Mathematics for physics with calculus
Das, Biman
2005-01-01
Designed for students who plan to take or who are presently taking calculus-based physics courses. This book will develop necessary mathematical skills and help students gain the competence to use precalculus, calculus, vector algebra, vector calculus, and the statistical analysis of experimental data. Students taking intermediate physics, engineering, and other science courses will also find the book useful-and will be able to use the book as a mathematical resource for these intermediate level courses. The book emphasizes primarily the use of mathematical techniques and mathematical concepts in Physics and does not go into their rigorous developments.
Mathematical Features of the Calculus
Sauerheber, Richard D.
2010-01-01
The fundamental theorems of the calculus describe the relationships between derivatives and integrals of functions. The value of any function at a particular location is the definite derivative of its integral and the definite integral of its derivative. Thus, any value is the magnitude of the slope of the tangent of its integral at that position,…
Constructivized Calculus in College Mathematics
Lawrence, Barbara Ann
2012-01-01
The purpose of this study is to present some of the classical concepts, definitions, and theorems of calculus from the constructivists' point of view in the spirit of the philosophies of L.E.J. Brouwer and Errett Bishop. This presentation will compare the classical statements to the constructivized statements. The method focuses on giving…
Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Experimental Design: Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Utilizing Microsoft Mathematics In Teaching And Learning Calculus
Rina Oktaviyanthi; Yani Supriani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students’ achievement and the effects of the use of Microsoft Mathematics on students’ attitudes in relation to such experience. Two classes of the students from the first year student in Universitas Serang Raya wer...
Non-mathematics Students’ Reasoning in Calculus Tasks
Matić, Ljerka Jukić
2014-01-01
This paper investigates the reasoning of first year non-mathematics students in non-routine calculus tasks. The students in this study were accustomed to imitative reasoning from their primary and secondary education. In order to move from imitative reasoning toward more creative reasoning, non-routine tasks were implemented as an explicit part of the students’ calculus course. We examined the reasoning of six students in the middle of the calculus course and at the end of the course. The ana...
Effects of Clicker Use on Calculus Students' Mathematics Anxiety
Batchelor, John
2015-01-01
This paper reports the results of a survey study of clicker use and mathematics anxiety among students enrolled in an undergraduate calculus course during the Fall 2013 semester. Students in two large lecture sections of calculus completed surveys at the beginning and end of the course. One class used clickers, whereas the other class was taught…
Utilizing Microsoft Mathematics In Teaching And Learning Calculus
Directory of Open Access Journals (Sweden)
Rina Oktaviyanthi
2015-10-01
Full Text Available The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students’ achievement and the effects of the use of Microsoft Mathematics on students’ attitudes in relation to such experience. Two classes of the students from the first year student in Universitas Serang Raya were participated in the study. This study found that students who taught by using Microsoft Mathematics had higher achievement and has a positive effect on students’ confidence of mathematics.
Spivak, Michael
2006-01-01
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Helping Mathematics Students Survive the Post-Calculus Transition
Cullinane, Michael J.
2011-01-01
Many mathematics students have difficulty making the transition from procedurally oriented courses such as calculus to the more conceptually oriented courses in which they subsequently enroll. What are some of the key "stumbling blocks" for students as they attempt to make this transition? How do differences in faculty expectations for students…
The primordial end calculus of prime numbers and mathematics
Vinoo Cameron
2013-01-01
This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Ann...
Laurent, Theresa A.
2009-01-01
The purpose of this study was to investigate higher education mathematics departments' credit granting policies for students with high school calculus experience. The number of students taking calculus in high school has more than doubled since 1982 (NCES, 2007) and it is estimated that approximately 530,000 students took a calculus course in high…
Jones, Patrick
2014-01-01
Practice makes perfect-and helps deepen your understanding of calculus 1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go. Gives you a chance to practice and reinforce the skills you learn in your calculus courseHelps you refine your understanding of calculusP
An Excel-Aided Method for Teaching Calculus-Based Business Mathematics
Liang, Jiajuan; Martin, Linda
2008-01-01
Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…
The primordial end calculus of prime numbers and mathematics
Directory of Open Access Journals (Sweden)
Vinoo Cameron
2013-08-01
Full Text Available This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at 1/6 and 5/6 ( and 1/3 and 2/3,and these prime sieves are reversible .Thus the relationship of the configuration of 1 is in two planes that expand in the frame of (5/6 and 1/6 and (1/3 and 2/3are represented by spiral configuration , expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords 1/3+2/3=1 5/6+1/6=1 1/3-1/6=1/6 5/6-2/3=1/6 1/3+1/6=0.5 5/6+2/3=1.5 1.5/0.5=3 Note: the above is also confirmed by Arabian numerical shown below. Primordial mathematics as created by the creator is absolute and precise whilst the mathematics invented by man is approximate .Current Mathematics of a thousand years has accomplished much by approximate theory, and it is very possible to land a man on the moon by approximate mathematics, but to precisely understand mass and energy, the nucleus of mass and the vastness of space, one must understand the precise nature and curvature of space
Mathematics in the Classroom: Conceptual Cartography of Differential Calculus
Directory of Open Access Journals (Sweden)
María de Lourdes RODRÍGUEZ PERALTA
2015-12-01
Full Text Available This paper presents the results of a documentary investigation with the intention of substantiate how and why, and the level and depth of the topics used by the teacher in the classroom for the development of the mathematical knowledge on the part of higher level engineering students. The analysis of the mathematical object was made through the construction of conceptual cartography, being the core of the derivative concept. To construct the axes, the socio-formative theory of Sergio Tobón was used, together with the semiotic representation register of Raychmond Duval and Tall's mathematical advanced thought in the engineering context. The topic is a part of the Unit of learning: Differential and Integral Calculus. This corresponds to the first semester. The course lasts for a semester and is intended for students aged between 18 and 20 years. The research shows that by constructing a conceptual cartography involving at least 8 axes of analysis that the socio-formation orientates, and taking mathematics in the context of careers offered by the educational institution, the teacher is allowed to place the thematic content in the appropriate level and depth, guiding in a possible treatment of knowledge to be brought into the classroom.
Grossman, Stanley I
1981-01-01
Calculus, Second Edition discusses the techniques and theorems of calculus. This edition introduces the sine and cosine functions, distributes ?-? material over several chapters, and includes a detailed account of analytic geometry and vector analysis.This book also discusses the equation of a straight line, trigonometric limit, derivative of a power function, mean value theorem, and fundamental theorems of calculus. The exponential and logarithmic functions, inverse trigonometric functions, linear and quadratic denominators, and centroid of a plane region are likewise elaborated. Other topics
Larson, Ron
2014-01-01
The Larson CALCULUS program has a long history of innovation in the calculus market. It has been widely praised by a generation of students and professors for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.
The Impact of Instructor Pedagogy on College Calculus Students' Attitude toward Mathematics
Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.
2015-01-01
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students'…
Science Modelling in Pre-Calculus: How to Make Mathematics Problems Contextually Meaningful
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-01-01
"Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum" [National Council of Teachers of Mathematics (NCTM), "Principles and Standards for School Mathematics", NCTM, Reston, VA, 2000]. Commonly used pre-calculus textbooks provide a…
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
Grossman, Stanley I
1984-01-01
Calculus, Third Edition emphasizes the techniques and theorems of calculus, including many applied examples and exercises in both drill and applied-type problems.This book discusses shifting the graphs of functions, derivative as a rate of change, derivative of a power function, and theory of maxima and minima. The area between two curves, differential equations of exponential growth and decay, inverse hyperbolic functions, and integration of rational functions are also elaborated. This text likewise covers the fluid pressure, ellipse and translation of axes, graphing in polar coordinates, pro
Directory of Open Access Journals (Sweden)
Olga V. Shipulina
2013-01-01
Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.
Discovering the Art of Mathematics: Using String Art to Investigate Calculus
von Renesse, Christine; Ecke, Volker
2016-01-01
One goal of our Discovering the Art of Mathematics project is to empower students in the liberal arts to become confident creators of art and imaginative creators of mathematics. In this paper, we describe our experience with using string art to guide liberal arts students in exploring ideas of calculus. We provide excerpts from our inquiry-based…
Teaching mathematics with a different philosophy. Part 2: Calculus without Limits
Raju, C. K.
2013-01-01
The example of the calculus is used to explain how simple, practical math was made enormously complex by imposing on it the Western religiously-colored notion of mathematics as "perfect". We describe a pedagogical experiment to make math easy by teaching "calculus without limits" using the new realistic philosophy of zeroism, different from Platonic idealism or formalist metaphysics. Despite its demonstrated advantages, it is being resisted because of the existing colonial hangover.
The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.
Dray, Tevian; Manogue, Corinne A.
1999-01-01
Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)
Friedman, Menahem
2011-01-01
Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in ""light"" calculus -- mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management infor
Zandy, Bernard V
2003-01-01
We take great notes-and make learning a snap When it comes to pinpointing the stuff you really need to know, nobody does it better than CliffsNotes. This fast, effective tutorial helps you master core Calculus concepts-from functions, limits, and derivatives to differentials, integration, and definite integrals- and get the best possible grade. At CliffsNotes, we're dedicated to helping you do your best, no matter how challenging the subject. Our authors are veteran teachers and talented writers who know how to cut to the chase- and zero in on the essential information you need to succeed.
Barnett, M.D.; Sonnert, G.; Sadler, P.M.
2014-01-01
Relativizing the popular belief that student effort is the key to success, this article finds that effort in the most advanced mathematics course in US high schools is not consistently associated with college calculus performance. We distinguish two types of student effort: productive and ineffective efforts. Whereas the former carries the…
University mathematics teachers' views on the required reasoning in calculus exams
Bergqvist, Ewa
2012-01-01
Students often use imitative reasoning, i.e. copy algorithms or recall facts, when solving mathematical tasks. Research show that this type of imitative reasoning might weaken the students' understanding of the underlying mathematical concepts. In a previous study, the author classified tasks from 16 final exams from introductory calculus courses at Swedish universities. The results showed that it was possible to pass 15 of the exams, and solve most of the tasks, using imitative reasoning. Th...
The impact of instructor pedagogy on college calculus students' attitude toward mathematics
Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.
2015-04-01
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students' attitudes toward mathematics during a 'mainstream' calculus course while controlling for student backgrounds. The attitude measure combines students' self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted 'good teaching' practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational 'technology' (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students' attitudes towards mathematics. (3) 'Ambitious teaching' (e.g. group work, word problems, 'flipped' reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional 'good teaching' practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do
Towards a Logical Calculus for Fuzzy Mathematics I, II
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor; Cintula, Petr
Linz : Johannes Kepler Universität, 2005. s. 1-4. [FLLL/SCCH Master and PhD Seminar. 00.02.2005-00.02.2005, Hagenberg] Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy mathematics * fuzzy class theory * notation * proof Subject RIV: BA - General Mathematics
Mathematics for everyman from simple numbers to the calculus
Colerus, Egmont
2003-01-01
Many people suffer from an inferiority complex where mathematics is concerned, regarding figures and equations with a fear based on bewilderment and inexperience. This book dispels some of the subject's alarming aspects, starting at the very beginning and assuming no mathematical education.Written in a witty and engaging style, the text contains an illustrative example for every point, as well as absorbing glimpses into mathematical history and philosophy. Topics include the system of tens and other number systems; symbols and commands; first steps in algebra and algebraic notation; common fr
Introduction to Tensor Calculus
Sochi, Taha
2016-01-01
These are general notes on tensor calculus which can be used as a reference for an introductory course on tensor algebra and calculus. A basic knowledge of calculus and linear algebra with some commonly used mathematical terminology is presumed.
Ellis, Jessica; Fosdick, Bailey; Rasmussen, Chris
2015-01-01
The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either ...
Nickerson, HK; Steenrod, NE
2011-01-01
""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,
Vickers, Trevor
1992-01-01
On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.
Chase, Norma
2011-11-01
Data spanning fifteen semesters and including more than 1200 students showed far less than the anticipated difference in performance between students with quite diverse levels of physics preparation. Students ranged from those with no prior physics course work to those with two or more years of HS physics and prior courses in college physics. Less prior physics training frequently coincided with better performance in the first calculus-based course. Preparation in mathematics, on the other hand, appeared critically important; students at the extremes of the math preparation spectrum were concentrated at the corresponding extremes of the physics grade distribution.
Kalanov, Temur Z.
2014-03-01
A critical analysis of the foundations of standard vector calculus is proposed. The methodological basis of the analysis is the unity of formal logic and of rational dialectics. It is proved that the vector calculus is incorrect theory because: (a) it is not based on a correct methodological basis - the unity of formal logic and of rational dialectics; (b) it does not contain the correct definitions of ``movement,'' ``direction'' and ``vector'' (c) it does not take into consideration the dimensions of physical quantities (i.e., number names, denominate numbers, concrete numbers), characterizing the concept of ''physical vector,'' and, therefore, it has no natural-scientific meaning; (d) operations on ``physical vectors'' and the vector calculus propositions relating to the ''physical vectors'' are contrary to formal logic.
Reyes, G. Mitchell
2004-01-01
This essay investigates the rhetoric surrounding the appearance of the concept of the infinitesimal in the seventeenth-century Calculus of Sir Isaac Newton and Gottfried Wilhelm Leibniz. Although historians often have positioned rhetoric as a supplemental discipline, this essay shows that rhetoric is the "material" out of which a new and powerful…
Multivector Differential Calculus
Hitzer, Eckhard
2013-01-01
Universal geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. This paper treats the fundamentals of the multivector differential calculus part of geometric calculus. The multivector differential is introduced, followed by the multivector derivative and the adjoint of multivector functions. The basic rules of multivector differentiation are derived explicitly, as well as a variety of basic m...
International Nuclear Information System (INIS)
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed
Muldowney, Patrick
2012-01-01
A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. I...
Advanced calculus a transition to analysis
Dence, Thomas P
2010-01-01
Designed for a one-semester advanced calculus course, Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http://www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructor
Directory of Open Access Journals (Sweden)
Donna Sundre
2012-01-01
Full Text Available This study from the Norwegian University of Science and Technology (NTNU examines students’ learning goals and attitudes toward mathematics in a first-year calculus course in undergraduate engineering education. Achievement motivation research using the Achievement Goal Questionnaire (AGQ is advanced from current literature with two additions: (1 a course specific context using introductory college calculus students, and (2 participation of Norwegian students.Pre- and posttest measures of attitudes indicate that students do change learning goals over time, unfortunately opposite to the instructors’ aspirations. A significant increase in “Mastery Avoidance” and “Work Avoidance” was accompanied with a drop in “Mastery Approach” and “Performance Approach”. Variables such as value, motivation and enjoyment decreased along with a significant drop in self-confidence.
The absolute differential calculus (calculus of tensors)
Levi-Civita, Tullio
2013-01-01
Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Soergel calculus and Schubert calculus
He, Xuhua; Williamson, Geordie
2015-01-01
We reduce some key calculations of compositions of morphisms between Soergel bimodules ("Soergel calculus") to calculations in the nil Hecke ring ("Schubert calculus"). This formula has several applications in modular representation theory.
Blanco, Mónica
2013-04-01
The aim of this paper is to provide a cross-national comparative analysis of the introduction of calculus in Spanish and French military educational institutions through the works of Pedro Padilla y Arcos (1724-1807?) and Étienne Bézout (1730-1783), respectively. Both authors developed their educational work in the context of military schools and academies. Padilla's Curso Militar de Mathematicas (1753-1756) was the first work published in Spain which introduced the teaching of calculus in formal education. Bézout's Cours de Mathématiques (1764-1769) was the first work on calculus explicitly addressed to French military students and can be considered a representative of the canonical knowledge on eighteenth-century mathematics, both in France and abroad. Eighteenth-century Spain has traditionally been regarded as a country in the periphery whose scientific culture and education were pervaded by French science and education. This centre-periphery framework is often represented by a static model of one-way transmission from the centre to the periphery. A crossnational comparative analysis can help revisit this monolithic centre-periphery framework. A recent historiographical stream places the emphasis on appropriation, hence moving away from the idea of passive reception. In my paper I focus on the reading and writing of educational books, as practices which contribute actively to the development and circulation of knowledge. To assist the analysis, I explore the differences in communication practices in each case, in contents and approaches, and in particular, I give special attention to their inspiration in mathematical streams other than the French standpoint.
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
Czech Academy of Sciences Publication Activity Database
Müller, Vladimír
Basel : Springer, 2015 - (Alpay, D.), s. 1181-1215 ISBN 978-3-0348-0666-4 Institutional support: RVO:67985840 Keywords : Taylor spectrum * Taylor functional calculus * split spectrum Subject RIV: BA - General Mathematics http://link.springer.com/referenceworkentry/10.1007/978-3-0348-0667-1_61
Palmaccio, Richard J.
1982-01-01
A method of using vector analysis is presented that is an application of calculus that helps to find the best angle for tacking a boat into the wind. While the discussion is theoretical, it is seen as a good illustration of mathematical investigation of a given situation. (MP)
The Impact of Taking a College Pre-Calculus Course on Students' College Calculus Performance
Sonnert, Gerhard; Sadler, Philip M.
2014-01-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and…
Bergstra, J. A.; Ponse, A.; van der Zwaag, M. B.
2008-01-01
We introduce a calculus for tuplices, which are expressions that generalize matrices and vectors. Tuplices have an underlying data type for quantities that are taken from a zero-totalized field. We start with the core tuplix calculus CTC for entries and tests, which are combined using conjunctive composition. We define a standard model and prove that CTC is relatively complete with respect to it. The core calculus is extended with operators for choice, information hiding, scalar multiplicatio...
Boehme, Thomas K
1987-01-01
Operational Calculus, Volume II is a methodical presentation of operational calculus. An outline of the general theory of linear differential equations with constant coefficients is presented. Integral operational calculus and advanced topics in operational calculus, including locally integrable functions and convergence in the space of operators, are also discussed. Formulas and tables are included.Comprised of four sections, this volume begins with a discussion on the general theory of linear differential equations with constant coefficients, focusing on such topics as homogeneous and non-ho
Klaf, A A
1956-01-01
This book is unique in English as a refresher for engineers, technicians, and students who either wish to brush up their calculus or find parts of calculus unclear. It is not an ordinary textbook. It is, instead, an examination of the most important aspects of integral and differential calculus in terms of the 756 questions most likely to occur to the technical reader. It provides a very easily followed presentation and may also be used as either an introductory or supplementary textbook. The first part of this book covers simple differential calculus, with constants, variables, functions, inc
Schaaf, William L
2011-01-01
Comprehensive but concise, this introduction to differential and integral calculus covers all the topics usually included in a first course. The straightforward development places less emphasis on mathematical rigor, and the informal manner of presentation sets students at ease. Many carefully worked-out examples illuminate the text, in addition to numerous diagrams, problems, and answers.Bearing the needs of beginners constantly in mind, the treatment covers all the basic concepts of calculus: functions, derivatives, differentiation of algebraic and transcendental functions, partial different
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Kinnari-Korpela, Hanna
2015-01-01
Mathematics' skills and knowledge lay the basis for engineering studies. However, the resources targeted to mathematics' teaching are in many cases very limited. During the past years in our university the reduction of mathematics' contact hours has been significant while at the same time the study groups have grown. However, the mathematical…
Reading the World with Calculus
Verzosa, Debbie
2015-01-01
It is now increasingly recognized that mathematics is not a neutral value-free subject. Rather, mathematics can challenge students' taken-for-granted realities and promote action. This article describes two issues, namely deforestation and income inequality. These were specifically chosen because they can be related to a range of calculus concepts…
The calculus a genetic approach
Toeplitz, Otto
2007-01-01
When first published posthumously in 1963, this book presented a radically different approach to the teaching of calculus. In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique a
Neutrosophic Precalculus and Neutrosophic Calculus
Florentin Smarandache
2015-01-01
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples o...
Quaternion Derivatives: The GHR Calculus
Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.
2014-01-01
Quaternion derivatives in the mathematical literature are typically defined only for analytic (regular) functions. However, in engineering problems, functions of interest are often real-valued and thus not analytic, such as the standard cost function. The HR calculus is a convenient way to calculate formal derivatives of both analytic and non-analytic functions of quaternion variables, however, both the HR and other functional calculus in quaternion analysis have encountered an essential tech...
Directory of Open Access Journals (Sweden)
Bram Geron
2013-09-01
Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.
ESeal Calculus: A Secure Mobile Calculus
Institute of Scientific and Technical Information of China (English)
Peng Rong; Chen Xin-meng; Liu Ping
2003-01-01
The ESeal Calculus is a secure mobile calculus based on Seal Calculus. By using open-channels, ESeal Calculus makes it possible to communicate between any two arbitrary seals with some secure restrictions. It improves the expression ability and efficiency of Seal calculus without losing security.
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Domingues, João Caramalho
2008-01-01
Silvestre François Lacroix (Paris, 1765 - ibid., 1843) was a most influential mathematical book author. His most famous work is the three-volume Traité du calcul différentiel et du calcul intégral (1797-1800; 2nd ed. 1810-1819) – an encyclopedic appraisal of 18th-century calculus which remained the standard reference on the subject through much of the 19th century, in spite of Cauchy's reform of the subject in the 1820's. Lacroix and the Calculus is the first major study of Lacroix’s large Traité. It uses the unique and massive bibliography given by Lacroix to explore late 18th-century calculus, and the way it is reflected in Lacroix’s account. Several particular aspects are addressed in detail, including: the foundations of differential calculus, analytic and differential geometry, conceptions of the integral, and types of solutions of differential equations (singular/complete/general integrals, geometrical interpretations, and generality of arbitrary functions). Lacroix’s large Traité... was a...
Educating about Sustainability while Enhancing Calculus
Pfaff, Thomas J.
2011-01-01
We give an overview of why it is important to include sustainability in mathematics classes and provide specific examples of how to do this for a calculus class. We illustrate that when students use "Excel" to fit curves to real data, fundamentally important questions about sustainability become calculus questions about those curves. (Contains 5…
A Transition Course from Advanced Placement to College Calculus
Lucas, Timothy A.; Spivey, Joseph
2011-01-01
In the Spring of 2007, a group of highly motivated mathematics graduate students conducted a review of Duke's Calculus curriculum. They focused on two main problems. The first problem is the result of a very positive trend: a growing number of students are earning AP credit for Calculus I in high school. However, this results in Calculus II…
Improving Calculus II and III through the Redistribution of Topics
George, C. Yousuf; Koetz, Matt; Lewis, Heather A.
2016-01-01
Three years ago our mathematics department rearranged the topics in second and third semester calculus, moving multivariable calculus to the second semester and series to the third semester. This paper describes the new arrangement of topics, and how it could be adapted to calculus curricula at different schools. It also explains the benefits we…
Hill, Gregory
2013-01-01
Earn College Credit with REA's Test Prep for CLEP* Calculus Everything you need to pass the exam and get the college credit you deserve.Our test prep for CLEP* Calculus and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.Here's how it works:Diagnostic exam at the REA Study Center focuses your studyOur online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you
Advanced Calculus An Introduction to Linear Analysis
Richardson, Leonard F
2008-01-01
Features an introduction to advanced calculus and highlights its inherent concepts from linear algebra. Advanced Calculus reflects the unifying role of linear algebra in an effort to smooth readers' transition to advanced mathematics. The book fosters the development of complete theorem-proving skills through abundant exercises while also promoting a sound approach to the study. The traditional theorems of elementary differential and integral calculus are rigorously established, presenting the foundations of calculus in a way that reorients thinking toward modern analysis. Following an introdu
Nevison, Christopher H.
This unit considers the application of calculus in determining price discrimination and consumer surplus in a competitive market. Producer surplus and two-tier price discrimination are also developed in problems. It is noted that calculus cannot usually provide numerical answers for practical economic problems. The importance of calculus…
McGivney-Burelle, Jean; Xue, Fei
2013-01-01
In this paper we discuss flipping pedagogy and how it can transform the teaching and learning of calculus by applying pedagogical practices that are steeped in our understanding of how students learn most effectively. In particular, we describe the results of an exploratory study we conducted to examine the benefits and challenges of flipping a…
The Britannica Guide to Analysis and Calculus
2011-01-01
The dynamism of the natural world means that it is constantly changing, sometimes rapidly, sometimes gradually. By mathematically interpreting the continuous change that characterizes so many natural processes, analysis and calculus have become indispensable to bridging the divide between mathematics and the sciences. This comprehensive volume examines the key concepts of calculus, providing students with a robust understanding of integration and differentiation. Biographies of important figures will leave readers with an increased appreciation for the sometimes competing theories that informe
Toward New Vision in Teaching Calculus
Kadry, Seifedine; ElShalkamy, Maha
2012-01-01
Usually the first course in mathematics is calculus. Its a core course in the curriculum of the Business, Engineering and the Sciences. However many students face difficulties to learn calculus. These difficulties are often caused by the prior fear of mathematics. The students today cant live without using computer technology. The uses of computer for teaching and learning can transform the boring traditional methodology of teach to more active and attractive method. In this paper, we will sh...
Calculus Students' Understanding of Volume
Dorko, Allison; Speer, Natasha M.
2013-01-01
Researchers have documented difficulties that elementary school students have in understanding volume. Despite its importance in higher mathematics, we know little about college students' understanding of volume. This study investigated calculus students' understanding of volume. Clinical interview transcripts and written responses to volume…
Stochastic calculus with infinitesimals
Herzberg, Frederik
2013-01-01
Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.
Integrating computers into calculus instruction
Christensen, Jon L.; Pierson, Brian E.
1994-01-01
Visualization is key in helping a student understand the fundamentals of Calculus. The new generation of computer literate students, raised in a video-based environment, will expect more than the traditional chalkboard methods in assisting them in this visualization. By integrating computers into the classroom and developing software to assist in mathematics instruction, we can enhance student comprehension of, and ability to apply, mathematics in solving real world problems of interest to th...
Elementary calculus an infinitesimal approach
Keisler, H Jerome
2012-01-01
This first-year calculus book is centered around the use of infinitesimals, an approach largely neglected until recently for reasons of mathematical rigor. It exposes students to the intuition that originally led to the calculus, simplifying their grasp of the central concepts of derivatives and integrals. The author also teaches the traditional approach, giving students the benefits of both methods.Chapters 1 through 4 employ infinitesimals to quickly develop the basic concepts of derivatives, continuity, and integrals. Chapter 5 introduces the traditional limit concept, using approximation p
Cirstea, Horatiu; Kirchner, Claude
2000-01-01
The Rho-calculus is a new calculus that integrates in a uniform and simple setting first-order rewriting, lambda-calculus and non-deterministic computations. This paper describes the calculus from its syntax to its basic properties in the untyped case. We show how it embeds first-order conditional rewriting and lambda-calculus. Finally we use the Rho-calculus to give an operational semantics to the rewrite based language Elan.
The Calculus Concept Readiness (CCR) Instrument: Assessing Student Readiness for Calculus
Carlson, Marilyn; West, Richard
2010-01-01
The Calculus Concept Readiness (CCR) instrument is based on the broad body of mathematics education research that has revealed major understandings, representational abilities, and reasoning abilities students need to construct in precalculus level courses to be successful in calculus. The CCR is a 25-item multiple-choice instrument, and the CCR taxonomy articulates what the CCR assesses. The methodology used to develop and validate the CCR is described and illustrated. Results from administering the CCR as a readiness examination in calculus are provided along with data to guide others in using the CCR as a readiness examination for beginning calculus.
Visual Thinking and Gender Differences in High School Calculus
Haciomeroglu, Erhan Selcuk; Chicken, Eric
2012-01-01
This study sought to examine calculus students' mathematical performances and preferences for visual or analytic thinking regarding derivative and antiderivative tasks presented graphically. It extends previous studies by investigating factors mediating calculus students' mathematical performances and their preferred modes of thinking. Data were…
Ferguson, Leann J.
2012-01-01
Calculus is an important tool for building mathematical models of the world around us and is thus used in a variety of disciplines, such as physics and engineering. These disciplines rely on calculus courses to provide the mathematical foundation needed for success in their courses. Unfortunately, due to the basal conceptions of what it means to…
Ouellette,, Jennifer
2011-01-01
Jennifer Ouellette never took maths in the sixth form, mostly because she like most of us assumed she wouldn't need it much in real life. But then the English graduate, now an award-winning science-writer, had a change of heart and decided to revisit the equations and formulas that had haunted her youth. The Calculus Diaries is the fun and fascinating account of a year spent confronting her numbers-phobia head on. With wit and verve, Ouellette explains how she discovered that maths could apply to everything from petrol mileages to dieting, rollercoaster rides to winning in Las Vegas.
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Friedman, Avner
2007-01-01
This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several
Stochastic calculus and applications
Cohen, Samuel N
2015-01-01
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Pyrah, Leslie N
1979-01-01
Stone in the urinary tract has fascinated the medical profession from the earliest times and has played an important part in the development of surgery. The earliest major planned operations were for the removal of vesical calculus; renal and ureteric calculi provided the first stimulus for the radiological investigation of the viscera, and the biochemical investigation of the causes of calculus formation has been the training ground for surgeons interested in metabolic disorders. It is therefore no surprise that stone has been the subject of a number of monographs by eminent urologists, but the rapid development of knowledge has made it possible for each one of these authors to produce something new. There is still a technical challenge to the surgeon in the removal of renal calculi, and on this topic we are always glad to have the advice of a master craftsman; but inevitably much of the interest centres on the elucidation of the causes of stone formation and its prevention. Professor Pyrah has had a long an...
van Doorn, Floris
2015-01-01
I formalize important theorems about classical propositional logic in the proof assistant Coq. The main theorems I prove are (1) the soundness and completeness of natural deduction calculus, (2) the equivalence between natural deduction calculus, Hilbert systems and sequent calculus and (3) cut elimination for sequent calculus.
Reductionism and the Universal Calculus
Sarma, Gopal P
2016-01-01
In the seminal essay, "On the unreasonable effectiveness of mathematics in the physical sciences," physicist Eugene Wigner poses a fundamental philosophical question concerning the relationship between a physical system and our capacity to model its behavior with the symbolic language of mathematics. In this essay, I examine an ambitious 16th and 17th-century intellectual agenda from the perspective of Wigner's question, namely, what historian Paolo Rossi calls "the quest to create a universal language." While many elite thinkers pursued related ideas, the most inspiring and forceful was Gottfried Leibniz's effort to create a "universal calculus," a pictorial language which would transparently represent the entirety of human knowledge, as well as an associated symbolic calculus with which to model the behavior of physical systems and derive new truths. I suggest that a deeper understanding of why the efforts of Leibniz and others failed could shed light on Wigner's original question. I argue that the notion o...
Hall, Angela Renee
2011-01-01
This investigative research focuses on the level of readiness of Science, Technology, Engineering, and Mathematics (STEM) students entering Historically Black Colleges and Universities (HBCU) in the college Calculus sequence. Calculus is a fundamental course for STEM courses. The level of readiness of the students for Calculus can very well play a…
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153. ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 2014 http://epubs.siam.org/doi/10.1137/120895950
Mathematics for the nonmathematician
Kline, Morris
2013-01-01
Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.
How do research mathematicians teach Calculus?
Petropoulou, Georgia; Jaworski, Barbara; Potari, Despina; Zachariades, Theodossios
2015-01-01
We investigate Calculus teaching at university mathematics departments and in particular research math-ematicians' teaching practice in the context of lectures. We are interested in how lecturers draw mathematics students into mathematical culture. In this paper, we focus on the teaching of a lecturer of a large cohort of students that we analyse using grounded techniques and the Teaching Triad construct (Jaworski, 1994). In spite of the lecture format, the analysis suggests that this lecture...
Projects for calculus the language of change
Stroyan, Keith D
1999-01-01
Projects for Calculus is designed to add depth and meaning to any calculus course. The fifty-two projects presented in this text offer the opportunity to expand the use and understanding of mathematics. The wide range of topics will appeal to both instructors and students. Shorter, less demanding projects can be managed by the independent learner, while more involved, in-depth projects may be used for group learning. Each task draws on special mathematical topics and applications from subjects including medicine, engineering, economics, ecology, physics, and biology.Subjects including:* Medicine* Engineering* Economics* Ecology* Physics* Biology
Using the Finite Difference Calculus to Sum Powers of Integers.
Zia, Lee
1991-01-01
Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…
Coordinating Multiple Representations in a Reform Calculus Textbook
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2015-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
Transitioning from Introductory Calculus to Formal Limit Conceptions
Nagle, Courtney
2013-01-01
The limit concept is a fundamental mathematical notion both for its practical applications and its importance as a prerequisite for later calculus topics. Past research suggests that limit conceptualizations promoted in introductory calculus are far removed from the formal epsilon-delta definition of limit. In this article, I provide an overview…
Brownian motion, martingales, and stochastic calculus
Le Gall, Jean-François
2016-01-01
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...
Introductory analysis a deeper view of calculus
Bagby, Richard J
2000-01-01
Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students* A thorough concentration of basic topics of calculus* Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use* Covers natural logarithms and exponential functions* Provides the computational techniques often encountered in basic calculus
Grossman, Stanley I
1986-01-01
Calculus of One Variable, Second Edition presents the essential topics in the study of the techniques and theorems of calculus.The book provides a comprehensive introduction to calculus. It contains examples, exercises, the history and development of calculus, and various applications. Some of the topics discussed in the text include the concept of limits, one-variable theory, the derivatives of all six trigonometric functions, exponential and logarithmic functions, and infinite series.This textbook is intended for use by college students.
Kotkar, Kunal; Thakkar, Ravi; Songra, MC
2011-01-01
Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty.
The Calculus Concept Readiness (CCR) Instrument: Assessing Student Readiness for Calculus
Carlson, Marilyn; Madison, Bernard; West, Richard
2010-01-01
The Calculus Concept Readiness (CCR) instrument is based on the broad body of mathematics education research that has revealed major understandings, representational abilities, and reasoning abilities students need to construct in precalculus level courses to be successful in calculus. The CCR is a 25-item multiple-choice instrument, and the CCR taxonomy articulates what the CCR assesses. The methodology used to develop and validate the CCR is described and illustrated. Results from administe...
Morris, Carla C
2015-01-01
Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills. In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets. Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay. Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions
Enhancing Students’ Understanding in Calculus Trough Writing
Directory of Open Access Journals (Sweden)
Noraini Idris
2009-02-01
Full Text Available The purpose of this study was to investigate the effects of using writing activities on students’ understanding and achievement in Calculus. The design of this study was quasi-experimental. The subjects of this study consisted of two secondary schools in one of the states in Malaysia. Each school was assigned one intact class of Form Four to be the experimental group and another one intact class as the control. The experimental group learned mathematics by using the writing activities for five weeks, while the control group learned mathematics by using traditional whole-class instruction. A 20-item Calculus Achievement test was designed with reliability .87. The findings showed that the experimental group exhibited significantly greater improvement on calculus achievement. The students showed positive reaction towards the use of writing. Findings of this study provide information to schools to take advantage of writing activities to promote understanding.
Integral calculus problem solving: An fMRI investigation
Krueger, Frank; Spampinato, M. Vittoria; Pardini, Matteo; Pajevic, Sinisa; Wood, Jacqueline N.; Weiss, George H.; Landgraf, Steffen; Grafman, Jordan
2008-01-01
Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy subjects were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intrapariet...
Are Homeschoolers Prepared for College Calculus?
Wilkens, Christian P.; Wade, Carol H.; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
Homeschooling in the United States has grown considerably over the past several decades. This article presents findings from the Factors Influencing College Success in Mathematics (FICSMath) survey, a national study of 10,492 students enrolled in tertiary calculus, including 190 students who reported homeschooling for a majority of their high…
Full Lambek Calculus with Contraction is Undecidable
Czech Academy of Sciences Publication Activity Database
Chvalovský, Karel; Horčík, Rostislav
-, Published online: 10 May (2016). ISSN 0022-4812 R&D Projects: GA ČR GAP202/11/1632 Institutional support: RVO:67985807 Keywords : substructural logic * full Lambek calculus * contraction rule * square-increasing residuated lattice * equational theory * decidability Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014
Using Matlab in a Multivariable Calculus Course.
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
Blum, William
2009-01-01
Safety is a syntactic condition of higher-order grammars that constrains occurrences of variables in the production rules according to their type-theoretic order. In this paper, we introduce the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition to the setting of the simply-typed lambda calculus. In contrast to the original definition of safety, our calculus does not constrain types (to be homogeneous). We show that in the safe lambda calculus, there is no need to rename bound variables when performing substitution, as variable capture is guaranteed not to happen. We also propose an adequate notion of beta-reduction that preserves safety. In the same vein as Schwichtenberg's 1976 characterization of the simply-typed lambda calculus, we show that the numeric functions representable in the safe lambda calculus are exactly the multivariate polynomials; thus conditional is not definable. We also give a characterization of representable word functions. We then study the ...
Schubert calculus and singularity theory
Gorbounov, Vassily; Petrov, Victor
2012-02-01
Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces, it has to be redesigned when applied to other generalized cohomology theories such as the equivariant, the quantum cohomology, K-theory, and cobordism. All this cohomology theories are different deformations of the ordinary cohomology. In this note, we show that there is, in some sense, the universal deformation of Schubert calculus which produces the above mentioned by specialization of the appropriate parameters. We build on the work of Lerche Vafa and Warner. The main conjecture these authors made was that the classical cohomology of a Hermitian symmetric homogeneous manifold is a Jacobi ring of an appropriate potential. We extend this conjecture and provide a simple proof. Namely, we show that the cohomology of the Hermitian symmetric space is a Jacobi ring of a certain potential and the equivariant and the quantum cohomology and the K-theory is a Jacobi ring of a particular deformation of this potential. This suggests to study the most general deformations of the Frobenius algebra of cohomology of these manifolds by considering the versal deformation of the appropriate potential. The structure of the Jacobi ring of such potential is a subject of well developed singularity theory. This gives a potentially new way to look at the classical, the equivariant, the quantum and other flavors of Schubert calculus.
Borden, Robert S
1997-01-01
This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as lim
Menger, Karl
2007-01-01
One of the twentieth century's most original mathematicians and thinkers, Karl Menger taught students of many backgrounds. In this, his radical revision of the traditional calculus text, he presents pure and applied calculus in a unified conceptual frame, offering a thorough understanding of theory as well as of the methodology underlying the use of calculus as a tool.The most outstanding feature of this text is the care with which it explains basic ideas, a feature that makes it equally suitable for beginners and experienced readers. The text begins with a ""mini-calculus"" which brings out t
Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen
2015-01-01
Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…
Electronic Algebra and Calculus Tutor
Directory of Open Access Journals (Sweden)
Larissa Fradkin
2012-06-01
Full Text Available Modern undergraduates join science and engineering courses with poorer mathematical background than most contemporaries of the current faculty had when they were freshers. The problem is very acute in the United Kingdom but more and more countries adopt less resource intensive models of teaching and the problem spreads. University tutors and lecturers spend more and more time covering the basics. However, most of them still rely on traditional methods of delivery which presuppose that learners have a good memory and considerable time to practice, so that they can memorize disjointed facts and discover for themselves various connections between the underlying concepts. These suppositions are particularly unrealistic when dealing with a large number of undergraduates who are ordinary learners with limited mathematics background. The first author has developed a teaching system that allows such adult learners achieve relatively deep learning of mathematics – and remarkably quickly – through a teacher-guided (often called Socratic dialog, which aims at the frequent reinforcement of basic mathematical abstractions through Eulerian sequencing. These ideas have been applied to create a prototype of a Cognitive Mathematics Tutoring System aimed at teaching basic mathematics to University freshers., an electronic Personal Algebra and Calculus Tutor (e- PACT.
Semiclassical dynamics and magnetic Weyl calculus
International Nuclear Information System (INIS)
Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)
Semiclassical dynamics and magnetic Weyl calculus
Energy Technology Data Exchange (ETDEWEB)
Lein, Maximilian Stefan
2011-01-19
Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)
Getut Pramesti; Dwi Maryono
2013-01-01
Calculus is a finite mathematics concepts to solve infinite mathematics problems. The subject which is given to students grade 1 and 2 semester, is a basic science to understanding the other subject on education mathematic program, Mathematics and science department, teacher training and education faculty, Sebelas Maret University. Learning of Interactive Multimedia (MMI) is one ofÂ learning model based IT which can be used in Calculus I learning. This learning model have aim to enhance conc...
A MATLAB companion for multivariable calculus
Cooper, Jeffery
2001-01-01
Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton''s method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html.* Computer-oriented material that complements the essential topics in multivariable calculus* Main ideas presented with examples of computations and graphics displays using MATLAB * Numerous examples of short code in the text, which can be modified for use with the exercises* MATLAB files are used to implem...
Fractional Calculus in Wave Propagation Problems
Mainardi, Francesco
2012-01-01
Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention to wave propagation problems in linear viscoelastic media. Our purpose is to outline the role of fractional calculus in providing simplest evolution processes which are intermediate between diffusion and wave propagation. The present treatment mainly reflects the research activity and style of the author in the related scientific areas during the last decades.
What Does It Mean for a Student to Understand the First-Year Calculus? Perspectives of 24 Experts
Sofronas, Kimberly S.; DeFranco, Thomas C.; Vinsonhaler, Charles; Gorgievski, Nicholas; Schroeder, Larissa; Hamelin, Chris
2011-01-01
This article presents the views of 24 nationally recognized authorities in the field of mathematics, and in particular the calculus, on student understanding of the first-year calculus. A framework emerged that includes four overarching end goals for understanding of the first-year calculus: (a) mastery of the fundamental concepts and-or skills of…
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated with...
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
2014-01-01
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...
Essential calculus with applications
Silverman, Richard A
1989-01-01
Rigorous but accessible text introduces undergraduate-level students to necessary background math, then clear coverage of differential calculus, differentiation as a tool, integral calculus, integration as a tool, and functions of several variables. Numerous problems and a supplementary section of ""Hints and Answers."" 1977 edition.
Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas
2013-07-01
Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453
Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas
2013-01-01
Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved.
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming; Vigo, Roberto
2013-01-01
A main challenge of programming component-based software is to ensure that the components continue to behave in a reasonable manner even when communication becomes unreliable. We propose a process calculus, the Quality Calculus, for programming software components where it becomes natural to plan...
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Calculus Demonstrations Using MATLAB
Dunn, Peter K.; Harman, Chris
2002-01-01
The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions. PMID:19583533
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Mathematical methods for physical and analytical chemistry
Goodson, David Z
2011-01-01
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical
Hadlock, Charles R
2013-01-01
The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…
An Evaluative Calculus Project: Applying Bloom's Taxonomy to the Calculus Classroom
Karaali, Gizem
2011-01-01
In education theory, Bloom's taxonomy is a well-known paradigm to describe domains of learning and levels of competency. In this article I propose a calculus capstone project that is meant to utilize the sixth and arguably the highest level in the cognitive domain, according to Bloom et al.: evaluation. Although one may assume that mathematics is…
Improving Student Success in Calculus I Using a Co-Requisite Calculus I Lab
Vestal, Sharon Schaffer; Brandenburger, Thomas; Furth, Alfred
2015-01-01
This paper describes how one university mathematics department was able to improve student success in Calculus I by requiring a co-requisite lab for certain groups of students. The groups of students required to take the co-requisite lab were identified by analyzing student data, including Math ACT scores, ACT Compass Trigonometry scores, and…
Introduction to the calculus of variations
Dacorogna, Bernard
2004-01-01
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology. This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subjects most important problems, results and techniques. Despite the aim of addressing non-spe
Baxter Algebras and Umbral Calculus
Guo, Li
2004-01-01
We apply recent constructions of free Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of $\\lambda$-umbral calculi parameterized by $\\lambda$ in the base ring.
Calculus of variations and optimal control theory a concise introduction
Liberzon, Daniel
2011-01-01
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory
Introduction to the Rewriting Calculus
Cirstea, Horatiu; Kirchner, Claude
1999-01-01
The $\\rho$-calculus is a new calculus that integrates in a uniform and simple setting first-order rewriting, $\\lambda$-calculus and non-deterministic computations. This paper describes the calculus from its syntax to its basic properties in the untyped case. We show how it embeds first-order conditional rewriting and $\\lambda$-calculus. Finally we use the $\\rho$-calcul- us to give an operational semantics to the rewrite based language ELAN.
Ryan, Mark
2014-01-01
Slay the calculus monster with this user-friendly guide Calculus For Dummies, 2nd Edition makes calculus manageable-even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the ""how"" and ""why"" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll s
Elsgolc, L E; Stark, M
1961-01-01
Calculus of Variations aims to provide an understanding of the basic notions and standard methods of the calculus of variations, including the direct methods of solution of the variational problems. The wide variety of applications of variational methods to different fields of mechanics and technology has made it essential for engineers to learn the fundamentals of the calculus of variations. The book begins with a discussion of the method of variation in problems with fixed boundaries. Subsequent chapters cover variational problems with movable boundaries and some other problems; sufficiency
A Tasty Combination: Multivariable Calculus and Differential Forms
Goins, Edray Herber
2009-01-01
Differential Calculus is a staple of the college mathematics major's diet. Eventually one becomes tired of the same routine, and wishes for a more diverse meal. The college math major may seek to generalize applications of the derivative that involve functions of more than one variable, and thus enjoy a course on Multivariate Calculus. We serve this article as a culinary guide to differentiating and integrating functions of more than one variable -- using differential forms which are the basis for de Rham Cohomology.
Hermeneutics of differential calculus in eighteenth-century northern Germany.
Blanco, Mónica
2008-01-01
This paper applies comparative textbook analysis to studying the mathematical development of differential calculus in northern German states during the eighteenth century. It begins with describing how the four textbooks analyzed presented the foundations of calculus and continues with assessing the influence each of these foundational approaches exerted on the resolution of problems, such as the determination of tangents and extreme values, and even on the choice of coordinates for both algebraic and transcendental curves. PMID:19244874
Calculus in physics classes at UFRGS: an exploratory study
Maria Cecilia Pereira Santarosa; Marco Antonio Moreira
2011-01-01
This study is part f a larger one whose general objective is to investigate and to develop a new strategy for teaching Differential and Integral Calculus I, specifically for physics majors, through a possible integration with the teaching of General and Experimental Physics I. With the specific objective of identifying physics problem-situations that may help in making sense of the mathematical concepts used in Calculus I, and languages and notations that might be used in the teaching of Calc...
A "Mathematics Background Check"
Hubisz, John
2009-01-01
Early in my career someone else reported that the best indicator of success in calculus-based physics (CBP) at our school was whether students had taken mathematics in a certain region of New Brunswick. I sat down with a very longtime mathematics teacher and asked him what he thought students should know in mathematics after high school to succeed…
Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.
Christensen, Mark J
1981-01-01
Computing for Calculus focuses on BASIC as the computer language used for solving calculus problems.This book discusses the input statement for numeric variables, advanced intrinsic functions, numerical estimation of limits, and linear approximations and tangents. The elementary estimation of areas, numerical and string arrays, line drawing algorithms, and bisection and secant method are also elaborated. This text likewise covers the implicit functions and differentiation, upper and lower rectangular estimates, Simpson's rule and parabolic approximation, and interpolating polynomials. Other to
Complex Multiplicative Calculus
Bashirov, Agamirza; Riza, Mustafa
2011-01-01
In the present paper we extend the concepts of multiplicative de- rivative and integral to complex-valued functions of complex variable. Some drawbacks, arising with these concepts in the real case, are explained satis- factorily. Properties of complex multiplicative derivatives and integrals are studied. In particular, the fundamental theorem of complex multiplicative calculus, relating these concepts, is proved. It is shown that complex multi- plicative calculus is not just another realizat...
Desbrun, Mathieu; Hirani, Anil N.; Leok, Melvin; Marsden, Jerrold E.
2005-01-01
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (such as Lie derivatives) which are important in applications. Previous attempts at discrete exterior ca...
Cui, Helen; Thomas, Johanna; Kumar, Sunil
2013-01-01
We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging.
Introduction to the calculus of variations
Sagan, Hans
1992-01-01
Excellent text provides basis for thorough understanding of the problems, methods and techniques of the calculus of variations and prepares readers for the study of modern optimal control theory. Treatment limited to extensive coverage of single integral problems in one and more unknown functions. Carefully chosen variational problems and over 400 exercises. ""Should find wide acceptance as a text and reference.""-American Mathematical Monthly. 1969 edition. Bibliography.
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing ca...
Bigeometric Calculus and Runge Kutta Method
Riza, Mustafa; Eminağa, Buğçe
2014-01-01
The properties of the Bigeometric or proportional derivative are presented and discussed explicitly. Based on this derivative, the Bigeometric Taylor theorem is worked out. As an application of this calculus, the Bigeometric Runge-Kutta method is derived and is applied to academic examples, with known closed form solutions, and a sample problem from mathematical modelling in biology. The comparison of the results of the Bigeometric Runge-Kutta method with the ordinary Runge-Kutta method shows...
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
An alternative presentation of the π－calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π－calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.
Fractional calculus in bioengineering, part 3.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub
Introduction to tensor calculus, relativity and cosmology
Lawden, Derek F
2002-01-01
This elementary introduction pays special attention to aspects of tensor calculus and relativity that students tend to find most difficult. Its use of relatively unsophisticated mathematics in the early chapters allows readers to develop their confidence within the framework of Cartesian coordinates before undertaking the theory of tensors in curved spaces and its application to general relativity theory. Additional topics include black holes, gravitational waves, and a sound background in applying the principles of general relativity to cosmology. Numerous exercises advance the theoretical developments of the main text, thus enhancing this volume's appeal to students of applied mathematics and physics at both undergraduate and postgraduate levels.
Steele, Diana F.; Levin, Amy K.; Blecksmith, Richard; Shahverdian, Jill
2005-10-01
The purpose of this study was to investigate the ways in which a multi-layered women's calculus course influenced the participants' learning of mathematics. This study, conducted in a state university in the Midwestern region of the United States, revealed not only that women in this particular section of calculus were likely to select careers that involved mathematics, but that the focus on peer support, psychosocial issues such as self-confidence, and pedagogy helped the young women overcome gender barriers, as well as barriers of class, poverty, and race. In this article we provide some of the relevant quantitative statistics and relate the stories of two particular women through excerpts from interviews, student artefacts, and participant observation data. We selected these young women because they faced multiple barriers to success in Calculus I and might not have completed the course or taken additional mathematics courses without the support structures that were fundamental to the course.
Proof nets for the Displacement calculus
Moot, Richard
2016-01-01
We present a proof net calculus for the Displacement calculus and show its correctness. This is the first proof net calculus which models the Displacement calculus directly and not by some sort of translation into another formalism. The proof net calculus opens up new possibilities for parsing and proof search with the Displacement calculus.
Putting Differentials Back into Calculus
Dray, Tevian; Manogue, Corrine A.
2010-01-01
We argue that the use of differentials in introductory calculus courses is useful and provides a unifying theme, leading to a coherent view of the calculus. Along the way, we meet several interpretations of differentials, some better than others.
Analysis of Errors and Misconceptions in the Learning of Calculus by Undergraduate Students
Muzangwa, Jonatan; Chifamba, Peter
2012-01-01
This paper is going to analyse errors and misconceptions in an undergraduate course in Calculus. The study will be based on a group of 10 BEd. Mathematics students at Great Zimbabwe University. Data is gathered through use of two exercises on Calculus 1&2.The analysis of the results from the tests showed that a majority of the errors were due…
Investigations on the dual calculus
Tzevelekos, Nikos
2006-01-01
The Dual Calculus, proposed recently by Wadler, is the outcome of two distinct lines of research in theoretical computer science: (A) Efforts to extend the Curry–Howard isomorphism, established between the simply-typed lambda calculus and intuitionistic logic, to classical logic. (B) Efforts to establish the tacit conjecture that call-by-value (CBV) reduction in lambda calculus is dual to call-by-name (CBN) reduction. This paper initially investigates relations of the Dual Calculus t...
A development calculus for specifications
Institute of Scientific and Technical Information of China (English)
李未
2003-01-01
A first order inference system, named R-calculus, is defined to develop the specifications.This system intends to eliminate the laws which are not consistent with users' requirements. TheR-calculus consists of the structural rules, an axiom, a cut rule, and the rules for logical connectives.Some examples are given to demonstrate the usage of the R-calculus. Furthermore, the propertiesregarding reachability and completeness of the R-calculus are formally defined and proved.
Japaridze, Giorgi
2007-01-01
Cirquent calculus is a new proof-theoretic framework, originally motivited by the needs of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html ). Its main distinguishing feature is sharing: unlike the more traditional frameworks that manipulate tree- or forest-like objects such as formulas, sequents or hypersequents, cirquent calculus deals with circuit-style structures called cirquents. The present article elaborates a deep-inference cirquent calculus system CL8 for classical propositional logic and the corresponding fragment of the resource-conscious computability logic. It also shows the existence of polynomial-size analytic CL8-proofs of the pigeonhole principle -- the family of tautologies known to have no such proofs in traditional systems.
Malinowska, Agnieszka B
2014-01-01
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations fo...
Gelfand, I M
2000-01-01
Based on a series of lectures given by I. M. Gelfand at Moscow State University, this book actually goes considerably beyond the material presented in the lectures. The aim is to give a treatment of the elements of the calculus of variations in a form both easily understandable and sufficiently modern. Considerable attention is devoted to physical applications of variational methods, e.g., canonical equations, variational principles of mechanics, and conservation laws.The reader who merely wishes to become familiar with the most basic concepts and methods of the calculus of variations need on
Šobich, Adam
2011-01-01
Bachelor’s thesis is focused on system design of eliminator of dental calculus operating at a frequency of 27 kHz and reaching the intensity of ultrasound on the applicator tip to 5 W/cm2. The work analyzes problems of dental calculus, principle of ultrasonic waves and the physical phenomena occurring in the environment, which it passes. Another part of the work describes the creation of waves using ultrasonic transducer and the amplification of ultrasound in the waveguide. Practical part of ...
Pedersen, Steen
2015-01-01
This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section
Ayres, Frank
1999-01-01
Students can gain a thorough understanding of differential and integral calculus with this powerful study tool. They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research. PMID:20615808
International Nuclear Information System (INIS)
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed
Logic in elementary mathematics
Exner, Robert M
2011-01-01
This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-12-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is a prerequisite to study the electrodynamic phenomena that are discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
The simply typed rewriting calculus
Cirstea, Horatiu; Kirchner, Claude
2000-01-01
The rewriting calculus is a rule construction and application framework. As such it embeds in a uniform way term rewriting and lambda-calculus. Since rule application is an explicit object of the calculus, it allows us also to handle the set of results explicitly. We present a simply typed version of the rewriting calculus. With a good choice of the type system, we show that the calculus is type preserving and terminating, i.e. verifies the subject reduction and strong normalization properties.
Kohatsu, Arturo; Miquel, Montero
2003-01-01
This article is an introduction to Malliavin Calculus for practitioners. We treat one specific application to the calculation of greeks in Finance. We consider also the kernel density method to compute greeks and an extension of the Vega index called the local vega index.
On Multiplicative Fractional Calculus
Abdeljawad, Thabet
2015-01-01
We set the main concepts for multiplicative fractional calculus. We define Caputo, Riemann and Letnikov multiplicative fractional derivatives and multiplicative fractional integrals and study some of their properties. Finally, the multiplicative analogue of the local conformable fractional derivative and integral is studied.
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...
DEFF Research Database (Denmark)
Ernst, Erik; Ostermann, Klaus; Cook, William Randall
2006-01-01
, statically typed model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static...
Jiang, Yuming
2009-01-01
Network calculus, a theory dealing with queuing systems found in computer networks, focuses on performance guarantees. This title presents a comprehensive treatment for the stochastic service-guarantee analysis research and provides basic introductory material on the subject, as well as discusses the various researches in the area.
Generalized calculus with applications to matter and forces
Campos, L M B C
2014-01-01
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: •Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of ...
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
Relational Mathematics Continued
Schmidt, Gunther; Winter, Michael
2014-01-01
This is in some sense an addendum to the book Relational Mathematics by the first-named author. It originated from work on diverse other topics during which a lot of purely relational results with broad applicability have been produced. These include results on domain construction with novel formulae for existential and inverse image, a relational calculus for binary mappings, and the development of a formally derived relational calculus of Kronecker-, strict fork-, and strict join-operators....
Teaching Mathematics to Civil Engineers
Sharp, J. J.; Moore, E.
1977-01-01
This paper outlines a technique for teaching a rigorous course in calculus and differential equations which stresses applicability of the mathematics to problems in civil engineering. The method involves integration of subject matter and team teaching. (SD)
Mathematics and the physical world
Kline, Morris
2012-01-01
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.
Making Implicit Multivariable Calculus Representations Explicit: A Clinical Study
McGee, Daniel; Moore-Russo, Deborah; Martinez-Planell, Rafael
2015-01-01
Reviewing numerous textbooks, we found that in both differential and integral calculus textbooks the authors commonly assume that: (i) students can generalize associations between representations in two dimensions to associations between representations of the same mathematical concept in three dimensions on their own; and (ii) explicit…
Contrasting Cases of Calculus Students' Understanding of Derivative Graphs
Haciomeroglu, Erhan Selcuk; Aspinwall, Leslie; Presmeg, Norma C.
2010-01-01
This study adds momentum to the ongoing discussion clarifying the merits of visualization and analysis in mathematical thinking. Our goal was to gain understanding of three calculus students' mental processes and images used to create meaning for derivative graphs. We contrast the thinking processes of these three students as they attempted to…
On Flipping First-Semester Calculus: A Case Study
Petrillo, Joseph
2016-01-01
High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are "flipping" (or inverting) their classrooms. By flipping, we…
Geometric calculus according to the Ausdehnungslehre of H. Grassmann
Peano, Giuseppe
2000-01-01
Calcolo Geometrico, G. Peano's first publication in mathematical logic, is a model of expository writing, with a significant impact on 20th century mathematics. Kannenberg's lucid and crisp translation, Geometric Calculus, will appeal to historians of mathematics, researchers, graduate students, and general readers interested in the foundations of mathematics and the development of a formal logical language. In Chapter IX, with the innocent-sounding title "Transformations of a linear system," one finds the crown jewel of the book: Peano's axiom system for a vector space, the first-ever presentation of a set of such axioms. The very wording of the axioms (which Peano calls "definitions") has a remarkably modern ring, almost like a modern introduction to linear algebra. Peano also presents the basic calculus of set operation, introducing the notation for 'intersection,' 'union,' and 'element of,' many years before it was accepted. Despite its uniqueness, Calcolo Geometrico has been strangely neglected by histor...
ESeal Calculus： A Secure Mobile Calculus
Institute of Scientific and Technical Information of China (English)
PengRong; UuPing
2003-01-01
The ESeal Calculus is a secure mobile calculus based on Seal Calculus. By using open-channels,ESeal Calculus makes it possible to communicate between any two arbitrary seals with some secure restrictions. It improves the expression ability and efficiency of Seal calculus without losing security.
Bunny hops: using multiplicities of zeroes in calculus for graphing
Miller, David; Deshler, Jessica M.; Hansen, Ryan
2016-07-01
Students learn a lot of material in each mathematics course they take. However, they are not always able to make meaningful connections between content in successive mathematics courses. This paper reports on a technique to address a common topic in calculus I courses (intervals of increase/decrease and concave up/down) while also making use of students' pre-existing knowledge about the behaviour of functions around zeroes based on multiplicities.
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus I covers functions, limits, basic derivatives, and integrals.
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...... case studies and it has been extended in several directions. The aim of this paper is to provide a thorough presentation of the logic....
Feinsilver, Philip; Schott, René
2007-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin, and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, incl...
On paragrassmann differential calculus
International Nuclear Information System (INIS)
The paper significantly extends and generalizes our previous paper. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of (p+1)x(p+1) complex matrices. For many variables we give a general construction of the differentiation algebras. Some particular examples are related to the multiparametric quantum deformations of the harmonic oscillators. 18 refs
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
Woodward, Ernest
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Pre-Calculus reviews sets, numbers, operations and properties, coordinate geometry, fundamental algebraic topics, solving equations and inequalities, functions, trigonometry, exponents
Bell, Denis R
2006-01-01
This introduction to Malliavin's stochastic calculus of variations is suitable for graduate students and professional mathematicians. Author Denis R. Bell particularly emphasizes the problem that motivated the subject's development, with detailed accounts of the different forms of the theory developed by Stroock and Bismut, discussions of the relationship between these two approaches, and descriptions of a variety of applications.The first chapter covers enough technical background to make the subsequent material accessible to readers without specialized knowledge of stochastic analysis. Succe
Treiman, Jay S
2014-01-01
Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM. fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. All three-dimensional graphs have rotatable versions included as extra source materials and may be freely downloaded and manipulated with Maple Player; a free Maple Player App is available for the iPad on iTunes. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits, and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additio...
Introduction to the operational calculus
Berg, Lothar
2013-01-01
Introduction to the Operational Calculus is a translation of ""Einfuhrung in die Operatorenrechnung, Second Edition."" This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work ""Operational Calculus."" Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant
Lambda-mu-calculus and Bohm's theorem
David, René; Py, Walter
2001-01-01
The lambda mu-calculus is an extension of the lambda-calculus that has been introduced by M. Parigot to give an algorithmic content to classical proofs. We show that Bohm's theorem fails in this calculus.
An operator calculus for surface and volume modeling
Gordon, W. J.
1984-01-01
The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.
The history of the calculus and its conceptual development
Boyer, Carl B
1959-01-01
This book, for the first time, provides laymen and mathematicians alike with a detailed picture of the historical development of one of the most momentous achievements of the human intellect ― the calculus. It describes with accuracy and perspective the long development of both the integral and the differential calculus from their early beginnings in antiquity to their final emancipation in the 19th century from both physical and metaphysical ideas alike and their final elaboration as mathematical abstractions, as we know them today, defined in terms of formal logic by means of the idea of a
Early Vector Calculus: A Path through Multivariable Calculus
Robertson, Robert L.
2013-01-01
The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)
The early period of the calculus of variations
Freguglia, Paolo
2016-01-01
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli’s work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange’s δ-calculus, including: • The isoperimetrical problems • Shortest lines and geodesics • Euler’s Methodus Inveniendi and the two Addi...
Scherger, Nicole
2012-01-01
Of the most universal applications in integral calculus are those involved with finding volumes of solids of revolution. These profound problems are typically taught with traditional approaches of the disk and shell methods, after which most calculus curriculums will additionally cover arc length and surfaces of revolution. Even in these visibly…
Fluorescence spectroscopy of dental calculus
International Nuclear Information System (INIS)
The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined
The Basic Principle of Calculus?
Hardy, Michael
2011-01-01
A simple partial version of the Fundamental Theorem of Calculus can be presented on the first day of the first-year calculus course, and then relied upon repeatedly in assigned problems throughout the course. With that experience behind them, students can use the partial version to understand the full-fledged Fundamental Theorem, with further…
Calculus in the Middle School?
Barger, Rita H.; McCoy, Ann C.
2010-01-01
This article presents an example of how middle school teachers can lay a foundation for calculus. Although many middle school activities connect directly to calculus concepts, the authors have decided to look in depth at only one: the concept of change. They will show how teachers can lead their students to see and appreciate the calculus…
A Formal Calculus for Categories
DEFF Research Database (Denmark)
Cáccamo, Mario José
This dissertation studies the logic underlying category theory. In particular we present a formal calculus for reasoning about universal properties. The aim is to systematise judgements about functoriality and naturality central to categorical reasoning. The calculus is based on a language which...
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for
Calculus problems and solutions
Ginzburg, A
2011-01-01
Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif
Barnes, David
2015-01-01
We show that one can use model categories to construct rational orthogonal calculus. That is, given a continuous functor from vector spaces to based spaces one can construct a tower of approximations to this functor depending only on the rational homology type of the input functor, whose layers are given by rational spectra with an action of $O(n)$. By work of Greenlees and Shipley, we see that these layers are classified by torsion $H^*(B SO(n))[O(n)/SO(n)]$-modules.
Advanced calculus problem solver
REA, Editors of
2012-01-01
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of advanced calculus currently av
Provability Calculus of Constructions
DEFF Research Database (Denmark)
Nyblad, Kasten
This thesis presents a type system, Provability Calculus of Constructions (PCoC) that can be used for the formalization of logic. In a theorem prover based on the system, the user can extend the prover with new inference rules in a logically consistent manner. This is done by representing PCoC as...... values and data types within PCoC. The new feature of PCoC is that results of the representation of PCoC can be lifted to PCoC itself. The lifting is fully formalized in PCoC, and the logic therefore supports reflection....
Improving Student Success in Calculus: A Comparison of Four College Calculus Classes
Bagley, Spencer Franklin
The quality of education in science, technology, engineering, and mathematics (STEM) fields is an issue of particular educational and economic importance, and Calculus I is a linchpin course in STEM major tracks. A national study is currently being conducted examining the characteristics of successful programs in college calculus (CSPCC, 2012). In work related to the CSPCC program, this study examines the effects on student outcomes of four different teaching strategies used at a single institution. The four classes were a traditional lecture, a lecture with discussion, a lecture incorporating both discussion and technology, and an inverted model. This dissertation was guided by three questions: (1) What impact do these four instructional approaches have on students' persistence, beliefs about mathematics, and conceptual and procedural achievement in calculus? (2) How do students at the local institution compare to students in the national database? And (3) How do the similarities and differences in opportunities for learning presented in the four classes contribute to the similarities and differences in student outcomes? Quantitative analysis of surveys and exams revealed few statistically significant differences in outcomes, and students in the inverted classroom often had poorer outcomes than those in other classes. Students in the technology-enhanced class scored higher on conceptual items on the final exam than those in other classes. Comparing to the national database, local students had similar switching rates but less expert-like attitudes and beliefs about mathematics than the national average. Qualitative analysis of focus group interviews, classroom observations, and student course evaluations showed that several implementation issues, some the result of pragmatic constraints, others the result of design choice, weakened affordances provided by innovative features and shrunk the differences between classes. There were substantial differences between the
On flipping first-semester calculus: a case study
Petrillo, Joseph
2016-05-01
High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are 'flipping' (or inverting) their classrooms. By flipping, we mean administering course content outside of the classroom and replacing the traditional in-class lectures with discussion, practice, group work, and other elements of active learning. This paper presents the major results from a three-year study of a flipped, first-semester calculus course at a small, comprehensive, American university with a well-known engineering programme. The data we have collected help quantify the positive and substantial effects of our flipped calculus course on failure rates, scores on the common final exam, student opinion of calculus, teacher impact on measurable outcomes, and success in second-semester calculus. While flipping may not be suitable for every teacher, every student, and in every situation, this report provides some evidence that it may be a viable option for those seeking an alternative to the traditional lecture model.
Open Calculus: A Free Online Learning Environment
Korey, Jane; Rheinlander, Kim; Wallace, Dorothy
2007-01-01
Dartmouth College mathematicians have developed a free online calculus course called "Open Calculus." Open Calculus is an exportable distance-learning/self-study environment for learning calculus including written text, nearly 4000 online homework problems and instructional videos. The paper recounts the evaluation of course elements since 2000 in…
A Simple Acronym for Doing Calculus: CAL
Hathaway, Richard J.
2008-01-01
An acronym is presented that provides students a potentially useful, unifying view of the major topics covered in an elementary calculus sequence. The acronym (CAL) is based on viewing the calculus procedure for solving a calculus problem P* in three steps: (1) recognizing that the problem cannot be solved using simple (non-calculus) techniques;…
6th Conference on Non-integer Order Calculus and Its Applications
Łukaniszyn, Marian; Stanisławski, Rafał
2015-01-01
This volume presents selected aspects of non-integer, or fractional order systems, whose analysis, synthesis and applications have increasingly become a real challenge for various research communities, ranging from science to engineering. The spectrum of applications of the fractional order calculus has incredibly expanded, in fact it would be hard to find a science/engineering-related subject area where the fractional calculus had not been incorporated. The content of the fractional calculus is ranged from pure mathematics to engineering implementations and so is the content of this volume. The volume is subdivided into six parts, reflecting particular aspects of the fractional order calculus. The first part contains a single invited paper on a new formulation of fractional-order descriptor observers for fractional-order descriptor continous LTI systems. The second part provides new elements to the mathematical theory of fractional-order systems. In the third part of this volume, a bunch of new results in ap...
A generalized nonlocal vector calculus
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Do Left or Right Brain Training Exercises Have the Greater Effect upon College Calculus Achievement?
Miller, Cynthia A.
Research supports the premise that various mathematical topics can be categorized as being performed better by the left or right brain hemisphere. This study examined the effect of left and right brain hemispheric lateralization exercises upon course grades in two sections of Analysis I (beginning calculus for mathematics/science majors) at a…
Redesigning the Calculus Sequence at a Research University: Issues, Implementation, and Objectives.
Keynes, Harvey B.; Olson, Andrea M.
2000-01-01
Discusses the progress and challenges of a new reformed calculus sequence for science, engineering, and mathematics students developed by the Institute of Technology Centre for Educational Programs and School of Mathematics at the University of Minnesota. Compares achievement and retention of Initiative students with a control group from a…
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
Gupta, CB; Kumar, V
2009-01-01
About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top
Kuang, Yang
2012-01-01
The fun and easy way to learn pre-calculus Getting ready for calculus but still feel a bit confused? Have no fear. Pre-Calculus For Dummies is an un-intimidating, hands-on guide that walks you through all the essential topics, from absolute value and quadratic equations to logarithms and exponential functions to trig identities and matrix operations. With this guide's help you'll quickly and painlessly get a handle on all of the concepts - not just the number crunching - and understand how to perform all pre-calc tasks, from graphing to tackling proofs. You'll also get a new appreciation for
Stochastic Calculus of Wrapped Compartments
Coppo, Mario; Drocco, Maurizio; Grassi, Elena; Troina, Angelo; 10.4204/EPTCS.28.6
2010-01-01
The Calculus of Wrapped Compartments (CWC) is a variant of the Calculus of Looping Sequences (CLS). While keeping the same expressiveness, CWC strongly simplifies the development of automatic tools for the analysis of biological systems. The main simplification consists in the removal of the sequencing operator, thus lightening the formal treatment of the patterns to be matched in a term (whose complexity in CLS is strongly affected by the variables matching in the sequences). We define a stochastic semantics for this new calculus. As an application we model the interaction between macrophages and apoptotic neutrophils and a mechanism of gene regulation in E.Coli.
Foundations of mathematical logic
Curry, Haskell B
2010-01-01
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.
Mathematics for quantum chemistry
Anderson, Jay Martin
2005-01-01
This concise volume offers undergraduates an introduction to mathematical formalism in problems of molecular structure and motion. The main topics cover the calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics and applications to molecular motion. Answers to problems. 1966 edition.
Directory of Open Access Journals (Sweden)
Getut Pramesti
2013-07-01
Full Text Available Calculus is a finite mathematics concepts to solve infinite mathematics problems. The subject which is given to students grade 1 and 2 semester, is a basic science to understanding the other subject on education mathematic program, Mathematics and science department, teacher training and education faculty, Sebelas Maret University. Learning of Interactive Multimedia (MMI is one ofÂ learning model based IT which can be used in Calculus I learning. This learning model have aim to enhance concept mastery and to improve the learning attitude of students a multimedia interactive based tutorial model of Calculus I is applied. This research is quasi experimental with subject on SBI class from the faculty of teacher training and education Sebelas Maret University with mathematical education as a experiment class and physic education as a control class. Research data were collected by using a concept mastery pretest, posttest and a questionnaire. Data analysis was conducted by using t â€“test. The result of this research show that the MMI learning have significance on improve Calculus learning quality and also improve the learning attitude of students. Â Keywords: Calculus; Interactive multimedia; learning attitude
The M-calculus: a Higher-Order Distributed Process Calculus
Schmitt, Alan; Stefani, Jean-Bernard
2002-01-01
This report presents a new distributed process calculus, called the -calculus. Key insights for the calculus are similar to those laid out by L. Cardelli for its calculus of ambients. Mobile Ambients and other recent distributed process calculi such as the Join calculus or the D-calculus introduce notions of distributed locations or localities, corresponding to a spatial partitioning of computations and embodying different features of distributed computations (e.g. failures, access control, p...
Mathematical statistics with applications
Ramachandran, KM
2009-01-01
Mathematical Statistics with Applications provides a calculus-based theoretical introduction to mathematical statistics while emphasizing interdisciplinary applications as well as exposure to modern statistical computational and simulation concepts that are not covered in other textbooks. Includes the Jackknife, Bootstrap methods, the EM algorithms and Markov chain Monte Carlo methods. Prior probability or statistics knowledge is not required.* Step-by-step procedure to solve real problems, making the topic more accessible* Exercises blend theory and modern applications*
Dynamic Visualizations of Calculus Ideas.
Embse, Charles Vonder
2001-01-01
Presents three fundamental ideas of calculus and explains using the coordinate plane geometrically. Uses Cabri Geometry II to show how computer geometry systems can facilitate student understanding of general conic objects and its dynamic algebraic equations. (KHR)
Testicular calculus: A rare case
Directory of Open Access Journals (Sweden)
Volkan Sen
2015-06-01
Full Text Available ABSTRACTBackground:Testicular calculus is an extremely rare case with unknown etiology and pathogenesis. To our knowledge, here we report the third case of testicular calculus. A 31-year-old man was admitted to our clinic with painful solid mass in left testis. After diagnostic work-up for a possible testicular tumour, he underwent inguinal orchiectomy and histopathologic examination showed a testicular calculus.Case hypothesis:Solid testicular lesions in young adults generally correspond to testicular cancer. Differential diagnosis should be done carefully.Future implications:In young adults with painful and solid testicular mass with hyperechogenic appearance on scrotal ultrasonography, testicular calculus must be kept in mind in differential diagnosis. Further reports on this topic may let us do more clear recommendations about the etiology and treatment of this rare disease.
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Decidability of Mean Value Calculus
Institute of Scientific and Technical Information of China (English)
LI Xiaoshan
1999-01-01
Mean Value Calculus (MVC)[1] is a real-time logicwhich can be used to specify and verify real-time systems[2]. As aconservative extension of Duration Calculus (DC)[3], MVC increasesthe expressive power but keeps the properties of DC. In this paper wepresent decidability results of MVC. An interesting result is that propositional MVC with chop star operator is still decidable, which develops the results of[4]and[5].
Foliated stochastic calculus: Harmonic measures
Catuogno, Pedro J.; Ledesma, Diego S.; Ruffino, Paulo R
2010-01-01
In this article we present an intrinsec construction of foliated Brownian motion via stochastic calculus adapted to foliation. The stochastic approach together with a proposed foliated vector calculus provide a natural method to work on harmonic measures. Other results include a decomposition of the Laplacian in terms of the foliated and basic Laplacians, a characterization of totally invariant measures and a differential equation for the density of harmonic measures.
Professor Rudolf Gorenflo and his Contribution to Fractional Calculus
Luchko, Yury; Mainardi, Francesco; Rogosin, Sergei
2011-01-01
MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary This paper presents a brief overview of the life story and professional career of Prof. R. Gorenflo - a well-known mathematician, an expert in the field of Differential and Integral Equations, Numerical Mathematics, Fractional Calculus and Applied Analysis, an interesting conversational partner, an experienced colleague, and a real friend. Especially his role in the modern Fraction...
The Initial Conditions of Fractional Calculus
International Nuclear Information System (INIS)
During the past fifty years , Fractional Calculus has become an original and renowned mathematical tool for the modelling of diffusion Partial Differential Equations and the design of robust control algorithms. However, in spite of these celebrated results, some theoretical problems have not yet received a satisfying solution. The mastery of initial conditions, either for Fractional Differential Equations (FDEs) or for the Caputo and Riemann-Liouville fractional derivatives, remains an open research domain. The solution of this fundamental problem, also related to the long range memory property, is certainly the necessary prerequisite for a satisfying approach to modelling and control applications. The fractional integrator and its continuously frequency distributed differential model is a valuable tool for the simulation of fractional systems and the solution of initial condition problems. Indeed, the infinite dimensional state vector of fractional integrators allows the direct generalization to fractional calculus of the theoretical results of integer order systems. After a reminder of definitions and properties related to fractional derivatives and systems, this presentation is intended to show, based on the results of two recent publications [1,2], how the fractional integrator provides the solution of the initial condition problem of FDEs and of Caputo and Riemann-Liouville fractional derivatives. Numerical simulation examples illustrate and validate these new theoretical concepts.
Ganesh, A
2009-01-01
About the Book: This book Engineering Mathematics-II is designed as a self-contained, comprehensive classroom text for the second semester B.E. Classes of Visveswaraiah Technological University as per the Revised new Syllabus. The topics included are Differential Calculus, Integral Calculus and Vector Integration, Differential Equations and Laplace Transforms. The book is written in a simple way and is accompanied with explanatory figures. All this make the students enjoy the subject while they learn. Inclusion of selected exercises and problems make the book educational in nature. It shou
Stone, Michael; Goldbart, Paul
2009-07-01
Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.
Driessche, Pauline; Wu, Jianhong
2008-01-01
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...
Ortiz, Enrique
2007-01-01
Your complete guide to a higher score on the CSET: Mathematics.Features information about certification requirements, an overview of the test - with a scoring scale, description of the test structure and format and proven test-taking strategies Approaches for answering the three types of questions: multiple-choiceenhanced multiple-choiceconstructed-response. Reviews and PracticeFocused reviews of all areas tested: algebra, number theory, geometry, probability, calculus, and history of mathematicsPractice problems for selected difficult areas and domains 2 Full-Length Practice Tests are structured like the actual exam and are complete with answers and explanationsThe Glossary of Terms has description of Key Formulas and PropertiesTest-Prep Essentials from the Experts at CliffsNotes
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
Functional analysis and the Feynman operator calculus
Gill, Tepper L
2016-01-01
This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers.
Tensor calculus for engineers and physicists
de Souza Sánchez Filho, Emil
2016-01-01
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...
Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students
Kim Rheinlander; Dorothy Wallace
2011-01-01
This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better a...
Calculus for cognitive scientists derivatives, integrals and models
Peterson, James K
2016-01-01
This book provides a self-study program on how mathematics, computer science and science can be usefully and seamlessly intertwined. Learning to use ideas from mathematics and computation is essential for understanding approaches to cognitive and biological science. As such the book covers calculus on one variable and two variables and works through a number of interesting first-order ODE models. It clearly uses MatLab in computational exercises where the models cannot be solved by hand, and also helps readers to understand that approximations cause errors – a fact that must always be kept in mind.
Real quaternionic calculus handbook
Morais, João Pedro; Sprößig, Wolfgang
2014-01-01
Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introductory one- or two-semester undergraduate course on some of the major aspects of real quaternion analysis in exercises. Alternatively, it may be used for beginning graduate level courses and as a reference work. With exercises at the end of each chapter and its straightforward writing style the book addresses readers who ...
Mathematics for the liberal arts
Bindner, Donald; Hemmeter, Joe
2014-01-01
Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...
An Intuitive Calculus Book for Engineers Um Livro de Cálculo Intuitivo para Engenheiros
Directory of Open Access Journals (Sweden)
Gustavo Alexandre de Miranda
2010-06-01
Full Text Available With the purpose of studying the history of calculus teaching and, particularly, the consequences of Calculus Made Easy (1910 in the mathematics education context, this work intends to make an historical analysis to clarify the connections between Silvanus Phillips Thompson (its author and education in the early Twentieth Century, mainly mathematics education. Thompson was concerned about Physics and Radiology,however, at the dawn of the new century, his interests in technical education had also burgeoned. One of his goals was to demystify Calculus, tackling the subject intuitively – Calculus Made Easy. The book did not draw much respect from mathematicians and was acridly criticized. Keywords: Mathematics Education, History of Mathematics Education, Silvanus Phillips Thompson, Calculus Made Easy.Com o intuito de estudar a história do ensino de Cálculo e, mais especificamente, os desdobramentos do livro Calculus Made Easy (1910 no contexto da educação matemática, este trabalho procura fazer uma análise histórica que elucide as relações entre Silvanus Phillips Thompson (autor do livro e a educação do início do século XX, particularmente a educação matemática. Thompson legou muito às áreas da física e da radiologia, porém, com a chegada do novo século, passou a se dedicar intensamente à educação técnica de seus compatriotas ingleses. Um de seus objetivos era desmistificar alguns conceitos do Cálculo, tratando o assunto de maneira intuitiva. Por esse motivo, o livro foi criticado por alguns matemáticos. Palavras-chave: Educação Matemática. História da Educação Matemática. Silvanus Phillips Thompson. Calculus Made Easy.
Students attitude towards calculus subject: Bumiputera case-study
Awang, Noorehan; Ilias, Mohd Rijal; Che Hussain, Wan Siti Esah; Mokhtar, Siti Fairus
2013-04-01
Mathematics has always become the most dislike subject among other subjects in school. Study showed that attitudes of students in science subjects such as mathematics were closely related to how they solve problems, accessing ideas and making a right decision. According to another study on mathematics achievement of eighth grade students in Malaysia, mathematics grades among bumiputera students was lower when compared to other races such as Chinese and Indians. The poor performance was due to their attitude and pre-conceived ideas towards the subject. Therefore, this study was designed todetermine the criteria and subcriteria that were considered important in measuring students' attitude toward mathematics among the bumiputeras. Factor analysis was carried out to identify the groups among criterion. Instrument used to measure mathematics attitude was Test of Mathematics Related Attitude (TOMRA) which measured student attitudes in four criteria: normality of mathematics, attitudes towards mathematics inquiry, adoption of mathematics attitude and enjoyment of mathematics lessons. The target population of this study was all computer science and quantitative science students who enrolled Calculus subject in UiTM Kedah. Findings shows that there are two criteria that influenced students attitude toward mathematics namely normality of mathematics with eleven subcriteria and enjoyment of mathematics with eight subcriteria. From the analysis it shows that the total percentage of variation explained is 35.071% with 0.837 Cronbach's alpha reliability test. The findings will help the lecturers, parents and society to consider what action should be taken to install interest and positive attitude of bumiputera students towards mathematics and thus improve their achievement.
The untyped stack calculus and Bohm's theorem
Alberto Carraro
2013-01-01
The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.
DEFF Research Database (Denmark)
De Fraine, Bruno; Ernst, Erik; Südholt, Mario
2012-01-01
Aspect-oriented programming (AOP) has produced interesting language designs, but also ad hoc semantics that needs clarification. We contribute to this clarification with a calculus that models essential AOP, both simpler and more general than existing formalizations. In AOP, advice may intercept......-oriented code. Two well-known pointcut categories, call and execution, are commonly considered similar.We formally expose their differences, and resolve the associated soundness problem. Our calculus includes type ranges, an intuitive and concise alternative to explicit type variables that allows advice...... to be polymorphic over intercepted methods. We use calculus parameters to cover type safety for a wide design space of other features. Type soundness is verified in Coq....
Synthesizing controllers from duration calculus
DEFF Research Database (Denmark)
Fränzle, Martin
1996-01-01
Duration Calculus is a logic for reasoning about requirements for real-time systems at a high level of abstraction from operational detail, which qualifies it as an interesting starting point for embedded controller design. Such a design activity is generally thought to aim at a control device the...... physical behaviours of which satisfy the requirements formula, i.e. the refinement relation between requirements and implementations is taken to be trajectory inclusion. Due to the abstractness of the vocabulary of Duration Calculus, trajectory inclusion between control requirements and controller designs...... relation for embedded controller design and exploit this fact for developing an automatic procedure for controller synthesis from specifications formalized in Duration Calculus. As far as we know, this is the first positive result concerning feasibility of automatic synthesis from dense-time Duration...
Fluorescence detection of dental calculus
International Nuclear Information System (INIS)
This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 – 645 nm and 340 – 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy
Applying π-Calculus to Practice
DEFF Research Database (Denmark)
Abendroth, Jorg
2003-01-01
The π-Calculus has been developed to reason about behavioural equivalence. Different notations of equivalence are defined in terms of process interactions, as well as the context of processes. There are various extensions of the π-Calculus, such as the SPI calculus, which has primitives to facili...
Graphic lambda calculus and knot diagrams
Buliga, Marius
2012-01-01
In arXiv:1207.0332 [cs.LO] was proposed a graphic lambda calculus formalism, which has sectors corresponding to untyped lambda calculus and emergent algebras. Here we explore the sector covering knot diagrams, which are constructed as macros over the graphic lambda calculus.
The differential lambda-mu-calculus
Vaux, Lionel
2007-01-01
We define a differential lambda-mu-calculus which is an extension of both Parigot's lambda-mu-calculus and Ehrhard- Regnier's differential lambda-calculus. We prove some basic properties of the system: reduction enjoys Church-Rosser and simply typed terms are strongly normalizing.
The Power of Investigative Calculus Projects
Perrin, John Robert; Quinn, Robert J.
2008-01-01
This article describes investigative calculus projects in which students explore a question or problem of their own construction. Three exemplary pieces of student work are showcased. Investigative calculus projects are an excellent way to foster student understanding and interest in calculus. (Contains 4 figures.)
An AP Calculus Classroom Amusement Park
Ferguson, Sarah
2016-01-01
Throughout the school year, AP Calculus teachers strive to teach course content comprehensively and swiftly in an effort to finish all required material before the AP Calculus exam. As early May approaches and the AP Calculus test looms, students and teachers nervously complete lessons, assignments, and assessments to ensure student preparation.…
Vaux, Lionel
2009-01-01
We introduce an extension of the pure lambda-calculus by endowing the set of terms with a structure of vector space, or more generally of module, over a fixed set of scalars. Terms are moreover subject to identities similar to usual point-wise definition of linear combinations of functions with values in a vector space. We then study a natural extension of beta-reduction in this setting: we prove it is confluent, then discuss consistency and conservativity over the ordinary lambda-calculus. W...
k-Schur functions and affine Schubert calculus
Lam, Thomas; Morse, Jennifer; Schilling, Anne; Shimozono, Mark; Zabrocki, Mike
2014-01-01
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with ...
Fractional calculus in hydrologic modeling: A numerical perspective.
Benson, David A; Meerschaert, Mark M; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
Implementation of inherence calculus in the PowerLoom environment
Wachulski, Marcin F.; Mulawka, Jan J.; Nieznański, Edward
The article describes an attempt to implement abstract and concrete inherence calculi in the PowerLoom technology. Issues in the field of artificial intelligence, ontology and philosophy have been addressed. The inherence calculus is a type of a formal logic system. The PowerLoom technology consists of a knowledge representation language and an inference engine. Six inherence calculi have been implemented and an appropriate testing environment has been developed. The inherence calculus has been also extended by categorical properties and a theoretical discussion of ontological Boolean algebra has been conducted. Carried out experiments showed properties of the inherence calculi and also verified capabilities of PowerLoom to construct such logic systems. It occurred that expert system operational mode of PowerLoom outperforms its abilities to work as a mathematical theorem prover.
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
Energy Technology Data Exchange (ETDEWEB)
David A. Benson; Mark M. Meerschaert; Jordan Revielle
2012-01-01
Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.
Time-division multiplexing vs network calculus: A comparison
DEFF Research Database (Denmark)
Puffitsch, Wolfgang; Sørensen, Rasmus Bo; Schoeberl, Martin
2015-01-01
Networks-on-chip are increasingly common in modern multicore architectures. However, general-purpose networks-on-chip are not always well suited for real-time applications that require bandwidth and latency guarantees. Two approaches to provide real-time guarantees have emerged: time......-division multiplexing, where traffic is scheduled according to a precalculated static schedule, and network calculus, a mathematical framework to reason about dynamically scheduled networks. This paper compares the two approaches to provide insight into their relative advantages and disadvantages. The results show...... that time-division multiplexing leads to better worst-case latencies, while network calculus supports higher bandwidths. Furthermore, time-division multiplexing leads to a simpler hardware implementation, while dynamically scheduled networks-on-chip allow the integration of best-effort traffic in the on...
A Calculus of Higher-Order Distributed Components
Stefani, Jean-Bernard
2003-01-01
This report presents a calculus for higher-order distributed components, the Kell calculus. The calculus can be understood as a direct extension of the higher-order -calculus with programmable locations. The report illustrates the expressive power of the Kell calculus by encoding several process calculi with explicit locations, including Mobile Ambients, the Distributed Join calculus and the . The latter encoding demonstrates that the Kell calculus retains the expressive power of the but in a...
ENERGY CALCULUS IN CHINESE LANGUAGESEGMENTATION
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on cognitive science, the EnergyCalculus in Chinese language segmentation was presented to eliminate segmentation ambiguity. The notion of "EnergyCost" was advanced to denote the extent of the under-standability of a certain segmentation. EnergyCost function was defined with Z-notation. This approcah is effective to all natural language segmentation.
The Algebra of Schubert Calculus
Gatto, Letterio
2004-01-01
A flexible unified framework for both classical and quantum Schubert calculus is proposed. It is based on a natural combinatorial approach relying on the Hasse-Schmidt extension of a certain family of pairwise commuting endomorphisms of an infinite free Z-module M to its exterior algebra.
Stochastic calculus and anticommuting variables
Rogers, A
1994-01-01
A theory of integration for anticommuting paths is described. This is combined with standard It\\^o calculus to give a geometric theory of Brownian paths on curved supermanifolds. (Invited lecture given at meeting on `Espaces de Lacets', Institut de Recherche Math\\'ematique Advanc\\'ee, Universit\\'e Louis Pasteur, Strasbourg, June 1994.)
Stochastic Calculus and Anticommuting Variables
Rogers, Alice
1994-01-01
A theory of integration for anticommuting paths is described. This is combined with standard It\\^o calculus to give a geometric theory of Brownian paths on curved supermanifolds. (Invited lecture given at meeting on `Espaces de Lacets', Institut de Recherche Math\\'ematique Advanc\\'ee, Universit\\'e Louis Pasteur, Strasbourg, June 1994.)
A "Model" Multivariable Calculus Course.
Beckmann, Charlene E.; Schlicker, Steven J.
1999-01-01
Describes a rich, investigative approach to multivariable calculus. Introduces a project in which students construct physical models of surfaces that represent real-life applications of their choice. The models, along with student-selected datasets, serve as vehicles to study most of the concepts of the course from both continuous and discrete…
Stochastic Pi-calculus Revisited
DEFF Research Database (Denmark)
Cardelli, Luca; Mardare, Radu Iulian
2013-01-01
We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...
A Calculus for Trust Management
DEFF Research Database (Denmark)
Carbone, Marco; Nielsen, Mogens; Sassone, Vladimiro
2004-01-01
We introduce ctm, a process calculus which embodies a notion of trust for global computing systems. In ctm each principal (location) is equipped with a policy, which determines its legal behaviour, and with a protocol, which allows interactions between principals and the flow of information from ...
Portfolio Analysis for Vector Calculus
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele
2016-01-01
This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…
λμ-calculus and Λμ-calculus: a Capital Difference
Herbelin, Hugo; Saurin, Alexis
2009-01-01
Since Parigot designed the λμ-calculus to algorithmically interpret classical natural deduction, several variants of λμ-calculus have been proposed. Some of these variants derived from an alteration of the original syntax due to de Groote, leading in particular to the Λμ-calculus of the second author, a calculus truly different from λμ-calculus since, in the untyped case, it provides a Böhm separation theorem that the original calculus does not satisfy. In addition to a survey of some aspects...
Epistemological messages conveyed by three high school and college mathematics textbooks
Sundström (Raman), Manya
2004-01-01
Mathematics textbooks embody a particular set of assumptions about mathematics or the mathematics intended for students at a particular level. Thus, an epistemological analysis of textbooks can provide some context for understanding, for example, the difficulties many students encounter when moving from high-school to collegiate mathematics. In this study, we consider how typical pre-calculus, calculus, and analysis texts treat the topic of continuity. We find that these texts send conflictin...
Calculus in Elementary School: An Example of ICT-Based Curriculum Transformation
Fluck, Andrew; Ranmuthugala, Dev; Chin, Chris; Penesis, Irene
2012-01-01
Integral calculus is generally regarded as a fundamental but advanced aspect of mathematics, and it is not generally studied until students are aged about fifteen or older. Understanding the transformative potential of information and communication technology, this project undertook an investigation in four Australian schools to train students…
Naoto Kunitomo; Akihiko Takahashi
2003-01-01
This paper reviews the asymptotic expansion approach based on Malliavin-Watanabe Calculus in Mathematical Finance. We give the basic formulation of the asymptotic expansion approach and discuss its power and usefulness to solve important problems arised in nance. As illustrations we use three major problems in nance and give some useful formulae and new results including numerical analyses.
Kwon, Oh Nam; Bae, Younggon; Oh, Kuk Hwan
2015-01-01
In this study, researchers design and implement an inquiry based multivariable calculus course in a university which aims at enhancing students' argumentation in rich mathematical discussions. This research aims to understand the characteristics of students' argumentation in activities involving proof constructions through mathematical…
Tensor calculus with open-source software: the SageManifolds project
Gourgoulhon, Eric; Mancini, Marco
2014-01-01
The SageManifolds project aims at extending the mathematics software system Sage towards differential geometry and tensor calculus. As Sage itself, it is free, open-source and is based on the Python programming language. We discuss here some details of the implementation, which relies on Sage's category pattern, and present a concrete example of use.
Predicting Performance in a First Engineering Calculus Course: Implications for Interventions
Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia
2015-01-01
At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take "Engineering Analysis I," a calculus-based engineering analysis course. After the…
Teaching and Learning Calculus in Secondary Schools with the TI-Nspire
Parrot, Mary Ann Serdina; Eu, Leong Kwan
2014-01-01
Technology can help develop understanding of abstract mathematical concepts through visualisation and graphic representation. The teaching and learning of calculus can be challenging as it involves abstract and complex ideas. The purpose of this study was to investigate how students and teachers attempt to use TI-Nspire, the latest graphing…
Calculus Limits Involving Infinity: The Role of Students' Informal Dynamic Reasoning
Jones, Steven R.
2015-01-01
Few studies on calculus limits have centred their focus on student understanding of limits at infinity or infinite limits that involve continuous functions (as opposed to discrete sequences). This study examines student understanding of these types of limits using both pure mathematics and applied-science functions and formulas. Seven calculus…
Tensor calculus with open-source software: the SageManifolds project
Gourgoulhon, Eric; Bejger, Michal; Mancini, Marco
2015-04-01
The SageManifolds project aims at extending the mathematics software system Sage towards differential geometry and tensor calculus. Like Sage, SageManifolds is free, open- source and is based on the Python programming language. We discuss here some details of the implementation, which relies on Sage's parent/element framework, and present a concrete example of use.
Jukic Matic, Ljerka; Dahl, Bettina
2014-01-01
This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly…
Directory of Open Access Journals (Sweden)
Necdet Güner
2011-02-01
Full Text Available Mathematics is one of the most important subjects for engineering education. In School of Engineering, students who enter university without basic mathematical knowledge and skills are categorized as mathematically 'at-risk'. The purpose of this study was to predict 'at risk' students by using Support Vector Machine method. Data of Pamukkale University School of Engineering's 434 incoming students of year 2007 were considered in this study. The result shows that students' university entrance examination mathematics, science and Turkish tests scores and students' high school graduation grade point average are important items to predict students' achievement at university calculus I course. SVM is trained with features of 289 students and tested with features of remaining 145 students. 86% of successful students for calculus I course was predicted as true by SVM.
Factors Associated with Success in College Calculus II
Rosasco, Margaret E.
2013-01-01
Students are entering college having earned credit for college Calculus 1 based on their scores on the College Board's Advanced Placement (AP) Calculus AB exam. Despite being granted credit for college Calculus 1, it is unclear whether these students are adequately prepared for college Calculus 2. College calculus classes are often taught…
Decidable Type Inference for the Polymorphic Rewriting Calculus
Cirstea, Horatiu; Kirchner, Claude; Liquori, Luigi; Wack, Benjamin
2006-01-01
The rewriting calculus is a minimal framework embedding lambda calculus and term rewriting systems that allows abstraction on variables and patterns. The rewriting calculus features higher-order functions (from the lambda calculus) and pattern matching (from term rewriting systems). In this paper, we study extensively the decidability of type inference in the second-order rewriting calculus à la Curry.
Using History in Teaching Mathematics.
Katz, Victor J.
1986-01-01
Some concrete examples of the use of historical materials in developing certain topics from precalculus and calculus are presented. Ideas which can be introduced with a reformulated curriculum are discussed in five areas: algorithms, combinatorics, logarithms, trigonometry, and mathematical models. (MNS)
Introduction to mathematical fluid dynamics
Meyer, Richard E
2010-01-01
An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.
Haigh, John
2016-01-01
How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und...
Fractional derivative and its application in mathematics and physics
International Nuclear Information System (INIS)
We propose fractional derivatives and to study those mathematical and physical consequences. It is shown that fractional derivatives possess noncommutative and nonassociative properties and within which motion of a particle, differential and integral calculuses are investigated. (author)
Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students
Directory of Open Access Journals (Sweden)
Kim Rheinlander
2011-01-01
Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.
CIMAC: A Coordinated Introduction to Calculus and Mechanics
Fathe, Laurie; Quinn, Jennifer; McDonald, Michael A.
1997-04-01
CIMAC, new course incorporating Mechanics, Precalculus, and Calculus, targets the growing number of motivated but underprepared students who wish to pursue a major in science or mathematics. Team-taught by a Physicist and a Mathematician, CIMAC, a new course incorporating Mechanics, Precalculus, and Calculus, targets the growing number of motivated but underprepared students who wish to pursue a major in science or mathematics. Team-taught by a Physicist and a Mathematician, the class contains specific content while exploiting the substantial commonality of these subjects. CIMAC also addresses variety of non-content areas, including supplementing basic mathematics and communication skills, accommodating various learning styles, and building student confidence. Specific approaches include class formats; gateway exams; group assignments; emphasis on writing and reading; use of computers and graphing calculators for comprehension, data acquisition, analysis, and modeling; student-led help sessions; and use of the Web http://www.oxy.edu/ departments/math/cimac/ This talk highlights the development of the course and teaching insights and innovations which have arisen from it, and addresses benefits and difficulties of coordinating material and team teaching across disciplinary lines. Finally, it presents data on student success and retention.
Fractal calculus involving gauge function
Golmankhaneh, Alireza K.; Baleanu, Dumitru
2016-08-01
Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized Fα-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *Fα-integrable. Using gauge function we define *Fα-derivative of functions their Fα-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of Fα-calculus.
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Cosmological modelling with Regge calculus
Liu, Rex G
2015-01-01
The late universe's matter distribution obeys the Copernican principle at only the coarsest of scales. The relative importance of such inhomogeneity is still not well understood. Because of the Einstein field equations' non-linear nature, some argue a non-perturbative approach is necessary to correctly model inhomogeneities and may even obviate any need for dark energy. We shall discuss an approach based on Regge calculus, a discrete approximation to general relativity: we shall discuss the Collins--Williams formulation of Regge calculus and its application to two toy universes. The first is a universe for which the continuum solution is well-established, the $\\Lambda$-FLRW universe. The second is an inhomogeneous universe, the `lattice universe' wherein matter consists solely of a lattice of point masses with pure vacuum in between, a distribution more similar to that of the actual universe compared to FLRW universes. We shall discuss both regular lattices and one where one mass gets perturbed.
Brownian motion and stochastic calculus
Karatzas, Ioannis
1998-01-01
This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...
An Introduction to Business Mathematics
van Elst, Henk
2015-01-01
These lecture notes provide a self-contained introduction to the mathematical methods required in a Bachelor degree programme in Business, Economics, or Management. In particular, the topics covered comprise real-valued vector and matrix algebra, systems of linear algebraic equations, Leontief's stationary input-output matrix model, linear programming, elementary financial mathematics, as well as differential and integral calculus of real-valued functions of one real variable. A special focus...
Using an advanced graphing calculator in the teaching and learning of calculus
Leng, Ng Wee
2011-10-01
The purpose of this study was to investigate how the use of TI-Nspire™ could enhance the teaching and learning of calculus. A conceptual framework for the use of TI-Nspire™ for learning calculus in a mathematics classroom is proposed that describes the interactions among the students, TI-Nspire™, and the learning tasks, and how they lead to the learning of calculus. A design experiment was conducted in a class of 35 students from a secondary school in Singapore. Use of TI-Nspire™ was integrated into the teaching and learning of calculus concepts in the classroom with the aid of TI-Nspire™ Navigator, a wireless classroom network system that enables instant and active interaction between students and teachers. It was found that the appropriate use of graphical, numerical and algebraic representations of calculus concepts using TI-Nspire™ enabled students to better visualize the concepts and make generalizations about relevant mathematical properties. In addition, the students were able to link multiple representations, especially algebraic and graphical representations, to improve their conceptual understanding and problem-solving skills. Six roles of TI-Nspire™ in classroom mathematical practice were identified from the findings of the experiment; TI-Nspire™ was used as an exploratory tool, graphing tool, confirmatory tool, problem-solving tool, visualization tool and calculation tool. This suggests that TI-Nspire™ is a multi-dimensional tool that supports mathematics learning. Overall, the findings of the study indicate that TI-Nspire™ is an effective tool to develop mathematical concepts and promote learning and problem solving.
A bridge to advanced mathematics
Sentilles, Dennis
2011-01-01
This helpful workbook-style ""bridge"" book introduces students to the foundations of advanced mathematics, spanning the gap between a practically oriented calculus sequence and subsequent courses in algebra and analysis with a more theoretical slant. Part 1 focuses on logic and number systems, providing the most basic tools, examples, and motivation for the manner, method, and concerns of higher mathematics. Part 2 covers sets, relations, functions, infinite sets, and mathematical proofs and reasoning. Author Dennis Sentilles also discusses the history and development of mathematics as well a
Real-Time Exponential Curve Fits Using Discrete Calculus
Rowe, Geoffrey
2010-01-01
An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.
The Riemann Conjecture and the advanced Calculus Methods for Physics
Botelho, Luiz. C. L.
2009-01-01
We present a set of lectures on topics of advanced calculus in one real and complex variable with several new results and proofs on the subject, specially with detailed proof-always missing in the literature - of the Cissoti explicitly integral formula conformally representing a polygon onto a disc.Besides we present-in the paper appendix-a new study embodied with a mathematical physicist perspective,on the famous Riemann conjecture on the zeros of the Zeta function, reducing its proof to a c...
The calculus gallery masterpieces from Newton to Lebesgue
Dunham, William
2008-01-01
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway into higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. ""Students of literat
Extended Report: The Implicit Calculus
Oliveira, Bruno C d S; Choi, Wontae; Lee, Wonchan; Yi, Kwangkeun
2012-01-01
Generic programming (GP) is an increasingly important trend in programming languages. Well-known GP mechanisms, such as type classes and the C++0x concepts proposal, usually combine two features: 1) a special type of interfaces; and 2) implicit instantiation of implementations of those interfaces. Scala implicits are a GP language mechanism, inspired by type classes, that break with the tradition of coupling implicit instantiation with a special type of interface. Instead, implicits provide only implicit instantiation, which is generalized to work for any types. This turns out to be quite powerful and useful to address many limitations that show up in other GP mechanisms. This paper synthesizes the key ideas of implicits formally in a minimal and general core calculus called the implicit calculus, and it shows how to build source languages supporting implicit instantiation on top of it. A novelty of the calculus is its support for partial resolution and higher-order rules (a feature that has been proposed bef...
A Process Calculus for Molecular Interaction Maps
Roberto Barbuti; Andrea Maggiolo-Schettini; Paolo Milazzo; Giovanni Pardini; Aureliano Rama
2009-01-01
We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give...
Control Flow Analysis for SF Combinator Calculus
Lester, Martin
2015-01-01
Programs that transform other programs often require access to the internal structure of the program to be transformed. This is at odds with the usual extensional view of functional programming, as embodied by the lambda calculus and SK combinator calculus. The recently-developed SF combinator calculus offers an alternative, intensional model of computation that may serve as a foundation for developing principled languages in which to express intensional computation, including program transfo...
Monogenic Calculus as an Intertwining Operator
Kisil, Vladimir V.
2003-01-01
We revise a monogenic calculus for several non-commuting operators, which is defined through group representations. Instead of an algebraic homomorphism we use group covariance. The related notion of joint spectrum and spectral mapping theorem are discussed. The construction is illustrated by a simple example of calculus and joint spectrum of two non-commuting selfadjoint (n\\times n) matrices. Keywords: Functional calculus, spectrum, intertwining operator, spectral mapping theorem, jet spaces...
A primer on exterior differential calculus
Burton D.A.
2003-01-01
A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes'...
The call-by-need lambda calculus (unabridged).
Maraist, John; Odersky, Martin; Wadler, Phil
2007-01-01
We present a calculus that captures the operational semantics of call-by-need.We demonstrate that the calculus is confluent and standardizable and entails the same observational equivalences as call-by-name lambda calculus.
Time scales: from Nabla calculus to Delta calculus and vice versa via duality
Caputo, M. Cristina
2009-01-01
In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.
Concepts of mathematical modeling
Meyer, Walter J
2004-01-01
Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec
Mathematical analysis fundamentals
Bashirov, Agamirza
2014-01-01
The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Qutrit Dichromatic Calculus and Its Universality
Wang, Quanlong; Bian, Xiaoning
2014-01-01
We introduce a dichromatic calculus (RG) for qutrit systems. We show that the decomposition of the qutrit Hadamard gate is non-unique and not derivable from the dichromatic calculus. As an application of the dichromatic calculus, we depict a quantum algorithm with a single qutrit. Since it is not easy to decompose an arbitrary d by d unitary matrix into Z and X phase gates when d > 2, the proof of the universality of qudit ZX calculus for quantum mechanics is far from trivial. We construct a ...
Solutions manual to accompany Fundamentals of calculus
Morris, Carla C
2015-01-01
Solutions Manual to Accompany Fundamentals of Calculus the text that encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills. In addition to core integral and differential calculus coverage, the core book features finite calculus, which lends itself to modeling and spreadsheets. Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay. Includes: Linear Equations and Functions The Derivative Using the Derivative Exponential and Logarithmic
Pre-calculus workbook for dummies
Kuang, Yang
2011-01-01
Get the confidence and math skills you need to get started with calculus Are you preparing for calculus? This hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in the course. You'll get hundreds of valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. Pre-Calculus Workbook For Dummies is the perfect tool for anyone who wa
A Higher-Order Calculus for Categories
DEFF Research Database (Denmark)
Cáccamo, Mario José; Winskel, Glynn
2001-01-01
A calculus for a fragment of category theory is presented. The types in the language denote categories and the expressions functors. The judgements of the calculus systematise categorical arguments such as: an expression is functorial in its free variables; two expressions are naturally isomorphic...... in their free variables. There are special binders for limits and more general ends. The rules for limits and ends support an algebraic manipulation of universal constructions as opposed to a more traditional diagrammatic approach. Duality within the calculus and applications in proving continuity...... are discussed with examples. The calculus gives a basis for mechanising a theory of categories in a generic theorem prover like Isabelle....
CALCULUS AND THE RACE TRACK PRINCIPLE
Akritas, Alkiviadis
1999-01-01
Calculus and Mathematica (C&M) by Davis, Porta and Uhl ia a well thought-out method that, when used properly, gives students an intuitive understanding of, and a feeling for, all the major calculus concepts. It is comprised of the following four books: C&M / Derivatives, C&M / Integrals, C&M / Vector Calculus, and C&M / Approximation, known also as Books 1-4. In these books the authors advocate an explore-and-discover method for teaching the basic concepts of Calculus to u...
Generalized vector calculus on convex domain
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Petri nets semantics ofπ-calculus
Institute of Scientific and Technical Information of China (English)
Zhenhua YU; Yuanli CAI; Haiping XU
2008-01-01
As π-calculus based on the interleaving semantics cannot depict the true concurrency and has few supporting tools,it is translated into Petri nets.π-calculus is divided into basic elements,sequence,concurrency,choice and recursive modules.These modules are translated into Petri nets to construct a complicated system.Petri nets semantics for π-calculus visualize system structure as well as system behaviors.The structural analysis techniques allow direct qualitative analysis of the system properties on the structure of the nets.Finally,Petri nets semantics for π-calculus are illustrated by applying them to mobile telephone systems.
The Vector Space as a Unifying Concept in School Mathematics.
Riggle, Timothy Andrew
The purpose of this study was to show how the concept of vector space can serve as a unifying thread for mathematics programs--elementary school to pre-calculus college level mathematics. Indicated are a number of opportunities to demonstrate how emphasis upon the vector space structure can enhance the organization of the mathematics curriculum.…
Go Figure: Calculus Students' Use of Figures and Graphs in Technical Report Writing
Directory of Open Access Journals (Sweden)
Thomas J. Pfaff
2011-01-01
Full Text Available Understanding how to read and use graphs to communicate scientific and mathematical information is critical for STEM majors, as well as an important part of quantitative literacy. Our study suggests that first-semester calculus students do not know how to use graphs in a technical report without explicit instruction. Although not a surprising result, it leaves us wondering about when such skills are developed, and if calculus I is a place to start. Our work is now exploring the potential benefit on students' use of graphs by having them formally evaluate other students' reports.
Fractional calculus with applications for nuclear reactor dynamics
Ray, Santanu Saha
2015-01-01
Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavi
Shepherd, Mary D.; Selden, Annie; Selden, John
2009-01-01
This exploratory study examined the experiences and difficulties certain first-year university students displayed in reading new passages from their mathematics textbooks. We interviewed eleven precalculus and calculus students who were considered to be good at mathematics, as indicated by high ACT mathematics scores. These students were also …
The hidden structural rules of the discontinuous Lambek calculus
Valentín Fernández Gallart, José Oriol
2014-01-01
The sequent calculus sL for the Lambek calculus L (lambek 58) has no structural rules. Interestingly, sL is equivalent to a multimodal calculus mL, which consists of the nonassociative Lambek calculus with the structural rule of associativity. This paper proves that the sequent calculus or hypersequent calculus hD of the discontinuous Lambek calculus (Morrill and Valent\\'in), which like sL has no structural rules, is also equivalent to an omega-sorted multimodal calculus mD. More concretely, ...
Algebraic differential calculus for gauge theories
International Nuclear Information System (INIS)
The guiding idea in this paper is that, from the point of view of physics, functions and fields are more important than the (space time) manifold over which they are defined. The line pursued in these notes belongs to the general framework of ideas that replaces the space M by the ring of functions on it. Our essential observation, underlying this work, is that much of mathematical physics requires only a few differential operators (Lie derivative, d, δ) operating on modules of sections of suitable bundles. A connection (=gauge potential) can be described by a lift of vector fields from the base to the total space of a principal bundle. Much of the information can be encoded in the lift without reference to the bundle structures. In this manner, one arrives at an 'algebraic differential calculus' and its graded generalization that we are going to discuss. We are going to give an exposition of 'algebraic gauge theory' in both ungraded and graded versions. We show how to deal with the essential features of electromagnetism, Dirac, Kaluza-Klein and 't Hooft-Polyakov monopoles. We also show how to break the symmetry from SU(2) to U(1) without Higgs field. We briefly show how to deal with tests particles in external fields and with the Lagrangian formulation of field theories. (orig./HSI)
Canuto, Claudio
2015-01-01
The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...
Applied analysis mathematical methods in natural science
Senba, Takasi
2004-01-01
This book provides a general introduction to applied analysis; vectoranalysis with physical motivation, calculus of variation, Fourieranalysis, eigenfunction expansion, distribution, and so forth,including a catalogue of mathematical theories, such as basicanalysis, topological spaces, complex function theory, real analysis,and abstract analysis. This book also gives fundamental ideas ofapplied mathematics to discuss recent developments in nonlinearscience, such as mathematical modeling of reinforced random motion ofparticles, semi-conductor device equation in applied physics, andchemotaxis in
APPLICATION OF GEOGEBRA FOR TEACHING MATHEMATICS
Dariusz Majerek
2014-01-01
This paper shows how GeoGebra can be helpful in teaching mathematics. GeoGebra is an interactive geometry, algebra, statistics and calculus application, intended for learning and teaching mathematics and science from primary school to university level. It can be used for active and problem oriented teaching and fosters mathematical experiments and discoveries both in classroom and at home. In this work we show the sketch of using the above-mentioned software to build, solve and illustrate mat...
Calculus and Success in a Business School
Kim, Dong-gook; Garcia, Fernando; Dey, Ishita
2012-01-01
Many business schools or colleges require calculus as a prerequisite for certain classes or for continuing to upper division courses. While there are many studies investigating the relationship between performance in calculus and performance in a single course, such as economics, statistics, and finance, there are very few studies investigating…
Imagine Yourself in This Calculus Classroom
Bryan, Luajean
2007-01-01
The efforts to attract students to precalculus, trigonometry, and calculus classes became more successful at the author's school when projects-based classes were offered. Data collection from an untethered hot air balloon flight for calculus students was planned to maximize enrollment. The data were analyzed numerically, graphically, and…
Sandboxing in a Distributed Pi-Calculus
DEFF Research Database (Denmark)
Hüttel, Hans; Kühnrich, Morten
2006-01-01
This paper presents an extension of the Dpi-calculus due to Hennessy and Riely with constructs for signing and authenticating code and for sandboxing. A sort system, built on Milner's sort systems for the polyadic pi-calculus, is presented and proven sound with respect to an error predicate which...
Aspects of Calculus for Preservice Teachers
Fothergill, Lee
2011-01-01
The purpose of this study was to compare the perspectives of faculty members who had experience teaching undergraduate calculus and preservice teachers who had recently completed student teaching in regards to a first semester undergraduate calculus course. An online survey was created and sent to recent student teachers and college mathematics…
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, Rene Rydhof
2010-01-01
In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can be...
A Cross-National Study of Calculus
Chai, Jun; Friedler, Louis M.; Wolff, Edward F.; Li, Jun; Rhea, Karen
2015-01-01
The results from a cross-national study comparing calculus performance of students at East China Normal University (ECNU) in Shanghai and students at the University of Michigan before and after their first university calculus course are presented. Overall, ECNU significantly outperformed Michigan on both the pre- and post-tests, but the Michigan…
Heisenberg algebra and a graphical calculus
Khovanov, Mikhail
2010-01-01
A new calculus of planar diagrams involving diagrammatics for biadjoint functors and degenerate affine Hecke algebras is introduced. The calculus leads to an additive monoidal category whose Grothendieck ring contains an integral form of the Heisenberg algebra in infinitely many variables. We construct bases of vector spaces of morphisms between products of generating objects in this category.
A Calculus for Context-Awareness
DEFF Research Database (Denmark)
Zimmer, Pascal
2005-01-01
In order to answer the challenge of pervasive computing, we propose a new process calculus, whose aim is to describe dynamic systems composed of agents able to move and react differently depending on their location. This Context-Aware Calculus features a hierarchical structure similar to mobile...
Attendance and Attainment in a Calculus Course
Meulenbroek, Bernard; van den Bogaard, Maartje
2013-01-01
In this paper the relationship between attendance and attainment in a standard calculus course is investigated. Calculus could in principle be studied without attending lectures due to the wealth of material available (in hardcopy and online). However, in this study we will show that the pass rate of students attending classes regularly (>75%…
Quantum chemistry and scientific calculus
International Nuclear Information System (INIS)
The 1988 progress report of the Polytechnic School research team, concerning the quantum chemistry and the scientific calculus. The research program involves the following topics: the transition metals - carbon monoxide systems, which are a suitable model for the chemisorption phenomena; the introduction of the vibronic perturbations in the magnetic screen constants; the gauge invariance method (used in the calculation of the magnetic perturbations), extended to the case of the static or dynamic electrical polarizabilities. The published papers, the congress communications and the thesis are listed
Spikes in Quantum Regge Calculus
Ambjorn, J.; Nielsen, J.; Rolf, J.; Savvidy, G.
1997-01-01
We demonstrate by explicit calculation of the DeWitt-like measure in two-dimensional quantum Regge gravity that it is highly non-local and that the average values of link lengths $l, $, do not exist for sufficient high powers of $n$. Thus the concept of length has no natural definition in this formalism and a generic manifold degenerates into spikes. This might explain the failure of quantum Regge calculus to reproduce the continuum results of two-dimensional quantum gravity. It points to sev...
OVARIAN CALCIFICATION MIMICKING VESICLE CALCULUS
Directory of Open Access Journals (Sweden)
Pallavi
2013-04-01
Full Text Available INTRODUCTION: Calcification in ovary is usually dystrophic in natu re, forming secondary to degeneration of the epithelium or in association wit h areas of necrosis. It may occur in cases of endometriosis [1] or in some ovarian tumor eg. Fibro thecoma [2] , Brenner’s tumor [3] , cavernous hemangioma [4] etc. Benign unilateral densely calcified ovary wit hout any association with tumor or endometriosis has not been reported previously. We report a case of heavily calcified left ovary which mimicked as vesicle calculus on X- ray leading to confusion in diagnosis.
Advanced calculus of several variables
Kumar, Devendra
2014-01-01
ADVANCED CALCULUS OF SEVERAL VARIABLES covers important topics of Transformations and topology on Euclidean in n-space Rn Functions of several variables, Differentiation in Rn, Multiple integrals and Integration in Rn. The topics have been presented in a simple clear and coherent style with a number of examples and exercises. Proofs have been made direct and simple. Unsolved problems just after relevant articles in the form of exercises and typical problems followed by suggestions have been given. This book will help the reader work on the problems of Numerical Analysis, Operations Research, Differential Equations and Engineering applications.
Matlab differential and integral calculus
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Differential and Integral Calculus introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to givi
Schwartz, Stu
2013-01-01
All Access for the AP® Calculus AB & BC Exams Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the free online tools that come with it, will help you personalize your AP® Cal
Cartan Calculus via Pauli Matrices
Mauro, D.
2002-01-01
In this paper we will provide a new operatorial counterpart of the path-integral formalism of classical mechanics developed in recent years. We call it new because the Jacobi fields and forms will be realized via finite dimensional matrices. As a byproduct of this we will prove that all the operations of the Cartan calculus, such as the exterior derivative, the interior contraction with a vector field, the Lie derivative and so on, can be realized by means of suitable tensor products of Pauli...
Cartan Calculus via Pauli Matrices
Mauro, D
2003-01-01
In this paper we will provide a new operatorial counterpart of the path-integral formalism of classical mechanics developed in recent years. We call it new because the Jacobi fields and forms will be realized via finite dimensional matrices. As a byproduct of this we will prove that all the operations of the Cartan calculus, such as the exterior derivative, the interior contraction with a vector field, the Lie derivative and so on, can be realized by means of suitable tensor products of Pauli and identity matrices.
Technical calculus with analytic geometry
Gersting, Judith L
2010-01-01
This well-thought-out text, filled with many special features, is designed for a two-semester course in calculus for technology students with a background in college algebra and trigonometry. The author has taken special care to make the book appealing to students by providing motivating examples, facilitating an intuitive understanding of the underlying concepts involved, and by providing much opportunity to gain proficiency in techniques and skills.Initial chapters cover functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, using the derivative, in
Modern calculus and analytic geometry
Silverman, Richard A
2012-01-01
A self-contained text for an introductory course, this volume places strong emphasis on physical applications. Key elements of differential equations and linear algebra are introduced early and are consistently referenced, all theorems are proved using elementary methods, and numerous worked-out examples appear throughout. The highly readable text approaches calculus from the student's viewpoint and points out potential stumbling blocks before they develop. A collection of more than 1,600 problems ranges from exercise material to exploration of new points of theory - many of the answers are fo
A functional presentation of Pi calculus
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
From the very beginning process algebra introduced the dichotomy between channels and processes. This dichotomy prevails in all present process calculi.The situation is in contrast to that with lambda calculus which has only one class of entities——the lambda terms. We introduce in this paper a process calculus called Lamp in which channels are process names. The language is more uniform than existing process calculi in two aspects: First it has a unified treatment of channels and processes. There is only one class of syntactical entities——processes. Second it has a unified presentation of both first order and higher order process calculi. The language is functional in the sense that lambda calculus is functional.Two bisimulation equivalences, barbed and closed bisimilarities, are proved to coincide.A natural translation from Pi calculus to Lamp is shown to preserve both operational and algebraic semantics. The relationship between lazy lambda calculus and Lamp is discussed.
Enriching an effect calculus with linear types
DEFF Research Database (Denmark)
Egger, Jeff; Møgelberg, Rasmus Ejlers; Simpson, Alex
2009-01-01
We define an ``enriched effect calculus'' by conservatively extending a type theory for computational effects with primitives from linear logic. By doing so, we obtain a generalisation of linear type theory, intended as a formalism for expressing linear aspects of effects. As a worked example, we...... formulate linearly-used continuations in the enriched effect calculus. These are captured by a fundamental translation of the enriched effect calculus into itself, which extends existing call-by-value and call-by-name linearly-used CPS translations. We show that our translation is involutive. Full...... completeness results for the various linearly-used CPS translations follow. Our main results, the conservativity of enriching the effect calculus with linear primitives, and the involution property of the fundamental translation, are proved using a category-theoretic semantics for the enriched effect calculus...
Reasoning about objects using process calculus techniques
DEFF Research Database (Denmark)
Kleist, Josva
perform these investigations indicate, that although it is perfectly possible to use process calculus techniques on object oriented languages, such techniques will not come to widespread use, but only be limited to reasoning about critical parts of a language or program design.......This thesis investigates the applicability of techniques known from the world of process calculi to reason about properties of object-oriented programs. The investigation is performed upon a small object-oriented language - The Sigma-calculus of Abadi and Cardelli. The investigation is twofold: We......-calculus turns out to be insufficient. Based on our experiences, we present a translation of a typed imperative Sigma-calculus, which looks promising. We are able to provide simple proofs of the equivalence of different Sigma-calculus objects using this translation. We use a labelled transition system adapted to...
Elements of queueing theory palm martingale calculus and stochastic recurrences
Baccelli, François
2003-01-01
The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial addition...
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Computer-Oriented Calculus Courses Using Finite Differences.
Gordon, Sheldon P.
The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…
Pseudodifferential calculus on manifolds with corners and groupoids
Monthubert, Bertrand
1997-01-01
We build a longitudinally smooth differentiable groupoid associated to any manifold with corners. The pseudodifferential calculus on this groupoid coincides with the pseudodifferential calculus of Melrose (also called b-calculus). We also define an algebra of rapidly decreasing functions on this groupoid; it contains the kernels of the smoothing operators of the (small) b-calculus.
Obstacles to Mathematization in Introductory Physics
Brahmia, S; Kanim, S E
2016-01-01
Recent studies have demonstrated that although physics students are generally successful executing mathematical procedures in context, they struggle with the use of mathematical concepts for sense making. University physics instructors often note that their students struggle with basic algebraic reasoning, a foundation on which more advanced mathematical thinking rests. However, little systematic research has been done to measure and categorize difficulties in this population. This paper describes a large-scale study (N > 600) designed to investigate trends in student reasoning with ratio and proportion, quantification, and symbolizing within the calculus-based introductory physics course. Although the assessment items require mathematical reasoning typically taught at the middle school level in mathematics courses, we find success rates of about 50% among calculus-based physics students. For many of these students, numerical complexity and physical context interferes with basic arithmetic reasoning. We argue...
International Nuclear Information System (INIS)
Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.
DOE Fundamentals Handbook: Mathematics, Volume 2
Energy Technology Data Exchange (ETDEWEB)
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations.
DOE Fundamentals Handbook: Mathematics, Volume 2
International Nuclear Information System (INIS)
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations
DOE Fundamentals Handbook: Mathematics, Volume 1
International Nuclear Information System (INIS)
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations
Gibson, Megan
2013-01-01
Due in part to the growing popularity of the Advanced Placement program, an increasingly large percentage of entering college students are enrolling in calculus courses having already taken calculus in high school. Many students do not score high enough on the AP calculus examination to place out of Calculus I, and many do not take the…
Definition of fractal measures arising from fractional calculus
Kolwankar, Kiran M.; Gangal, Anil D.
1998-01-01
It is wellknown that the ordinary calculus is inadequate to handle fractal structures and processes and another suitable calculus needs to be developed for this purpose. Recently it was realized that fractional calculus with suitable constructions does offer such a possibility. This makes it necessary to have a definition of fractal measures based on the fractional calculus so that the fractals can be naturally incorporated in the calculus. With this motivation a definition of fractal measure...
Calculus a complete introduction : teach yourself
Neill, Hugh
2013-01-01
Calculus: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using calculus. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all areas of calculus, including functions, gradients, rates of change, differentiation, exponential and logarithmic functions and integration. Everything you will need to know is here in one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.
Pre-calculus workbook for dummies
Gilman, Michelle Rose; Neal, Karina
2009-01-01
Get the confidence and the math skills you need to get started with calculus! Are you preparing for calculus? This easy-to-follow, hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in your cour sework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. 100s of Problems! Detailed, fully worked-out solutions to problem
AP calculus AB & BC crash course
Rosebush, J
2012-01-01
AP Calculus AB & BC Crash Course - Gets You a Higher Advanced Placement Score in Less Time Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject. AP Calculus AB & BC Crash Course gives you: Targeted, Focused Review - Study Only What You Need to Know Crash Course is based on an in-depth analysis of the AP Calculus AB & BC course description outline and actual AP test questions. It covers only the information tested on the exams, so you can make the most of your valuable study time. Written by experienced math teachers, our
Fractional calculus an introduction for physicists
Herrmann, Richard
2011-01-01
Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in t
From X to Pi; Representing the Classical Sequent Calculus in the Pi-calculus
van Bakel, Steffen; Vigliotti, Maria Grazia
2011-01-01
We study the Pi-calculus, enriched with pairing and non-blocking input, and define a notion of type assignment that uses the type constructor "arrow". We encode the circuits of the calculus X into this variant of Pi, and show that all reduction (cut-elimination) and assignable types are preserved. Since X enjoys the Curry-Howard isomorphism for Gentzen's calculus LK, this implies that all proofs in LK have a representation in Pi.
Applying Mathematics to Physics and Engineering: Symbolic Forms of the Integral
Jones, Steven Robert
2010-01-01
A perception exists that physics and engineering students experience difficulty in applying mathematics to physics and engineering coursework. While some curricular projects aim to improve calculus instruction for these students, it is important to specify where calculus curriculum and instructional practice could be enhanced by examining the…
A CALCULUS FOR SERVICES INNOVATION
Institute of Scientific and Technical Information of China (English)
James M.TIEN; Daniel BERG
2007-01-01
Innovation in the services area - especially in the electronic services (e-services) domain - can be systematically developed by first considering the strategic drivers and foci, then the tactical principles and enablers, and finally the operational decision attributes, all of which constitute a process or calculus of services innovation. More specifically, there are four customer drivers (i.e., collaboration,customization, integration and adaptation), three business foci (i.e., creation-focused, solution-focused and competition-focused), six business principles (i.e., reconstruct market boundaries, focus on the big picture not numbers, reach beyond existing demand, get strategic sequence right, overcome organizational hurdles and build execution into strategy), eight technical enablers (i.e., software algorithms, automation, telecommunication, collaboration, standardization, customization,organization, and globalization), and six attributes of decision informatics (i.e., decision-driven,information-based, real-time, continuously-adaptive, customer-centric and computationally-intensive).It should be noted that the four customer drivers are all directed at empowering the individual - that is,at recognizing that the individual can, respectively, contribute in a collaborative situation, receive customized or personalized attention, access an integrated system or process, and obtain adaptive real-time or just-in-time input. The developed process or calculus serves to identify the potential white spaces or blue oceans for innovation. In addition to expanding on current innovations in services and related experiences, white spaces are identified for possible future innovations; they include those that can mitigate the unforeseen consequences or abuses of earlier innovations, safeguard our rights to privacy, protect us from the always-on, interconnected world, provide us with an authoritative search engine, and generate a GDP metric that can adequately measure the growing
The calculus lifesaver all the tools you need to excel at calculus
Banner, Adrian
2009-01-01
For many students, calculus can be the most mystifying and frustrating course they will ever take. The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it. All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of
Zorich, Vladimir A
2015-01-01
VLADIMIR A. ZORICH is professor of mathematics at Moscow State University. His areas of specialization are analysis, conformal geometry, quasiconformal mappings, and mathematical aspects of thermodynamics. He solved the problem of global homeomorphism for space quasiconformal mappings. He holds a patent in the technology of mechanical engineering, and he is also known by his book Mathematical Analysis of Problems in the Natural Sciences . This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems...
Effective use of Wikis in College Mathematics Classes
Paul Martin; Kirthi Premadasa
2010-01-01
Wikis are used in mathematics education in a variety of ways [3]. As with Wikipedia, mathematics related Wikis provide pages and links that describe many different branches of mathematics. Another common use is as a portal for distributing and collecting mathematics course materials [1]. This article describes the authors' use of course wikis for two different purposes in two undergraduate math courses. In Calculus-I, a wiki was utilized to share and present the outcome of an optimization pro...
Buyukkilic, F.; Ok Bayrakdar, Z.; Demirhan, D.
2016-02-01
In this study, we investigate the cumulative diminution phenomenon for a physical quantity and a diminution process with a constant acquisition quantity in each step in a viscous medium. We analyze the existence of a dynamical mechanism that underlies the success of fractional calculus compared with standard mathematics for describing stochastic processes by proposing a Fibonacci approach, where we assume that the complex processes evolves cumulatively in fractal space and discrete time. Thus, when the differential-integral order α is attained, this indicates the involvement of the viscosity of the medium in the evolving process. The future value of the diminishing physical quantity is obtained in terms of the Mittag-Leffler function (MLF) and two rheological laws are inferred from the asymptotic limits. Thus, we conclude that the differential-integral calculus of fractional mathematics implicitly embodies the cumulative diminution mechanism that occurs in a viscous medium.
Newton Binomial Formulas in Schubert Calculus
Cordovez, Jorge; Gatto, Letterio; Santiago, Taise
2008-01-01
We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.
Extending Stochastic Network Calculus to Loss Analysis
Directory of Open Access Journals (Sweden)
Chao Luo
2013-01-01
Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.
Multi-instanton calculus in supersymmetric theories
International Nuclear Information System (INIS)
In this talk I review some recent results concerning multi-instanton calculus in supersymmetric field theories. More in detail, I will show how these computations can be efficiently performed using the formalism of topological field theories. (author)
Applying Change of Variable to Calculus Problems
Kachapova, Farida; Kachapov, Ilias
2011-01-01
This article describes the technique of introducing a new variable in some calculus problems to help students master the skills of integration and evaluation of limits. This technique is algorithmic and easy to apply.
Model-Checking Discrete Duration Calculus
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt
1994-01-01
Duration calculus was introduced by Chaochen Zhou et al. (1991) as a logic to specify and reason about requirements for real-time systems. It is an extension of interval temporal logic where one can reason about integrated constraints over time-dependent and Boolean valued states without explicit...... mention of absolute time. Several major case studies have shown that duration calculus provides a high level of abstraction for both expressing and reasoning about specifications. Using timed automata one can express how real-time systems can be constructed at a level of detail which is close to an actual...... implementation. We consider in the paper the correctness of timed automata with respect to duration calculus formulae. For a subset of duration calculus, we show that one can automatically verify whether a timed automaton ℳ is correct with respect to a formula 𝒟, abbreviated ℳ|=𝒟, i.e. one...
A primer on exterior differential calculus
Directory of Open Access Journals (Sweden)
Burton D.A.
2003-01-01
Full Text Available A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes' and divergence theorems replaced by the more powerful exterior expression of Stokes' theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional machinery, are stressed throughout the article. .
Fractional Vector Calculus and Fractional Special Function
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2010-01-01
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
Gale, David; And Others
Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…
Stefaneas, Petros; Vandoulakis, Ioannis M.
2015-12-01
This paper outlines a logical representation of certain aspects of the process of mathematical proving that are important from the point of view of Artificial Intelligence. Our starting-point is the concept of proof-event or proving, introduced by Goguen, instead of the traditional concept of mathematical proof. The reason behind this choice is that in contrast to the traditional static concept of mathematical proof, proof-events are understood as processes, which enables their use in Artificial Intelligence in such contexts, in which problem-solving procedures and strategies are studied. We represent proof-events as problem-centered spatio-temporal processes by means of the language of the calculus of events, which captures adequately certain temporal aspects of proof-events (i.e. that they have history and form sequences of proof-events evolving in time). Further, we suggest a "loose" semantics for the proof-events, by means of Kolmogorov's calculus of problems. Finally, we expose the intented interpretations for our logical model from the fields of automated theorem-proving and Web-based collective proving.
A Tableaux Calculus for Ambiguous Quantification
Monz, Christof; de Rijke, Maarten
2000-01-01
Coping with ambiguity has recently received a lot of attention in natural language processing. Most work focuses on the semantic representation of ambiguous expressions. In this paper we complement this work in two ways. First, we provide an entailment relation for a language with ambiguous expressions. Second, we give a sound and complete tableaux calculus for reasoning with statements involving ambiguous quantification. The calculus interleaves partial disambiguation steps with steps in a t...
A Superposition Calculus for Abductive Reasoning
Echenim, Mnacho; Peltier, Nicolas
2014-01-01
We present a modification of the superposition calculus that is meant to generate consequences of sets of first-order axioms. This approach is proven to be sound and deductive-complete in the presence of redundancy elimination rules, provided the considered consequences are built on a given finite set of ground terms, represented by constant symbols. In contrast to other approaches, most existing results about the termination of the superposition calculus can be carried over to our procedure....
Variational time discretization of geodesic calculus
Rumpf, Martin; Wirth, Benedikt
2012-01-01
We analyze a variational time discretization of geodesic calculus on finite- and certain classes of infinite-dimensional Riemannian manifolds. We investigate the fundamental properties of discrete geodesics, the associated discrete logarithm, discrete exponential maps, and discrete parallel transport, and we prove convergence to their continuous counterparts. The presented analysis is based on the direct methods in the calculus of variation, on $\\Gamma$-convergence, and on weighted finite ele...
Directory of Open Access Journals (Sweden)
Matteo Mio
2013-08-01
Full Text Available The paper explores properties of Łukasiewicz mu-calculus, a version of the quantitative/probabilistic modal mu-calculus containing both weak and strong conjunctions and disjunctions from Łukasiewicz (fuzzy logic. We show that this logic encodes the well-known probabilistic temporal logic PCTL. And we give a model-checking algorithm for computing the rational denotational value of a formula at any state in a finite rational probabilistic nondeterministic transition system.
A Graph Calculus for Predicate Logic
Directory of Open Access Journals (Sweden)
Paulo A. S. Veloso
2013-03-01
Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.
A calculus for attribute-based communication
DEFF Research Database (Denmark)
Alrahman, Yehia Abd; De Nicola, Rocco; Loreti, Michele;
2015-01-01
The notion of attribute-based communication seems promising to model and analyse systems with huge numbers of interacting components that dynamically adjust and combine their behaviour to achieve specific goals. A basic process calculus, named AbC, is introduced that has as primitive construct....... An example of how well-established process calculi could be encoded into AbC is given by considering the translation into AbC of a proto-typical π-calculus process....
A phenomenological calculus of Wiener description space.
Richardson, I W; Louie, A H
2007-10-01
The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium. PMID:17955459
Fractional Vector Calculus and Fractional Maxwell's Equations
Vasily E. Tarasov
2009-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and i...
Superconformal tensor calculus in five dimensions
International Nuclear Information System (INIS)
We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived using dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, a vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given. (author)
Superconformal Tensor Calculus in Five Dimensions
Fujita, Tomoyuki; Ohashi, Keisuke
2001-01-01
We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived by the dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given.
Ordered Models of the Lambda Calculus
Salibra, Antonino; Carraro, Alberto
2013-01-01
Answering a question by Honsell and Plotkin, we show that there are two equations between lambda terms, the so-called subtractive equations, consistent with lambda calculus but not simultaneously satisfied in any partially ordered model with bottom element. We also relate the subtractive equations to the open problem of the order-incompleteness of lambda calculus, by studying the connection between the notion of absolute unorderability in a specific point and a weaker notion of subtractivity ...
Nyström, Marcus; Ögren, Magnus
2012-01-01
Mathematical formulas in vector calculus often have direct visual representations, which in form of illustrations are used extensively during teaching and when assessing students’ levels of understanding. However, there is very little, if any, empirical evidence of how the illustrations are utilized during problem solving and whether they are beneficial to comprehension. In this paper we collect eye movements and performance scores (true or false answers) from students while solving eight pro...
Barbed congruence of the asymmetric chi calculus
Institute of Scientific and Technical Information of China (English)
DONG Xiao-ju; FU Yu-xi
2006-01-01
The chi calculus is a model of mobile processes. It has evolved from the pi-calculus with motivations from simplification and communication-as-cut-elimination. This paper studies the chi calculus in the framework incorporating asymmetric communication. The major feature of the calculus is the identification of two actions:x/x and τ. The investigation on the barbed bisimilarity shows how the property affects the observational theory.Based on the definition of the barbed bisimilarity, the simulation properties of the barbed bisimilarity are studied. It shows that the algebraic properties of the barbed bisimilarity have changed greatly compared with the chi calculus. Although the definition of the barbed bisimilarity is very simple, the property of closeness under contexts makes it difficult to understand the barbed bisimilarity directly. Therefore an open style definition of the barbed bisimilarity is given, which is a context free description of barbed bisimilarity. Its definition is complex,but it is a well-behaved relation for it coincides with the barbed bisimilarity. It also helps to build an axiomatization system for the barbed congruence. Besides the axioms for the strong barbed bisimilarity, the paper proposes a new tau law and four new update laws for the barbed congruence. Both the operational and algebraic properties of the enriched calculus improve the understanding of the bisimulation behaviors of the model.
Foundations of mathematical analysis
Johnsonbaugh, Richard
2010-01-01
This classroom-tested volume offers a definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. Upper-level undergraduate students with a background in calculus will benefit from its teachings, along with beginning graduate students seeking a firm grounding in modern analysis. A self-contained text, it presents the necessary background on the limit concept, and the first seven chapters could constitute a one-semester introduction to limits. Subsequent chapters discuss
Fractional calculus model of electrical impedance applied to human skin.
Directory of Open Access Journals (Sweden)
Zoran B Vosika
Full Text Available Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1 Weyl fractional derivative operator, 2 Cole equation, and 3 Constant Phase Element (CPE. These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.
Fractional calculus model of electrical impedance applied to human skin.
Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B
2013-01-01
Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects. PMID:23577065
The 1989 progress report: Mathematics
International Nuclear Information System (INIS)
The 1989 progress report of the laboratory of Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: analysis of nonlinear partial differential equations, quantum mechanics, scattering, fluid dynamics and homogenization, equations, varieties with negative curvature, elliptical problems on surfaces, Dirac operator, geometry of algorithms and formal calculus, singularities, Lie groups, dynamics systems. The published papers, the conferences and the Laboratory staff are listed
Mathematical Tutorials in Introductory Physics
Steinberg, Richard N.; Michael C. Wittmann; Redish, Edward F.
2002-01-01
Students in introductory calculus-based physics not only have difficulty understanding the fundamental physical concepts, they often have difficulty relating those concepts to the mathematics they have learned in math courses. This produces a barrier to their robust use of concepts in complex problem solving. As a part of the Activity-Based Physics project, we are carrying out research on these difficulties and are developing instructional materials in the tutorial framework developed at the ...
University Students' Reading of Their First-Year Mathematics Textbooks
Shepherd, Mary D.; Selden, Annie; Selden, John
2012-01-01
This article reports the observed behaviors and difficulties that 11 precalculus and calculus students exhibited in reading new passages from their mathematics textbooks. To gauge the "effectiveness" of these students' reading, we asked them to attempt straightforward mathematical tasks, based directly on what they had just read. The students had…
Factors Shaping Mathematics Lecturers' Service Teaching in Different Departments
Bingolbali, E.; Ozmantar, M. F.
2009-01-01
In this article we focus on university lecturers' approaches to the service teaching and factors that influence their approaches. We present data obtained from the interviews with 19 mathematics and three physics lecturers along with the observations of two mathematics lecturers' calculus courses. The findings show that lecturers' approaches to…
Some Notes About Artificial Intelligence as New Mathematical Tool
Directory of Open Access Journals (Sweden)
Angel Garrido
2010-04-01
Full Text Available Mathematics is a mere instance of First-Order Predicate Calculus. Therefore it belongs to applied Monotonic Logic. So, we found the limitations of classical logic reasoning and the clear advantages of Fuzzy Logic and many other new interesting tools. We present here some of the more usefulness tools of this new field of Mathematics so-called Artificial Intelligence.
On the mathematical modelling of measurement
Barzilai, Jonathan
2006-01-01
The operations of linear algebra, calculus, and statistics are routinely applied to measurement scales but certain mathematical conditions must be satisfied in order for these operations to be applicable. We call attention to the conditions that lead to construction of measurement scales that enable these operations.
Mathematical Building-Blocks in Engineering Mechanics
Boyajian, David M.
2007-01-01
A gamut of mathematical subjects and concepts are taught within a handful of courses formally required of the typical engineering student who so often questions the relevancy of being bound to certain lower-division prerequisites. Basic classes at the undergraduate level, in this context, include: Integral and Differential Calculus, Differential…
The mathematics of games of strategy
Dresher, Melvin
1981-01-01
A noted research mathematician explores decision making in the absence of perfect information. His clear presentation of the mathematical theory of games of strategy encompasses applications to many fields, including economics, military, business, and operations research. No advanced algebra or non-elementary calculus occurs in most of the proofs.
Some Mathematics and Physics of Ball Games.
Hughes, D. E.
1985-01-01
Gives examples on the applications of arithmetic, geometry, and some calculus, vector algebra, and mechanics to ball games. Suggestions for further interesting investigations are provided together with references to other articles and books on applications of mathematics and physics to ball games and sports in general. (JN)
Probability elements of the mathematical theory
Heathcote, C R
2000-01-01
Designed for students studying mathematical statistics and probability after completing a course in calculus and real variables, this text deals with basic notions of probability spaces, random variables, distribution functions and generating functions, as well as joint distributions and the convergence properties of sequences of random variables. Includes worked examples and over 250 exercises with solutions.
Mathematics and electromagnetism; Matematicas y electromagnetismo
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Danta, M.
2000-07-01
Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)
The history of mathematics a brief course
Cooke, Roger L
2012-01-01
Praise for the Second Edition ""An amazing assemblage of worldwide contributions in mathematics and, in addition to use as a course book, a valuable resource . . . essential."" -CHOICE This Third Edition of The History of Mathematics examines the elementary arithmetic, geometry, and algebra of numerous cultures, tracing their usage from Mesopotamia, Egypt, Greece, India, China, and Japan all the way to Europe during the Medieval and Renaissance periods where calculus was developed. Aimed primarily at undergraduate students studying the history of
The principle of stationary action in the calculus of variations
López, E; Vallejo, J A
2012-01-01
We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Previous attempts to analyse when these are minima ex- ist, but mainly based on physical reasoning and only for a restricted class of models. Our main intention in this regard is to develop precise mathematical conditions for critical paths to be minimum solutions in a variety of situations. Our claim is that, with a few techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.
An Introduction to Resurgence, Trans-Series and Alien Calculus
Dorigoni, Daniele
2014-01-01
In these notes we give an overview of different topics in resurgence theory from a physics point of view, but with particular mathematical flavour. After a short review of the standard Borel method for the resummation of asymptotic series, we introduce the class of simple resurgent functions, explaining their importance in physical problems. We define the Stokes automorphism and the alien derivative and discuss these objects in concrete examples using the notion of trans-series expansion. With all the tools introduced, we see how resurgence and alien calculus allow us to extract non-perturbative physics from perturbation theory. To conclude, we apply Morse theory to a toy model path integral to understand why physical observables should be resurgent functions.
APPLICATION OF GEOGEBRA FOR TEACHING MATHEMATICS
Directory of Open Access Journals (Sweden)
Dariusz Majerek
2014-11-01
Full Text Available This paper shows how GeoGebra can be helpful in teaching mathematics. GeoGebra is an interactive geometry, algebra, statistics and calculus application, intended for learning and teaching mathematics and science from primary school to university level. It can be used for active and problem oriented teaching and fosters mathematical experiments and discoveries both in classroom and at home. In this work we show the sketch of using the above-mentioned software to build, solve and illustrate mathematical problems.
An institutional approach to university mathematics education:
DEFF Research Database (Denmark)
Winsløw, Carl; Barquero, Berta; De Vleeschouwer, Martine;
2014-01-01
University mathematics education (UME) is considered, in this paper, as a kind of didactic practice – characterised by institutional settings and by the purpose of inducting students into mathematical practices. We present a research programme – the anthropological theory of the didactic (ATD) – in...... second case concerns a similar study of the practices and theories on limits of functions which students may develop in calculus courses. Finally, a third study illustrates the use of ATD to design and experiment innovative approaches to mathematical modelling in the setting of a first mathematics course...
General relativity without calculus a concise introduction to the geometry of relativity
Natario, José
2011-01-01
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solution
Dunn, Jason W.; Barbanel, Julius
2000-08-01
Over the last decade, there has been an increasing, widespread pedagogical interest in developing various types of integrated curricula for science and engineering programs. Over the last three years, a year-long Integrated Math/Physics course has been developed at Union College. This paper will focus on a model for a one-quarter integrated course organized around a traditional set of electricity and magnetism (E&M) physics topics, integrated with appropriate mathematical topics. Traditional, nonintegrated E&M physics students often struggle with challenging vector calculus ideas which may have been forgotten, not yet encountered, or introduced with different notation in different contexts. Likewise, traditional vector calculus mathematics students are often unable to gain intuitive insight, or fail to grasp the physical significance of many of the vector calculus ideas they are learning. Many of these frustrations are due to the fact that at many schools, the physics and calculus teachers teaching separate courses probably have little or no idea what their fellow educators are actually doing in these courses. Substantial differences in context, notation, and philosophy can cause breakdowns in the transfer of knowledge between mathematics and physics courses. We will discuss the methods, philosophy, and implementation of our course, and then go on to present what we feel were the substantial strengths and insights gained from a thoughtful integration of the two subjects. In addition, some problem areas and recommendations for probable student difficulties will be addressed.
A refresher course in mathematics
Camm, F J
2003-01-01
Readers wishing to renew and extend their acquaintance with a variety of branches of mathematics will find this volume a practical companion. Geared toward those who already possess some familiarity with its subjects, the easy-to-follow explanations and straightforward tone make this book highly accessible. The contents are arranged logically and in order of difficulty: fractions, decimals, square and cube root, the metric system, algebra, quadratic and cubic equations, graphs, and the calculus are among the topics. Explanations of mathematical principles are followed by worked examples, and t
Mathematical Tutorials in Introductory Physics
Steinberg, R N; Redish, E F; Steinberg, Richard N.; Wittmann, Michael C.; Redish, Edward F.
2002-01-01
Students in introductory calculus-based physics not only have difficulty understanding the fundamental physical concepts, they often have difficulty relating those concepts to the mathematics they have learned in math courses. This produces a barrier to their robust use of concepts in complex problem solving. As a part of the Activity-Based Physics project, we are carrying out research on these difficulties and are developing instructional materials in the tutorial framework developed at the University of Washington by Lillian C. McDermott and her collaborators. In this paper, we present a discussion of student difficulties and the development of a mathematical tutorial on the subject of pulses moving on strings.
The logical foundations of mathematics
Hatcher, William S
1981-01-01
The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory.Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and
More calculus of a single variable
Mercer, Peter R
2014-01-01
This book goes beyond the basics of a first course in calculus to reveal the power and richness of the subject. Standard topics from calculus — such as the real numbers, differentiation and integration, mean value theorems, the exponential function — are reviewed and elucidated before digging into a deeper exploration of theory and applications, such as the AGM inequality, convexity, the art of integration, and explicit formulas for π. Further topics and examples are introduced through a plethora of exercises that both challenge and delight the reader. While the reader is thereby exposed to the many threads of calculus, the coherence of the subject is preserved throughout by an emphasis on patterns of development, of proof and argumentation, and of generalization. More Calculus of a Single Variable is suitable as a text for a course in advanced calculus, as a supplementary text for courses in analysis, and for self-study by students, instructors, and, indeed, all connoisseurs of ingenious calculations.
Standardization of a Call-By-Value Lambda-Calculus
Guerrieri, Giulio; Paolini, Luca; Ronchi Della Rocca, Simona
2015-01-01
We study an extension of Plotkin's call-by-value lambda-calculus by means of two commutation rules (sigma-reductions). Recently, it has been proved that this extended calculus provides elegant characterizations of many semantic properties, as for example solvability. We prove a standardization theorem for this calculus by generalizing Takahashi's approach of parallel reductions. The standardization property allows us to prove that our calculus is conservative with respect to the Plotkin's one...
Canuto, Claudio
2015-01-01
The purpose of the volume is to provide a support for a first course in Mathematics. The contents are organised to appeal especially to Engineering, Physics and Computer Science students, all areas in which mathematical tools play a crucial role. Basic notions and methods of differential and integral calculus for functions of one real variable are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The layout has a specifically-designed modular nature, allowing the instructor to make flexible didactical choices when planning an introductory lecture course. The book may in fact be employed at three levels of depth. At the elementary level the student is supposed to grasp the very essential ideas and familiarise with the corresponding key techniques. Proofs to the main results befit the intermediate level, together with several remarks and complementary notes enhancing the treatise. The last, and farthest-reaching, level requires the additional study of ...
The giant calculus within the prostatic urethra.
Demir, Omer; Kefi, Aykut; Cahangirov, Asif; Cihan, Ahmet; Obuz, Funda; Esen, Adil Ahmet; Celebi, Ilhan
2011-08-01
The giant calculus within the prostatic urethra is a rare clinical entity in the young population. Most of the calculi within the urethra migrate from the urinary bladder and obliterate the urethra. These stones are often composed of calcium phosphate or calcium oxalate. The decision of treatment strategy is affected by the size, shape and position of the calculus and by the status of the urethra. If the stone is large and immovable, it may be extracted via the perineal or the suprapubic approach. In most cases, the giant calculi were extracted via the transvesical approach and external urethrotomy. Our case is the biggest prostatic calculus, known in the literature so far, which was treated endoscopically by the combination of laser and the pneumatic lithotriptor. PMID:21188583
Fuzzy relational calculus theory, applications and software
Peeva, Ketty
2004-01-01
This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...
Geuvers, Herman; McKinna, James
2012-01-01
Calculi with control operators have been studied as extensions of simple type theory. Real programming languages contain datatypes, so to really understand control operators, one should also include these in the calculus. As a first step in that direction, we introduce lambda-mu-T, a combination of Parigot's lambda-mu-calculus and G\\"odel's T, to extend a calculus with control operators with a datatype of natural numbers with a primitive recursor. We consider the problem of confluence on raw terms, and that of strong normalization for the well-typed terms. Observing some problems with extending the proofs of Baba at al. and Parigot's original confluence proof, we provide new, and improved, proofs of confluence (by complete developments) and strong normalization (by reducibility and a postponement argument) for our system. We conclude with some remarks about extensions, choices, and prospects for an improved presentation.
Quantum geometry in dynamical Regge calculus
International Nuclear Information System (INIS)
We study geometric properties of dynamical Regge calculus which is a hybridization of dynamical triangulation and quantum Regge calculus. Lattice diffeomorphisms are generated by certain elementary moves on a simplicial lattice in the hybrid model. At the semiclassical level, we discuss a possibility that the lattice diffeomorphisms give a simple explanation for the Bekenstein-Hawking entropy of a black hole. At the quantum level, numerical calculations of 3D pure gravity show that a fractal structure of the hybrid model is the same as that of dynamical triangulation in the strong-coupling phase. In the weak-coupling phase, on the other hand, space-time becomes a spiky configuration, which often occurs in quantum Regge calculus
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
RARE CASE OF GIANT VESICAL CALCULUS
Directory of Open Access Journals (Sweden)
Deepak Ramraj
2015-02-01
Full Text Available Giant vesical calculus is a rare entity. Vesical calculi can be primary (stones form de novo in bladder or secondary to the migrated renal calculi, chronic UTI, bladder outlet obstruction, bladder diverticulum or carcinoma, foreign body and neurogenic bladder. We report a case of an 85year old male patient who presented with history of recurrent episodes of burning micturition, pain abdomen, straining at micturition and diminished stream. Ultrasonography and X ray KUB showed a large vesical calculus. Patient underwent a n Open Cystolithomy and a large calculus of size 9x13cm weighing 310gms was removed. Bladder wall hypertrophy was seen with signs of inflammation. Bladder mucosal biopsy was taken which was normal on histopathological examination. Post - operative recovery was uneventful
Formalizing BPEL-TC Through ?-Calculus
Directory of Open Access Journals (Sweden)
Preeti Marwaha
2013-07-01
Full Text Available WS-BPEL is way to define business processes that interact with external entities through webservice operations using WSDL. We have proposed BPEL-TC, an extension to existing WS-BPEL whichuses temporally customized Web Services (WSDL-TC as a model for process decomposition and assembly.WSDL-TC handles both backward compatible and incompatible changes and also maintains variousversions of the artifacts that results due to changes over time and customizations desired by the users. Inthis paper, we are using pi-calculus to formalize Business Process Execution Language- TemporalCustomization (BPEL-TC process. π -calculus is a model of computation for concurrent systems alongwith changing connectivity of interactive systems. Pi-calculus is an extension of the process algebra CCS,with added mobility to CCS while preserving its algebraic properties.
Calculus of tensors and differential forms
Sinha, Rajnikant
2014-01-01
Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.
Research of Semantic Comparison between χ-calculus and π-calculus%χ-演算与π-演算的语义比较研究
Institute of Scientific and Technical Information of China (English)
徐林; 傅育熙
2000-01-01
Through the comparison of syntactic structure,operational semantics and algebraic semantics between χ-calculus and π-calculus, this paper concludes that χ-calculus has more succinct syntactic structure,more explicit operational semantics,more intuitionistic algebraic semantics and more favorable algebraic property. And a translation from π-calculus to χ-calculus is presented.
Functional calculus for generators of analytic semigroups of operators
Lopushansky O.V.; Sharyn S.V.
2012-01-01
We construct a functional calculus for generators of one-parameter boundedanalytic semigroups of operators on a Banach space. The calculus symbol classconsist of the Laplace image of the convolution algebra $cal S'_+$ of tempereddistributions with supports in $[0, infty)$. Domain of constructed calculus isdense in the Banach space.
Functional calculus for generators of analytic semigroups of operators
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2012-06-01
Full Text Available We construct a functional calculus for generators of one-parameter boundedanalytic semigroups of operators on a Banach space. The calculus symbol classconsist of the Laplace image of the convolution algebra $cal S'_+$ of tempereddistributions with supports in $[0, infty$. Domain of constructed calculus isdense in the Banach space.
Laparoscopic Ureterolithotomy for Giant Ureteric Calculus: A Case Report
Directory of Open Access Journals (Sweden)
Prasad V. Magdum
2015-09-01
Full Text Available We present a case of a 21 year old male who presented with symptomatic right upper ureteric calculus measuring 5 cm × 1.5 cm fulfilling the criteria to be named as giant ureteric calculus. Laparoscopic right ureterolithotomy was performed and the giant ureteric calculus was retrieved.
Laparoscopic Ureterolithotomy for Giant Ureteric Calculus: A Case Report.
Magdum, Prasad V; Nerli, Rajendra B; Devaraju, Shishir; Hiremath, Murigendra B
2015-09-01
We present a case of a 21 year old male who presented with symptomatic right upper ureteric calculus measuring 5 cm × 1.5 cm fulfilling the criteria to be named as giant ureteric calculus. Laparoscopic right ureterolithotomy was performed and the giant ureteric calculus was retrieved. PMID:26793529
Laparoscopic Ureterolithotomy for Giant Ureteric Calculus: A Case Report
Prasad V. Magdum; Rajendra B. Nerli; Shishir Devaraju; Hiremath, Murigendra B.
2015-01-01
We present a case of a 21 year old male who presented with symptomatic right upper ureteric calculus measuring 5 cm × 1.5 cm fulfilling the criteria to be named as giant ureteric calculus. Laparoscopic right ureterolithotomy was performed and the giant ureteric calculus was retrieved.
Science 101: How Do We Use Calculus in Science?
Robertson, Bill
2014-01-01
How is calculus used in science? That might seem like an odd question to answer in a magazine intended primarily for elementary school teachers. After all, how much calculus gets used in elementary science? Here the author guesses that quite a few readers of this column do not know a whole lot about calculus and have not taken a course in…
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, René Rydhof
In this paper, hybrid logic is used to formulate a rational reconstruction of a previously published control flow analysis for the mobile ambients calculus and we further show how a more precise flow-sensitive analysis, that takes the ordering of action sequences into account, can be formulated in...... a natural way. We show that hybrid logic is very well suited to express the semantic structure of the ambient calculus and how features of hybrid logic can be exploited to reduce the "administrative overhead" of the analysis specification and thus simplify it. Finally, we use HyLoTab, a fully...
Sequent Calculus in the Topos of Trees
DEFF Research Database (Denmark)
Clouston, Ranald; Goré, Rajeev
2015-01-01
Nakano’s “later” modality, inspired by Gödel-Löb provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of this...... decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence...
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
A Cone Pseudo-differential Calculus
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
@@ The calculus of pseudo-differential operators on singular spaces and theconcept of ellipti-city in operator algebras on manifolds with singularitieshave become an enormous challenge for analysists. The so-called cone algebras(with discrete and continuous asymptotics) are investigated by manymathematicians, especially by B. W. Schulze, who developed and enrichedcone and edge pseudo-differential calculus, see Schulze［4-7］, Rempel and Schulze ［2, 3］. In this note,we construct a cone pseudo-differentialcalculus for operators which respect conormal asymptotics of a prescribedasymptotic type.
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, René Rydhof
2007-01-01
In this paper, hybrid logic is used to formulate a rational reconstruction of a previously published control flow analysis for the mobile ambients calculus and we further show how a more precise flow-sensitive analysis, that takes the ordering of action sequences into account, can be formulated in...... a natural way. We show that hybrid logic is very well suited to express the semantic structure of the ambient calculus and how features of hybrid logic can be exploited to reduce the "administrative overhead" of the analysis specification and thus simplify it. Finally, we use HyLoTab, a fully...
The lambda sigma calculus and strong normalization
DEFF Research Database (Denmark)
Schack-Nielsen, Anders; Schürmann, Carsten
Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus......, which satisfies all seven conditions. In particular, we show how to circumvent Mellies counter-example to strong normalization by a slight restriction of the congruence rules. The calculus is implemented as the core data structure of the Celf logical framework. All meta-theoretic aspects of this work...
A sequent calculus for signed interval logic
DEFF Research Database (Denmark)
Rasmussen, Thomas Marthedal
2001-01-01
We propose and discuss a complete sequent calculus formulation for Signed Interval Logic (SIL) with the chief purpose of improving proof support for SIL in practice. The main theoretical result is a simple characterization of the limit between decidability and undecidability of quantifier-free SIL....... We present a mechanization of SIL in the generic proof assistant Isabelle and consider techniques for automated reasoning. Many of the results and ideas of this report are also applicable to traditional (non-signed) interval logic and, hence, to Duration Calculus....
Dynamical Regge calculus as lattice gravity
International Nuclear Information System (INIS)
We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Πidli. On the other hand, using the scale-invariant measure Πidli/li, we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition
Probabilistic Analysis of the Quality Calculus
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
2013-01-01
We consider a fragment of the Quality Calculus, previously introduced for defensive programming of software components such that it becomes natural to plan for default behaviour in case the ideal behaviour fails due to unreliable communication. This paper develops a probabilistically based trust...... analysis supporting the Quality Calculus. It uses information about the probabilities that expected input will be absent in order to determine the trustworthiness of the data used for controlling the distributed system; the main challenge is to take accord of the stochastic dependency between some of the...
A residue calculus for root systems
Ban, E. P. van den; Schlichtkrull, H.
2001-01-01
Let V be a nite dimensional real vector space on which a root system is given. Consider a meromorphic function ' on VC = V +iV , the singular locus of which is a locally nite union of hyperplanes of the form f 2 VC j h; i = sg, 2 , s 2 R. Assume ' is of suitable decay in the imaginary directions, so that integrals of the form R +iV '() d make sense for generic 2 V . A residue calculus is developed that allows shifting . This residue calculus can be used to obtain Plancherel and Paley{Wiener t...
Variational calculus with constraints on general algebroids
International Nuclear Information System (INIS)
Variational calculus on a vector bundle E equipped with a structure of a general algebroid is developed, together with the corresponding analogs of Euler-Lagrange equations. Constrained systems are introduced in the variational and geometrical settings. The constrained Euler-Lagrange equations are derived for analogs of holonomic, vakonomic and nonholonomic constraints. This general model covers the majority of first-order Lagrangian systems which are present in the literature and reduces to the standard variational calculus and the Euler-Lagrange equations in classical mechanics for E = TM
Mapping the Join Calculus to Heterogeneous Hardware
Directory of Open Access Journals (Sweden)
Peter Calvert
2013-02-01
Full Text Available As modern architectures introduce additional heterogeneity and parallelism, we look for ways to deal with this that do not involve specialising software to every platform. In this paper, we take the Join Calculus, an elegant model for concurrent computation, and show how it can be mapped to an architecture by a Cartesian-product-style construction, thereby making use of the calculus' inherent non-determinism to encode placement choices. This unifies the concepts of placement and scheduling into a single task.
Basic mathematics for the biological and social sciences
Marriott, F H C
2013-01-01
Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co
Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics
Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-...
Calculus on manifolds a modern approach to classical theorems of advanced calculus
Spivak, Michael D
1965-01-01
This little book is especially concerned with those portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approa
Condition-based diagnosis of mechatronic systems using a fractional calculus approach
Gutiérrez-Carvajal, Ricardo Enrique; Flávio de Melo, Leonimer; Maurício Rosário, João; Tenreiro Machado, J. A.
2016-07-01
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model's complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael
2016-02-01
One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.
The Development of Newtonian Calculus in Britain, 1700-1800
Guicciardini, Niccoló
2003-11-01
Introduction; Overture: Newton's published work on the calculus of fluxions; Part I. The Early Period: 1. The diffusion of the calculus (1700-1730); 2. Developments in the calculus of fluxions (1714-1733); 3. The controversy on the foundations of the calculus (1734-1742); Part II. The Middle Period: 4. The textbooks on fluxions (1736-1758); 5. Some applications of the calculus (1740-1743); 6. The analytic art (1755-1785); Part III. The Reform: 7. Scotland (1785-1809); 8. The Military Schools (1773-1819); 9. Cambridge and Dublin (1790-1820); 10. Tables; Endnotes; Bibliography; Index.
About compositional analysis of pi-calculus processes
Martinelli, Fabio
2003-01-01
We set up a logical framework for the compositional analysis of finite pi-calculus processes. In particular, we extend the partial model checking techniques developed for value passing process algebras to a nominal calculus, i.e. the pi-calculus. The logic considered is an adaptation of the ambient logic to the pi-calculus. As one of the possible applications, we show that our techniques may be used to study interesting security properties as confidentiality for (finite) pi-calculus processes.
About compositional analysis of pi-calculus processes
Martinelli, Fabio
2001-01-01
We set up a logical framework for the compositional analysis of finite pi-calculus processes. In particular, we extend the partial model checking techniques developed for value passing process algebras to a nominal calculus, i.e. the pi-calculus. The logic considered is an adaptation of the ambient logic to the pi-calculus. As one of the possible applications, we show that our techniques may be used to study interesting security properties as confidentiality for (finite) pi-calculus processes.
Detection, removal and prevention of calculus: Literature Review
Directory of Open Access Journals (Sweden)
Deepa G. Kamath
2014-01-01
Full Text Available Dental plaque is considered to be a major etiological factor in the development of periodontal disease. Accordingly, the elimination of supra- and sub-gingival plaque and calculus is the cornerstone of periodontal therapy. Dental calculus is mineralized plaque; because it is porous, it can absorb various toxic products that can damage the periodontal tissues. Hence, calculus should be accurately detected and thoroughly removed for adequate periodontal therapy. Many techniques have been used to identify and remove calculus deposits present on the root surface. The purpose of this review was to compile the various methods and their advantages for the detection and removal of calculus.
Word Problems: Reflections on Embedding Quantitative Literacy in a Calculus Course
Directory of Open Access Journals (Sweden)
Gizem Karaali
2008-07-01
Full Text Available Even though Quantitative Literacy (QL programs are currently being developed and implemented in several colleges and universities, most schools still depend on traditional mathematics courses to reach their quantitative literacy goals. This note is a case study of how a traditional mathematics course sequence intended for students majoring in social and life sciences may be modified and adapted to at least partially fulfill the need in the absence of a stand-alone QL program. In particular, we focus on a freshman-level mathematics course sequence that serves various client departments. This sequence covers the traditional content of a first-year calculus sequence along with a clear and intentional emphasis on word problems. The kinds of word problems used are not necessarily limited to those that require or make substantial use of a calculus background. However in this perspective we propose that various levels of word problems may be used successfully to satisfy QL goals. Descriptions of QL mainly focus on going from the mathematical data and presentations to an understanding of the real world. In this note we surmise that word problems go in the opposite direction and, in some sense, close the loop in QL.
A robust interpretation of duration calculus
DEFF Research Database (Denmark)
Franzle, M.; Hansen, Michael Reichhardt
2005-01-01
Calculus (DC), our findings are that the robust interpretation of DC is equivalent to a multi-valued interpretation that uses the real numbers as semantic domain and assigns Lipschitz-continuous interpretations to all operators of DC. Furthermore, this continuity permits approximation between discrete and...
DEFF Research Database (Denmark)
Hatcliff, John; Danvy, Olivier
Thirty-five years ago, thunks were used to simulate call-by-name under call-by-value in Algol 60. Twenty years ago, Plotkin presented continuation-based simulations of call-by-name under call-by-value and vice versa in the λ-calculus. We connect all three of these classical simulations by...
A planar calculus for infinite index subfactors
Penneys, David
2011-01-01
We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.
A Planar Calculus for Infinite Index Subfactors
Penneys, David
2013-05-01
We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.
A Stochastic Broadcast Pi-Calculus
DEFF Research Database (Denmark)
Song, Lei; Nielson, Flemming; Nielsen, Bo Friis
2011-01-01
In this paper we propose a stochastic broadcast PI-calculus which can be used to model server-client based systems where synchronization is always governed by only one participant. Therefore, there is no need to determine the joint synchronization rates. We also take immediate transitions into...
The Inductive Applications of Probability Calculus
Directory of Open Access Journals (Sweden)
Corrado Gini
2015-06-01
Full Text Available The Author goes back to Founders of Probability calculus to investigate their original interpretation of the probability measure in the applications of the probability theory to real problems. The Author puts in evidence some misunderstandings related to the inversion of deductions derived by the use of probability distributions for investigating the causes of events.
Advanced calculus of a single variable
Geveci, Tunc
2016-01-01
This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on ε-δ definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L’Hôpital’s rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus...
Length expectation values in quantum Regge calculus
Energy Technology Data Exchange (ETDEWEB)
Khatsymovsky, V.M
2004-04-29
Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework.
A robust interpretation of duration calculus
DEFF Research Database (Denmark)
Franzle, M.; Hansen, Michael Reichhardt
2005-01-01
Calculus (DC), our findings are that the robust interpretation of DC is equivalent to a multi-valued interpretation that uses the real numbers as semantic domain and assigns Lipschitz-continuous interpretations to all operators of DC. Furthermore, this continuity permits approximation between discrete and...... dense time, thus allowing exploitation of discrete-time (semi-)decision procedures on dense-time properties....
Bolt, Mike
2010-01-01
Many optimization problems can be solved without resorting to calculus. This article develops a new variational method for optimization that relies on inequalities. The method is illustrated by four examples, the last of which provides a completely algebraic solution to the problem of minimizing the time it takes a dog to retrieve a thrown ball,…
On Online Assignments in a Calculus Class
Jungic, Veselin; Kent, Deborah; Menz, Petra
2012-01-01
In this paper, we describe our experience with the creation and utilization of online assignments for several calculus classes at Simon Fraser University (SFU). We present our findings regarding available software by considering the needs and perspectives of the instructors, students, and administrators. We provide a list of questions that guide…
DEFF Research Database (Denmark)
Hatcliff, John; Danvy, Olivier
1997-01-01
Thirty-five years ago, thunks were used to simulate call-by-name under call-by-value in Algol 60. Twenty years ago, Plotkin presented continuation-based simulations of call-by-name under call-by-value and vice versa in the λ-calculus. We connect all three of these classical simulations by...
DEFF Research Database (Denmark)
Hatcliff, John; Danvy, Olivier
1996-01-01
Thirty-five years ago, thunks were used to simulate call-by-name under call-by-value in Algol 60. Twenty years ago, Plotkin presented continuation-based simulations of call-by-name under call-by-value and vice versa in the λ-calculus. We connect all three of these classical simulations by...
A few calculus rules for chain differentials
Clark, Daniel E.; Houssineau, Jeremie; Delande, Emmanuel D.
2015-01-01
This paper summarizes the core definitions and results regarding the chain differential for functions in locally convex topological vector spaces. In addition, it provides a few elementary calculus rules of practical interest, notably for the differentiation of characteristic functionals in various domains of physical science and engineering.
Cartan calculus on quantum Lie algebras
International Nuclear Information System (INIS)
A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''
A Temporal Concurrent Constraint Programming Calculus
DEFF Research Database (Denmark)
Palamidessi, Catuscia; Valencia Posso, Frank Darwin
2001-01-01
The tcc model is a formalism for reactive concurrent constraint programming. In this paper we propose a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and non-deterministic timed behavior. We call this tcc extension the ntcc calculus...
RARE CASE OF GIANT VESICAL CALCULUS
Deepak Ramraj; MR Swaroop; Jagadeesha; Mahesh
2015-01-01
Giant vesical calculus is a rare entity. Vesical calculi can be primary (stones form de novo in bladder) or secondary to the migrated renal calculi, chronic UTI, bladder outlet obstruction, bladder diverticulum or carcinoma, foreign body and neurogenic bladder. We report a case of an 85year old male patient who presented with history of...
Enabling quaternion derivatives: the generalized HR calculus.
Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P
2015-08-01
Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555
Students' Difficulties with Vector Calculus in Electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Expressing First-Order π-Calculus in Higher-Order Calculus of Communicating Systems
Institute of Scientific and Technical Information of China (English)
Xian Xu
2009-01-01
In the study of process calculi, encoding between different calculi is an effective way to compare the expressive power of calculi and can shed light on the essence of where the difference lies. Thomsen and Sangiorgi have worked on the higher-order calculi (higher-order Calculus of Communicating Systems (CCS) and higher-order It-calculus, respectively) and the encoding from and to first-order π-calculus. However a fully abstract encoding of first-order π-calculus with higher-order CCS is not available up-today. This is what we intend to settle in this paper. We follow the encoding strategy, first proposed by Thomsen, of translating first-order π-calculus into Plain CHOCS. We show that the encoding strategy is fully abstract with respect to early bisimilarity (first-order π-calculus) and wired bisimilarity (Plain CHOCS) (which is a bisimulation defined on wired processes only sending and receiving wires), that is the core of the encoding strategy. Moreover from the fact that the wired bisimilarity is contained by the well-established context bisimilarity, we secure the soundness of the encoding, with respect to early bisimilarity and context bisimilarity. We use index technique to get around all the technical details to reach these main results of this paper. Finally, we make some discussion on our work and suggest some future work.
Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy
Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo
2011-06-01
Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Norström, J.; Thapen, Neil; Ron-Zewi, N.
New York : IEEE, 2012, s. 334-344. ISBN 978-0-7695-4708-4. ISSN 1093-0159. - (Annual IEEE Conference on Computational Complexity). [27th Annual IEEE Conference on Computational Complexity (CCC). Porto (PT), 26.06.2012-29.06.2012] R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : cutting-plane proofs * lower bounds * hard examples Subject RIV: BA - General Mathematics http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6243410
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
A short course in discrete mathematics
Bender, Edward A
2004-01-01
What sort of mathematics do I need for computer science? In response to this frequently asked question, a pair of professors at the University of California at San Diego created this text. Its sources are two of the university's most basic courses: Discrete Mathematics, and Mathematics for Algorithm and System Analysis. Intended for use by sophomores in the first of a two-quarter sequence, the text assumes some familiarity with calculus. Topics include Boolean functions and computer arithmetic; logic; number theory and cryptography; sets and functions; equivalence and order; and induction, seq
Hybrid Calculus of Wrapped Compartments
Coppo, Mario; Drocco, Maurizio; Grassi, Elena; Sciacca, Eva; Spinella, Salvatore; Troina, Angelo; 10.4204/EPTCS.40.8
2010-01-01
The modelling and analysis of biological systems has deep roots in Mathematics, specifically in the field of ordinary differential equations (ODEs). Alternative approaches based on formal calculi, often derived from process algebras or term rewriting systems, provide a quite complementary way to analyze the behaviour of biological systems. These calculi allow to cope in a natural way with notions like compartments and membranes, which are not easy (sometimes impossible) to handle with purely numerical approaches, and are often based on stochastic simulation methods. Recently, it has also become evident that stochastic effects in regulatory networks play a crucial role in the analysis of such systems. Actually, in many situations it is necessary to use stochastic models. For example when the system to be described is based on the interaction of few molecules, when we are at the presence of a chemical instability, or when we want to simulate the functioning of a pool of entities whose compartmentalised structur...
Institute of Scientific and Technical Information of China (English)
王娜
2011-01-01
For a long time,calculus is always the one of active fields in mathematics education reform.The reform of calculus in American makes the calculus teaching full of the energy.It pays attention to the essence,and funds the innovative method to help students achieving deep understand on calculus idea.By analyzing the main textbook of calculus in USA,Calculus written by James Stewart,and comparing the limit theory,differential calculus and integral calculus in our country＇s textbook,puts forward some suggestions for our country＇s calculus teaching.%长期以来,微积分始终是数学教育改革中最活跃的领域之一。美国的微积分改革使得美国的微积分教学充满了活力,它注重本质,发现能帮助学生获得对微积分思想深刻理解的创造性方法。通过分析美国微积分的主流教材,即James Stewart所著的《微积分》教材,并与我国微积分教材中的极限理论、微分学和积分学部分进行了比较研究,根据比较研究的结论,对我国微积分教学提出了若干建议。
Mathematics from the birth of numbers
Gullberg, Jan
1997-01-01
This extraordinary work takes the reader on a long and fascinating journey--from the dual invention of numbers and language, through the major realms of arithmetic, algebra, geometry, trigonometry, and calculus, to the final destination of differential equations, with excursions into mathematical logic, set theory, topology, fractals, probability, and assorted other mathematical byways. The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology. Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous...
DEFF Research Database (Denmark)
Westphael, Henning; Mogensen, Arne
2013-01-01
In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....