data suggest that elevated SBP or PP in older non-demented women increases risk for late-life cognitive impairment and that PP could be used when assessing the risk for impairment in cognitive abilities. These results warrant further, larger studies to evaluate possible effects of elevated blood pressure in normal cognitive aging.

  13. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  14. Pulse Pressure magnifies the effect of COMTVal158Met on 15 Year Episodic Memory Trajectories

    Directory of Open Access Journals (Sweden)

    Ninni ePersson

    2016-03-01

    Full Text Available We investigated whether a physiological marker of cardiovascular health, pulse pres­sure (PP, and age magnified the effect of the functional COMT Val158Met (rs4680 pol­ymor­phism on 15-year cognitive trajectories (episodic memory [EM], visuospatial ability, and se­man­tic memory using data from 1585 non-demented adults from the Betula study. A mul­tiple-group growth model was specified to gauge individual differences in change. The allelic variants showed negligible differences across the cognitive markers in average trends. The older portion of the sample selectively age-magnified the effects of Val158Met on EM changes, resulting in greater decline in Val compared to homozygote Met carriers. This effect was attenuated by sta­tistical control for PP. Further, PP mod­erated the effects of COMT on 15-year EM trajectories, resulting in greater decline in Val carriers, even after accounting for the confounding effects of sex, education, cardiovascular diseases (dia­betes, stroke, and hypertension, and chronological age, controlled for practice gains. The effect was still present after excluding individuals with a history of cardiovascular diseases. The effects of cognitive change were not moderated by any other covariates. This report underscores the importance of addressing synergistic effects in nor­mal cognitive aging, as the addition thereof may even place healthy individuals at greater risk for memory decline.

  15. The product of resting heart rate times blood pressure is associated with high brachial-ankle pulse wave velocity.

    Directory of Open Access Journals (Sweden)

    Anxin Wang

    Full Text Available OBJECTIVE: To investigate potential associations between resting heart rate, blood pressure and the product of both, and the brachial-ankle pulse wave velocity (baPWV as a maker of arterial stiffness. METHODS: The community-based "Asymptomatic Polyvascular Abnormalities in Community (APAC Study" examined asymptomatic polyvascular abnormalities in a general Chinese population and included participants with an age of 40+ years without history of stroke and coronary heart disease. Arterial stiffness was defined as baPWV≥1400 cm/s. We measured and calculated the product of resting heart rate and systolic blood pressure (RHR-SBP and the product of resting heart rate and mean arterial pressure (RHR-MAP. RESULTS: The study included 5153 participants with a mean age of 55.1 ± 11.8 years. Mean baPWV was 1586 ± 400 cm/s. Significant (P<0.0001 linear relationships were found between higher baPWV and higher resting heart rate or higher arterial blood pressure, with the highest baPWV observed in individuals from the highest quartiles of resting heart rate and blood pressure. After adjusting for confounding parameters such as age, sex, educational level, body mass index, fasting blood concentrations of glucose, blood lipids and high-sensitive C-reactive protein, smoking status and alcohol consumption, prevalence of arterial stiffness increased significantly (P<0.0001 with increasing RHR-SBP quartile (Odds Ratio (OR: 2.72;95%Confidence interval (CI:1.46,5.08 and increasing RHR-MAP (OR:2.10;95%CI:1.18,3.72. Similar results were obtained in multivariate linear regression analyses with baPWV as continuous variable. CONCLUSIONS: Higher baPWV as a marker of arterial stiffness was associated with a higher product of RHR-SBP and RHR-MAP in multivariate analysis. In addition to other vascular risk factors, higher resting heart rate in combination with higher blood pressure are risk factors for arterial stiffness.

  16. Analysis of Self-Terminated Pressure-Driven Quantum Point Contacts with Ultrafast Optical Pulses

    Science.gov (United States)

    Soltani, Fatemeh; Wlasenko, Alex; Steeves, Geoff

    2009-05-01

    A self-terminated electrochemical method was used to fabricate atomic-scale contacts between two Au electrodes in a microfluidic channel. The conductance of the contacts varies in a stepwise fashion. The mechanism works by a pressure-driven flow parallel with a pair of Au electrodes with a 100 μm gap in an electrolyte of HCl. Without applied flow, dendrite growth and dense branching morphology were typically observed at the cathode. The addition of applied pressure-driven flow resulted in a densely packed gold structure that filled the channel. The electrochemical fabrication approach introduces large variance in the formation and location of individual junctions. Understanding and controlling this process will enable the precise positioning of reproducible geometries into nano-electronic devices. To investigate the high speed behaviour of a QPC, it can be integrated with a transmission line structure patterned on a photoconductive GaAs substrate. The nonlinear conductance of the QPC (due to the finite density of states of the conductors) can be examined and compared with recent theoretical studies. Samples are fabricated in situ using an electrochemical procedure to produce QPCs along the transmission line structure. This method may provide insight into Terahertz Optoelectronic devices and ultrafast communication systems.

  17. Acute effects of supramaximal exercise on carotid artery compliance and pulse pressure in young men and women.

    Science.gov (United States)

    Rossow, Lindy; Fahs, Christopher A; Guerra, Myriam; Jae, Sae Young; Heffernan, Kevin S; Fernhall, Bo

    2010-11-01

    The purpose of this study was to determine the cumulative effects of repeated cycling sprints (Wingate tests) on carotid compliance and blood pressure (BP). Fourteen young, healthy men and women completed this study. Vascular and hemodynamic measurements were taken at rest, 5 min following a first Wingate test, 25 min following the first Wingate test, 5 min following a second Wingate test, and 25 min following the second Wingate test. At each time point, the measurements taken included brachial and carotid pulse pressure (PP), heart rate, carotid artery maximum and minimum diameters, and carotid compliance. Carotid BP was obtained with applanation tonometry. Carotid diameters were obtained using ultrasonography and compliance was calculated from carotid diameters and BP. Carotid and brachial PP increased significantly (P sprint, carotid arterial compliance decreased significantly more than 5 min following the first sprint (P sprint reduces carotid artery compliance immediately after exercise. Performance of a second identical cycling sprint further compounds this vascular change, reducing carotid artery compliance beyond levels seen following a single cycling sprint.

  18. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention.

    Science.gov (United States)

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-03-01

    Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P patients with CAD after performing repeated PCI. PMID:27043689

  19. An experimental study on discharge characteristics in a pulsed-dc atmospheric pressure CH3OH/Ar plasma jet

    Science.gov (United States)

    Qian, Muyang; Liu, Sanqiu; Yang, Congying; Pei, Xuekai; Lu, Xinpei; Zhang, Jialiang; Wang, Dezhen

    2016-10-01

    Recently, C/H/Ar plasma discharges found enormous potential and possibility in carbonaceous compounds conversion and production. In this work, a pulsed-dc CH3OH/Ar plasma jet generated at atmospheric pressure is investigated by means of optical and electrical diagnosis concerning the variation of its basic parameters, absolute concentration of OH radicals, and plasma temperature with different CH3OH/Ar volume ratios, in the core region of discharge with needle-to-ring electrode configuration. The voltage-current characteristics are also measured at different CH3OH/Ar ratios. Laser-induced fluorescence (LIF) results here show that only small amounts of added methanol vapor to argon plasma (about 0.05% CH3OH/Ar volume ratio) is favorable for the production of OH radicals. The optical emission lines of CH, CN, and C2 radicals have been detected in the CH3OH/Ar plasma. And, the plasma temperatures increase with successive amount of added methanol vapor to the growth plasma. Moreover, qualitative discussions are presented regarding the mechanisms for methanol dissociation and effect of the CH3OH component on the Ar plasma discharge at atmospheric pressure.

  20. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach

    OpenAIRE

    Biais, Matthieu; Ehrmann, Stephan; Mari, Arnaud; Conte, Benjamin; Mahjoub, Yazine; Desebbe, Olivier; Pottecher, Julien; Lakhal, Karim; Benzekri-Lefevre, Dalila; Molinari, Nicolas; Boulain, Thierry; Lefrant, Jean-Yves; Muller, Laurent; ,

    2014-01-01

    Introduction Pulse pressure variation (PPV) has been shown to predict fluid responsiveness in ventilated intensive care unit (ICU) patients. The present study was aimed at assessing the diagnostic accuracy of PPV for prediction of fluid responsiveness by using the grey zone approach in a large population. Methods The study pooled data of 556 patients from nine French ICUs. Hemodynamic (PPV, central venous pressure (CVP) and cardiac output) and ventilator variables were recorded. Responders we...

  1. The relationship between calcium metabolism, insulin-like growth factor-1 and pulse pressure in normotensive, normolipidaemic and non-diabetic patients

    OpenAIRE

    ERTEK, Sibel; Francesco Cicero, Arrigo; Erdoğan, Gürbüz

    2011-01-01

    Introduction Recent evidence suggests an interaction between bone metabolism and blood pressure (BP) regulation. The aim of our study was to evaluate endocrinological and metabolic factors related to pulse pressure (PP) in normotensive, normolipidaemic, non-smoker subjects. Material and methods We consecutively enrolled 156 adults (37 males, 119 females) in summer 2009. The BP and body mass index (BMI) were recorded, and serum samples were taken for 25-hydroxy vitamin D (25-OHD), insulin-like...

  2. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    OpenAIRE

    Westenberg Jos JM; van Poelgeest Eveline P; Steendijk Paul; Grotenhuis Heynric B; Jukema JW; de Roos Albert

    2012-01-01

    Abstract Background The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV), which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR), with invasive pressure measurements serving as the gol...

  3. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff

    OpenAIRE

    Nguyen, Xuan P.; Kronemayer, Ralf; Herrmann, Peter; Mejía, Atila; Daw, Zamira; Nguyen, Xuan D.; Kränzlin, Bettina; Gretz, Norbert

    2011-01-01

    In the present article, we describe the validation of a new non-invasive method for measuring blood pressure (BP) which also enables to determine the three BP values: systolic, diastolic and mean value. Our method is based on the pulse transit time (PTT) measurement along an artery directly at the BP cuff. The accuracy of this method was evaluated by comparison with the direct simultaneous measurement of blood pressure from 40 anesthetized female mice. Close correlation ...

  4. The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population

    Directory of Open Access Journals (Sweden)

    Ali Reza Khoshdel

    2010-03-01

    Full Text Available Ali Reza Khoshdel1,2, Shane Carney2, Alastair Gillies21Faculty of Medicine, Aja University of Medical Science, Tehran, Iran; 2John Hunter Hospital, Faculty of Health, The University of Newcastle, Newcastle, NS W, AustraliaAbstract: Despite the increasing popularity of blood pressure (BP wrist monitors for self-BP measurement at home, device validation and the effect of arm position remains an issue. This study focused on the validation of the Omron HEM-609 wrist BP device, including an evaluation of the impact of arm position and pulse pressure on BP measurement validation. Fifty patients at high risk for cardiovascular disease were selected (age 65 ± 10 years. Each patient had two measurements with a mercury sphygmomanometer and three measurements with the wrist BP device (wrist at the heart level while the horizontal arm supported [HORIZONTAL], hand supported on the opposite shoulder [SHOULDER], and elbow placed on a desk [DESK], in random order. The achieved systolic BP (SBP and diastolic BP (DBP wrist-cuff readings were compared to the mercury device and the frequencies of the readings within 5, 10, and 15 mmHg of the gold standard were computed and compared with the British Hypertension Society (BHS and Association for the Advancement of Medical Instrumentation (AAMI protocols. The results showed while SBP readings with HORIZONTAL and SHOULDER positions were significantly different from the mercury device (mean difference = 7.1 and 13.3 mmHg, respectively; P < 0.05, the DESK position created the closest reading to mercury (mean difference = 3.8, P > 0.1. Approximately 71% of SBP readings with the DESK position were within ±10 mmHg, whereas it was 62.5% and 34% for HORIZONTAL and SHOULDER positions, respectively. Wrist DBP attained category D with BHS criteria with all three arm positions. Bland–Altman plots illustrated that the wrist monitor systematically underestimated SBP and DBP values. However a reading adjustment of 5 and 10 mm

  5. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    Science.gov (United States)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  6. 轴承保持架低压脉冲真空氮碳共渗工艺%Low Pressure Pulse Vacuum Nitrocarburizing Process for Bearing Cages

    Institute of Scientific and Technical Information of China (English)

    刘斌; 张文朝; 郭长健

    2012-01-01

    The low pressure pulse vacuum nitrocarburizing process principles of bearing cages are analyzed, the orthogonal experiments are carried out about the influence of pulse process parameters on white layer depth and surface hardness , such as pulse amplitude, pressure holding time and total pulse time. The influence tends of pulse process parameters on white layer depth and surface hardness are studied through the methods of range analysis in orthogonal experiment , and the optimum pulse process parameters under the given test conditions are presented.%分析轴承保持架低压脉冲真空氮碳共渗工艺原理,对影响保持架表面白亮层深度和表面硬度的脉冲工艺参数:脉冲幅度、保压时间及总脉冲时间进行了正交试验.应用正交试验极差分析法分析了脉冲工艺参数与白亮层深度和表面硬度的影响趋势,最终确定出给定试验条件下的最佳脉冲工艺参数.

  7. Aortic pressure wave reconstruction during exercise is improved by adaptive filtering: a pilot study.

    Science.gov (United States)

    Stok, Wim J; Westerhof, Berend E; Guelen, Ilja; Karemaker, John M

    2011-08-01

    Reconstruction of central aortic pressure from a peripheral measurement by a generalized transfer function (genTF) works well at rest and mild exercise at lower heart rates, but becomes less accurate during heavy exercise. Particularly, systolic and pulse pressure estimations deteriorate, thereby underestimating central pressure. We tested individualization of the TF (indTF) by adapting its resonance frequency at the various levels of exercise. In seven males (age 44-57) with coronary artery disease, central and peripheral pressures were measured simultaneously. The optimal resonance frequency was predicted from regression formulas using variables derived from the individual's peripheral pressure pulse, including a pulse contour estimation of cardiac output (pcCO). In addition, reconstructed pressures were calibrated to central mean and diastolic pressure at each exercise level. Using a genTF and without calibration, the error in estimated aortic pulse pressure was -7.5 ± 6.4 mmHg, which was reduced to 0.2 ± 5.7 mmHg with the indTFs using pcCO for prediction. Calibration resulted in less scatter at the cost of a small bias (2.7 mmHg). In exercise, the indTFs predict systolic and pulse pressure better than the genTF. This pilot study shows that it is possible to individualize the peripheral to aortic pressure transfer function, thereby improving accuracy in central blood pressure assessment during exercise. PMID:21720842

  8. Applicability of Pulse Pressure Variation during Unstable Hemodynamic Events in the Intensive Care Unit: A Five-Day Prospective Multicenter Study

    Directory of Open Access Journals (Sweden)

    Bertrand Delannoy

    2016-01-01

    Full Text Available Pulse pressure variation can predict fluid responsiveness in strict applicability conditions. The purpose of this study was to describe the clinical applicability of pulse pressure variation during episodes of patient hemodynamic instability in the intensive care unit. We conducted a five-day, seven-center prospective study that included patients presenting with an unstable hemodynamic event. The six predefined inclusion criteria for pulse pressure variation applicability were as follows: mechanical ventilation, tidal volume >7 mL/kg, sinus rhythm, no spontaneous breath, heart rate/respiratory rate ratio >3.6, absence of right ventricular dysfunction, or severe valvulopathy. Seventy-three patients presented at least one unstable hemodynamic event, with a total of 163 unstable hemodynamic events. The six predefined criteria for the applicability of pulse pressure variation were completely present in only 7% of these. This data indicates that PPV should only be used alongside a strong understanding of the relevant physiology and applicability criteria. Although these exclusion criteria appear to be profound, they likely represent an absolute contraindication of use for only a minority of critical care patients.

  9. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial co

  10. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  11. On the motion of dayside auroras caused by a solar wind pressure pulse

    Directory of Open Access Journals (Sweden)

    A. Kozlovsky

    2005-02-01

    Full Text Available Global ultraviolet auroral images from the IMAGE satellite were used to investigate the dynamics of the dayside auroral oval responding to a sudden impulse (SI in the solar wind pressure. At the same time, the TV all-sky camera and the EISCAT radar on Svalbard (in the pre-noon sector allowed for detailed investigation of the auroral forms and the ionospheric plasma flow. After the SI, new discrete auroral forms appeared in the poleward part of the auroral oval so that the middle of the dayside oval moved poleward from about 70° to about 73° of the AACGM latitude. This poleward shift first occurred in the 15 MLT sector, then similar shifts were observed in the MLT sectors located more westerly, and eventually the shift was seen in the 6 MLT sector. Thus, the auroral disturbance "propagated" westward (from 15 MLT to 6 MLT at an apparent speed of the order of 7km/s. This motion of the middle of the auroral oval was caused by the redistribution of the luminosity within the oval and was not associated with the corresponding motion of the poleward boundary of the oval. The SI was followed by an increase in the northward plasma convection velocity. Individual auroral forms showed poleward progressions with velocities close to the velocity of the northward plasma convection. The observations indicate firstly a pressure disturbance propagation through the magnetosphere at a velocity of the order of 200km/s which is essentially slower than the velocity of the fast Alfvén (magnetosonic wave, and secondly a potential (curl-free electric field generation behind the front of the propagating disturbance, causing the motion of the auroras. We suggest a physical explanation for the slow propagation of the disturbance through the magnetosphere and a model for the electric field generation. Predictions of the model are supported by the global convection maps produced by the SuperDARN HF radars. Finally, the interchange instability and the eigenmode toroidal

  12. Numerical Analysis of Pressure Pulses in the Jerk Fuel Injection Systems

    Directory of Open Access Journals (Sweden)

    R. A. Baker

    2005-01-01

    Full Text Available Computer software has been developed and described in the present study of thorough parametric analysis and design of a mechanical diesel fuel injection system. The method is based on the numerical solution of one dimensional, unsteady, incompressible flow equations through the fuel pipe along with appropriate initial condition, pump end boundary condition and nozzle end boundary condition. Method of characteristics was used to solve the mathematical model by using a finite difference technique. The computer program has been written in Visual Fortran, which is capable of calculating pressure, velocity and other related parameters at different cam angles at any location of the fuel pipe, including pump and nozzle ends. First of all the numerical scheme was optimized and then its authenticity was verified by comparing its results with calculated and measured results available in the literature. The calculations of the present software were found to have improved agreement and acceptability. It was then used to make a thorough parametric analysis of a typical fuel injection system. The results have been presented in the form of graphs.

  13. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  14. Surface corona-bar discharges for production of pre-ionizing UV light for pulsed high-pressure plasmas

    International Nuclear Information System (INIS)

    Multi-atmospheric pressure, pulsed electric discharge excited lasers require pre-ionization to produce spatially uniform glows. Many such systems use corona bars to produce ultraviolet (UV) and vacuum ultraviolet (VUV) light as photo-ionization sources for this purpose. Corona bars are transient surface discharges, typically in a cylindrical geometry, that sustain high electron temperatures and so are efficient UV and VUV sources. In this paper, results from a numerical study of surface corona-bar discharges in a multi-atmosphere pressure Ne/Xe gas mixture are discussed. The discharge consists of a high-voltage electrode placed on the surface of a corona bar which is a dielectric tube surrounding a cylindrical metal electrode. After the initial breakdown an ionization front propagates along the circumference of the corona bar and produces a thin plasma sheet near the dielectric surface. The propagation speed of the ionization front ranges from 2 x 107 to 3.5 x 108 cm s-1, depending on the applied voltage and dielectric constant of the corona-bar insulator. As the discharge propagates around the circumference, the surface of the corona-bar is charged. The combined effects of surface curvature and charge deposition result in a non-monotonic variation of the electric field and electron temperature as the ionization front traverses the circumference. The UV fluxes collected on a surrounding circular surface correlate with the motion of the ionization front but with a time delay due to the relatively long lifetime of the precursor to the emitting species Ne2*.

  15. Repetitive X-line Hall current structures over the dawnside ionosphere induced by successive exo-magnetosphere pressure pulses

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2004-12-01

    Full Text Available This work is a synthesis of observational and magnetosphere model produced results. In the first place, we observe geographic latitude-dependent delays in signature arrival times at dawnside ground magnetograms. We use the IMAGE chain ground station magnetograms associated with in-situ observations obtained from the Wind, ACE, IMP-8, LANL 97A and Cluster satellites. We demonstrate that the structures under study of ground signatures are directly dictated by successive exo-magnetosphere pressure pulses applied along the magnetopause. In one case, using the Cluster configuration, we determine the magnetopause surface wave velocity ~210km·s–1, the wavelength λ≈16 RE and the azimuthal wave number m≅6. For this case, via Tsyganenko's T96 model, the positions from the ground stations are traced out along the magnetic field lines, and their conjugate points over the XYGSM plane are determined. In this way, we have found that especially the conjugate points corresponding to the highest latitude stations are systematically dispersed along the X-axis (ranging up to ~8 RE and consequently, each of these points is associated with a different amount of magnetopause displacement dictated by the pressure wave. The local magnetopause compressions produce increments of the cross tail electric field, which is directly mapped over the ionosphere plane, where successive X-line Hall current structures are developed.

    Key words. Ionosphere (electric fields and currents – Magnetospheric physics (Magnetosphere-ionosphere interactions, Electric fields

  16. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    Science.gov (United States)

    Wang, X.; Chou, I.-Ming; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (??, cm-1) and CO2 density (??, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9cm-1. The relationship between the CO2 Fermi diad split and density can be represented by: ??=47513.64243-1374.824414????+13.25586152????2-0.04258891551????3 (r2=0.99835, ??=0.0253g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined. ?? 2011 Elsevier Ltd.

  17. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    Science.gov (United States)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. The relationship of pulse pressure and left ventricular funcion in hypertension patients%高血压患者脉压差与左心功能的关系

    Institute of Scientific and Technical Information of China (English)

    杨文; 王浩; 刘志发

    2003-01-01

    AIM:Discuss the relationship of pulse pressure and left ventricular function in hypertensive patients.METHODS:We observed the relationship of the pulse pressure and the times of again occurred coronary artery diseases, left ventricular fore and after span, left ventricular back wall thickness and left ventricular ejection fraction(EF) by color Doppler ultrasound in hypertensive patients. RESULTS:The times of again occurred coronary artery diseases, the left ventricular fore and after span and left ventricular EF of each pulse pressure group were significantly difference(P< 0.05, P< 0.01). CONCLUSION:The pulse pressure may take part in the further impair of left ventricular function coronary artery diseases.Control the pulse pressure coronary artery diseases have an important meaning in decreasing the further impair of left ventricular function.

  19. Free-field calibration of a pressure gradient receiver in a reflecting water tank using a linear frequency-modulated signal

    Science.gov (United States)

    Isaev, A. E.; Matveev, A. N.; Nekrich, G. S.; Polikarpov, A. M.

    2013-11-01

    This work continues a study of the method for constructing the frequency dependence for a projector-receiver pair in a free field by complex moving weighted averaging of the frequency dependence for a pair measured in the field of a reflecting water tank. The method is applied to the free-field calibration of a pressure gradient receiver using a reference hydrophone when radiating a complex linear frequency-modulated (LFM) signal. To improve the estimates of this method, we edited the initial frequency dependences using functions in the form of the product of the complex LFM projector current multiplied by the powerlaw function of the LFM signal frequency. We consider ways to use a priori information both to improve the results obtained by complex moving weighted averaging and to estimate the distortions introduced by this method are considered.

  20. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria

    Directory of Open Access Journals (Sweden)

    Briestenský Miloš

    2015-10-01

    Full Text Available The EU-TecNet monitoring network uses customized three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and following extension, across the monitored fault. The data from Bacho Kiro, recorded across a NE–SW striking fault, show sinistral strike-slip along the fault and subsidence of the north-western block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites show evidence of simultaneous displacement anomalies and this observation is interpreted as a reflection of the plate-wide propagation of a tectonic pressure pulse towards the end of 2012.

  1. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production.

    Science.gov (United States)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G; Banati, Diana; Pollák-Tóth, Annamária; Lakner, Zoltán; Olsen, Nina Veflen; Zontar, Tanja Pajk; Peterman, Marjana

    2009-02-01

    The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline. Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show that consumers perceived the main advantages of HPP and PEF products to be the products' naturalness, improved taste and their high nutritional value, whereas the main disadvantage was the lack of information about the PEF and HPP products. The results of the participants' evaluation of the PEF and HPP processes showed that environmental friendliness and the more natural products were seen as the main advantages, while they were concerned about body and health, the higher price of the products, the lack of information about the technologies and a general scepticism. The study also shows that North European participants were a bit more sceptical towards PEF and HPP products than the East European participants.

  2. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    Science.gov (United States)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  3. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  4. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    Science.gov (United States)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  5. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    Science.gov (United States)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  6. Influence of Pulse Pressure on the State of Biopolymers and the Probability of Hydrolysis of Starch in Seeds

    Directory of Open Access Journals (Sweden)

    Violetta Pavlova

    2013-09-01

    Full Text Available Damage of seeds which leads to destruction of the crystal lattice and the phase transition of polymers is formed under the pulse pressure (PP treatment. Biopolymers such as starch compressed under specific conditions can be changed from crystalline to a glassy state; this transition is known to extend the life of seeds. The aging of seeds is involved in the enzymatic glycosylation of proteins and nucleic acids. Reducing sugars which have been produced in seeds by non-enzymatic hydrolysis enter into reaction of glycosylation with proteins and amino acids actively. The authors studied the water absorption by seeds of buckwheat (Fagopyrum esculentum Moench., cultivar Saulyk treated by PP. The values of PP which were used to treat had an influence on water absorption during the first hours of imbibition. When water content was 60%, hydrolysis of reserve substances could begin, so water potential was created by osmotically active molecules. Gibbs energy calculation by method of groups’ contribution indicated the reduction in probability of starch hydrolysis in plant seeds during transition from the crystalline to the glassy state.

  7. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  8. Effect of Steaming, Blanching, and High Temperature/High Pressure Processing on the Amino Acid Contents of Commonly Consumed Korean Vegetables and Pulses

    OpenAIRE

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-01-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant...

  9. Propagation dynamics of an ultrashort, high energy laser pulse via self-modulation in gas medium with atmospheric pressure for laser compression

    Science.gov (United States)

    Otsuka, Takamitsu; Kudo, Masashi; Sakai, Shohei; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kodama, Ryosuke

    2010-08-01

    Self-compression of 20-mJ laser pulses has been demonstrated in a free-space argon-filled cell. A 130-fs pulse was compressed to less than 60 fs (full width at half maximum) with an output energy of 17 mj at an argon gas pressure of 25 kPa, corresponding to an input peak power of 3.65 times the self-focusing critical power through a single filament in a 10-mJ energy region.

  10. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    Science.gov (United States)

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  11. Calibration Of Oxygen Monitors

    Science.gov (United States)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  12. Statistical Investigations on Solar Wind Dynamic Pressure Pulses:Basic features and Their Impacts on Geosynchronous Magnetic Fields

    Science.gov (United States)

    Zuo, Pingbing; Feng, Xueshang

    2016-07-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. Recently we have developed a novel procedure that is able to rapidly identify the DPPs from the plasma data stream, and simultaneously define the transition region and smartly select the upstream and downstream region for analysis. The plasma data with high time-resolution from 3DP instrument on board the WIND spacecraft are inspected with this automatic DPP-searching code, and a complete list of solar wind DPPs of historic WIND observations are built up. We perform a statistical survey on the properties of DPPs near 1 AU based on this event list. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Statistically, both the decompression effect of

  13. Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients.

    Science.gov (United States)

    Liu, Qing; Yan, Bryan P; Yu, Cheuk-Man; Zhang, Yuan-Ting; Poon, Carmen C Y

    2014-02-01

    Pulse transit time (PTT) is a cardiovascular parameter of emerging interest due to its potential to estimate blood pressure (BP) continuously and without a cuff. Both linear and nonlinear equations have been used in the estimation of BP based on PTT. This study, however, demonstrates that there is a hysteresis phenomenon between BP and PTT during and after dynamic exercise. A total of 46 subjects including 16 healthy subjects, 13 subjects with one or more cardiovascular risk factors, and 17 patients with cardiovascular disease underwent graded exercise stress test. PTT was measured from electrocardiogram and photoplethysmogram of the left index finger of the subject, i.e., a pathway that includes predominately aorta, brachial, and radial arteries. The results of this study showed that, for the same systolic BP (SBP), PTT measured during exercise was significantly larger than PTT measured during recovery for all subject groups. This hysteresis was further quantified as both normalized area bounded by the SBP-PTT relationship (AreaN) and SBP difference at PTT during peak exercise plus 20 ms (ΔSBP20). Significant attenuation of both AreaN (p <; 0.05) and ΔSBP20 (p <; 0.01) is observed in cardiovascular patients compared with healthy subjects, independent of resting BP. Since the SBP-PTT relationship are determined by the mechanical properties of arterial wall, which is predominately mediated by the sympathetic nervous system through altered vascular smooth muscle (VSM) tone during exercise, results of this study are consistent with the previous findings of autonomic nervous dysfunction in cardiovascular patients. We further conclude that VSM tone has a nonnegligible influence on the BP-PTT relationship and thus should be considered in the PTT-based BP estimation. PMID:24158470

  14. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  15. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  16. Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension.

    Science.gov (United States)

    Zheng, Yali; Poon, Carmen C Y; Yan, Bryan P; Lau, James Y W

    2016-09-01

    Ambulatory blood pressure monitoring (ABPM) has become an essential tool in the diagnosis and management of hypertension. Current standard ABPM devices use an oscillometric cuff-based method which can cause physical discomfort to the patients with repeated inflations and deflations, especially during nighttime leading to sleep disturbance. The ability to measure ambulatory BP accurately and comfortably without a cuff would be attractive. This study validated the accuracy of a cuff-less approach for ABPM using pulse arrival time (PAT) measurements on both healthy and hypertensive subjects for potential use in hypertensive management, which is the first of its kind. The wearable cuff-less device was evaluated against a standard cuff-based device on 24 subjects of which 15 have known hypertension. BP measurements were taken from each subject over a 24-h period by the cuff-less and cuff-based devices every 15 to 30 minutes during daily activities. Mean BP of each subject during daytime, nighttime and over 24-h were calculated. Agreement between mean nighttime systolic BP (SBP) and diastolic (DBP) measured by the two devices evaluated using Bland-Altman plot were -1.4 ± 6.6 and 0.4 ± 6.7 mmHg, respectively. Receiver operator characteristics (ROC) statistics was used to assess the diagnostic accuracy of the cuff-less approach in the detection of BP above the hypertension threshold during nighttime (>120/70 mmHg). The area under ROC curves were 0.975/0.79 for nighttime. The results suggest that PAT-based approach is accurate and promising for ABPM without the issue of sleep disturbances associated with cuff-based devices. PMID:27447469

  17. Radiolysis of water at high temperature and pressure conditions: a picosecond pulse radiolysis experiment and numerical simulations

    International Nuclear Information System (INIS)

    Radiolytic products of coolant material under strong radiation field in water-cooled reactors are known to give undesirable effects on nuclear structural materials. Understanding of the fundamental processes will be of great importance for various application fields in water chemistry. Ionization and excitation of water molecules by ionizing radiations initiate very fast physical and chemical processes within μs(10-6 sec), ns (10-9 sec) or even ps (10-12 sec), followed by formation of primary radiolytic species (e-aq, OH, H, H2, H2O2 etc.). Through the processes, the radiation chemical yields (G-values) are supposed to change dynamically depending on time and also on temperature. However, because of so high reactivity (short lifetime), it was difficult to observe experimentally the temporal behaviors (spatially inhomogeneous reactions, called spur diffusion reactions). In this work, the fundamental processes (G-values of the intermediates and the fast reaction kinetics) of the radiolysis of water at high temperature and pressure conditions (HTHP) were investigated by a newly developed picosecond time-resolved pulse radiolysis system, and also by numerical analyses. The results indicated that the hydrated electron (e-aq) in the spur reaction process mainly reacts with OH at room temperature, while that with H3O+ becomes also competitive in subcritical water. Taking the cumulative yield variations (ΔG molec./100eV) into account, it is suggested that historically defined primary G-value of the hydrated electron in subcritical water (G ∼ 3.6 molec./100eV) will be appropriately reexamined to the lower value below 2.7 in neutral pH condition, while it is rather close to it in basic condition. (author)

  18. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production.

    Science.gov (United States)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G; Banati, Diana; Pollák-Tóth, Annamária; Lakner, Zoltán; Olsen, Nina Veflen; Zontar, Tanja Pajk; Peterman, Marjana

    2009-02-01

    The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline. Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show that consumers perceived the main advantages of HPP and PEF products to be the products' naturalness, improved taste and their high nutritional value, whereas the main disadvantage was the lack of information about the PEF and HPP products. The results of the participants' evaluation of the PEF and HPP processes showed that environmental friendliness and the more natural products were seen as the main advantages, while they were concerned about body and health, the higher price of the products, the lack of information about the technologies and a general scepticism. The study also shows that North European participants were a bit more sceptical towards PEF and HPP products than the East European participants. PMID:18845196

  19. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    Science.gov (United States)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm-3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm-3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  20. Effect of substrate temperature and oxygen partial pressure on microstructure and optical properties of pulsed laser deposited yttrium oxide thin films

    International Nuclear Information System (INIS)

    Yttrium oxide thin films were deposited on Si (1 1 1) and quartz substrates by pulsed laser deposition technique at different substrate temperature and oxygen partial pressure. XRD analysis shows that crystallite size of the yttrium oxide thin films increases as the substrate temperature increases from 300 to 873 K. However the films deposited at constant substrate temperature with variable oxygen partial pressure show opposite effect on the crystallite size. Band gap energies determined from UV-visible spectroscopy indicated higher values than that of the reported bulk value.

  1. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    Science.gov (United States)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  2. Effect of steaming, blanching, and high temperature/high pressure processing on the amino Acid contents of commonly consumed korean vegetables and pulses.

    Science.gov (United States)

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-09-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids.

  3. Effect of steaming, blanching, and high temperature/high pressure processing on the amino Acid contents of commonly consumed korean vegetables and pulses.

    Science.gov (United States)

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-09-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids. PMID:25320720

  4. 成都地区中老年居民脉压及脉压指数分析%AN ANALYSIS OF PULSE PRESSURE AND PULSE PRESSURE INDEX AMONG MIDDLE-AGED RESIDENTS IN CHENGDU

    Institute of Scientific and Technical Information of China (English)

    吴凯; 高音; 陈晓平; 李龙兴; 万里艳; 陈小妮

    2011-01-01

    [目的]调查分析成都地区中老年居民脉压(PP)、脉压指数(PPI)的影响因素,寻找可能改善脉压异常的方法.[方法]利用2007代谢综合征研究调查资料(共1061人),把人群依据PP(PP≤60 mmHg及PP>60mmHg)及PPI(PPI≤0.450及PPI>0.450)分为正常组及增高组,分析两组人群多代谢异常及心血管疾病危险因素分布特征,并采用Logistic回归分析寻找与PP/PPI相关的危险因素.[结果]①两个分组间年龄、收缩压、男性比重、高血压家族史、体重指教、腰围、臀围、空腹血耱、肾功能等指标PP、PPI增高组明显高于PP、PPI正常组,舒张压则是PP、PPI增高组明显低予PP、PPI正常组.②血脂各成分PP组间无统计学差异,总胆固醇、低密度脂蛋白水平PPI增高组高于正常组.③PP及PPI增高组其代谢综合征、高血压、糖尿病、肥胖、腹型肥胖、血脂异常等患病率皆高于PPI正常组,差异有统计学意义.④Logistic回归分析提示PP、PPI与女性性别、年龄、收缩压、BMI、腰围、臀围、空腹血糖、肌酐、尿酸、总胆固醇、低密度脂蛋白水平呈正相关,与男性性别及舒张压呈负相关.[结论]成都地区脉压及脉压指教与代谢性指标关系密切,可能可以通过改善血脂、空腹血糖、腰围、体重指数、肾功能等指标来减少脉压及脉压指数的异常.%[Objective] To evaluate the influencing factors on pulse pressure (PP) and pulse presure index (PPI) among middle-aged residents in Chengdu, and search the possible methods to relieve PP disorder. [Methods] We divided the 1061 middle-aged people who came from the survey for metabolic syndrome study into 2 groups according to PP (PP≤60mmHg and PP > 60mmHg) and PPI (PPI (PPI≤0.450 and PPI > 0.450)). They were normal PP/PPI group and augmented PP/PPI group. The normal PP group mean the PP of the people was less than or equal to 60 mmHg, and normal PPI group was PPI less or equal to 0.450. The

  5. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas;

    2009-01-01

    BACKGROUND: Myocardial velocities can be measured with both pulsed-wave tissue Doppler (PWTD) and color tissue Doppler (CTD) echocardiography. We aimed to (A) to explore which of the two methods better approximates true tissue motion and (B) to examine the agreement and the reproducibility of the...

  6. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  7. 压阻式压力传感器样本集自校正及其计算方法%Self-calibration and algorithm of sample set of piezoresistive pressure sensors

    Institute of Scientific and Technical Information of China (English)

    黄晓因; 晋芳伟; 周平

    2007-01-01

    Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sample set is presented which transforms a surface problem into a curve fitting and interpolation problem. The simulation result shows that benchmark current source simulating pressure is successful and data fusion algorithm is effective. The maximum measurement error is only 0.098 kPa and maximum relative error is 0.92% at 0-45 kPa and -10-45℃.

  8. Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    ZnO thin films were deposited on fused silica via pulsed laser deposition (PLD) at substrate temperatures from 300°C to 800°C and ambient oxygen pressures ranging from 10-2 mTorr to 240 mTorr. X-ray diffraction (XRD) and Raman spectra indicated that wurtzite ZnO was obtained in all cases. The highly c-oriented ZnO films were obtained for oxygen pressures above 11 mTorr. The room-temperature photoluminescence (PL) spectra demonstrated that all the films exhibited strong near-band-edge (NBE) emission, while deep-level (DL) emission was also observed in films deposited at oxygen pressures below 80 mTorr. From analysis of the XRD, Raman and photoluminescence PL data, an optimal condition was identified for the deposition of highly crystallized ZnO films.

  9. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey

    2014-02-24

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO3 and SrTiO3 is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO3 layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

  10. Correlations of ambulatory pulse pressure to large artery elasticity and vascular endothelial function in patients with primary hypertension%原发高血压患者动态脉压与大动脉弹性及血管内皮功能的关系

    Institute of Scientific and Technical Information of China (English)

    杜大勇; 李运田; 王红宇; 丁康; 李艳

    2008-01-01

    BACKGROUND: Ambulatory blood pressure monitoring can sensitively and objectively reflect blood pressure level, which is closely related to target organ damage and disease prognosis. In hypertension, vascular endothelial damage is the most common lesion to target organs. There is little known about how ambulatory pulse pressure correlates to large artery elasticity and vascular endothelial function. OBJECTIVE: To investigate changes of large artery elasticity and of vascular endothelial function in patients with primary hypertension using an automatic pulse wave velocity determinator and ultrasound techniques, and to analyze the correlation of ambulatory pulse pressure to large artery elasticity and vascular endothelial function.DESIGN: A non-randomized concurrent control clinical observation. SETTING: Diagnosis and Treatment Center for Coronary Heart Disease, the 305 Hospital of Chinese PLA. PARTICIPANTS: A total of 156 inpatients and/or outpatients, who were recently confirmed with primary hypertension, were recruited for this study between June 2005 and April 2007. Patients consisted of 114 males and 42 females. All patients averaged 56 ± 4 years of age (range: 40-75). Inclusive criteria: Corresponding to diagnostic standards for preventing and treating hypertension instituted in 2004 by Chinese scholars. Confirmed as primary hypertension within 1 month. Not receiving any blood pressure lowering, hypolipidemic or nitrate-like drug treatments. Written informed consents for laboratory measurements were obtained from all subjects. The study was approved by the hospital's Ethics Committee. METHODS: According to the mean pulse pressure over 24 hours, all patients were assigned into 3 groups: Group A (mean pulse pressure < 40 mm Hg, n=92), group B (40 mm Hg ≤ mean pulse pressure < 60 mm Hg, n=39) and group C (mean pulse pressure > 60 mm Hg, n=25). In each group, daytime pulse pressure and night-time pulse pressure, as well as 24-hour mean pulse pressure were

  11. Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jichul; Raja, Laxminarayan L [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-05-21

    The dielectric-barrier (DB) discharge is an important approach to generate uniform non-equilibrium atmospheric-pressure glow discharges. We report run-to-run variations, asymmetric pulse formation and long time-scale transient phenomena in these discharges. For similar DB discharge geometric and operating conditions, we observe significant run-to-run variations as manifested in the different voltage-current waveforms at the start of each new run. These run-to-run variations are also accompanied by asymmetric pulses at the start of each run. The variations are observed to drift to a repeatable true steady-state condition on time scales of order tens of minutes to hours. Asymmetric pulse waveforms drift to a symmetric pulse waveform at the true steady state. We explore reasons for these phenomena and rule out thermal drift during a discharge run and gas-phase impurity buildup as potential causes. The most plausible explanation appears to be variations in the surface characteristics of the DBs between two consecutive runs owing to varying inter-run environmental exposure and the conditioning of the dielectric surface during a run owing to plasma-surface interactions. We speculate that the dielectric surface state affects the secondary electron emission coefficient of the surface which in turn is manifested in the discharge properties. A zero-dimensional model of the discharge is used to explore the effect of secondary electron emission.

  12. Ballistic Imaging of High-Pressure Fuel Sprays using Incoherent, Ultra- short Pulsed Illumination with an Ultrafast OKE-based Time Gating

    CERN Document Server

    Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard

    2015-01-01

    We present an optical Kerr effect based time-gate with the collinear incidence of the pump and probe beams at the Kerr medium, liquid carbon disulfide, for ballistic imaging of the high-pressure fuel sprays. The probe pulse used to illuminate the object under study is extracted from the supercontinuum generated by tightly focusing intense femtosecond laser pulses inside water, thereby destroying their coherence. The optical imaging spatial resolution and gate timings are investigated and compared with a similar setup without supercontinuum generation, where the probe is still coherent. And finally, a few ballistic images of the fuel sprays using coherent and incoherent illumination with the proposed time-gate are presented and compared qualitatively.

  13. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    Directory of Open Access Journals (Sweden)

    Westenberg Jos JM

    2012-01-01

    Full Text Available Abstract Background The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV, which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR, with invasive pressure measurements serving as the gold standard. Methods Seventeen patients (14 male, 3 female, mean age ± standard deviation = 57 ± 9 years awaiting cardiac catheterization were prospectively included. During catheterization, intra-arterial pressure measurements were obtained in the aorta at multiple locations 5.8 cm apart. PWV was determined regionally over the aortic arch and locally in the proximal descending aorta. Subsequently, patients underwent a CMR examination to measure aortic PWV and aortic distention. Distensibility was determined locally from the aortic distension at the proximal descending aorta and the pulse pressure measured invasively during catheterization and non-invasively from brachial cuff-assessment. PWV was determined regionally in the aortic arch using through-plane and in-plane velocity-encoded CMR, and locally at the proximal descending aorta using in-plane velocity-encoded CMR. Validity of the Bramwell-Hill model was tested by evaluating associations between distensibility and PWV. Also, theoretical PWV was calculated from distensibility measurements and compared with pressure-assessed PWV. Results In-plane velocity-encoded CMR provides stronger correlation (p = 0.02 between CMR and pressure-assessed PWV than through-plane velocity-encoded CMR (r = 0.69 versus r = 0.26, with a non-significant mean error of 0.2 ± 1.6 m/s for in-plane versus a significant (p = 0.006 error of 1.3 ± 1.7 m/s for through-plane velocity-encoded CMR. The Bramwell-Hill model shows a

  14. 脉动真空压力蒸汽灭菌器的灭菌效能评价%Pulsing vacuum pressure steam sterilization efficiency

    Institute of Scientific and Technical Information of China (English)

    杨秋兰

    2012-01-01

    脉动真空压力蒸汽灭菌器在目前应用较为广泛。本文主要通过对该类灭菌器的灭菌效能评价方法进行介绍,并总结对其进行评价过程中的一些体会。%pulsing vacuum pressure steam sterilization is more extensive application at present.This paper mainly through the sterilization is sterilization efficiency evaluation methods are introduced,and summarize the evaluation on some of the experience.

  15. The effect of O2 partial pressure on the photoluminescence of ZnO thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    In this paper, photoluminescence (PL) of ZnO thin films prepared on c-Al2O3 substrates by the pulsed laser deposition (PLD) method at different O2 partial pressures is investigated. For all samples, a narrow ultraviolet (UV) emission and a broad visible emission can be observed at room-temperature (RT). With increasing O2 partial pressures from 0.2 to 5 Pa, the intensity ratio of the UV to visible emissions increases, and the energy positions of the UV emission band shift to the high energy side. It is noted that the visible part includes two emission bands of green luminescence (GL) and yellow luminescence (YL), in which the GL emission is strong at low oxygen pressure and the YL emission becomes dominant at high O2 partial pressures. The temperature-dependent PL spectra show that the UV emission is composed of two bands labeled FX and FA. The dependences and possible assignments of these PL bands are briefly discussed. - Highlights: • We confirmed that the RT UV emission band is due to two transitions of the FX and FA. • The intensity of the FX and FA emission bands strongly depends on oxygen partial pressures. • We deduced that the acceptor-like defects located in the grain boundaries are responsible for the FA emission. • The visible emission includes the GL related to VO and the YL related to VZn or Oi. • The GL emission strongly affects the UV emission

  16. The influence of oxygen partial pressure on material properties of Eu3+-doped Y2O2S thin film deposited by Pulsed Laser Deposition

    Science.gov (United States)

    Ali, A. G.; Dejene, B. F.; Swart, H. C.

    2016-01-01

    Eu3+-doping has been of interest to improve the luminescent characteristics of thin-film phosphors. Y2O2S:Eu3+ films have been grown on Si (100) substrates by using a Pulsed Laser Deposition technique. The thin films grown under different oxygen deposition pressure conditions have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. As the oxygen partial pressure increased, the crystallinity of the films improved. Further increase of the O2 pressure to 140 mtorr reduced the crystallinity of the film. Similarly, both scanning electron microscopy and Atomic Force Microscopy confirmed that an increase in O2 pressure affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka-Munk function was about 4.75 eV. The photoluminescence measurements indicated red emission of Y2O2S:Eu3+ thin films with the most intense peak appearing at 619 nm, which is assigned to the 5D0-7F2 transition of Eu3+. This most intense peak was totally quenched at higher O2 pressures. This phosphor may be a promising material for applications in the flat panel displays.

  17. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...

  18. Continuous-Flow Inlet Systems for Low Pressure Curie-Point Pyrolysis. Introduction of Pulse-Pyrolysis

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1984-01-01

    With emphasis on a constant reactant flow, a series of inlet systems for gas-phase Curie-point pyrolysis—mass spectrometry experiments have been studied. Inlet systems for the handling of gaseous, liquid and oligomeric (solid) samples have been designed and their performances evaluated. The princ....... The principle of pulse-pyrolysis is introduced and its applicability to kinetic studies outlined....

  19. Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial.

    Science.gov (United States)

    Cicero, Arrigo F G; Rosticci, Martina; Gerocarni, Beatrice; Bacchelli, Stefano; Veronesi, Maddalena; Strocchi, Enrico; Borghi, Claudio

    2011-09-01

    Contrasting data partially support a certain antihypertensive efficacy of lactotripeptides (LTPs) derived from enzymatic treatment of casein hydrolysate. Our aim was to evaluate this effect on a large number of hemodynamic parameters. We conducted a prospective double-blind randomized clinical trial, which included 52 patients affected by high-normal blood pressure (BP) or first-degree hypertension. We investigated the effect of a 6-week treatment with the LTPs isoleucine-proline-proline and valine-proline-proline at 3 mg per day, assumed to be functional food, on office BP, 24-h ambulatory BP monitoring (ABPM) values, stress-induced BP increase and cardiac output-related parameters. In the LTP-treated subjects, we observed a significant reduction in office systolic BP (SBP; -5±8 mm Hg, P=0.013) and a significant improvement in pulse wave velocity (PWV; -0.66±0.81 m s(-1), P=0.001; an instrumental biomarker of vascular rigidity). No effect on 24-h ABPM parameters and BP reaction to stress was observed from treatment with the combined LTPs. LTPs, but not placebo, were associated with a mild but significant change in the stroke volume (SV), SV index (markers of cardiac flow), the acceleration index (ACI) and velocity index (VI) (markers of cardiac contractility). No effect was observed on parameters related to fluid dynamics or vascular resistance. LTPs positively influenced the office SBP, PWV, SV, SV index, ACI and VI in patients with high-normal BP or first-degree hypertension. PMID:21753776

  20. Validation of noninvasive pulse contour cardiac output using finger arterial pressure in cardiac surgery patients requiring fluid therapy

    NARCIS (Netherlands)

    Hofhuizen, C.M.; Lansdorp, B.; Hoeven, J.G. van der; Scheffer, G.J.; Lemson, J.

    2014-01-01

    INTRODUCTION: Nexfin (Edwards Lifesciences, Irvine, CA) allows for noninvasive continuous monitoring of blood pressure (ABPNI) and cardiac output (CONI) by measuring finger arterial pressure (FAP). To evaluate the accuracy of FAP in measuring ABPNI and CONI as well as the adequacy of detecting chang

  1. Validation of noninvasive pulse contour cardiac output using finger arterial pressure in cardiac surgery patients requiring fluid therapy

    NARCIS (Netherlands)

    Hofhuizen, Charlotte; Lansdorp, Benno; Hoeven, van der Johannes G.; Scheffer, Gert-Jan; Lemson, Joris

    2014-01-01

    Introduction Nexfin (Edwards Lifesciences, Irvine, CA) allows for noninvasive continuous monitoring of blood pressure (ABPNI) and cardiac output (CONI) by measuring finger arterial pressure (FAP). To evaluate the accuracy of FAP in measuring ABPNI and CONI as well as the adequacy of detecting change

  2. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types......Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  3. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    International Nuclear Information System (INIS)

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position

  4. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  5. Influence of oxygen pressure on the structural, electrical and optical properties of Nb-doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Muying, E-mail: wumy@dgut.edu.cn [School of Electronic Engineering, Dongguan University of Technology, Guangdong Dongguan 523808 (China); Yu, Shihui [School of Electronic and Information Engineering, Tianjin University, Tianjin 300072 (China); He, Lin; Zhang, Geng; Ling, Dongxiong [School of Electronic Engineering, Dongguan University of Technology, Guangdong Dongguan 523808 (China); Zhang, Weifeng [Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2014-02-15

    Nb-doped zinc oxide (NZO) transparent conductive thin films with highly (0 0 2)-preferred orientation were deposited on glass substrates by pulsed laser deposition method in oxygen ambience under different oxygen pressures. The as-deposited films were characterized by X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), electrical and optical characterization techniques. It was found that a desirable amount of oxygen can reduce the related defect scattering and enhance the carrier mobility. The resistivity and average optical transmittance of the NZO thin films are of 10{sup −4} Ω cm and over 88%, respectively. The lowest electrical resistivity of the film is found to be about 4.37 × 10{sup −4} Ω cm. In addition, the influence of oxygen pressure on optical properties in NZO thin films was systematically studied as well.

  6. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Sano-Furukawa, A. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Komatsu, K. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Yamada, A. [University of Shiga Prefecture, Shiga 522-8533 (Japan); Inamura, Y.; Nakatani, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seto, Y. [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Nagai, T. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Utsumi, W. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, Saitama 351-0198 (Japan); Kagi, H. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Katayama, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Inoue, T. [Geodynamic Research Center, Ehime University, Matsuyama 790-8577 (Japan); Otomo, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Suzuya, K. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kamiyama, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Arai, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-04-21

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

  7. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude?

    Science.gov (United States)

    Hall, Allan; O'Kane, Roddy

    2016-10-01

    Raised intracranial pressure is a common problem in a variety of neurosurgical conditions including traumatic brain injury, hydrocephalus and intracranial haemorrhage. The clinical management of these patients is guided by a variety of haemodynamic, biochemical and clinical factors. However to date there is no single parameter that is used to guide clinical management of patients with raised intracranial pressure (ICP). However, the role of ICP indices, specifically the mean pulse amplitude (AMP) and RAP index [correlation coefficient (R) between AMP amplitude (A) and mean ICP pressure (P); index of compensatory reserve], as an indicator of true ICP has been investigated. Whilst the RAP index has been used both as a descriptor of neurological deterioration in TBI patients and as a way of characterising the compensatory reserve in hydrocephalus, more recent studies have highlighted the limitation of the RAP index due to the influence that baseline effect errors have on the mean ICP, which is used in the calculation of the RAP index. These studies have suggested that the ICP mean pulse amplitude may be a more accurate marker of true intracranial pressure due to the fact that it is uninfluenced by the mean ICP and, therefore, the AMP may be a more reliable marker than the RAP index for guiding the clinical management of patients with raised ICP. Although further investigation needs to be undertaken in order to fully assess the role of ICP indices in guiding the clinical management of patients with raised ICP, the studies undertaken to date provide an insight into the potential role of ICP indices to treat raised ICP proactively rather than reactively and therefore help prevent or minimise secondary brain injury. PMID:27567609

  8. Development of a nanosecond pulsed HV atmospheric pressure plasma source: preliminary assessment of its electrical characteristics and degree of thermal nonequilibrium

    International Nuclear Information System (INIS)

    This paper discusses the development and characteristics of a distributed nanosecond-pulsed glow-like discharge plasma in air at atmospheric pressure. The produced pulse is of 6.4 kV with duration at half maximum of less than 80 ns, and an average pulse repetition frequency of 150 Hz. The discharge operates in air in a concentric electrode configuration. Spectroscopic studies are presented in order to assess the thermal characteristics of the plasma as well as its spatial characteristics. Electrical diagnostics are presented along with time averaged ICCD imaging of the radially distributed plasma. Although variations occur, it is found that the plasma has uniform vibrational and rotational temperatures across the inter electrode gap illustrating a high degree of disequilibrium in the plasma. Band head intensity analysis proves the existence of a negative glow in the near cathode region. Finally, the sensitivity of individual vibrational bands to vibrational and rotational temperatures is presented as a means to most accurately evaluate the uncertainty of spectrally determined temperatures. (paper)

  9. Investigation of the effects of a thin dielectric layer on low-pressure hydrogen capacitive discharges driven by combined radio frequency and pulse power sources

    International Nuclear Information System (INIS)

    Negative hydrogen ion sources, for instance for fusion devices, currently attract considerable attention. To generate the precursors—highly rovibrationally excited hydrogen molecules—for negative hydrogen ions effectively by electron excitation, a thin dielectric layer is introduced to cover the surface of the electrically grounded electrode of two parallel metal plates in a low-pressure hydrogen capacitive discharge driven by combined rf and pulse power sources. To understand the characteristics of such discharges, particle-in-cell simulations are conducted to study the effects that the single dielectric layer would bring onto the discharges. The simulation results show that the dielectric layer leads to a much higher plasma density and a much larger production rate of highly vibrationally excited hydrogen molecules compared to discharges without the dielectric layer on the electrode. Further investigation indicates that the nonlinear oscillation of the electrons induced by the nanosecond-pulse continues until it is finally damped down and does not show any dependence on the pulse plateau-time, which is in stark contrast to the case without the dielectric layer present. The physical reason for this phenomenon is explored and explained

  10. The influence of radiative heat exchange on the character of gasdynamic flows under conditions of pulsed discharge in high-pressure cesium vapor

    Science.gov (United States)

    Baksht, F. G.; Lapshin, V. F.

    2015-01-01

    The gasdynamics of pulse-periodic radiative discharge in high-pressure cesium vapor has been studied in the framework of a two-temperature multifluid model. It is established that, at a limited volume of the gas-discharge tube, the character of gasdynamic flows depends on the conditions of radiative heat exchange in discharge plasma. In cases in which the main contribution to radiative energy losses is related to a spectral region with optical thickness τ R (λ) ˜ 1, there is nonlocal radiative heat exchange in discharge plasma, which is uniformly heated over the entire tube volume and moves from the discharge axis to tube walls during the entire pulse of discharge current. Under the conditions of radiative losses determined by the spectral region where τ R (λ) ≪ 1, the reabsorption of radiation is absent and discharge plasma is nonuniformly heated by the current pulse. This leads to the appearance of reverse motions, so that the heated plasma is partly pushed toward the tube walls and partly returned to the discharge axis.

  11. Effect of Duty Cycle on the Characteristics of Pulse-Modulhted Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LI Xuechun; WANG Huan; DING Zhenfeng; WANG Younian

    2012-01-01

    Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are studied. The numerical results show that the dependence of discharge characteristics on the duty cycle is sensitive in the region of around 40% duty cycle under the given simulation parameters. In the case of a larger duty cycle, the plasma density is higher, the discharge becomes more intense, but the power consumption is higher. When the duty cycle is lower, one can get a weaker discharge, lower plasma density and higher electron temperature in the bulk plasma. In practical applications, in order to get a higher plasma density and a lower power consumption, it is more important to choose a suitable duty cycle to modulate the RF power supply.

  12. Development of a Radial Pulse Tonometric (RPT) Sensor with a Temperature Compensation Mechanism

    OpenAIRE

    Seong-Ki Yoo; Ki-Young Shin; Tae-Bum Lee; Seung-Oh Jin; Kim, Jaeuk U.

    2013-01-01

    Several RPT sensors have been developed to acquire objective and quantitative pulse waves. These sensors offer improved performance with respect to pressure calibration, size and sensor deployment, but not temperature. Since most pressure sensors are sensitive to temperature, various temperature compensation techniques have been developed, but these techniques are largely inapplicable to RPT sensors due to the size restrictions of the sensor, and incompatibility between the compensation techn...

  13. Effects of pranayama on galvanic skin resistance (GSR, pulse, blood pressure in prehypertensive patients (JNC 7 who are not on treatment

    Directory of Open Access Journals (Sweden)

    Dhodi Dinesh K , Bhagat Sagar B , Karan Thakkar , Peshattiwar Aishwarya V, Arati Purnaye , Sarika Paradkar

    2014-11-01

    Full Text Available Psychological stress, in this era of urbanization, has become a part and parcel of our lives and has lead to serious problem affecting different life situation and carries a wide range of health related disorders. Aims & Objective: To observe the effects of Pranayama on GSR. Pulse rate and blood pressure. Material & Method: This was an open labeled, prospective, uncontrolled, single centered, single arm, comparative, clinical intervention study conducted in the Department of Pharmacology, Grant Govt. Medical College, Mumbai, over a period of two months period August-September 2009 on 15 Prehypertensive subjects. Results: A total of 15 subjects who were Borderline hypertensive / Pre-Hypertensive, according to the JNC VII Classification, were enrolled in the study. Of which 10 were male and 5 were females, all in the age group of 22-35 yrs with a BMI of 19.63 – 30.11 with an average of 24.80. No significant change was seen when baseline GSR reading was compared with 15th day reading, but on 30th day significant change observed. When the baseline value of pulse was compared with that of the 15th and 30th day, a good positive change was seen in resting pulse. Similarly, BP recording also showed a good positive effect when baseline value was compared with that 15th and 30th day. Conclusion: The study concludes that practicing Pranayama on a regular basis increases the parasympathetic tone and blunts the sympathetic tone of the body. This has shown good beneficial effects on the Pulse, BP and GSR.

  14. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  15. Research on Multiple-point Calibration and Touch Pressure of Resistance Touch- screen%电阻式触摸屏多点校准及触摸压力研究

    Institute of Scientific and Technical Information of China (English)

    江秀红; 段富海; 曹阳; 胡爱玲

    2012-01-01

    针对电阻式触摸屏在小点状目标应用环境中存在触点判断不准确、灵敏度不高的问题,提出两种改进措施;其一在现有三点控准算法基础之上,增加校准点数提高转换精度;通过贪心算法对随机校准点集进行优化约简,并利用最小二乘法求得校准系数;其二为提高触摸坐标的准确性和触摸方式的鲁棒性,加入触摸压力检测和阈值判定来去除无效点击;测试结果表明,基于贪心算法的多点校准可提高坐标校准系数的精度,而触摸压力判定的加入则有效提高了轻触时的坐标精度.%For the inaccuracy and low sensitivity of the resistive touch-screen to fix position in small point target application, more points were collected to increase conversion accuracy based on existing three-point calibration. Greedy algorithm optimized and simplified the random calibrating spots, then least squares fitting algorithm calculated optimal calibration parameters with simplified spots assemble. In order to improve the accuracy of contact coordinate and adaptability of touch mode, the system adopted touch pressure measurement and threshold decision procedure to remove invalid click. Finally, test results show that multi-point calibration using greedy algorithm can improve the precision of coordinate calibration coefficients, and the adoption of Pressure Judgment increases the accuracy of gently touching coordinates effectively.

  16. 夹心式 PVDF 压力传感器压电特性及标定装置研究%Piezoelectric property of sandwich PVDF pressure gauge and its calibration device

    Institute of Scientific and Technical Information of China (English)

    范志强; 马宏昊; 沈兆武; 林谋金; 王德宝

    2014-01-01

    The sensitivity coefficient of sandwich polyvinylidene fluoride (PVDF)pressure gauge was studied through a series of calibration experiments by using SHPB apparatus,the effects of thickness and lap joint style of conducting wire and area of sensitive element on the sensitivity coefficient were discussed.Based on the test results and the discussion,improvement measures were applied to improve the linearity and decrease the discreteness of sensitivity coefficient of sandwich PVDF pressure gauge.According to the tests,the fitted sensitivity coefficient is 32.9 pC /N. However,the sensitivity coefficient is affected by many factors,it is recommended that the gauge should be calibrated in the pressure range which is compatible with the actual working conditions.To facilitate calibration,a vertical Hopkinson pressure bar apparatus which can effectively calibrate PVDF pressure gauge in a limited pressure range (10 ~160 MPa) was designed and performed.%采用 SHPB(Split Hopkinson pressure bar)装置对传统夹心式聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)压力计进行标定实验,分析导线厚度、搭接方式及敏感元件面积等因素对压力计灵敏度影响。基于实验、分析结果,改进夹心式 PVDF 压力计,使其具有线性度高与灵敏度系数离散性小等优点,经标定实验获得灵敏度系数32.9 pC /N。由于自制PVDF 压力计灵敏系数受多种因素影响,建议使用前对其进行工况压力范围内标定。为便于灵敏度标定实验,设计制作立式 Hopkinson 压杆,在一定压力范围(10~160 MPa)内对 PVDF 压力计进行标定实验。

  17. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    Science.gov (United States)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  18. Observations of Regular Filamentary Plasma Arrays in High-Pressure Gas Breakdown by 1.5 MW, 110 GHz Gyrotron Pulses

    Science.gov (United States)

    Hidaka, Yoshiteru

    2008-11-01

    Formation of regular two-dimensional plasma filamentary arrays has been observed in long open-shuttered images of air breakdown at atmospheric pressure [Y. Hidaka et al., Phys. Rev. Lett. 100, 035003 (2008)]. The breakdown was generated by a focused linearly-polarized Gaussian beam from a 1.5-MW, 110-GHz gyrotron with a 3-microsecond pulse length. Each plasma filament is elongated in the electric field direction and separated roughly one-quarter wavelength from each other in the H-plane. The development of this array structure can be explained as a result of diffraction of the beam around the highly conductive filaments. The diffraction generates a new electric field profile in which a high intensity region emerges about a quarter wavelength upstream from an existing filament. A new plasma filament is likely to appear at the intensified spot. The same process continues and results in the formation of the observed array. Electromagnetic wave simulations that model plasma filaments as metallic posts agree quite well with the hypothesis above. With a nanoseconds-gated ICCD camera, we directly confirmed that only a few rows of the observed array are bright at any one moment, as well as that the light emitting region propagates towards the microwave source. Further experimental breakdown research has been carried out with nitrogen, helium, and SF6 at different pressures. Although each species exhibits qualitatively different structures, in general, a lumpy plasma at high pressures transforms into a more familiar, diffuse plasma as pressure is decreased. The propagation velocity of the ionization front has been also estimated both from the ICCD images and a photodiode array. The velocity is on the order of 10 km/s, and increases as the pressure decreases and the power density increases.

  19. The effect of O{sub 2} partial pressure on the photoluminescence of ZnO thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.M., E-mail: ymlu@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, Nanhai Avenue 3688, Shenzhen 518060 (China); Li, X.P. [College of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, Nanhai Avenue 3688, Shenzhen 518060 (China); Su, S.C. [Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Cao, P.J.; Jia, F.; Han, S.; Zeng, Y.X.; Liu, W.J.; Zhu, D.L. [College of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, Nanhai Avenue 3688, Shenzhen 518060 (China)

    2014-08-01

    In this paper, photoluminescence (PL) of ZnO thin films prepared on c-Al{sub 2}O{sub 3} substrates by the pulsed laser deposition (PLD) method at different O{sub 2} partial pressures is investigated. For all samples, a narrow ultraviolet (UV) emission and a broad visible emission can be observed at room-temperature (RT). With increasing O{sub 2} partial pressures from 0.2 to 5 Pa, the intensity ratio of the UV to visible emissions increases, and the energy positions of the UV emission band shift to the high energy side. It is noted that the visible part includes two emission bands of green luminescence (GL) and yellow luminescence (YL), in which the GL emission is strong at low oxygen pressure and the YL emission becomes dominant at high O{sub 2} partial pressures. The temperature-dependent PL spectra show that the UV emission is composed of two bands labeled FX and FA. The dependences and possible assignments of these PL bands are briefly discussed. - Highlights: • We confirmed that the RT UV emission band is due to two transitions of the FX and FA. • The intensity of the FX and FA emission bands strongly depends on oxygen partial pressures. • We deduced that the acceptor-like defects located in the grain boundaries are responsible for the FA emission. • The visible emission includes the GL related to V{sub O} and the YL related to V{sub Zn} or O{sub i}. • The GL emission strongly affects the UV emission.

  20. Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition

    Indian Academy of Sciences (India)

    Zahra Saroukhani; Nemat Tahmasebi; Seyed Mohammad Mahdavi; Ali Nemati

    2015-10-01

    Barium strontium titanate (BST, Ba1−SrTiO3) thin films have been extensively used in many dielectric devices such as dynamic random access memories (DRAMs). To optimize its characteristics, a microstructural control is essential. In this paper, Ba0.6Sr0.4TiO3 thin film has been deposited on the SiO2/Si substrate by the pulsed laser deposition (PLD) technique at three different oxygen working pressures of 100, 220 and 350 mTorr. Then the deposited thin films at 100 mTorr oxygen pressure were annealed for 50 min in oxygen ambient at three different temperatures: 650, 720 and 800°C. The effect of oxygen working pressure during laser ablation and thermal treatment on the films was investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis methods. X-ray photoelectron spectroscopy analysis was used to determine the surface chemical composition of the samples. The results indicate that the deposited BST film at low working pressure (100 mTorr) in PLD chamber shows a lower surface roughness than other working pressures (220 and 350 mTorr). The as-deposited films show an amorphous structure and would turn into polycrystalline structure at annealing temperature above 650°C. Increase of temperature would cause the formation of cubic and per-ovskite phases, improvement in crystalline peaks and also result in the decomposition of BST at high temperature (above 800°C). In addition, rising of temperature leads to the increase in size of grains and clusters. Therefore more roughness was found at higher temperatures as a result of a more heterogeneous growth and less tensions.

  1. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  2. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  3. Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet

    Science.gov (United States)

    Mu-Yang, Qian; Cong-Ying, Yang; Zhen-dong, Wang; Xiao-Chang, Chen; San-Qiu, Liu; De-Zhen, Wang

    2016-01-01

    A numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet is presented. The generation and loss mechanisms of the OH radicals in a positive half-cycle of the applied voltage are studied and discussed. It is found that the peak OH density increases with water content in air (varying from 0% to 1%) and reaches 6.3×1018 m-3 when the water content is 1%. Besides, as the water content increases from 0.01% to 1%, the space-averaged reaction rate of three-body recombination increases dramatically and is comparable to those of main OH generation reactions. Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  4. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10−4 millibars

    International Nuclear Information System (INIS)

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10−4 millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs

  5. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    Energy Technology Data Exchange (ETDEWEB)

    Premper, J.; Sander, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)

    2015-03-15

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  6. Randomized Comparison of the Therapeutic Effect of Acupuncture, Massage, and Tachibana-Style-Method on Stiff Shoulders by Measuring Muscle Firmness, VAS, Pulse, and Blood Pressure

    Directory of Open Access Journals (Sweden)

    Kazuhiro Tachibana

    2012-01-01

    Full Text Available To compare the therapeutic efficacy of acupuncture, massage, and Tachibana-Ryojutsu (one of Japanese traditional body balance therapy techniques (SEITAI, on stiff shoulders, the subjects’ muscle firmness, blood pressure, pulse, VAS, and body temperature were measured before and after the treatment. Forty-seven volunteer subjects gave written informed consent to participate in this study. The subjects were randomly divided into three groups to receive acupuncture, massage, or Tachibana-Ryojutsu. Each therapy lasted for 90 seconds. The acupuncture treatment was applied by a retaining-needle at GB-21, massage was conducted softly on the shoulders, and Tachibana-Ryojutsu treated only the muscles and joints from the legs to buttocks without touching the shoulders or backs. The study indicated that the muscle firmness and VAS of the Tachibana-Ryojutsu group decreased significantly in comparison with the acupuncture and massage groups after treatment.

  7. Analysis of EBR-II secondary sodium network for pressures pulses due to leaks of steam on water into sodium

    International Nuclear Information System (INIS)

    A systematic procedure is presented for the safety analysis of the secondary sodium system of an LMFBR in the event of a leak of water or steam into sodium in an evaporator or a superheater. Using fracture mechanics, it is shown that the usual assumption of failure initiation by guillotine rupture of one or more water or steam tubes is unrealistic. A model is proposed for the gradual growth of leaks due to the phenomenon of wastage. The pressure rise in the system due to a sodium-water reaction is calculated solving one-dimensional hydrodynamic equations. By comparing results obtained for the proposed gradual growth model with those due to guillotine failure it is shown that the assumption of guillotine failure leads to a significant overestimation of pressures and stresses. Based upon the proposed leak progression model the stresses in the EBR-II secondary sodium system are shown to be within safe limits. (Auth.)

  8. Influence of the oxygen pressure on the physical properties of the pulsed-laser deposited Te doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chan y Diaz, E., E-mail: enrique.chan@cimav.edu.m [Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes Saavedra 120, Complejo industrial Chihuahua, Chihuahua 31109 (Mexico); Camacho, Juan M. [Applied Physics Department, CINVESTAV-IPN, Unidad Merida, 97310 Merida, Yucatan (Mexico); Duarte-Moller, A. [Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes Saavedra 120, Complejo industrial Chihuahua, Chihuahua 31109 (Mexico); Castro-Rodriguez, R.; Bartolo-Perez, P. [Applied Physics Department, CINVESTAV-IPN, Unidad Merida, 97310 Merida, Yucatan (Mexico)

    2010-10-22

    Tellurium doped tin oxide (Te:SnO{sub 2}) thin films were prepared by pulsed-laser deposition (PLD) on glass substrates at different oxygen pressures, and the effects of oxygen pressure on the physical properties of as-grown and post-annealed Te:SnO{sub 2} films were investigated. The as-grown films deposited between 1.0 and 50 mTorr showed some evidence of diffraction peaks, with electrical resistivity of {approx}8 x 10{sup 1} {Omega} cm, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (1 1 0), (1 0 1) and (2 1 1) were observed containing the SnO{sub 2} tetragonal structure, at 100 mTorr the electrical resistivity decreased abruptly at minimum value of 4 x 10{sup -2} {Omega} cm, and increased reaching values of {approx}4 x 10{sup -1} {Omega} cm. The optical transmittance of the films increased with increasing oxygen pressure and high transmittance ({approx}87%) in VIS region by the films prepared at 100 mTorr and higher. The band gap of as-grown films was {approx}3.5 eV corresponding at of the SnO{sub 2}. After of post-annealed at 500 {sup o}C at atmospheric pressure for 30 min all films showed crystallization, and notable electrical resistivity changes were observed. The carrier density increased monotonically in the range of oxygen pressure between 1.0 and 100 mTorr, reaching values of {approx}2 x 10{sup 18} cm{sup -3}, then, it decreased abruptly in films grown at 125 mTorr. While the mobility of the free-carrier decreased in the range of oxygen pressure between 1.0 and 100 mTorr, reaching minimum values of {approx}5.8 cm{sup 2} V{sup -1} s{sup -1}. The optical transmittance showed similar characteristic like the as-grown films. The figure of merit at 100 mTorr of as-grown films had value {approx}1.2 x 10{sup -5} {Omega}{sup -1}, and for post-annealed films at 100 mTorr the figure of merit was similar {approx}1.7 x 10{sup -6} {Omega}{sup -1}, indicating they were the better films.

  9. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    Science.gov (United States)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  10. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  11. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  12. Effects of oxygen partial pressure on the ferroelectric properties of pulsed laser deposited Ba0.8Sr0.2TiO3 thin films

    International Nuclear Information System (INIS)

    The Ba0.8Sr0.2TiO3 thin films were grown on the Pt-Si substrate at 700 C by using a pulsed laser deposition technique at different oxygen partial pressure (PO2) in the range of 1-20 Pa and their properties were investigated. It is observed that the PO2 during the deposition plays an important role on the tetragonal distortion ratio, surface morphology, dielectric permittivity, ferroelectric polarization, switching response, and leakage currents of the films. With an increase in PO2, the in-plane strain for the BST films changes from tensile to compressive. The films grown at 7.5 Pa show the optimum dielectric and ferroelectric properties and also exhibit the good polarization stability. It is assumed that a reasonable compressive strain, increasing the ionic displacement, and thus promotes the in-plane polarization in the field direction, could improve the dielectric permittivity. The butterfly features of the capacitance-voltage (C-V) characteristics and the bell shape curve in polarization current were attributed to the domain reversal process. The effect of pulse amplitude on the polarization reversal behavior of the BST films grown at PO2 of 7.5 Pa was studied. The peak value of the polarization current shows exponential dependence on the electric field. (orig.)

  13. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Science.gov (United States)

    Dawood, Mahmoud S.; Hamdan, Ahmad; Margot, Joëlle

    2015-10-01

    In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon) and pressure (from ˜5 × 10-7 Torr up to atmosphere) is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD) camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF) profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  14. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  15. Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters

    Science.gov (United States)

    Weisbuch, F.; Tokarev, V. N.; Lazare, S.; Débarre, D.

    A microscopic flow of a transient liquid film produced by KrF laser ablation is evidenced on targets of PET and PEN. Experiments were done by using single pulses of the excimer laser beam micropatterned with the aid of submicron projection optics and grating masks. The samples of various crystalline states, ablated with a grating-forming beam (period Λ=3.7 μm), were precisely measured by atomic force microscopy, in order to evidence any deviation from the ablation behavior predicted by the current theory (combination of ablation curve and beam profile). This was confirmed by comparing various behaviors dependent on the polymer nature (PC, PET and PEN). PC is a normally ablating polymer in the sense that the ablated profile can be predicted with previous theory neglecting liquid-flow effects. This case is called `dry' ablation and PC is used as a reference material. But, for some particular samples like crystalline PET, it is revealed that during ablation a film of transient liquid, composed of various components, which are discussed, can flow under the transient action of the gradient of the pressure of the ablation plume and resolidify at the border of the spot after the end of the pulse. This mechanism is further supported by a hydrodynamics theoretical model in which a laser-induced viscosity drop and the gradient of the plume pressure play an important role. The volume of displaced liquid increases with fluence (0.5 to 2 J/cm2) and satisfactory quantitative agreement is obtained with the present model. The same experiment done on the same PET polymer but prepared in the amorphous state does not show microflow, and such an amorphous sample behaves like the reference PC (`dry' ablation). The reasons for this surprising result are discussed.

  16. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    Science.gov (United States)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-01

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  17. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    International Nuclear Information System (INIS)

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films

  18. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  19. Pulse pressure and michigan neuropathy screening instrument are independently associated with asymptomatic peripheral arterial disease among type 2 diabetes community residents: A community-based screening program in Taiwan

    Directory of Open Access Journals (Sweden)

    Li-Chi Fan

    2013-12-01

    Full Text Available Background: Peripheral arterial disease (PAD is one of the major manifestations of systemic atherosclerosis and plays an important role in low-extremity amputation in type 2 diabetic patients. The aim of this study was to explore the prevalence and risk factors for asymptomatic PAD in type 2 diabetic community residents. Methods: This cross-sectional study enrolled 552 type 2 diabetic adults (232 men and 320 women without subjective symptoms of intermittent claudication. We defined the PAD group as an ankle-brachial index (ABI ≤ 0.90, and the normal group as an ABI 0.91-1.30. Their clinical characteristics, Michigan Neuropathy Screening Instrument (MNSI scores and blood pressure were compared. Results: We discovered that 51 patients have asymptomatic PAD. Univariate logistic regression analysis revealed that age, history of stroke, longer duration of diabetes (> 10 years, unemployment or retirement, pulse pressure, systolic blood pressure, and high MNSI score (> 2 were risk factors for PAD. By multivariate logistic regression analysis, pulse pressure, high MNSI score, age, and history of stroke were independent risk factors with odds ratios (95% confidence intervals, CI of 1.032 (1.012-1.053, 2.359 (1.274-4.370, 1.050 (1.010-1.091, and 5.152 (1.985-13.368, respectively. Furthermore, the prevalence of PAD increased significantly with increment in the pulse pressure and MNSI. Conclusions: In summary, the overall prevalence of asymptomatic PAD in the type 2 diabetic adults was 9.2%. Age, history of stroke, pulse pressure and MNSI score may provide important clinical information. Primary care physicians should be aware of asymptomatic patients with high pulse pressure and MNSI scores.

  20. 基于脉搏波传导时间的连续血压监测系统%Continuous Blood Pressure Measurement based on Pulse Transit Time

    Institute of Scientific and Technical Information of China (English)

    白丽红; 王成; 文苗; 张通

    2014-01-01

    To achieve continuous non-invasive blood pressure measurement,a method based on pulse transit time (PTT)was presented.We got PTT from electrocardiograph(ECG)and photoplethysmograph(PPG).The start point of PTT on ECG-R wave point and the stop point of PTT on PPG characteristic point was gotten.The mathematical model of systolic blood pressure (SBP)and dias-tolic blood pressure (DBP)were gotten by making regression analysis between PTT and SBP or DBP measured with a mercury sphyg-momanometer.Forty-one healthy young people were studied using this method.The correlation coefficients of SBP and DBP between our system and the mercury sphygmomanometer were 0.82 and 0.73,respectively.It was found that the estimated SBP and DBP dif-fered from the reference BP by 0.15 ±2.05 mmHg and 0.12 ±2.16 mmHg,respectively.The Bland-Altman method was used to check the consistency of the blood pressure measured by our system and the mercury sphygmomanometer.The results show that blood pressure measured by this method is good agreed with which measured by mercury sphygmomanometer.%为了实现无创连续血压测量,提出了一种基于脉搏波传导时间(pulse transit time,PTT)的连续血压测量方案。通过同步采集心电(electrocardiogram,ECG)信号与光电脉搏波(photoplethysmograph,PPG)信号,以ECG的R波峰值点作为PTT的开始点,PPG信号的最大值点作为PTT的结束点,得到PTT,与水银血压计测得舒张压(diastolic blood pressure ,DBP)与收缩压(systolic blood pressure ,SBP)进行回归分析,得到了DBP和SBP的数学模型。利用该方法对41名身体健康的青年人进行实验,利用本方案得到的SBP与水银血压计的相关系数为0.82,其差值的平均数与标准偏差为0.15±2.05 mmHg;得到的DBP与水银血压计的相关系数为0.73,其差值的平均数与标准偏差为0.12±2.16 mmHg。利用Bland-Altman差值法对本系统血压测量方法与水银

  1. Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    OpenAIRE

    Wu, Dong; Qiao, B.; X. T. He; McGuffey, C.; Beg, F. N.

    2014-01-01

    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state $(\\text{Z}-2)^+$ to $(\\text{Z}-1)^+$]. While the target ions in the...

  2. Calibration Techniques for VERITAS

    CERN Document Server

    Hanna, David

    2007-01-01

    VERITAS is an array of four identical telescopes designed for detecting and measuring astrophysical gamma rays with energies in excess of 100 GeV. Each telescope uses a 12 m diameter reflector to collect Cherenkov light from air showers initiated by incident gamma rays and direct it onto a `camera' comprising 499 photomultiplier tubes read out by flash ADCs. We describe here calibration methods used for determining the values of the parameters which are necessary for converting the digitized PMT pulses to gamma-ray energies and directions. Use of laser pulses to determine and monitor PMT gains is discussed, as are measurements of the absolute throughput of the telescopes using muon rings.

  3. Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1−x(VO2)x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2–WO3 thin film electrode with higher VO2 content (x ≥ 0.2). Increase of VO2 content in (WO3)1−x(VO2)x films leads to red shift in optical band gap.

  4. STUDENT AWARD FINALIST: Simulation of the ignition of a H2-air mixture at atmospheric pressure by a nanosecond repetitively pulsed discharge

    Science.gov (United States)

    Tholin, Fabien; Bourdon, Anne

    2012-10-01

    Nanosecond repetitively Pulsed Discharges (NRPD) have a great potential for many applications at atmospheric pressure due to their ability to produce efficiently many reactive chemical species at a low energy cost. Recent measurements have shown that in the ``spark'' regime of NRP discharges, an ultra-fast local heating of the gas could be obtained. This effect is of great interest for applications as flow control and plasma assisted combustion (PAC). In this work, we have carried out 2D numerical simulations of the coupling of the NRP discharge in air at atmospheric pressure in a point-point geometry with the background air. In particular, we have simulated shock waves generated by the NRPD in the spark regime and we have compared our results with experiments. Then, we have studied the production of active species by the NRP discharge in the spark regime. Finally, for plasma assisted combustion applications, we have simulated the ignition of a flame kernel in a lean H2-air mixture by a spark NRPD. Based on this work, the relative importance for the combustion ignition of gas heating and production of active species by the spark NRP is discussed.

  5. 脉动真空压力蒸汽灭菌器灭菌效果的监测%Sterilization effect of pulsing vacuum pressure steam sterilizer

    Institute of Scientific and Technical Information of China (English)

    王立霞; 李焰; 于爱兰

    2014-01-01

    OBJECTIVE To explore the effect of sterilization of the pulsing vacuum pressure steam sterilizer so as to provide guidance for disinfection and sterilization ,and the high-pressure steam sterilization is the main approach for the sterilization of medical instruments .METHODS Totally 18978 medical equipments and items that were sterilized with the pulsing vacuum pressure steam sterilizer from 2006 to 2009 were retrospectively investigated , the loading and unloading of the sterilized packages were carried out according to the requirements of guidelines for practice of cleaning ,disinfection ,and sterilization ;the management of the sterilization facilities was strengthened , high attention was paid to the professional knowledge training of the sterilization staff ,the biological monitoring , E-D test ,and chemical test were performed for all the sterile items ,and the influencing factors for the sterilization effect were found out .RESULTS A total of 201 times of biological monitoring were performed for the 18978 medi-cal equipments and items ,with the qualified rate of 88 .56% ;3250 times of B-D test were carried out ,with the qualified rate of 89 .78% ;15 527 times of chemical monitoring were performed ,with the average qualified rate of 91 .50% ,and the qualified rate reached 99 .27% after the intervention .CONCLUSION The pulsing vacuum pres-sure steam sterilizer has the advantages such as short time of sterilization and thorough sterilization ;it can effec-tively reduce the incidence of nosocomial infections and ensure the safety of the sterilized items .%目的:高压蒸汽灭菌是医院医疗器械和物品的主要灭菌方式,探讨使用脉动真空压力蒸汽灭菌器的灭菌效果,为消毒灭菌提供参考依据。方法回顾性调查2006-2009年共监测用脉动真空压力蒸汽灭菌器的灭菌的医疗器械及物品共18978份,依据原卫生部《清洗消毒及灭菌技术操作规范》对灭菌物品进行正确包装、装载及

  6. Oxygen partial pressure effect on structural and electrical behavior of pulsed laser deposited Zn0.98Co0.02O thin films

    International Nuclear Information System (INIS)

    Thin Zn0.98Co0.02O films were grown by pulsed laser deposition at different oxygen partial pressure (PO2) and its influence on their structural and electrical properties was investigated. Raman and photoluminescence studies revealed that zinc interstitial defects significantly decreased with increase of PO2. Complex impedance spectroscopy has been made to elucidate conduction mechanism and electronic relaxation process in Zn0.98Co0.02O films. Resistivity/impedance in the films grown at 0.1 mbar decreased as the temperature increases while the films grown at 0.01 and 0.001 mbar have shown opposite trend. The change in resistivity/impedance with temperature in the films grown at low and high PO2 is attributed to annihilation of defects and thermal activation of free carriers respectively. The relaxation time in the films grown at low PO2 increases with the temperature. It exhibits an exponential dependence on the inverse temperature with three different slopes. The corresponding energies estimated from Arrhenius type relation are very close to the energies for electronic relaxation of zinc interstitials, zinc antisities and oxygen vacancies respectively. Impedance analysis and current–voltage characteristics suggest that the resistivity of Zn0.98Co0.02O films is mainly due to bulk effect of the films. - Highlights: ► The native point defects were characterized by impedance spectroscopy. ► Zinc interstitial defects significantly decreased with increase of oxygen partial pressure. ► The conduction mechanism in the films grown at low pressures is governed by native defects. ► The impedance and I–V characteristics suggest that the resistivity is mainly due to bulk effect of the films.

  7. Influence of oxygen background pressure on crystalline quality of SrTiO3 films grown on MgO by pulsed laser deposition

    International Nuclear Information System (INIS)

    We have systematically investigated the effect of oxygen partial pressure (PO2) on the crystalline quality of SrTiO3 films grown on MgO (001) substrates using pulsed laser deposition and established optimized conditions for the growth of high-quality epitaxial films. The crystalline quality is found to improve significantly in the O2 pressure range of 0.5 endash 1 mTorr, compared to the films deposited at higher pressures of 10 endash 100 mTorr. The x-ray diffraction rocking curves for the films grown at PO2 of 1 mTorr and 100 mTorr yielded full width at half-maximum (FWHM) of 0.7 degree and 1.4 degree, respectively. The in-plane x-ray φ scans showed epitaxial cube-on-cube alignment of the films. Channeling yields χmin were found to be 3 films in oxygen further improves the quality, and the 1 mTorr films give FWHM of 0.13 degree and χmin of 1.7%. In-plane misorientations of the annealed SrTiO3 films calculated using results of transmission electron microscopy are ±0.7 degree for 1 mTorr and ±1.7 degree for the 10 mTorr film. The high temperature superconducting (high-Tc) Y1Ba2Cu3O7-δ films grown on these SrTiO3/MgO substrates showed a χmin of 2.0% and transition temperature of ∼92K, indicating that SrTiO3 buffer layers on MgO can be used for growth of high-quality Y1Ba2Cu3O7-δ thin film heterostructures for use in high-Tc devices and next generation microelectronics devices requiring films with high dielectric constants. copyright 1997 American Institute of Physics

  8. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  9. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  10. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  11. Comparative Study on the Pulse Wave Variables and Sasang Constitution in Cerebral Infarction Patients and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Ko KiDuk

    2007-06-01

    Full Text Available This study was performed to determine whether a pulse analyzer was useful 1 to characterize the variables of pulse wave of cerebral infarction patieno (CI, compared with those of healthy subjects, as well as 2 to determine Sasang Constitution in CI and healthy subjects. 1. Calibrated in Gwan, the amount of energy(Energy, height of main peak(H1, height of aorticvalley(H2, height of aortic peak(H3, total area of pulse wave(At, and area of main peak width(Aw of the CI group were higher than those of the healthy group. 2. Calibrated in Cheek, Energy, H1, H2, H3, height of valve valley(H4, At, Aw, and main peak angle(MPA of the CI group were higher than those of the healthy group. 3. Among the healthy (subjects group, Taeumin showed the highest contact pressure(CP and height of valve peak(H5 calibrated in Chon. The main peak width divided by whole time of pulse wave(MPW/T calibrated in Gwan and Cheok, was highest in Soyangin and was lowest in Taeumin. The H3 divided by H1(H3/H1 and the time to valve valley minus the time to main peak and divided by T[(T4-T1/T] calibrated in Cheek were highest in Soyangin. The time to main peak(T1 was longest in Soumin. 4. Among the CI group, At calibrated in Chon was widest in Taeumin and was narrowest in Soumin The time to aortic peak(T3 calibrated in Cheek was longest in Soumin and was shortest in Soyangin. The time to valve peak(T5 was shortest in Soyangin. 5. There were main effects of cerebral infarction in the area of systolic period(As and area of diastolic period(Ad calibrated in Chon, Energy calibrated in Cwan, and Energy, H1, H2, H3, (H4+H5/Hl, and MPA calibrated in Cheek. 6. There were main effects of Sasang Constitution in (T4-T1/T, area of systolic period(As, and Ad calibrated in Chon. 7. The interactions between the cerebral infarction and Sasang Constitution were observed in H5/H1 , T, At, As, Ad, and MPA calibrated in Chon, H4, T4, (T4-T1/T, As, and Ad calibrated in Cwan, and 74,75, and MPW calibrated

  12. 微脉冲激光雷达探测大气气溶胶定标反演新方法%Inversion of Micro-Pulse Lidar Signals with a New Calibration Method

    Institute of Scientific and Technical Information of China (English)

    陈涛; 赵玉洁; 刘东; 于杰; 徐灵芝; 王英俭; 周军

    2012-01-01

    A new self-adaptive method to determine the calibration value in the effective distance of micro-pulse lidar (MPL) is proposed. A profile of aerosol backscatter coefficient, which is retrieved from MPL signal with the boundary value determined using the new method, is compared with the one retrieved from another lidar signal with the boundary value assumed around the troposphere. The comparison shows that the two profiles seem to be consistent with each other well. A group of lidar signal, observed continuously 12 hours, is retrieved with this method, which can accurately indicate the weather conditions. The result shows that the method has a good stability.%利用一种新的自适应定标反演方法在有效探测高度内确定标定值,反演微脉冲激光雷达(MPL)回波信号,并同另外一台激光雷达系统在相同时间、相同地点的探测结果进行了对比.对比结果显示利用该方法得到的结果能够同大气实际情况吻合地较好.应用该算法对连续12h的观测(共25组)数据进行批处理,结果正确反映了当时的天气状况.这说明该算法应用于MPL信号处理时具有很好的稳定性.

  13. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    Science.gov (United States)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  14. Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    CERN Document Server

    Wu, Dong; He, X T; McGuffey, C; Beg, F N

    2014-01-01

    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state $(\\text{Z}-2)^+$ to $(\\text{Z}-1)^+$]. While the target ions in the laser wing region are ionized to low charge states and undergo rapid dispersions due to instabilities, a self-organized, stable RPA of highly-charged heavy ion beam near the laser axis is achieved. It is also found that a large supplement of electrons produced from ionization helps preserving stable acceleration. Two-dimensional particle-in-cell simulations show that a monoenergetic $\\text{Al}^{13+}$ beam with peak energy $1\\ \\text{GeV}$ and energy spread of $5\\%$ is obtained by lasers at intensity $7\\times10^{20}\\ \\text...

  15. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  16. Investigation on the reaction mechanisms of generation and loss of oxygen-related species in atmospheric-pressure pulsed dielectric barrier discharge in argon/oxygen mixture

    Science.gov (United States)

    Pan, Jie; Tan, Zhenyu; Pan, Guangsheng; Shan, Chunhong; Wang, Xiaolong; Liu, Yadi; Jiang, Jixiang

    2016-07-01

    This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O(1D), O2(1Δg), O3, O+, O2+, O-, O2-, and O3-. The following significant results are obtained. O, O(1D), O2(1Δg), and O- are produced mainly via the electron impact with O2. Ar+ plays an essential role in the generation of O+ and O2+. Almost all of O3 derives from the reaction O2 + O2 + O → O3 + O2. The O3-related reactions produce an essential proportion of O2- and O3-. The substantial loss of O-, O2-, and O3- is induced by their reactions with O2+. Loss of O+, O, and O(1D) is mainly due to their reactions with O2, loss of O2(1Δg) due to O2(1Δg) impacts with O3 as well as the de-excitation reactions between O2(1Δg) and e, O2, and O, and loss of O3 due to the reactions between O3 and other neutral species. In addition, the densities of O+ and O(1D) present two obvious peaks at the pulse duration, but the densities of O2+, O, O2(1Δg), and O3 are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O- density is obviously large nearby the dielectric surfaces and the densities of O2- and O3- present generally uniform distributions.

  17. Carbon-based micro-ball and micro-crystal deposition using filamentary pulsed atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Thin plasma filaments are produced by the propagation of ionization waves from a spiked driven electrode in a quartz tube in an argon/methane gas mixture (2400 sccm/2 sccm) at atmospheric pressure. The position of the touch point of filaments on the substrate surface is controlled in our experiment by applying various suitable substrate configurations and geometries of the grounded electrode. The gas conditions at the touch point are varied from argon to ambient air. Based on microphotography and discharge current waveforms, the duration of the filament touching the substrate is estimated to be about one microsecond. Carbon-based materials are deposited during this time at the touch points on the substrate surface. Micro-balls are produced if the filament touch points are saved from ambient air by the argon flow. Under an air admixture, micro-crystals are formed. The dimension of both materials is approximately one micrometre (0.5–2 µm) and corresponds to about 1010–1012 carbon atoms. Neither the diffusion of neutral species nor drift of ions can be reason for the formation of such a big micro-material during this short period of filament–substrate interaction. It is possible that charged carbon-based materials are formed in the plasma channel and transported to the surface of the substrate. The mechanism of this transport and characterization of micro-materials, which are formed under different gas conditions in our experiment, will be studied in the future. (paper)

  18. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  19. Sensor Calibration Design Based on D-Optimality Criterion

    Directory of Open Access Journals (Sweden)

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  20. The calibration system for the GERDA experiment

    International Nuclear Information System (INIS)

    The GERDA experiment uses the neutrinoless double beta decay to probe three fundamental questions in neutrino physics - Are they Dirac or Majorana particles? What is their absolute mass? What is the mass hierarchy of the three generations? In my talk I present the calibration system for the Ge semiconductor diodes enriched in Ge-76. The system is used to set the energy scale and calibrate the pulse shapes which will be used to further reject background events. The lowest possible background is crucial for the whole experiment and therefore the calibration system must not interfere with the data acquisition phase while at the same time operate efficiently during the calibration runs.

  1. Comparação entre as variações respiratórias da amplitude de onda pletismográfica da oximetria de pulso e do pulso arterial em pacientes com e sem uso de norepinefrina Comparison between respiratory pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure variations among patients with and without norepinephrine use

    Directory of Open Access Journals (Sweden)

    Guilherme Loures de Araújo Penna

    2009-12-01

    Full Text Available OBJETIVOS: A variação respiratória da pressão arterial é um bom preditor da resposta a fluidos em pacientes ventilados. Foi recentemente demonstrado que a variação respiratória na pressão arterial de pulso se correlaciona com a variação da amplitude da onda pletismográfica da oximetria de pulso. Nossa intenção foi avaliar a correlação entre a variação respiratória da pressão arterial de pulso e a variação respiratória na amplitude da onda pletismográfica da oximetria de pulso, e determinar se esta correlação foi influenciada pela administração de norepinefrina. MÉTODOS: Estudo prospectivo de sessenta pacientes com ritmo sinusal normal sob ventilação mecânica, profundamente sedados e hemodinamicamente estáveis. Foram monitorados o índice de oxigenação e pressão arterial invasiva. A variação respiratória da pressão do pulso e a variação respiratória da amplitude da onda pletismográfica na oximetria de pulso foram registradas simultaneamente batimento a batimento, e foram comparadas utilizando o coeficiente de concordância de Pearson e regressão linear. RESULTADOS: Trinta pacientes (50% necessitaram de norepinefrina. Ocorreu uma correlação significante (K=0,66; pOBJECTIVES: Arterial pulse pressure respiratory variation is a good predictor of fluid response in ventilated patients. Recently, it was shown that respiratory variation in arterial pulse pressure correlates with variation in pulse oximetry plethysmographic waveform amplitude. We wanted to evaluate the correlation between respiratory variation in arterial pulse pressure and respiratory variation in pulse oximetry plethysmographic waveform amplitude, and to determine whether this correlation was influenced by norepinephrine administration. METHODS: Prospective study of sixty patients with normal sinus rhythm on mechanical ventilation, profoundly sedated and with stable hemodynamics. Oxygenation index and invasive arterial pressure were

  2. Relationship Between Changes in Pulse Pressure and Frequency Domain Components of Heart Rate Variability During Short-Term Left Ventricular Pacing in Patients with Cardiac Resynchronization Therapy

    Science.gov (United States)

    Urbanek, Bożena; Ruta, Jan; Kudryński, Krzysztof; Ptaszyński, Paweł; Klimczak, Artur; Wranicz, Jerzy Krzysztof

    2016-01-01

    Background The aim of the study was to explore the relationship between changes in pulse pressure (PP) and frequency domain heart rate variability (HRV) components caused by left ventricular pacing in patients with implanted cardiac resynchronization therapy (CRT). Material/Methods Forty patients (mean age 63±8.5 years) with chronic heart failure (CHF) and implanted CRT were enrolled in the study. The simultaneous 5-minute recording of beat-to-beat arterial systolic and diastolic blood pressure (SBP and DBP) by Finometer and standard electrocardiogram with CRT switched off (CRT/0) and left ventricular pacing (CRT/LV) was performed. PP (PP=SBP-DBP) and low- and high-frequency (LF and HF) HRV components were calculated, and the relationship between these parameters was analyzed. Results Short-term CRT/LV in comparison to CRT/0 caused a statistically significant increase in the values of PP (P<0.05), LF (P<0.05), and HF (P<0.05). A statistically significant correlation between ΔPP and ΔHF (R=0.7384, P<0.05) was observed. The ΔHF of 6 ms2 during short-term CRT/LV predicted a PP increase of ≥10% with 84.21% sensitivity and 85.71% specificity. Conclusions During short-term left ventricular pacing in patients with CRT, a significant correlation between ΔPP and ΔHF was observed. ΔHF ≥6 ms2 may serve as a tool in the selection of a suitable site for placement of a left ventricular lead. PMID:27305349

  3. A relationship study on ambulatory pulse pressure,pulse pressure index and cognitive function in vascular cognitive impairment patients%血管性认知障碍患者动态脉压、脉压指数与认知功能损害的相关性研究

    Institute of Scientific and Technical Information of China (English)

    王登芹; 闫中瑞

    2014-01-01

    目的 探讨动态脉压(PP)、脉压指数(PPI)与认知功能损害(VCI)程度的关系.方法 将60名重度、中度、轻度认知功能障碍患者作为研究对象,40名健康人作为对照组,所有患者进行动态血压的监测.结果 重度VCI组的PP、PPI显著高于中度、轻度VCI组及对照组[PP(mmHg):(59.10±11.82、54.94±10.86、50.28±8.33、45.54±9.22,P<0.05),PPI:(0.61±0.08、0.53±0.06、0.44±0.05、0.37±0.03,P<0.05)],其MMSE评分显著低于中度、轻度及对照组[(15.56±2.64)分、(19.32±3.32)分、(22.62±3.11)分、(26.45±2.94)分,P<0.05];中度VCI组PP、PPI显著高于对照组(P<0.05),MMSE评分显著低于轻度VCI及对照组(P<0.05).直线相关分析显示PP,PPI与MMSE评分呈明显负相关.结论 动态脉压、脉压指数的增加与认知功能的损害有关.%Objective To assess the relationship between ambulatory pulse pressure (PP),pulse pressure indices (PPI) and the severity of cognitive function.Methods Sixty patients with severe,moderate,mild vascular cognitive impairment(VCI) as the research object,and forty healthy people as control group.All of the patients of ambulatory blood pressure were monitored.Results Severe VCI group of PP and PPI was significantly higher than moderate,mild VCI group and the control group (PP (mmHg):(59.10 ± 11.82,54.94 ± 10.86,50.28 ±8.33,45.54±9.22,P<0.05),PPI:(0.61±0.08,0.53±0.06,0.44±0.05,0.37±0.03,P<0.05),and the MMSE score was significantly lower than moderate,mild,and the control group(15.56±2.64,19.32±3.32,22.62±3.11,26.45±2.94,P<0.05).Moderate VCI group of PP and PPI was significantly higher than the control group(P<0.05).MMSE score was significantly lower than mild VCI and the control group(P<0.05).Linear correlation analysis showed that PP and PPI was significantly negative related to MMSE score.Conclusion The increase of dynamic pulse pressure,pulse pressure index is associated with the damage of cognitive function.

  4. Time-Resolved Visualization of Görtler Vortices in a Pulsed Convex Wall Jet using Fast Pressure-Sensitive Paint

    Science.gov (United States)

    Gregory, James; Danon, Ron; Greenblatt, David

    2015-11-01

    The time-resolved formation and structure of Görtler vortices in a pulsed convex wall jet are studied in this work. While the presence of Görtler vortices in laminar boundary layers on concave surfaces can be clearly observed, their presence in wall jets flowing over convex surfaces is difficult to discern due to transition to turbulence in the outer part of the jet. This work employed fast-response pressure-sensitive paint (PSP), which has a documented flat frequency response greater than 5 kHz, to visualize the time-resolved formation of the wall jet and the details of the Görtler vortices. The radius of curvature of the wall jet was 8 cm, and the Reynolds number (based on slot height and jet exit velocity) was varied between 5 ×102 and 4 ×104 . The characteristic spanwise wavelength of the vortices was studied as a function of jet Reynolds number. Furthermore, as the Reynolds number was increased, various secondary instabilities were observed that led to laminar-turbulent transition. Funding provided by the U.S. Fulbright Scholar Program.

  5. Measurement and control system for servo pressure pulse testing equipment%伺服压力脉冲检测设备的测控系统研究

    Institute of Scientific and Technical Information of China (English)

    宫玉洁; 刘新福; 刘力平

    2014-01-01

    电液伺服压力脉冲检测设备采用伺服液压技术构建系统模型,通过完善测控系统,实现了数据信号的采集处理和过程控制。基于 LabVIEW 与 PLC 进行硬件配置和软件开发,调用 VISA 函数实现两者间通讯,使系统能够按照预设指令进行自动化控制,提高了检测系统的精度和性能。%Servo pressure pulse testing equipment uses servo-hydraulic technology to build the model of hydraulic system .By improving measurement and control system ,the equipment accomplishes signal acquisition ,data processing and process con-trol .LabVIEW and programmable logic controller (PLC) are used to carry out the hardware configuration and software de -velopment .The system can communicate between LabVIEW and PLC by virtual instrumentation software architecture (VI-SA) and run automatically in accordance with setting commands .Therefore ,accuracy and performance of the equipment are improved .

  6. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  7. Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    International Nuclear Information System (INIS)

    Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration (RPA) of intense laser pulses is investigated. Different from previously studied RPA of protons or light ions, the dynamic ionization of high-Z atoms can stabilize the heavy ion acceleration. A self-organized, stable RPA scheme specifically for heavy ion beams is proposed, where the laser peak intensity is required to match with the large ionization energy gap when the successive ionization state passes the noble gas configurations [such as removing an electron from the helium-like charge state (Z−2)+ to (Z−1)+]. Two-dimensional particle-in-cell simulations show that a mono-energetic Al13+ beam with peak energy 1.0 GeV and energy spread of only 5% can be obtained at intensity of 7×1020 W/cm2 through the proposed scheme. A heavier, mono-energetic, ion beam (Fe26+) can attain a peak energy of 17 GeV by increasing the intensity to 1022 W/cm2

  8. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    Simultaneous calibration of three Honeywell pressure transducers (PPTR) at four ambient temperatures have been carried out using a novel static calibration system developed in-house. Calibration results indicated that differing PPTRs exhibited...

  9. 脉压与冠心病患者左室肥厚的关系探讨%The relationship between pulse pressure and left ventricular hypertrophy in patients with coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    宋文东

    2011-01-01

    Objective To investigate the relationship between pulse pressure and left ventricular hypertrophy in patients with coronary heart disease. Methods Ninety - six patients admitted to hospital with coronary heart disease were divided into three groups according to the size of pulse pressure: group A, 30 patients, pulse pressure ≤ 45 mmHg; group B, 35 patients, 55 mmHg ≥ pulse pressure> 45 mmHg; group C, 31 patients, pulse pressure> 55 mmHg. Interven-tricular septal thickness (IVST), left ventricular posterior wall thickness (PWT), left ventricular end - diastolic diameter (LVDd), left ventricular ejection fraction (LVEF) and left ventricular mass index (LVMI) were measured with the help of color ultrasound diagnostic cardiac diastolic. Results LVEF of Group was significantly lower than that of group A and group B . LVMI and IVST were significantly higher. Conclusion Increased pulse pressure can make left ventricular hypertrophy more obvious and heart function in patients with coronary heart disease significantly worsened.%目的 探讨冠心病患者左室肥厚与脉压的关系.方法 将本院收治的96例冠心病患者根据脉压大小分为3组:A组30例,脉压≤45 mmHg;B组35例,55 mmHg≥脉压>45 mmHg;C组31例,脉压>55 mmHg.采用彩色超声心脏诊断仪测定舒张期室间隔厚度(IVST)、左室后壁厚度(PWT)、左室舒张末期内径(LVDd)、左室射血分数(LVEF)及左心室质量指数(LVMI).结果 C组患者LVEF明显低于A、13组;LVMI、IVST明显高于A、B组.结论 脉压增高使冠心病患者左室肥厚更加明显,且心功能下降明显.

  10. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    Energy Technology Data Exchange (ETDEWEB)

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver, E-mail: ogessner@lbl.gov [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hertlein, Marcus P.; Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Huse, Nils [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of Hamburg and Max-Planck Institute for Structure and Dynamics of Matter, 22761 Hamburg (Germany); and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  11. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    Science.gov (United States)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  12. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    Science.gov (United States)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  13. 高血压患者脉压与房颤的关系的探讨%Study on the Relationship between Pulse Pressure and Atrial Fibrillation in Patients with Hypertension

    Institute of Scientific and Technical Information of China (English)

    李海珍; 张振千; 杨健威; 莫丽丽

    2015-01-01

    Objective To study the relationship between pulse pressure and atrial fibrillation in patients with hypertension and whether there is a relationship between the pulse pressure of patients with hypertension combined with atrial fibrillation and their ages. Methods 100 cases of clinical hypertensive patients treated from January 2013 to December 2014 were col-lected and divided into group A (combined with atrial fibrillation) and group B (not combined with atrial fibrillation). In group A, Age0.05. Conclusion There is a correlation between pulse pressure and atrial fibrillation in patients with hypertension, there is no significant difference in pulse pressure in patients with atrial fibrillation at different ages. We had better pay attention to adjusting the pulse pres-sure difference in the treatment of hypertension and reducing systolic blood pressure and diastolic blood pressure in order to prevent the occurrence of atrial fibrillation and further prevent the occurrence of cardiac cerebral vascular embolization or other accidents.%目的:探讨高血压患者脉压和房颤的关系和高血压合并房颤患者的脉压和年龄有无关系。方法该研究是通过收集2013年1月—2014年12月临床高血压患者100例,合并房颤为A组,无合并房颤为B组。 A组收集的病例中年龄0.05,差异无统计学意义。结论高血压病患者脉压和房颤是有相关性的,已经发生了房颤的不同年龄段的高血压患者,脉压差无明显区别。故在治疗高血压病的过程中,在降低收缩压和舒张压的同时,注意调节好脉压差,以防房颤的发生,进一步预防心脑血管栓塞等意外事件的发生。

  14. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.

    2002-11-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  15. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  16. Association of Pulse Pressure, Arterial Elasticity, and Endothelial Function With Kidney Function Decline Among Adults With Estimated GFR > 60 mL/min/1.73 m2: The Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Peralta, Carmen A.; Jacobs, David R.; Katz, Ronit; Ix, Joachim H.; Madero, Magdalena; Duprez, Daniel A.; Sarnak, Mark J.; Criqui, Michael H.; Kramer, Holly J.; Palmas, Walter; Herrington, David; Shlipak, Michael G.

    2011-01-01

    Background The association of subclinical vascular disease and early declines in kidney function has not been well studied. Study Design Prospective cohort study Setting & Participants MESA participants with eGFR ≥60 ml/min/1.73m2 with follow-up of 5 years Predictors Pulse pressure (pulse pressure), small and large arterial elasticity (SAE, LAE), and flow mediated dilation. Outcomes kidney function decline Measurements SAE and LAE were measured by pulse contour analysis of the radial artery. Kidney function was measured by serum creatinine- and cystatin C-based eGFR. Results Among 4,853 adults, higher pulse pressure and lower SAE and LAE had independent and linear associations with faster rates of kidney function decline. Compared to persons with pulse pressure 40–50mmHg, eGFRSCysC decline was 0.29 (p=0.006), 0.56 (p70mmHg, respectively. Compared to the highest quartile of SAE (most elastic), eGFRSCysC decline was 0.26 (p=0.009), 0.35 (p=0.001), and 0.70 (p<0.001) ml/min/1.73m2/year faster for the second, third and fourth quartiles respectively. For LAE, compared to the highest quartile, eGFRSCysC decline was 0.28 (p=0.004), 0.58 (p<0.001), and 0.83 (p<0.001) ml/min/1.73m2/year faster for each decreasing quartile of LAE. Findings were similar with creatinine-based eGFR. In contrast, among 2,997 adults with flow-mediated dilation and kidney function measures, flow-mediated dilation was not significantly associated with kidney function decline. For every 1-SD greater flow-mediated dilation, eGFRSCysC and eGFRSCr changed by 0.05 ml/min/1.73m2/year (p=0.3) and 0.06 ml/min/1.73m2/year (p=0.04), respectively. Limitations We had no direct measure of GFR, in common with nearly all large population based studies. Conclusions Higher pulse pressure and lower arterial elasticity, but not flow-mediated dilation, were linearly and independently associated with faster kidney function decline among persons with eGFR ≥60 ml/min/1.73m2. Future studies investigate whether

  17. A comparative study on the pulsed UV and the low-pressure UV inactivation of a range of microbial species in water.

    Science.gov (United States)

    Garvey, Mary; Thokala, Nikhil; Rowan, Neil

    2014-12-01

    Research into alternative methods of disinfecting water and wastewater has proven necessary due to the emergence of chlorine-resistant organisms and the disinfection byproducts associated with chlorine use. The use of UV light to inactivate microbial species has proven effective, however; standard UV lamps have proven to be less effective in their ability to inactivate parasites and bacterial endospores in water treatment settings. Pulsed UV (PUV) light may potentially provide a novel alternative to water and wastewater disinfection. Research outlined in this study assesses the potential of a novel PUV system for the rapid and reproducible inactivation of a range of test species including Bacillus endospores. In comparison to standard low-pressure (LP) UV lamps, this PUV system provided significantly higher levels of inactivation for all test species. Furthermore, there was a remarkable decrease in time needed to obtain significant inactivation rates following treatment with PUV compared to LP-UV. With the PUV system, a 70-second treatment time (7.65 μJ/cm2) resulted in similar inactivation rates of Bacillus endospores to that of the LP-UV inactivation of their vegetative counterpart. Also, at PUV doses exceeding 4.32 J/cm2, there was not a significant difference in the PUV inactivation of Bacillus endospores in the absence or presence of 10 ppm organic matter. However, the presence of organic matter resulted in a significant reduction in microbial inactivation for all treatment doses using the LP-UV system. The findings of this study suggest that PUV technology may provide a rapid effective method for the disinfection of water and wastewater. PMID:25654934

  18. A comparative study on the pulsed UV and the low-pressure UV inactivation of a range of microbial species in water.

    Science.gov (United States)

    Garvey, Mary; Thokala, Nikhil; Rowan, Neil

    2014-12-01

    Research into alternative methods of disinfecting water and wastewater has proven necessary due to the emergence of chlorine-resistant organisms and the disinfection byproducts associated with chlorine use. The use of UV light to inactivate microbial species has proven effective, however; standard UV lamps have proven to be less effective in their ability to inactivate parasites and bacterial endospores in water treatment settings. Pulsed UV (PUV) light may potentially provide a novel alternative to water and wastewater disinfection. Research outlined in this study assesses the potential of a novel PUV system for the rapid and reproducible inactivation of a range of test species including Bacillus endospores. In comparison to standard low-pressure (LP) UV lamps, this PUV system provided significantly higher levels of inactivation for all test species. Furthermore, there was a remarkable decrease in time needed to obtain significant inactivation rates following treatment with PUV compared to LP-UV. With the PUV system, a 70-second treatment time (7.65 μJ/cm2) resulted in similar inactivation rates of Bacillus endospores to that of the LP-UV inactivation of their vegetative counterpart. Also, at PUV doses exceeding 4.32 J/cm2, there was not a significant difference in the PUV inactivation of Bacillus endospores in the absence or presence of 10 ppm organic matter. However, the presence of organic matter resulted in a significant reduction in microbial inactivation for all treatment doses using the LP-UV system. The findings of this study suggest that PUV technology may provide a rapid effective method for the disinfection of water and wastewater.

  19. In-Flight Pitot-Static Calibration

    Science.gov (United States)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  20. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    Science.gov (United States)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  1. A Simple Accelerometer Calibrator

    Science.gov (United States)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  2. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    /mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

  3. 高龄老年人脉压差、血脂、血糖关系分析%Analysis of the Correlation between Pulse Pressure,Blood Lipid,Blood Sugar in the Elderly People

    Institute of Scientific and Technical Information of China (English)

    丁翊; 刘芳

    2013-01-01

    Objective:Removed the age factor, to probe into the correlation between blood pressure,blood lipid,blood sugar and arteriosclerosis in the elderly people. Methods:Analyzed the correlation between Pulse Pressure,Mean Arterial blood pressure and Diabetes mellitus,Hypertension in 279 examination of the elderly. analyzed the changes of blood glucose,blood lipid at the different levels of Pulse Pressure. In order to know the correlation between Pulse Pressure,Mean Arterial blood pressure and blood glucose,blood lipid, blood pressure. Results:There was a correlation between arteriosclerosis and arterial compliance in the elderly people and hyperglycemia,the disorder of lipid metabolism and high systolic blood pressure. Conclusions:Strengthened the blood glucose management and the treatment of dyslipidemia in patients with diabetes mellitus, strengthened the control of blood pressure in patients with essential hypertension, these measures had a positive effect on prevention and treatment of senile arteriosclerosis.%目的:探讨老年动脉硬化除去年龄因素以外与血压、血糖、血脂的关系。方法:体检的老年人279例,分析脉压、平均动脉压与糖尿病、高血压病的关系及不同脉压水平下血糖、血脂的变化,进一步了解脉压、平均动脉压与血糖、血脂、血压之间的关系。结果:高龄老年人动脉硬化、血管顺应性减低与血糖增高、血脂代谢紊乱、收缩压增高有关。结论:加强糖尿病患者的血糖管理及血脂紊乱的治疗、加强高血压病患者血压控制对老年动脉硬化的防治有积极作用。

  4. Fault of the correction factor for pressure and temperature kPT in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico

    International Nuclear Information System (INIS)

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of 60Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of 125I brachytherapy sources was given an additional correction lower in 11% compared to conventional kPT value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of 137Cs

  5. The Independent and Joint Association of Blood Pressure, Serum Total Homocysteine, and Fasting Serum Glucose Levels With Brachial-Ankle Pulse Wave Velocity in Chinese Hypertensive Adults.

    Science.gov (United States)

    Liu, Xiaoyun; Sun, Ningling; Yu, Tao; Fan, Fangfang; Zheng, Meili; Qian, Geng; Wang, Binyan; Wang, Yu; Tang, Genfu; Li, Jianping; Qin, Xianhui; Hou, Fanfan; Xu, Xiping; Yang, Xinchun; Chen, Yundai; Wang, Xiaobin; Huo, Yong

    2016-09-28

    This study aimed to investigate the independent and joint association of blood pressure (BP), homocysteine (Hcy), and fasting blood glucose (FBG) levels with brachial-ankle pulse wave velocity (baPWV, a measure of arterial stiffness) in Chinese hypertensive adults.The analyses included 3967 participants whose BP, Hcy, FBG, and baPWV were measured along with other covariates. Systolic BP (SBP) was analyzed as 3 categories (SBP < 160 mmHg; 160 to 179 mmHg; ≥ 180 mmHg); Hcy as 3 categories (< 10 μmol/L; 10 to 14.9 μmol/L; ≥ 15.0 μmol/L) and FBG: normal (FBG < 5.6 mmol/L), impaired (5.6 mmol/L ≤ FBG < 7.0 mmol/L), and diabetes mellitus (FBG ≥ 7.0 mmol/L). We performed linear regression analyses to evaluate their associations with baPWV with adjustment for covariables.When analyzed individually, BP, Hcy, and FBG were each associated with baPWV. When BP and FBG were analyzed jointly, the highest baPWV value (mean ± SD: 2227 ± 466 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and SBP ≥ 180 mmHg (β = 432.5, P < 0.001), and the lowest baPWV value (mean ± SD: 1692 ± 289 cm/s) was seen in participants with NFG and SBP < 160 mmHg. When Hcy and FBG were analyzed jointly, the highest baPWV value (2072 ± 480 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and Hcy ≥ 15.0 μmol/L (β = 167.6, P < 0.001), while the lowest baPWV value (mean ± SD: 1773 ± 334 cm/s) was observed in participants with NFG and Hcy < 10 μmol/L.In Chinese hypertensive adults, SBP, Hcy, and FBG are individually and jointly associated with baPWV.Our findings underscore the importance of identifying individuals with multiple risk factors of baPWV including high SBP, FBG, and Hcy.

  6. Formation of Dielectric Barrier Multi-Pulse Glow Discharges in Helium at Atmospheric Pressure%大气压氦气介质阻挡多脉冲辉光放电的形成条件

    Institute of Scientific and Technical Information of China (English)

    郝艳捧; 王晓蕾; 阳林

    2009-01-01

    Discharge currents are measured on single pulse, multi-pulse glow dielectric barrier discharges (DBDs) using high-frequency power supply in helium at atmospheric pressure. The influence of the applied voltage amplitude and frequency, as well as gas distance on multi-pulse glow DBD is discussed and analyzed. Conditions to form multi-pulse glow DBDs are proposed. The results show that the higher amplitude of the applied voltage, the lower voltage frequency can be useful to form a multi-pulse glow DBD. Moreover, the higher applied voltage is necessary to form multi-pulse glow DBDs.%利用高频高压电源,进行大气压氦气介质阻挡放电试验,测量了单脉冲和多脉冲辉光放电的放电回路电流波形,分析了外加电压峰.峰值和频率、放电间隙对多脉冲辉光放电过程的影响,探讨了大气压氦气介质阻挡多脉冲辉光放电的形成条件.研究表明:多脉冲辉光放电的形成条件是较高的外加电压峰-峰值、较低的电源频率,其中较高的外加电压峰-峰值是产生多脉冲辉光放电的必要条件.

  7. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  8. 基于容积脉搏波的无创连续血压测量系统%A Non-invasive Continuous Blood Pressure Measurement System Based on Plethysmographic Pulse Wave

    Institute of Scientific and Technical Information of China (English)

    梁永波; 陈真诚; 朱健铭; 殷世民

    2013-01-01

    Objective To develop a non-invasive continuous blood pressure measurement system without the cuff based on plethysmographic pulse wave. Methods A blood pressure estimation equation was established by the stepwise regression analysis on blood pressure and pulse wave transit time which was extracted from a single circle of plethysmographic pulse wave, and then the non-invasive continuous blood pressure measurement was realized. Results Compared blood pressure value with detection by the system and Yu-Yue brand mercury sphygmomanometer from various populations, the results indicated that the two methods exhibit good coherence , and the measurement error is better than the Association for the Advancement of Medical Instrumentation (AAMI) recommendation standard. Conclusion Compared with traditional blood pressure measurement method , the non-invasive continuous blood pressure measurement method is more convenient. It can measure blood pressure continuously without cuff and invasion, and may have promising application in the future.%目的 设计一种基于容积脉搏波的无袖套连续血压测量系统.方法 从单一容积脉搏波中提取脉搏波传导时间,经逐步回归分析与血压建立血压估算方程,实现无创连续血压测量.结果 通过对不同人群血压检测,并与鱼跃牌水银血压计进行对比,结果表明该方法和传统方法具有较好的测试一致性,测量误差优于美国医疗仪器促进协会(AAMI)推荐标准.结论 该方法同传统血压测量方法相比,测量方便,可彻底摆脱缚带,并能实现无创连续测量,具有更广阔的应用前景.

  9. Magnetic Pulse Welding Technology

    OpenAIRE

    Ahmad K. Jassim

    2011-01-01

    In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by weld...

  10. Effect of oxygen partial pressure on the magnetic properties of La2/3Sr1/3MnO3 films grown on SrTiO3 (1 1 1) substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    The influence of oxygen partial pressure on phase formation and magnetic properties of LSMO (La2/3Sr1/3MnO3) thin films deposited on STO (1 1 1) substrates by pulsed laser deposition was investigated. Phase formation and epitaxial growth were confirmed by X-ray diffraction. Good crystalline mosaic is observed for oxygen partial pressures ranging from 0.3 to 1.0 mbar. For each of the pressures, the lattice parameters were estimated assuming the lattice distortion is volume conserving. The Curie temperatures TC vs lattice strain relation thus obtained is comparable to the available data in literature. Variation in coercive field of the films can be accounted for by the variation in TC

  11. Effect of oxygen partial pressure on the magnetic properties of La2/3Sr1/3MnO3 films grown on SrTiO3 (1 1 1) substrates by pulsed laser deposition

    Science.gov (United States)

    Prajapat, C. L.; Kalita, Parswajit; Sastry, P. U.; Singh, M. R.; Gupta, S. K.; Ravikumar, G.

    2014-09-01

    The influence of oxygen partial pressure on phase formation and magnetic properties of LSMO (La2/3Sr1/3MnO3) thin films deposited on STO (1 1 1) substrates by pulsed laser deposition was investigated. Phase formation and epitaxial growth were confirmed by X-ray diffraction. Good crystalline mosaic is observed for oxygen partial pressures ranging from 0.3 to 1.0 mbar. For each of the pressures, the lattice parameters were estimated assuming the lattice distortion is volume conserving. The Curie temperatures TC vs lattice strain relation thus obtained is comparable to the available data in literature. Variation in coercive field of the films can be accounted for by the variation in TC.

  12. An Instrument for Testing Pulse Signals Based on Thin Film Pressure Sensor%基于薄膜压力传感器的脉搏信号测试系统

    Institute of Scientific and Technical Information of China (English)

    邹建; 钱波; 卢平; 应苑松

    2011-01-01

    人体脉搏信号携带有丰富的与健康相关的生理信息.为了方便脉搏信号的采集和研究,本文设计出一种采用轻触式薄膜按键面板工艺的自制脉搏压力传感器,并使用了常见的555和V-f转换器件将传感器压力信号转换为电信号,再通过后续设计的滤波、陷波放大电路以及电路的干扰抑制处理,系统就可以获取高质量的脉搏波信号.传感器的性能测试以及示波器的应用结果表明,基于薄膜压力传感器的脉搏信号测试系统工作性能稳定,并通过示波器的串口通信扩展模块或者LABVIEW采集卡可以在计算机上显示出采集的脉搏信号,此测试系统可用于脉象信息的采集与研究.%The pulse wave signals contain plenty of information which conveys the health status of human body. To acquire and analyze the pulse signals, we developed a kind of pressure sensors, by adopting soft-touch metal dome craftsmanship. The oscillator amplifier 555 and V-f conversion circuit were utilized to transform the pressure signals into electric signals Then the system effectively acquired the pulse signals by following filter circuit, band stop circuit, amplifier circuit and the method of interference. Experiments of performance test to pressure sensor and oscilloscope proved that the test system based on thin film pressure sensor had reliable performance and could be used to study the pulse wave by the collected pulse signals shown on the computer through the serial communication expansion module of the oscilloscope or the data acquisition card of LABVIEW.

  13. Numerical simulation research on improving cleaning cuttings effectiveness with pulsed jet under conifning pressure%围压条件下脉冲射流提高清岩效果数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    刘爽; 李根生; 史怀忠

    2015-01-01

    The drilling technology with pulsed jet is highly capable of cleaning the cuttings, but its acceleration mechanism remains unknown. By establishing a physical model for bottom hole cleaning cuttings by pulsed jet with single-nozzle under conifning pressure, the numerical simulation research was conducted on the whole process of cleaning cuttings by pulsed jet, and the main factors affecting the cleaning cuttings effect by pulsed jet was analyzed. The research ifnding shows that unsteady state rotational lfow is one of the main reasons for improvement of cleaning cuttings effect by pulsed jet. Under the same lfow rate, the cleaning cuttings efifciency by pulsed jet is about 1-1.6 times that of continuous jet in average. The efifciency of cleaning cuttings by pulsed jet increases with the increase of nozzle diameter and inlet lfowrate. The conifning pressure has small effect on the process of cleaning cuttings by pulsed jet. The overall effect of cleaning cuttings by low frequency pulsed jet is good, with the increase of particle sizes, the heterogeneity of cuttings distribution within the impact area at hole bottom is intensiifed and the efifciency of cleaning cuttings by pulsed jet is reduced. The resulting conclusions provide a theoretical guidance for research on acceleration technique by pulsed jet.%脉冲射流钻井技术具有高效清岩能力,但其提速机制还不十分清楚。通过建立围压条件下单喷嘴脉冲射流井底清岩物理模型,对脉冲射流清岩过程进行了数值模拟研究,分析了影响脉冲射流清岩效果的主要因素。结果表明,非稳态旋流是脉冲射流提高清岩效果的主要原因之一,在相同排量条件下,脉冲射流清岩效率比连续射流平均提高约1~1.6倍。脉冲射流清岩效率随着喷嘴直径和入口流速的增大而增大;围压对脉冲射流清岩过程影响较小;低频率脉冲射流的清岩总体效果较好;随着岩屑粒径增大,井底冲击

  14. Effect of O{sub 2} partial pressure on YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin film growth by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, T.; Barnes, P.N.; Brunke, L.; Maartense, I.; Murphy, J

    2003-10-01

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films were processed by pulsed laser deposition on (1 0 0) LaAlO{sub 3} substrates using O{sub 2} partial pressures from 120 to 1200 mTorr. The effect of O{sub 2} pressure on film properties including room temperature resistivities and microstructures was studied for a unique set of deposition parameters. The film quality was observed to remain high over a wide range of O{sub 2} partial pressures, with much less sensitivity to O{sub 2} pressure than previous studies which are compared. For O{sub 2} pressures from 200 to 1200 mTorr, superconducting transition temperatures consistently reached values >91.5 K and transport critical current densities were 3-5 MA/cm{sup 2} (77 K, self-field). It is proposed that less sensitivity of film properties to O{sub 2} pressure is achieved by: (1) reducing the particle velocity of the plume below a critical threshold, and (2) using a deposition temperature of 785 deg. C for adequate surface activation.

  15. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    Directory of Open Access Journals (Sweden)

    Castaño-Sánchez Carmen

    2010-03-01

    Full Text Available Abstract Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The

  16. The MINOS light-injection calibration system

    International Nuclear Information System (INIS)

    A description is given of the light-injection calibration system that has been developed for the MINOS long-baseline neutrino oscillation experiment. The system is based upon pulsed blue LEDs monitored by PIN photodiodes. It is designed to measure non-linearities in the PMT gain curves, as well as monitoring any drifts in PMT gain, at the 1% level

  17. Pressure Drop Measurement of Column Weight in Disc and Doughnut Pulsed Extraction Column by External Air Purge Method%外置吹气杯测量折流板脉冲萃取柱柱重压降

    Institute of Scientific and Technical Information of China (English)

    王悦云; 李少伟; 景山

    2013-01-01

    The pressure drop of column weight was measured in a disc and doughnut pulsed extraction column with the inertial diameter of 0.3 m and height of 5.6 m by in-ternal and external air purge methods ,respectively .The experimental results show that the pressure drops of column weight measured by external air purge method are in good agreement with those by internal air purge method ,therefore ,the external air purge method is recommended to measure the pressure drop of column weight in the pulsed extraction column in plutonium purification cycle .%在内径为0.3m和高度为5.6m的折流板脉冲萃取柱中,分别采用内置吹气杯和外置吹气杯对柱重压降信号进行了测量和比较。实验结果表明,两种吹气杯安装方式所测量的结果一致。因此,为了避免由于内置吹气杯所造成的钚纯化循环脉冲萃取柱异形下澄清段的设计和加工难度,推荐可使用外置吹气杯来测量该工段的脉冲萃取柱柱重压降。

  18. 爆燃压力脉冲对火工作动筒结构强度的影响%The effect of deflagrated pressure pulse on intension of pyro-actuator

    Institute of Scientific and Technical Information of China (English)

    杜永刚; 付朝晖; 夏成明; 杨震春; 杨勇

    2012-01-01

    火工作动筒是利用燃药的爆燃压力作为动力源的火工装置,燃药在燃烧的瞬间会产生一个压力脉冲,这是火工装置中存在的普遍现象,压力脉冲形成的冲击载荷会对作动筒的结构强度产生一定的影响,本文对这种影响进行了分析和试验验证.结果表明对作动筒结构强度产生影响的因素是压力脉冲的幅值和脉冲宽度的积,文章提出了对火工作动筒的强度安全性能的评估方法.%Pyro-actuator is a device that uses deflagrated pressure gas as power source, powder bring a pressure pulse as it burned instantly, the phenomena occurs in pyro-device generally. Pressure pulse conduces to an impact on pyro-actuator and it will affect the intension of pyro-actuator. The article analyses the effect and test it, the test results show that the product of amplitude and time is the real factor to affect intension of pyro-actuator. The article puts an evaluating method on intension-safety of pyro-actuator.

  19. NASA Glenn Icing Research Tunnel: Upgrade and Cloud Calibration

    Science.gov (United States)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  20. A Calibrating Device for Rogowski Coil Development

    Institute of Scientific and Technical Information of China (English)

    LV Liang; LI Junhao; HUANG Jianjun; JI Shengchang; LI Yanming

    2007-01-01

    A calibrating device for the Rogowski coil is developed,which can be used to calibrate the Rogowski coil having a partial response time within tens of nanoseconds.Its key component is a step current generator,which can generate the output with a rise time of less than 2 ns and a duration of larger than 300 ns.The step current generator is composed by a pulse forming line(PFL)and a pulse transmission line(PTL).A TEM(transverse electromagnetic mode)coaxial measurement unit is used as PTL,and the coil to be calibrated and the referenced standard Rogowski coil can be fixed in the unit.The effect of the dimensions of the TEM unit is discussed theoretically as well as experimentally.

  1. Individualization of transfer function in estimation of central aortic pressure from the peripheral pulse is not required in patients at rest.

    Science.gov (United States)

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Lasance, Han A J; Ascoop, Carl A P L; Wesseling, Karel H; Westerhof, Nico; Bos, Willem Jan W; Stergiopulos, Nikos; Spaan, Jos A E

    2008-12-01

    Central aortic pressure gives better insight into ventriculo-arterial coupling and better prognosis of cardiovascular complications than peripheral pressures. Therefore transfer functions (TF), reconstructing aortic pressure from peripheral pressures, are of great interest. Generalized TFs (GTF) give useful results, especially in larger study populations, but detailed information on aortic pressure might be improved by individualization of the TF. We found earlier that the time delay, representing the travel time of the pressure wave between measurement site and aorta is the main determinant of the TF. Therefore, we hypothesized that the TF might be individualized (ITF) using this time delay. In a group of 50 patients at rest, aged 28-66 yr (43 men), undergoing diagnostic angiography, ascending aortic pressure was 119 +/- 20/70 +/- 9 mmHg (systolic/diastolic). Brachial pressure, almost simultaneously measured using catheter pullback, was 131 +/- 18/67 +/- 9 mmHg. We obtained brachial-to-aorta ITFs using time delays optimized for the individual and a GTF using averaged delay. With the use of ITFs, reconstructed aortic pressure was 121 +/- 19/69 +/- 9 mmHg and the root mean square error (RMSE), as measure of difference in wave shape, was 4.1 +/- 2.0 mmHg. With the use of the GTF, reconstructed pressure was 122 +/- 19/69 +/- 9 mmHg and RMSE 4.4 +/- 2.0 mmHg. The augmentation index (AI) of the measured aortic pressure was 26 +/- 13%, and with ITF and GTF the AIs were 28 +/- 12% and 30 +/- 11%, respectively. Details of the wave shape were reproduced slightly better with ITF but not significantly, thus individualization of pressure transfer is not effective in resting patients. PMID:18845775

  2. 脉压与冠状动脉病变严重程度关系的临床观察%Clinical observation of the relationship between pulse pressure and coronary artery lesions

    Institute of Scientific and Technical Information of China (English)

    詹莉; 林德鸿

    2012-01-01

    Objective To observe the correlation between pulse pressure and severity of coronary artery lesions. Methods The 24h non-invasive ambulatory blood pressure of 231 patients with coronary heart disease diagnosed by CAG, including 165 male patients and 66 female ones at the age of 33-72 years(average 51.13±11.62) were measured and divided into, based on ambulatory blood pressure, Group Ⅰ, Ⅱ and Ⅲ with pulse pressure < 40mmHg(59patients), 40-60 mmHg (107 patients) and >60 mmHg(65 patients),respectively. Severity of coronary artery lesions was assessed by coronary artery disease count. Results The incidence rates of the of coronary artery lesions of two branches in patients complicated with hypertension were 43.2% and 9.1%. and the three branches of coronary artery Lesions were 27.6% and 11.2%, obviously higher than those without having hypertention, The incidence rates of patients with 3 branches of coronary artery lesions in the pulse pressure < 40mmHg group and 40-60 mmHg group and > 60 mmHg group were 8.7%、23.5%、42.7% and in the patients can be, according to different pulse pressure. Conclusion The pulse pressure reflecting large artery elasticity is closely associated with the severity of coronary artery lLesions. It is also a risk signal indicating cardiac vascular disease for guiding early clinical intervention.%目的 观察脉压与冠状动脉病变严重程度的相关性.方法 231例经冠状动脉造影确诊的冠心病患者,男165例,女66例,年龄33~ 72岁,平均(51.13±11.62)岁.行24h无创动态血压监测,按动态脉压分为三组:脉压<40mmHg组(59例)、40~60 mmHg组(107)、>60 mmHg组(65).冠状动脉病变严重程度用冠状动脉病变支数来评价.结果 合并高血压的患者冠状动脉双支(43.2%比9.1%)及三支(27.6%比11.2%)血管病变的患病率显著高于非高血压组;三组不同脉压的患者相比,脉压< 40mmHg组、40~60 mmHg组、>60 mmHg组的患者冠

  3. 负压区的存在对刚性陶瓷过滤器脉冲反吹性能的影响%EFFECT OF NEGATIVE PRESSURE REGION ON PULSE-JET CLEANING PERFORMANCE OF RIGID CERAMIC FILTERS

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 郭建光

    2000-01-01

    利用压电式压力传感器测定了陶瓷过滤器在脉冲反吹过程中滤管内动态压力的变化规律,表明在脉冲反吹快要结束和正常过滤尚未开始的过渡过程中,滤管内存在严重的负压区。利用单个颗粒轨道模型分析了部分已被吹离滤管表面的小颗粒在负压区的作用下会重新返回到滤管壁,从而证实了负压区是影响刚性陶瓷过滤器稳定运行的重要原因。%In a ceramic filter experimental set-up with three filter candles,the dynamic pressures atthe inner wall of one filter candle during pulse-jet cleaning aremeasured by using resize-electric pressure transducer. The experimentalresults show that the dynamic pressure in wholepulse-jet cleaning process consists of two parts. One is the positivepressure in the filter candlegreater than the pressure outside the filter candle whichcorresponds to the outward radial fluidflow to break up and dislodge the dust cake on the surfaceof the filter tube. The other is anegative pressure region which is responsible for inward radialflow while the pulse-jet is closed.The influences of reservoir pressure on thedynamic pressure are discussed.The calculation results of particle motion indicate that negativepressure region cause a fractionof particles removed re-deposit on the candle surface. Especiallyfiner particles is more easierlyre-deposited on the surface to form thin and dense layer on thefilter candle and to increasegradually the residual pressure drop across the candle. It isconcluded that negative pressureregion may have important effects on the long-term stable operation of thefilter unit.

  4. 脉冲熔融-飞行时间质谱法分析痕量气体成分的校准方法研究%Research on the calibration method of pulse heating and time-of-flight mass spectrometric determination of trace gases

    Institute of Scientific and Technical Information of China (English)

    杨植岗; 王学华; 胡少成; 徐井然; 吴振宁; 沈学静; 王蓬

    2012-01-01

    Standard gas calibration equipment for the simultaneous determination of O, N, H and Ar was built by combining the gas circuit of pulse heating and time-of-flight mass spectrometer gas analyzer with the six-port injection valve which was normally used in chromatogram. Two processes of purging of quantitative tube and injecting of standard gas can be converted smoothly. Using the equipment, calibration curves of low content O, N, H and Ar were established, and the stability was tested. Samples were analyzed by these calibration curves, and the results matched with the certified values. From the results, it was showed that the problem of Ar reference materials in ultra low content range can be solved by this equipment, and Ar can be analyzed quantitatively. The established calibrating curve by standard gas calibration setup can be used for metal materials analyzing, and good linearization of the calibrating curve can be got.%本文采用色谱用六通阀,结合脉冲熔融-飞行时间质谱元素分析仪的气路流程,自制了应用于氧、氮、氢、氩联测的标气校准装置.实现了定量管冲洗和标气注入两个过程的灵活控制.通过该校准装置,建立了金属材料中的低含量氧、氮、氢和氩工作曲线,验证了校准装置分析的稳定性.采用建立的工作曲线对实际样品进行了分析,结果与认定值一致.标气校准装置的使用弥补了超低含量范围段标准样品缺乏的不足,解决了测氩用标准样品缺失的难题.实验结果表明,应用标气校准装置建立的工作曲线,线性良好,可用于金属材料实际样品的分析.

  5. 老年人脉压与动脉粥样硬化的关系%Relationship between pulse pressure and artery atherosclerosis in elders

    Institute of Scientific and Technical Information of China (English)

    沈琪; 薛冰; 郝长宁; 丁东新; 石一沁; 高兴旺

    2009-01-01

    Objective To explore the relationship between pulse pressure (PP) and artery atherosclerosis in elders. Methods Totally 2358 eiders( > 60y) with the risk factors of artery atherosclerosis from Yangpu District DOI:10.3760/cma.j.issn.1008-6315.2009.09.006Central Hospital and 11 Community Health Service Centers were enrolled . The basic information includes age, sex, height,body mass, history of smoking, blood pressure, heart rate, history of coronary heart disease, ischemic stoke, chronic kidney diseases and diabetes,etc. The fasting blood sugar(FBS) ,blood lipid( total cholesterel,triglyceride, low-density lipreprotein, high-deusity liproprotein), serum creatinine, serum uric acid, serum alanine aminotransferase were measured. The elders were divided into two groups according to the PP( PP 160岁患有动脉粥样硬化危险因素的患者2358人,记录入选者的基本情况:年龄、性别、身高、体重、吸烟史,血压、心率、冠心病、缺血性脑卒中、慢性肾脏病、糖尿病等病史.测定空腹血糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、血肌酐、尿酸、丙氨酸氨基转移酶.根据脉压将入选者分为脉压<60 mm Hg组和≥60 mm Hg组.分析2组脉压与年龄、体重指数、收缩压、舒张压、心率、空腹血糖、血脂、血肌酐、尿酸、丙氨酸氨基转移酶、肌酐清除率、冠心痛、缺血性脑卒中、慢性肾脏病、糖尿病等关系.结果 脉压≥60 mm Hg组与脉压<60 mm Hg组比较,血糖[(6.3±2.6)mmol/L与(5.6±1.7)mmol/L]、总胆固醇[(4.8±1.2)mmol/L与(4.3±1.3)mmol/L]、甘油三酯[(1.9±1.1)mmol/L与(1.5±1.2)mmol/L]、低密度脂蛋白胆固醇[(2.9±1.2)mmoL/L与(2.5±1.1)mmol/L]、尿酸[(291.4±133.6)μmol/L与(246.8±131.2)μmoL/L]均明显升高(P均<0.01).脉压≥60mm Hg组与脉压<60 mm Hg组比较,冠心病(17.8%与10.8%)、缺血性脑卒中(31.7%与26.0%)、慢性肾脏病(16.9%与12.4%)、糖尿病(23.8%与17

  6. Calibration process for CTD (Conductivity, Temperature and Depth)

    OpenAIRE

    Garcia Benadí, Albert; Molino Minero, Erik; Manuel Lázaro, Antonio; Río Fernandez, Joaquín del

    2011-01-01

    Detailed herein is the procedure to perform the calibration of a marine observation instrument, in this case a CTD, within the parameters of temperature, pressure and conductivity. It includes a calibration demonstration of the temperature and the pressure parameters. Peer Reviewed

  7. Assembly delay line pulse generators

    CERN Multimedia

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  8. Influence of oxygen partial pressure on the dielectric properties of Ba(Zr0.15Ti0.85)O3 thin films grown on Pt(111) substrates using pulsed laser deposition

    International Nuclear Information System (INIS)

    The Ba(Zr0.15Ti0.85)O3 thin films were grown on Pt(111)/Ti/SiO2/Si(100) substrates by pulsed laser deposition using different oxygen partial pressures ranging from 6.7 Pa to 40.0 Pa. The influence of substrate temperature and laser fluence on the structural and dielectric properties was studied. Surface morphology and dielectric properties of Ba(Zr0.15Ti0.85)O3 thin films have a strong dependence of the oxygen partial pressure. The Ba(Zr0.15Ti0.85)O3 thin films showed a very stable and highly insulating characteristic behaviour against applied electric field. The films grown at 13.4 Pa show the largest relative permittivity, Tunability and the best figure of merit were found at 1 MHz, indicating their potential for use in tunable microwave applications. (author)

  9. 肥厚型心肌病患者静息脉压和运动诱导的血压异常之间的关系%Relationship between Pulse Pressure and Abnormal Blood Pressure Response to Exercise in Patients with Hypertrophic Cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    古平; 代静澜; 潘波; 杨坤; 粱伟

    2012-01-01

    Objective: To explore the relationship between pulse pressure and abnormal blood pressure response to exercise in patients with hypertrophic cardiomyopathy. Methods: 70 patients with hypertrophic cardiomyopathy admitted in our hospital from January 2007 to January 2012 underwent echocardiography for assessment of the cardiac dimensions followed by a symptom-limited exercise test using a standard Bruce protocol with a concurrent hemodynamic assessment. Measurement of blood pressure was proceeded after the patient supine rest and exercise. Results: In the patients with hypertrophic cardiomyopathy, post-exercise blood pressure response to abnormal resting pulse pressure was significantly higher than normal. Pulse pressure was significantly greater in patients with an abnormal blood pressure response to exercise than that without an abnormal blood pressure response to exercise (P=0.007). According to binary logistic regression analysis, pulse pressure at rest was a significant predictor of abnormal blood pressure response to exercise in patients with hypertrophic cardiomyopathy, excluding age, gender, left ventricular posterior wall thickness, septal thickness, left ventricular outflow tract obstruction(P=0.016). Conclusions: Pulse pressure at rest could be used as an effective auxiliary index to prevent the occurrence of sudden cardiac death in patients with hypertrophic cardiomyopathy.%目的:探讨肥厚型心肌病患者静息脉压和运动诱导的血压异常之间的关系.方法:根据Bruce方案,对70例2007年1月至2012年1月在我院治疗的肥厚型心肌病患者进行症状限制运动试验,监测患者的血液动力学指标,即分别在患者仰卧休息和运动结束后测量血压.结果:肥厚型心肌病患者中,运动后血压反应异常者与正常者相比,前者的静息脉压显著高于后者.表现出运动性非正常血压反应的肥厚型心肌病患者,静息脉压明显高于无运动性非正常血压反应患者(P=0.007).根

  10. The explanation and verification of the best pressure to acquire pulse waves based on hemodynamics%基于桡动脉血液流动模型对中医最佳取脉压力的解释与验证

    Institute of Scientific and Technical Information of China (English)

    张玉满; 王学民; 宋鹏; 王欣; 陆小左; 周鹏

    2015-01-01

    Pulse manifestation in Traditional Chinese Medicine (TCM) was formed by pulse wave which is affected by body’s physiological parameters. The best pressure to acquire pulse wave was an important part of objective study of TCM pulse diagnosis, which was assumed and analyzed according to the rule of thumb before and there was no theoretical basis for it. Therefore, studying the best pressure to acquire pulse wave in the light of radial artery blood flow model has an important significance for the improvement of electropulsograph and the objective research of TCM pulse diagnosis. According to the theories and methods from hemodynamics and the existing equivalent model of radial artery blood vessel, blood flow model of different pressure from the outside was built. Meanwhile, the relationship between pulse pressure and the pressure to acquire pulse wave was derived, which explains the best pressure to acquire pulse waves in theory. And the mathematical model of the best pressure to acquire pulse wave was verified by normal pulse, floating pulse, deep pulse--three clinical cases which collected by electropulsograph. The clinical results were as follows: The best pressure to acquire pulse wave varies with pulse manifestation. The peak value of normal pulse first rises and then decreases, the best pressure to acquire pulse wave is in the moderate pressure. The peak value of floating pulse increases continuously, the best pressure to acquire pulse wave is in the light pressure. And the peak value of deep pulse has been reduced, the best pressure to acquire pulse wave is in the heavy pressure. Clinical results are in reasonable agreement with theoretical proof, it testified that pulse pressure and the pressure to acquire pulse wave are closely related, and the maximum value of pulse pressure is the best position to acquire pulse wave.%中医的脉象是脉搏波受人体的生理参数影响而形成,由桡动脉血液流动模型研究中医的最佳取脉压力,对

  11. Quarter-wave pulse tube

    Science.gov (United States)

    Swift, G. W.; Gardner, D. L.; Backhaus, S. N.

    2011-10-01

    In high-power pulse-tube refrigerators, the pulse tube itself can be very long without too much dissipation of acoustic power on its walls. The pressure amplitude, the volume-flow-rate amplitude, and the time phase between them evolve significantly along a pulse tube that is about a quarter-wavelength long. Proper choice of length and area makes the oscillations at the ambient end of the long pulse tube optimal for driving a second, smaller pulse-tube refrigerator, thereby utilizing the acoustic power that would typically have been dissipated in the first pulse-tube refrigerator's orifice. Experiments show that little heat is carried from the ambient heat exchanger to the cold heat exchanger in such a long pulse tube, even though the oscillations are turbulent and even when the tube is compactly coiled.

  12. Effects of Dynamic Pulse Pressure on Renal Damage in Aged Patients with Primary Hypertension%老年高血压患者脉压差对肾脏损害的影响研究

    Institute of Scientific and Technical Information of China (English)

    吴红红; 段磊; 山努佳; 何英

    2011-01-01

    目的 探讨动态脉压对老年高血压患者肾脏损害的影响.方法 选择原发性高血压患者165例,按24 h平均脉压(MPP)分为两组:24 h MPP≥60 mm Hg为A组,24 h MPP<60 mm Hg为B组;另选健康体检正常者为对照组,均进行血清肌酐、动态血压测定.结果 3组24 h平均收缩压(MSBP)、24 h平均舒张压(MDBP)、24 h MPP、血清肌酐、尿清蛋白排泄率(UAER)、肾小球滤过率(GRF)水平比较,差异均有统计学意义(P<0.05).其中A组和B组患者24 h MSBP、24 h MPP较C组明显升高(P<0.05);与B组比较,A组患者上述指标明显升高(P<0.05);A组血清肌酐明显高于B组和C组,24 h MDBP及GRF低于B组和C组(P<0.05).结论 动态脉压增大与老年高血压患者靶器官结构和功能的损害相关;动态脉压越大,靶器官损害越严重.%Objective To investigate the effects of dynamic pulse pressure on renal damage in aged patients with primary hypertension.Methods A total of 165 aged patients with primary hypertension were divided into two groups ( group A: 24 h MPP ≥60 mm Hg; group B∶ 24 h MPP < 60 mm Hg ) according to the 24 hour mean pulse pressure ( 24 h MPP ).Healthy subjects were enrolled as the control group ( group C ).Serum creatinine levels and data from ambulatory blood pressure monitoring were collected from all subjects.Results Comparesion of 24 h mean systolic pressure ( MSBP), 24 h mean diastolic blood pressure ( MDBP ), 24 h MPP, serum creatinine, urinary albumin excretion rate ( UAER ), glomerular filtration rate ( GRF ) among the three groups showed significant differences ( P <0.05 ).The 24 h MSBP and 24 h MPP levels were found to be significantly higher in group A and group B compared with group C ( P < 0.01 ), with group A higher than group B ( P < 0.01 ).Group A also had elevated serum creatinine levels and lower levels of MDBP when compared to group B and group C ( P <0.05 ).Conclusion The elevated dynamic pulse pressure levels are correlated

  13. THE INFLUENCE OF HYPERBARIC OXYGEN THERAPY ENVIRONMENT ON BLOOD PRESSURE AND PULSE OF PERSONNEL IN OXYGEN-CABIN%高压氧治疗环境对舱内人员血压和脉搏的影响

    Institute of Scientific and Technical Information of China (English)

    李红玲; 薛新萍; 牛蕾蕾; 张会萍

    2013-01-01

    目的 探讨高压氧治疗环境对舱内人员血压和脉搏的影响.方法 随机选择高压氧治疗组(患者)136例,高气压环境组(健康正常的陪舱人员)30例,使用欧姆龙智能电子血压计分别在进舱前、加压吸氧(1.8ATA)、稳压吸氧(2.2ATA)、稳压休息(2.2ATA)、吸氧结束(减压前2.2ATA)、减压结束出舱后测量进舱人员的血压和脉搏.测量体位一般取坐位(9例患者取卧位),全部测量右侧上肢肱动脉.测量时间均在上午8:00~10:00高压氧治疗时间段,连续测量2d,取平均值.结果 2组人员在高压氧治疗环境中,无论血压还是脉搏都有波动,减压出舱时收缩压和舒张压与入舱时相比有升高趋势,而脉搏有减慢趋势,但各个时间段之间差异均无统计学意义( P>0.05).结论在2.2ATA治疗压力下,高压氧治疗环境对患者和陪舱人员的血压和脉搏无明显影响.%Objective To observe the influence of hyperbaric oxygen therapy ( HBOT ) environment on blood pressure and pulse of personnel in oxygen-cabin. Methods The blood pressure and pulse of 136 patients with HBOT and 30 accompanying personnel were measured by OmRon Automatic Electronic Device at entering oxygen-cabin, forcing oxygen uptake( 1. 8ATA), stable pressure oxygen uptake( 2. 2ATA ), stable pressure rest( 2. 2ATA ), oxygen uptake end ( 2. 2ATA )and coming out oxygen-cabin from the 8 a. m to 10 a. m. Results At different times during hyperbaric oxygen therapy process, there were small fluctuations in blood pressure and pulse, but the differences were not statistically significant ( P > 0. 05 ). Conclusion Under 2. 2ATA treatment pressure, hyperbaric oxygen therapy maybe has no significant effect on blood pressure and pulse of patients and accompanying personnel.

  14. Differential absorption radar techniques: surface pressure

    Directory of Open Access Journals (Sweden)

    L. Millán

    2014-11-01

    Full Text Available Two radar pulses sent at different frequencies near the 60 GHz O2 absorption band can be used to determine surface pressure by measuring the differential absorption on and off the band. Results of inverting synthetic data assuming an airborne radar are presented. The analysis includes the effects of temperature, water vapor, and hydrometeors, as well as particle size distributions and surface backscatter uncertainties. Results show that an airborne radar (with sensitivity of −20 and 0.05 dBZ speckle and relative calibration uncertainties can estimate surface pressure with a precision of ~ 1.0 hPa and accuracy better than 1.0 hPa for clear-sky and cloudy conditions and better than 3.5 hPa for precipitating conditions. Generally, accuracy would be around 0.5 and 2 hPa for non-precipitating and precipitating conditions, respectively.

  15. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  16. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus).

    Science.gov (United States)

    Duncan, Frances D; Förster, Thomas D; Hetz, Stefan K

    2010-05-01

    Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection. PMID:19481765

  17. The Clinical Observation on the Effect of WeenXin Granules to Pulse Pressure of P atients with Coron ary Heart Disease%稳心颗粒对冠心病脉压影响的临床观察

    Institute of Scientific and Technical Information of China (English)

    高博

    2011-01-01

    Objective:To observe the impact of WenXin granules on pulse pressure of patients with coronary heart disease.Methods:The 143 patients with coronary heart disease were randomly divided into two groups:the treat group(73) and the control group(70), tested the resting blood pressure with cuff bag mercury sphygmomanometer consistent with measurement standard, calculated the pulse pressure.The treat group was treated with WenXin granules(27 g/d,3/d,per os) and the control gronp was treated with captopril(37.5 mg/d,3/d)the basis medication of the two groups were same,l month was 1 course oftrcatment. Results: WenXin granules decrease elevated pulse pressure duc to coronary heart disease 9.06 mmHg(1 mmHg 0.133 kPa),P<0.005, the difference was significant. Conclusion:WenXin granules has significant effect of reducing the pnlse pressnre,can reduce the incidence of coronary heart disease.%目的:观察稳心颗粒对冠心病脉压的影响.方法:将143例冠心病患者随机分为治疗组(73例)与对照组(70例),治疗组用稳心颗粒27 g/d,3次/d,口服;对照组用卡托普利37.5 mg/d,3次/d;2组均以1个月为1个疗程,用符合计量标准的袖袋式水银柱血压计测静息血压,计算脉压.结果:稳心颗粒对因冠心病增高的脉压平均可降低9.06 mmHg(1 mmHg=0.133 kPa),与对照组比较有统计学意义(P<0.05).结论:稳心颗粒有较明显地降低脉压作用,可降低冠心病的发病率.

  18. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Directory of Open Access Journals (Sweden)

    Ardid M.

    2016-01-01

    Full Text Available Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino “signature” that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  19. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Science.gov (United States)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  20. Improved method of SSC strain gauge calibration at cryogenic temperatures

    International Nuclear Information System (INIS)

    The development of an improved strain gauge calibration station for the SSC dipole magnets will have several advantages. The new design will use significantly less helium, provide for a much higher productivity, and will generate completely automated calibration reports. This will be accomplished by having a finer control over the press pressures, prechilling of the transducers, changing the calibrated transducers for uncalibrated transducers without frosting or warming the press, and the possibility of recovering the spent helium. Five main components make up the system: (1) Test Vessel - non-pressurized cryogenic vessel where the strain gauges are calibrated; (2) Precool Vessel - non-pressurized cryogenic vessel where six strain gauge fixtures are placed for precooling; (3) Fixture - used to hold the two strain gauges that are being calibrated; (4) Hydraulics - dual stage air-over-oil system controlled by an electronic-pneumatic valve; and (5) Computer - controls the electronic-pneumatic valve and records all the readings to calibrate the strain gauges