Three- and Four-Body Scattering Calculations including the Coulomb Force
Deltuva, A
2009-01-01
The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.
Coulomb correction calculations of pp Bremsstrahlung
International Nuclear Information System (INIS)
The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs
Challenges in calculating molecular systems with Coulomb interactions
Kirnosov, Nikita; Sharkey, Keeper; Adamowicz, Ludwik
2014-03-01
The highly accurate quantum mechanical calculations are not only crucial for high-resolution experimental data verification, but may also serve as a guide in the field of exotic systems exploration. Including all non-relativistic effects in a single-step variational approach and rigorously separating out the center of mass motion allows us to build a reliable model for calculating bound states of molecular systems with Coulomb interactions. In these calculations the wave function of the system is expanded in terms of explicitly correlated Gaussian (ECG) basis functions. Examples of calculations of energies and other properties of some molecular systems will be presented.
Gauge dependence of calculations in relativistic Coulomb excitation
Bayman, B F
2004-01-01
Before a quantum-mechanical calculation involving electromagnetic interactions is performed, a choice must be made of the gauge to be used in expressing the potentials. If the calculation is done exactly, the observable results it predicts will be independent of the choice of gauge. However, in most practical calculations approximations are made, which can destroy the gauge invariance of the predictions. We compare here the results of coupled-channel time-dependent relativistic Coulomb excitation calculations, as performed in either Lorentz or Coulomb gauges. We find significant differences when the bombarding energy per nucleon is $\\geq$ 2 GeV, which indicates that the common practice of relying completely on the Lorentz gauge can be dangerous.
Coulomb Sturmians as a basis for molecular calculations
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
Almost all modern quantum chemistry programs use Gaussian basis sets even though Gaussians cannot accurately represent the cusp at atomic nuclei, nor can they represent the slow decay of the wave function at large distances. The reason that Gaussians dominate quantum chemistry today is the great ...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....... mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...
Treating Coulomb exchange contributions in relativistic mean field calculations: why and how
Van Giai, Nguyen; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie
2014-01-01
The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this note, we show that the Coulomb exchange effects can be easily included with a good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation.
Quantum calculation of Coulomb reorientation and near-barrier fusion
Simenel, Cédric; Bender, Michael; Chomaz, P.; Duguet, Thomas; de France, G.
2006-01-01
6pages, 2 figures. Proceeding of FUSION06 International audience We investigate the role of deformation on the fusion probability around the barrier using the Time-Dependent Hartree-Fock theory with a full Skyrme force. We obtain a distribution of fusion probabilities around the nominal barrier due to the different contributions of the various orientations of the deformed nucleus at the touching point. It is also shown that the long range Coulomb reorientation reduces the fusion probabi...
Przybytek, Michal; Helgaker, Trygve
2013-08-01
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Directory of Open Access Journals (Sweden)
Yannis Tanoudis
2011-06-01
Full Text Available In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007, 113518, 26 pages have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler-Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008, 022902, 8 pages is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier-Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler-Coulomb are calculated.
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain
Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.
2009-12-01
A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007
Can Coulomb Sturmians Be Used as a Basis for N-Electron Molecular Calculations?
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2009-01-01
A method is proposed for using isoenergetic configurations formed from many-center Coulomb Sturmians as a basis for calculations on N-electron molecules. Such configurations are solutions to an approximate N-electron Schrödinger equation with a weighted potential, and they are thus closely...... analogous to the Goscinskian configurations that we have used previously to study atomic spectra. We show that when the method is applied to diatomic molecules, all of the relevant integrals are pure functions of the parameter s=kR, and therefore they can be evaluated once and for all and stored....
McLerran, Larry
2016-01-01
We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. We argue that Coulombic interactions between these color charges generates a source-source correlation function that properly includes the effects of color charge screening, a generalization of Debye screening for the Color Glass Condensate. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.
Sameer M. Ikhdair; Sever, Ramazan
2010-01-01
We solve the Dirac equation approximately for the attractive scalar $S(r)$ and repulsive vector $V(r)$ Hulth\\'{e}n potentials including a Coulomb-like tensor potential with arbitrary spin-orbit coupling quantum number $\\kappa .$ In the framework of the spin and pseudospin symmetric concept, we obtain the analytic energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by means of the Nikiforov-Uvarov method in closed form. The limit of zero tens...
Cattania, C.; Khalid, F.
2016-09-01
The estimation of space and time-dependent earthquake probabilities, including aftershock sequences, has received increased attention in recent years, and Operational Earthquake Forecasting systems are currently being implemented in various countries. Physics based earthquake forecasting models compute time dependent earthquake rates based on Coulomb stress changes, coupled with seismicity evolution laws derived from rate-state friction. While early implementations of such models typically performed poorly compared to statistical models, recent studies indicate that significant performance improvements can be achieved by considering the spatial heterogeneity of the stress field and secondary sources of stress. However, the major drawback of these methods is a rapid increase in computational costs. Here we present a code to calculate seismicity induced by time dependent stress changes. An important feature of the code is the possibility to include aleatoric uncertainties due to the existence of multiple receiver faults and to the finite grid size, as well as epistemic uncertainties due to the choice of input slip model. To compensate for the growth in computational requirements, we have parallelized the code for shared memory systems (using OpenMP) and distributed memory systems (using MPI). Performance tests indicate that these parallelization strategies lead to a significant speedup for problems with different degrees of complexity, ranging from those which can be solved on standard multicore desktop computers, to those requiring a small cluster, to a large simulation that can be run using up to 1500 cores.
Farhi, Asaf
2015-01-01
Free energy calculations in molecular simulations have a variety of applications including determining the strength of molecular processes such as solvation and binding. It has been recently shown that when removing the VDW and Coulomb potential terms of a group of atoms in a molecule by performing a transformation, the molecule can be treated as non interacting systems in the free energy calculation. This treatment is applicable both when the molecule is in vacuum and in liquid and enables a very simple calculation of the free energies associated with the potentials that depend on the relative spherical coordinates of these atoms. Here we demonstrate the method in the free energy calculation of a Methanethiol molecule and compare the results to these obtained by MD simulations in vacuum and in water. The comparison of free energies associated with the potentials that depend on the relative spherical coordinates shows agreement between the results and faster computation when using the method by factors starti...
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
LTRACK: Beam-transport calculation including wakefield effects
International Nuclear Information System (INIS)
LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described
Gunnarsson, O.; Postnikov, A. V.; Andersen, O. K.
1989-11-01
The effective Coulomb interaction U between the 3d electrons of Mn impurities in CdTe, CdS, and ZnO is calculated. The influence of the host on the renormalization of U is studied. It is shown that the screening due to charge transfer to the Mn atom is very efficient for Mn in CdTe, less efficient for Mn in CdS, and rather inefficient for ZnO. This is related to the increasing ionic character, which makes charge transfer to Mn increasingly difficult. The total effect of all charge-transfer processes, including charge transfer to the ligand atoms, is nevertheless substantial even for Mn in ZnO.
Sandalov, I.; Lundin, U.; Eriksson, O.
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many-electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many-electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange-correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LDA (RF LDA), is obtained by introducing the spectral weights of the many-electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LDA, and taking into account the
A tool for standardized collector performance calculations including PVT
DEFF Research Database (Denmark)
Perers, Bengt; Kovacs, Peter; Olsson, Marcus;
2012-01-01
A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived...... from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector...
Harb, Moussab
2013-12-05
We report a systematic study on the optoelectronic properties of Se-modified anatase TiO2 investigated by DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 formalism to guarantee accurate band gap and electronic excitation predictions. Various selenium species at substitutional sites for O or Ti, at interstitial sites, as well as at mixed substitutional/interstitial sites are studied. Among the explored structures, Ti(1-2x)O2Se2x (containing Se4+ species), TiO(2-x)Sex (containing Se2- species), and TiO(2-x)Se2x (containing Se2 2- species) reveal significant enhanced visible-light optical absorption spectra with new absorption features appearing at 500, 600, and 690 nm, respectively. Our calculated spectra are found to be in good agreement with those obtained in available experimental works. The band gap narrowing in these materials originates from incorporation of newly occupied electronic levels within 0.5-1.5 eV above the original valence band of TiO 2, leading to new narrowed band gaps of 2.5, 2.0, and 1.8 eV respectively. Our calculations also reveal suitable band positions of Ti (1-2x)O2Se2x and TiO(2-x)Se x for overall water splitting, whereas TiO(2-x)Se 2x shows an unsuitable valence band position for the oxygen evolution reaction. In contrast, the localized electronic character of the new occupied states on the Se 4p orbitals and only on the O 2p orbitals linked to the Se species makes the holes mobility limited in this material and the recombination rate of charge carriers greatly increased in the bulk. © 2013 American Chemical Society.
Toda, Shinji; Lin, Jian; Stein, Ross S.
2011-01-01
The 11 March 2011 Tohoku Earthquake provides an unprecedented test of the extent to which Coulomb stress transfer governs the triggering of aftershocks. During 11-31 March, there were 177 aftershocks with focal mechanisms, and so the Coulomb stress change imparted by the rupture can be resolved on the aftershock nodal planes to learn whether they were brought closer to failure. Numerous source models for the mainshock have been inverted from seismic, geodetic, and tsunami observations. Here, we show that, among six tested source models, there is a mean 47% gain in positively-stressed aftershock mechanisms over that for the background (1997-10 March 2011) earthquakes, which serve as the control group. An aftershock fault friction of 0.4 is found to fit the data better than 0.0 or 0.8, and among all the tested models, Wei and Sladen (2011) produced the largest gain, 63%. We also calculate that at least 5 of the seven large, exotic, or remote aftershocks were brought ≥0.3 bars closer to failure. With these tests as confirmation, we calculate that large sections of the Japan trench megathrust, the outer trench slope normal faults, the Kanto fragment beneath Tokyo, and the Itoigawa-Shizuoka Tectonic Line, were also brought ≥0.3 bars closer to failure.
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Nuclear Interference effects in 8B sub-Coulomb breakup
Nunes, F. M.; Thompson, I.J.
1998-01-01
The breakup of $^8$B on $^{58}$Ni below the Coulomb barrier was measured recently with the aim of determining the Coulomb breakup components. We reexamine this reaction, and perform one step quantum-mechanical calculations that include E1, E2 and nuclear contributions. We show that the nuclear contribution is by no means negligible at the intermediate angular range where data was taken. Our results indicate that, for an accurate description of this reaction, Coulomb E1, E2 and nuclear process...
Parsons, T.; Ji, C.; Kirby, E.
2008-12-01
On the 12th of May, 2008 a devastating Ms=8.0 earthquake struck the eastern edge of the Tibetan Plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After a high-magnitude earthquake like the 12 May event, rearrangement of stresses in the crust commonly causes subsequent damaging earthquakes. The Sichuan basin and surroundings are crossed by major active strike-slip and thrust faults. By 72 hours after the earthquake, coseismic stress changes were calculated on models of those faults, with many showing significant stress increases. Rapid mapping of stress changes was intended to locate fault sections with relatively higher odds of producing the largest aftershocks and to enable prospective testing of the static-stress triggering hypothesis. A recent prospective test of the method was conducted by McCloskey et al. [2005] after the great 2004 Sumatra earthquake, and was validated by a M=8.7 shock that struck three months later in a region calculated to have been stressed by the mainshock. Our test begins at the time peer review was completed, 38 days after the mainshock on 19 June, 2008. Thus aftershocks occurring between that time and the present can be used for prospective testing. As of this writing, in our test region magnitude greater than 4.0 aftershocks have been largely confined to the mainshock rupture zone, with virtually no activity on Sichuan basin faults with calculated stress increases. Examination of magnitude-frequency behavior of the aftershocks suggests either a corner magnitude at about magnitude 6, or a deficiency in the magnitude greater than 6 range. This experiment is ongoing, and time will tell if the Coulomb model is confirmed in the Sichuan region; our conclusion at present is that there has been no validation, and that use of a generalized aftershock forecast model would have been sufficient.
Elastic Coulomb breakup of $^{34}$Na
Singh, G; Chatterjee, R
2016-01-01
Purpose : The aim of this paper is to study the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb to give us a core of $^{33}$Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of $^{34}$Na. Method : A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb at 100 MeV/u. The triple differential cross-section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum and angular distributions as well as the average momenta, along with the energy-angular distributions. Results : The total one neutron removal cross-section is calculated to test the possible ground state configurations of $^{34}$Na. The average momentum results along with energy-angular calculations indicate $^{34}$Na to ha...
International Nuclear Information System (INIS)
A Coulomb-Born approximation is used to compute the triple-differential cross section for electron-impact inner-shell (1s) ionization of carbon. We employ a perturbation series that allows the use of Coulomb waves with arbitrary Zeff for the incoming, scattered, and ejected electrons. Most of the features of the triple-differential cross section observed experimentally are reproduced, even though these wave functions are distorted by an effective Coulomb potential and therefore do not satisfy the plane-wave boundary conditions at infinity. In order to explain some features that appear in the cross section, and in order to probe the validity of a dipole approximation, we make a multipole expansion of the transition matrix and show that the amplitudes of the multipole components are similar to those obtained in the Born approximation, while the relative phases of the multipoles differ greatly
Hot DA white dwarf model atmosphere calculations: Including improved Ni PI cross sections
Preval, S P; Badnell, N R; Hubeny, I; Holberg, J B
2016-01-01
To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages needs to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni {\\sc iv}-{\\sc vi} bound-bound and bound-free atomic data has on model atmosphere calculations. Models including PICS calculated with {\\sc autostructure} show significant flux attenuation of up to $\\sim 80$\\% shortward of 180\\AA\\, in the EUV region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of this atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including {\\sc autostructure} PICS were found to change the abundances of N and O by as much as $\\sim 22$\\% compared to models using hydrogenic PICS, but heavier species were relatively unaf...
Coulomb Potentials between Spherical and Deformed Nuclei
Institute of Scientific and Technical Information of China (English)
ZHANG Gao-Long; LE Xiao-Yun; LIU Zu-Hua
2008-01-01
@@ Coulomb potentials for spherical-deformed reaction partners are calculated in terms of the double folding model as well as the conventional formulas. Our results show that the Coulomb potentials calculated with different approaches have quite different behaviours in the internal region of the potential. Because fusion process is sensitive to the barrier height and the internal part of the potential, the fusion excitation function, especially the fusion barrier distribution, should provide a strict test of the interaction potentiaLs. Therefore, we calculate the fusion excitation function and barrier distribution for the 16O+154 Sm system with different versions of the Coulomb potentials, in comparison with the experimental results. It is found that the fusion excitation function and barrier distribution of 16 O+154 Sm are obviously different for the different versions of the Coulomb potentials.By means of this comparison, we may conclude that the double folding model with the accurate approximate form can provide rather reasonable Coulomb potentials.
Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A
2016-02-21
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions
Energy Technology Data Exchange (ETDEWEB)
Gonzales-Ormeno, Pablo Guillermo [Facultad de Ciencias Naturales y Matematica, Universidad Nacional Federico Villarreal, Calle San Marcos 351, Pueblo Libre, Lima (Peru); Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica da Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo-SP (Brazil); Computational Materials Science Lab., Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-900 Sao Paulo-SP (Brazil); Petrilli, Helena Maria [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica da Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo-SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br; Schoen, Claudio Geraldo [Computational Materials Science Lab., Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-900 Sao Paulo-SP (Brazil)]. E-mail: schoen@usp.br
2006-04-15
metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model.
International Nuclear Information System (INIS)
Highlights: • A method for handling external feed in depletion calculations with CRAM. • Source term can have polynomial or exponentially decaying time-dependence. • CRAM with source term and adjoint capability implemented to ORIGEN in SCALE. • The new solver is faster and more accurate than the original solver of ORIGEN. - Abstract: A method for including external feed with polynomial time dependence in depletion calculations with the Chebyshev Rational Approximation Method (CRAM) is presented and the implementation of CRAM to the ORIGEN module of the SCALE suite is described. In addition to being able to handle time-dependent feed rates, the new solver also adds the capability to perform adjoint calculations. Results obtained with the new CRAM solver and the original depletion solver of ORIGEN are compared to high precision reference calculations, which shows the new solver to be orders of magnitude more accurate. Furthermore, in most cases, the new solver is up to several times faster due to not requiring similar substepping as the original one
Li, Xue; Wu, Guang; Abramov, Yuriy A; Volkov, Anatoliy V; Coppens, Philip
2002-09-17
A combined experimental and theoretical charge density study of the pentapeptide Boc-Gln-d-Iva-Hyp-Ala-Phol (Boc, butoxycarbonyl; Gln, glutamine; Iva, isovaline; Hyp, hydroxyproline; Ala, ethylalanine; Phol, phenylalaninol) is described. The experimental analysis, based on synchrotron x-ray data collected at 20 K, is combined with ab initio theoretical calculations. The topologies of the experimental and theoretical densities are analyzed in terms of the atoms in molecules quantum theory. Topological parameters, including atomic charges and higher moments integrated over the atomic basins, have been evaluated with the program topxd and are used to calculate the electrostatic interactions between the molecules in the crystal. The interaction energies obtained after adding dispersive and repulsive van der Waals contributions agree quite well with those based on M-B3LYP/6-31G** dimer calculations for two of the three dimers in the crystal, whereas for the third a larger stabilization is obtained than predicted by the calculation. The agreement with theory is significantly better than that obtained with multipole moments derived directly from the aspherical atom refinement. The convergence of the interaction as a function of addition of successively higher moments up to and including hexadecapoles (l = 4) is found to be within 2-3 kJ/mol. Although shortcomings of both the theoretical and experimental procedures are pointed out, the agreement obtained supports the potential of the experimental method for the evaluation of interactions in larger biologically relevant molecules. PMID:12221293
National Aeronautics and Space Administration — BRO will provide commercially available optics software that dependably calculates image plane irradiance to the precision required by TPF missions. Calculations...
Thompson, Richard C
2014-01-01
Ion Coulomb crystals (ICC), formed by atomic ions at low temperatures in radiofrequency and Penning ion traps, are structures that have remarkable properties and many applications. Images of Coulomb crystals are striking and reveal the crystal structure, which arises from a balance between the trapping forces acting on the ions and their mutual Coulomb repulsion. Applications of these structures range from frequency standards and quantum simulation through to measurement of the cross sections of chemical reactions of ions.
Institute of Scientific and Technical Information of China (English)
SONG Ruo-Long; WANG Ke-Xie; ZHANG Hong-Bing; HAN Wei
2007-01-01
A new method based on generalized reflection and transmission (R/T) coefficients method is proposed to calculate the single seismic phase (SSP) of cylindrically multilayered media including liquid interlayer. The use of normalization factors and normalized Lame coefficients makes the algorithm stable numerically. Using the modified R/T matrices, we derive the iterative expressions of generalized R/T matrices, and by using the iterative relation we determine the SSP of each interface and the full waveforms. To show the superiority of this new approach for investigating of reflection and transmission properties of cylindrically multilayered media, we simulate the full waveforms and SSPs of cased hole model with annulus Ⅰ (casing-cement interface) channelling (or,cross-flow). The generalized reflection coefficient spectra and SSPs of interfaces obtained show the propagation mechanism of each component of full waveform clearly.
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
International Nuclear Information System (INIS)
X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6]2+ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)
2015-08-21
X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
Grell, Gilbert; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver
2015-01-01
X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the Restricted Active Space Self-Consistent Field method including spin-orbit coupling is used to cope with this challenge and to calculate valence and core photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the $\\text{[Fe(H}_2\\text{O)}_6\\text{]}^{2+}$ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approx...
SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy
Energy Technology Data Exchange (ETDEWEB)
Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States)
2014-06-01
Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows
Coulomb dissociation of N,2120
Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration
2016-06-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
International Nuclear Information System (INIS)
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
Energy Technology Data Exchange (ETDEWEB)
Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))
2007-06-15
GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All
International Nuclear Information System (INIS)
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Stanke, Monika; Adamowicz, Ludwik
2014-10-21
We report very accurate calculations of the complete pure vibrational spectrum of the T2 molecule with an approach where the Born-Oppenheimer (BO) approximation is not assumed. As the considered states correspond to the zero total angular momentum, their non-BO wave functions are spherically symmetric and are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even nonnegative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α(2) (where α is the fine structure constant) calculated as expectation values of the operators representing these effects. PMID:25338891
Coulombic Fluids Bulk and Interfaces
Freyland, Werner
2011-01-01
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
A quark model calculation of yy->pipi including final-state interactions
Blundell, H G; Hay, G; Swanso, E
2000-01-01
A quark model calculation of the processes yy->pi+pi- and yy->pipi is performed. At tree level, only charged pions couple to the initial state photons and neutral pions are not exceeded in the final state. However a small but significant cross section is observed. We demonstrate that this may be accounted for by a rotation in isospin space induced by final-state interactions.
Elastic Coulomb breakup of 34Na
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Green's operator for Hamiltonians with Coulomb plus polynomial potentials
Kelbert, E.; Hyder, A.; Demir, F.; Hlousek, Z. T.; Papp, Z.
2007-07-01
The Hamiltonian of a Coulomb plus polynomial potential in the Coulomb-Sturmian basis has an infinite symmetric band-matrix structure. A band matrix can always be considered as a block-tridiagonal matrix. So, the corresponding Green's operator can be given as a matrix-valued continued fraction. As examples, we calculate Green's operator for the Coulomb plus linear and quadratic confinement potential problems and determine the energy levels.
Vacuum structure of the Coulomb gas in two dimensions
International Nuclear Information System (INIS)
We study the plasma phase of the two-dimensional Coulomb gas in the small density limit. The analysis is done using the correspondence of the Coulomb gas with the 1 + 1 sine-Gordon model, which has been exactly solved by the quantum inverse method. We construct the correct vacuum of the field theory, improving the former results. We obtain exact results for the Coulomb gas, which confirm the previous perturbative calculations. (orig.)
Strong-field ionization via high-order Coulomb corrected strong-field approximation
Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z; Keitel, Christoph H
2016-01-01
Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of an one-dimensional problem. High-order Coulomb corrected strong-field approximation is applied, where the exact continuum state in the S-matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although, without high-order corrections our theory coincides with the known analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM-theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method as by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the A...
Energy Technology Data Exchange (ETDEWEB)
Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)
2013-06-15
Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)
Screening corrections to the Coulomb crystal elastic moduli
Baiko, D A
2016-01-01
Corrections to elastic moduli, including the effective shear modulus, of a solid neutron star crust due to electron screening are calculated. At any given mass density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of a single type with a polarizable charge-compensating electron background. Motion of the nuclei is neglected. The electron polarization is described by a simple Thomas-Fermi model of exponential electron screening. The results of numerical calculations are fitted by convenient analytic formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.
Effect of Coulomb Screening Length on Nuclear Pasta Simulations
Alcain, P N; Nichols, J I; Dorso, C O
2013-01-01
We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Water dimer equilibrium constant calculation: A quantum formulation including metastable states
Energy Technology Data Exchange (ETDEWEB)
Leforestier, Claude, E-mail: claude.leforestier@univ-montp2.fr [Institut Charles Gerhardt, CNRS 5253, CC 15.01, Université Montpellier II-CNRS, 34095 Montpellier Cedex 05 (France)
2014-02-21
We present a full quantum evaluation of the water second virial coefficient B(T) based on the Takahashi-Imada second order approximation. As the associated trace Tr[e{sup −βH{sub A}{sub B}}−e{sup −βH{sub A}{sub B}{sup o}}] is performed in the coordinate representation, it does also include contribution from the whole continuum, i.e., resonances and collision pairs of monomers. This approach is compared to a Path Integral Monte Carlo evaluation of this coefficient by Schenter [J. Chem. Phys. 117, 6573 (2002)] for the TIP4P potential and shown to give extremely close results in the low temperature range (250–450 K) reported. Using a recent ab initio flexible potential for the water dimer, this new formulation leads to very good agreement with experimental values over the whole range of temperatures available. The virial coefficient is then used in the well known relation K{sub p}(T) = −(B(T) − b{sub M})/RT where the excluded volume b{sub M} is assimilated to the second virial coefficient of pure water monomer vapor and approximated from the inner repulsive part of the interaction potential. This definition, which renders b{sub M} temperature dependent, allows us to retrieve the 38 cm{sup 3} mol{sup −1} value commonly used, at room temperature. The resulting values for K{sub p}(T) are in agreement with available experimental data obtained from infrared absorption spectra of water vapor.
Bound - states for truncated Coulomb potentials
Odeh, Maen; Mustafa, Omar
2000-01-01
The pseudoperturbative shifted - $l$ expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.
Coulomb screening in graphene with topological defects
Chakraborty, Baishali; Gupta, Kumar S.; Sen, Siddhartha
2015-06-01
We analyze the screening of an external Coulomb charge in gapless graphene cone, which is taken as a prototype of a topological defect. In the subcritical regime, the induced charge is calculated using both the Green's function and the Friedel sum rule. The dependence of the polarization charge on the Coulomb strength obtained from the Green's function clearly shows the effect of the conical defect and indicates that the critical charge itself depends on the sample topology. Similar analysis using the Friedel sum rule indicates that the two results agree for low values of the Coulomb charge but differ for the higher strengths, especially in the presence of the conical defect. For a given subcritical charge, the transport cross-section has a higher value in the presence of the conical defect. In the supercritical regime we show that the coefficient of the power law tail of polarization charge density can be expressed as a summation of functions which vary log periodically with the distance from the Coulomb impurity. The period of variation depends on the conical defect. In the presence of the conical defect, the Fano resonances begin to appear in the transport cross-section for a lower value of the Coulomb charge. For both sub and supercritical regime we derive the dependence of LDOS on the conical defect. The effects of generalized boundary condition on the physical observables are also discussed.
International Nuclear Information System (INIS)
Improvements relative to the MC dose calculation speed have been made within the European project MAESTRO by the development of the fast MC code PENFAST and within the TELEDOS project by the parallelization of this code. This PhD work, based on these two projects, focuses on the evaluation of the technical and dosimetric performances of the MC code. These issues are crucial before the use of the MC code in clinical applications. First, variance reduction techniques included in the MC code as well as the parallelization of the calculation have been validated and evaluated in terms of gain in the computing time. The second part of this work has exposed a new, fast and accurate method to determine the initial energy spectrum of the accelerator. This spectrum is required for the MC dose calculation. Afterwards, dose calculations with the fast MC code PENFAST have been evaluated under metrological and clinical conditions. The results showed the ability of the MC code to quickly calculate an accurate dose in both photon and electron modes, even in electronic disequilibrium situations. However, this study revealed an uncertainty, in the TPS-MC, in the conversion of the CT image to voxelized geometry which is used for MC dose calculation. The quality of this voxelization may be improved through an artefacts correction software and by including additional materials in the database of the code. (author)
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons
Chatzidakis, Stylianos; Tsoukalas, Lefteri H
2016-01-01
Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fu...
Traceable Coulomb Blockade Thermometry
Hahtela, Ossi; Kemppinen, Antti; Meschke, Matthias; Prunnila, Mika; Gunnarsson, David; Roschier, Leif; Penttila, Jari; Pekola, Jukka
2016-01-01
We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods, the numerical fitting of the full conductance curve and measuring the height of the conductance dip yield almost identical results. The complete uncertainty analysis shows that the relative expanded uncertainty (k = 2) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 1 %. A good agreement within the measurement uncertainty is experimentally demonstrated between the Coulomb blockade thermometer and a superconducting reference point device that has been directly calibrated against the Provisional Low Temperature Scale of 2000.
Maj, Radoslaw
2009-01-01
The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.
DEFF Research Database (Denmark)
Mogensen, Lisbeth; Kristensen, Troels; Nguyen, T Lan T;
2014-01-01
ready to feed’. Included in the study were fodder crops that are grown in Denmark and typically used on Danish cattle farms. The contributions from the growing, processing and transport of feedstuffs were included, as were the changes in soil carbon (soil C) and from land use change (LUC). For each......Greenhouse gas emissions (GHG) related to feed production is one of the hotspots in livestock production. The aim of this paper was to estimate the carbon footprint of different feedstuffs for dairy cattle using life cycle assessment (LCA). The functional unit was ‘1 kg dry matter (DM) of feed...... fodder crop, an individual production scheme was set up as the basis for calculating the carbon footprint (CF). In the calculations, all fodder crops were fertilized by artificial fertilizer based on the assumption that the environmental burden of using manure is related to the livestock production...
Coulomb vs. physical string tension on the lattice
Burgio, G; Reinhardt, H; Vogt, H
2015-01-01
We investigate the precise relationship between the Coulomb and the physical (Wilson) string tension on the lattice, as the former is generally known to give an upper bound for the latter. We give evidence that the two string tensions are in a one to one correspondence at zero temperature, while they become unrelated at finite temperatures. More precisely, we show that the standard lattice calculations of the Coulomb gauge confinement scenario are always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices which allows to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition, although a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.
International Nuclear Information System (INIS)
In continuation of our earlier work on the ab initio calculation of perturbed spectra and on a corresponding quantum defect theory (QDT), we discuss certain essential characteristics having to do with the unification of the continuous and the discrete spectra via the formal and practical construction of smooth quantities without invoking the pair of analytic forms of regular and irregular functions. The theory and its computational methodology are in the framework of configuration interaction (CI), and its structure shows how wavefunctions and properties of excited states of atoms and molecules can be computed provided one uses reliable zero-order basis functions, regardless of whether the relevant potential is, asymptotically, Coulombic or some other type. The mathematical connection with smooth reaction matrices in the discrete spectrum is demonstrated via the Mittag-Leffler theorem for the construction of analytic functions. We compare results for the quantum defects and fine structure from the present theory, as implemented by Komninos et al ( 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2049 , 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L193 ), of the Al spectra of 2 D symmetry (strongly perturbed) and of 2 F o symmetry (weakly perturbed), with the recently reported measurements on high-lying states ( Dyubko et al 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3797 and 4827 ), as well as with those of Eriksson and Isberg (1963 Ark. Fys. 23 527) for the low-lying states. The comparison reveals for the first time very good agreement between theory and experiment for both series. In addition, predictions for the other states of the series are made. Previous computations of the quantum defects of the 2 D spectrum, in general, do not agree among themselves while they deviate from the experimental values
Minomo, Kosho; Ogata, Kazuyuki
2015-01-01
We analyze $^{16}$O-$^{16}$O and $^{12}$C-$^{12}$C scattering with the microscopic coupled-channels method and investigate the coupled-channels and three-nucleon-force (3NF) effects on elastic and inelastic cross sections. In the microscopic coupled-channels calculation, the Melbourne g-matrix interaction modified according to the chiral 3NF effects is used. It is found that the coupled-channels and 3NF effects additively change both the elastic and inelastic cross sections. As a result, the coupled-channels calculation including the 3NF effects significantly improves the agreement between the theoretical results and the experimental data. The incident-energy dependence of the coupled-channels and 3NF effects is also discussed.
Vacuum polarization of planar Dirac fermions by a superstrong Coulomb potential
Khalilov, V R
2016-01-01
We study the vacuum polarization of planar charged Dirac fermions by a strong Coulomb potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. For the massless case the induced vacuum charge density is localized at the origin when the Coulomb center charge is subcritical while it has a power-law tail when the Coulomb center charge is supercritical. The finite mass contribution into the induced charge due to the vacuum polarization is small and insignificantly distorts the Coulomb potential only at distances of order of the Compton length. The induced vacuum charge has a screening sign. As is known the quantum electrodynamics vacuum becomes unstable when the Coulomb center charge is increased from subcritical to supercritical values. In the supercritical Coulomb potential the quantum electrodynamics vacuum acquires the charge due to the so-called real vacuum polarization. We calculate the real vacuum polarizat...
Coulomb Control of Polygonal Linkages
Khimshiashvili, Giorgi N.; Panina, Gaiane Yu; Siersma, Dirk
2014-01-01
Equilibria of polygonal linkage with respect to Coulomb potential of point charges placed at the vertices of linkage are considered. It is proved that any convex configuration of a quadrilateral linkage is the point of global minimum of Coulomb potential for appropriate values of charges of vertices
Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation
Ting, Wang; Guangqing, Xia; Nan, Zhao
2016-03-01
The paper studied reconfiguration of Coulomb formation from three-craft system to four-craft system. Assumed that three-craft Coulomb system already formed a triangle configuration, then, the fourth Coulomb craft is scheduled to join the existing system so as to form a new static configuration. New possible configurations such as quadrilateral in 2-dimension and tetrahedron in 3-dimension for four-craft Coulomb formation are discussed in the paper. The processing of reconfiguration will not change the original origin and triangle formation. Through the Particle Swarm Optimization (PSO) algorithm, the mass, the charge and the position of the fourth Coulomb craft can be calculated for these configurations.
Energy Technology Data Exchange (ETDEWEB)
Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety
2011-07-01
been developed for calculation and synchronization purposes. The data exchange is realized by means of the Parallel Virtual Machine (PVM) software package. In this contribution, steady-state and transient results of a quarter of PWR fuel assembly with cold water injection are presented and compared with obtained results from a RELAP5/PARCS v2.7 coupled calculation. A simplified model for the spacers has been included. A methodology has been introduced to take into account the pressure drop and the turbulence enhancement produced by the spacers. (author)
Coulomb's law modification in nonlinear and in noncommutative electrodynamics
Gaete, Patricio(Departmento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaiso, Chile); Schmidt, Iván
2003-01-01
We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the $\\theta$-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction ($1/r^5$-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order $e^2$) is preserved in noncommutative electrodynamics.
Shot noise in Graphene with long range Coulomb interaction and the local Fermi distribution
Golub, Anatoly; Horovitz, Baruch
2009-01-01
We calculate the shot noise power in ballistic graphene using the kinetic equation approach based on the Keldysh technique. We find that the local energy distribution function obeys Poisson's equation, indicating a mapping into a diffusive metal system. We derive the conductance and noise including the long range Coulomb interaction to first order. We find that the shot noise increases due to interaction, leading to a frequency dependence. Furthermore, we find that the Fano factor at degenera...
PREFACE: Strongly Coupled Coulomb Systems
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
International Nuclear Information System (INIS)
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Parameterized cross sections for Coulomb dissociation in heavy-ion collisions
Norbury, John W.; Cucinotta, F. A.; Townsend, L. W.; Badavi, F. F.
1988-01-01
Simple parameterizations of Coulomb dissociation cross sections for use in heavy-ion transport calculations are presented and compared to available experimental dissociation data. The agreement between calculation and experiment is satisfactory considering the simplicity of the calculations.
Energy Technology Data Exchange (ETDEWEB)
David R. Farley
2010-08-19
A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.
Energy Technology Data Exchange (ETDEWEB)
Breitschopf, Barbara [Fraunhofer Inst. for Systems and Innovation Research (Germany); Nathani, Carsten [Ruetter and Partner Socioeconomic Research and Consulting (Switzerland); Resch, Gustav [Vienna Univ. of Technology, Energy Economics Group (EEG) (Austria
2012-07-15
The EMPLOY project aimed to help achieve the IEA-RETD’s objective to 'empower policy makers and energy market actors through the provision of information, tools and resources' by underlining the economic and industrial impacts of renewable energy technology deployment and providing reliable methodological approaches for employment – similar to those available for the incumbent energy technologies. The EMPLOY project resulted in a comprehensive set of methodological guidelines for estimating the employment impacts of renewable energy deployment in a coherent, uniform and systematic way. Guidelines were prepared for four different methodological approaches. In the introduction section of the guidelines policy makers are guided in their choice for the most suited approach, depending on the policy questions to be answered, the data availability and budget. The guidelines were tested for the IEA-RETD member state countries and Tunisia. The results of these calculations are included in the annex to the guidelines.
Energy Technology Data Exchange (ETDEWEB)
Hugtenburg, Richard P., E-mail: r.p.hugtenburg@swansea.ac.u [School of Medicine, Swansea University, Swansea SA2 8PP (United Kingdom); Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg University, LHB, Swansea SA2 8QA (United Kingdom); Adegunloye, A.S.; Bradley, David A. [Department of Physics, Surrey University, Guildford (United Kingdom)
2010-07-21
Microbeam radiation therapy (MRT) is currently being considered for the treatment of glioblastoma multiforme. A high degree of dosimetric accuracy (around 5%) is known to be required for a successful outcome in conventional radiation therapy, Modelling of MRT beams, measurements and treatments have been performed with Monte Carlo methods using the code EGS5, which features improved physics models for low energy scattering processes including linear polarisation. Polarisation of the X-ray source leads to distortions in beam profiles that exceed the usual clinical tolerances. Changes in the energy spectrum also effect the response of many dosimetry systems. Anatomical (CT) data has been used in the dose calculations and the manipulation of dose data with the open-source software treatment planning system, PlanUNC, is demonstrated, in order that the therapeutic effects of the different components, e.g. the microbeam and scattered photons, can examined separately in relation to relevant anatomy.
Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2014-05-01
Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ- and 33Σ- electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ- possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ-, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.
Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.
Extensive calculations on 12 Λ-S and 27 Ω states of PCl+ cation including spin-orbit coupling
Niu, Xianghong; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2014-01-01
The potential energy curves (PECs) of 27 Ω states generated from the 12 Λ-S states (X2Π, A2Π, 14Π, 24Π, 12Σ-, 22Σ-, 14Σ-, 24Σ-, 12Σ+, 14Σ+, 12Δ and 14Δ) of PCl+ cation are studied for the first time for internuclear separations from about 0.10 to 1.10 nm using an ab initio quantum chemical method. All the 12 Λ-S states correlate to the first dissociation channel of PCl+ cation. Of these Λ-S states, the 24Π is found to be the repulsive one. The 14Σ+, 12Δ and 14Δ are found to be the inverted ones. And the 12Δ is found to possess the double wells. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction in combination with the correlation-consistent basis sets, aug-cc-pV(n+d)Z. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is briefly discussed. Scalar relativistic corrections are included by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated for the 11 Λ-S bound states and for the 23 Ω bound states, and are compared with available experimental and other theoretical results. Fair agreement has been found between the present spectroscopic parameters and the measurements. The energy splitting in the X2Π Λ-S state is calculated to be 346.11 cm-1, close to the estimated measurements of 370 cm-1. It demonstrates that the spectroscopic parameters reported here can
Coulomb dissociation of $^{20,21}$N
Röder, Marko; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J G; Burgunder, G; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A; Farinon, F; Fraile, Luis M; Freer, Martin; Freudenberger, M; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Diaz, Diego Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Bleis, Tudi Le; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Caro, Magdalena Mostazo; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S; Plag, Ralf; Prochazka, A; Rahaman, Md Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Saez, Jose Sanchez del Rio; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G; Wimmer, Christine; Winfield, J S; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai
2016-01-01
Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ and $^{20}\\mathrm{N}(\\mathrm{n},\\gamma)^{21}\\mathrm{N}$ excitation functions and thermonuclear reaction rates have been determined. The $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ rate is up to a factor of 5 higher at $T<1$\\,GK with respect to previous theoretical calculations, leading to a 10\\,\\% decrease in the predicted fluorine abundance.
Coulomb Excitation of the N = 50 nucleus 80Zn
International Nuclear Information System (INIS)
Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+→01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni
Electroweak Sudakov logarithms in the Coulomb gauge
Beenakker, W.; Werthenbach, A.
2000-01-01
We describe a formalism for calculating electroweak Sudakov logarithms in the Coulomb gauge. This formalism is applicable to arbitrary electroweak processes. For illustration we focus on the specific reactions e^+e^- -> f \\bar{f} and e^+e^- -> W_T^+W_T^-, W_L^+W_L^-, which contain all the salient details of dealing with the various types of particles. We discuss an explicit two-loop calculation and have a critical look at the (non-)exponentiation and factorisation properties of the Sudakov lo...
Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F; Dixon, David A
2016-08-01
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n (M = Ti, Zr, Hf, n = 1-4) and (MO3)n (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer. PMID:27384926
Coulomb interactions within halo EFT
International Nuclear Information System (INIS)
Preliminary results of an effective field theory applied to nuclear cluster systems are presented, where Coulomb interactions play a significant role. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels
Kaufman, I Kh; Eisenberg, R S
2014-01-01
The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The model is equally applicable to other nanopores.
Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation
Energy Technology Data Exchange (ETDEWEB)
Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others
1998-03-01
In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)
Coulomb screening effect on the nuclear-pasta structure
Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi; Maruyama, Tomoyuki
2004-01-01
Using the density functional theory (DFT) with the relativistic mean field (RMF) model, we study the non-uniform state of nuclear matter, ``nuclear pasta''. We self-consistently include the Coulomb interaction together with other interactions. It is found that the Coulomb screening effect is significant for each pasta structure but not for the bulk equation of state (EOS) of the nuclear pasta phase.
Coulomb drag in multiwall armchair carbon nanotubes
DEFF Research Database (Denmark)
Lunde, A.M.; Jauho, Antti-Pekka
2004-01-01
We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2011-08-21
In this work we report very accurate variational calculations of the complete pure vibrational spectrum of the D(2) molecule performed within the framework where the Born-Oppenheimer (BO) approximation is not assumed. After the elimination of the center-of-mass motion, D(2) becomes a three-particle problem in this framework. As the considered states correspond to the zero total angular momentum, their wave functions are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even non-negative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α(2) (where α = 1/c is the fine structure constant) calculated as expectation values of the operators representing these effects. PMID:21861559
International Nuclear Information System (INIS)
All 18 bound pure vibrational levels of the HD molecule have been calculated within the framework that does not assume the Born-Oppenheimer (BO) approximation. The nonrelativistic energies of the states have been corrected for the relativistic effects of the order of α2 (where α is the fine structure constant), calculated using the perturbation theory with the nonrelativistic non-BO wave functions being the zero-order approximation. The calculations were performed by expanding the non-BO wave functions in terms of one-center explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance and by performing extensive optimization of the Gaussian nonlinear parameters. Up to 10 000 basis functions were used for each state.
Quantum mechanics of Drude oscillators with full Coulomb interaction
Sadhukhan, M.; Manby, Frederick R.
2016-09-01
Drude oscillators provide a harmonic description of charge fluctuations and are widely studied as a model system and for ab initio calculations. In the dipole approximation the Hamiltonian describing the interaction of Drudes is quadratic, so it can be diagonalized exactly, but the energy diverges at short range. Here we consider the quantum mechanics of Drude oscillators interacting through the full Coulombic Hamiltonian for which the interaction energy does not have this defect. This protypical model for interactions between matter includes electrostatics, induction, and dispersion. Potential energy curves for rare-gas dimers are very closely matched by Drude correlation energies plus a single exponential function. The exact and accurate results presented here help to delineate between the basic properties of the physical model and the effects that arise from the dipole approximation.
Wave functions of a particle with polarizability in the Coulomb potential
Kisel, V; Ovsiyuk, E; Amirfachrian, M; Red'kov, V
2011-01-01
Quantum mechanical scalar particle with polarizability is considered in the presence of the Coulomb field. Separation of variables is performed with the use of Wigner $D$-functions, the radial system of 15 equations is reduced to a single second order differential equation, which among the Coulomb term includes an additional interaction term of the form \\sigma \\alpha^{2} / M^{2}r^{4}. Various physical regimes exist that is demonstrated by examining the behavior of the curves of generalized squared radial momentum P^{2}(r). Eigenstates of the equations can be constructed in terms of double confluent Heun functions. Numerical analysis proves the existence of the bound states in the system; the lowest energy level and corresponding solution are calculated based on generalization of Ritz variational procedure.
Coulomb explosion of "hot spot"
Oreshkin, V I; Chaikovsky, S A; Artyomov, A P
2016-01-01
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Renormalization in Coulomb gauge QCD
International Nuclear Information System (INIS)
Research highlights: → The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. → We investigate the UV divergences from higher order graphs. → We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.
COULOMB SCATTERING IN NON-COMMUTATIVE QUANTUM MECHANICS
Directory of Open Access Journals (Sweden)
Veronika Gáliková
2013-10-01
Full Text Available Recently we formulated the Coulomb problem in a rotationally invariant NC configuration space specified by NC coordinates xi, i = 1, 2, 3, satisfying commutation relations [xi, xj ] = 2iλεijkxk (λ being our NC parameter. We found that the problem is exactly solvable: first we gave an exact simple formula for the energies of the negative bound states Eλn < 0 (n being the principal quantum number, and later we found the full solution of the NC Coulomb problem. In this paper we present an exact calculation of the NC Coulomb scattering matrix Sλj (E in the j-th partial wave. As the calculations are exact, we can recognize remarkable non-perturbative aspects of the model: 1 energy cut-off — the scattering is restricted to the energy interval 0 < E < Ecrit = 2/λ2; 2 the presence of two sets of poles of the S-matrix in the complex energy plane — as expected, the poles at negative energy EIλn = Eλn for the Coulomb attractive potential, and the poles at ultra-high energies EIIλn = Ecrit − Eλn for the Coulomb repulsive potential. The poles at ultra-high energies disappear in the commutative limit λ→0.
Role of transfer reactions in heavy-ion collisions at the Coulomb barrier
Directory of Open Access Journals (Sweden)
Pollarolo Giovanni
2011-10-01
Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.
Hartmann, J.-M.; Tran, H.; Ngo, N. H.; Landsheere, X.; Chelin, P.; Lu, Y.; Liu, A.-W.; Hu, S.-M.; Gianfrani, L.; Casa, G.; Castrillo, A.; Lepère, M.; Delière, Q.; Dhyne, M.; Fissiaux, L.
2013-01-01
We present a fully ab initio model and calculations of the spectral shapes of absorption lines in a pure molecular gas under conditions where the influences of collisions and of the Doppler effect are significant. Predictions of the time dependence of dipole autocorrelation functions (DACFs) are made for pure CO2 at room temperature using requantized classical molecular dynamics simulations. These are carried, free of any adjusted parameter, on the basis of an accurate anisotropic intermolecular potential. The Fourier-Laplace transforms of these DACFs then yield calculated spectra which are analyzed, as some measured ones, through fits using Voigt line profiles. Comparisons between theory and various experiments not only show that the main line-shape parameters (Lorentz pressure-broadening coefficients) are accurately predicted, but that subtle observed non-Voigt features are also quantitatively reproduced by the model. These successes open renewed perspectives for the understanding of the mechanisms involved (translational-velocity and rotational-state changes and their dependences on the molecular speed) and the quantification of their respective contributions. The proposed model should also be of great help for the test of widely used empirical line-shape models and, if needed, the construction of more physically based ones.
Energy Technology Data Exchange (ETDEWEB)
YAMAZAKI, T.
2006-07-23
We calculate {Delta}I = 3/2 kaon decay matrix elements using domain wall fermions and the DBW2 gauge action at one coarse lattice spacing corresponding to a{sup -1} = 1.3 GeV. We employ the Lellouch and Luescher formula and its extension for non-zero total momentum to extract the infinite volume, center-of-mass frame decay amplitudes. The decay amplitudes obtained from the methods correspond to those from the indirect method with full order chiral perturbation theory. We confirm that the result is consistent with the previous result calculated with H-parity (anti-periodic) boundary condition by investigating the relative momentum dependence. We evaluate the decay amplitude ReA{sub 2} at the physical point by a chiral extrapolation with a polynomial function of m{sub {pi}}{sup 2} and the relative momentum as well as the {Delta}I = 3/2 electroweak penguin contributions to {var_epsilon}{prime}/{var_epsilon}. We found that the result of ReA{sub 2} reasonably agrees with the experiment.
Coulomb gap at finite temperatures
Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas
1995-08-01
The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.
Molecular integrals for slater type orbitals using coulomb sturmians
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2014-01-01
The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...
Finiteness of the Coulomb gauge QCD perturbative effective action
Energy Technology Data Exchange (ETDEWEB)
Andraši, A., E-mail: aandrasi@irb.hr [Vlaška 58, Zagreb (Croatia); Taylor, J.C., E-mail: jct@damtp.cam.ac.uk [DAMTP, University of Cambridge, Cambridge (United Kingdom)
2015-05-15
At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.
Finiteness of the Coulomb gauge QCD perturbative effective action
Andrasi, A
2015-01-01
At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ-Lee term which was inserted into the Hamiltonian.
NNLL soft and Coulomb resummation for squark and gluino production at the LHC
Beneke, Martin; Schwinn, Christian; Wever, Christopher
2016-01-01
We present predictions for the total cross sections for pair production of squarks and gluinos at the LHC including a combined NNLL resummation of soft and Coulomb gluon effects. We derive all terms in the NNLO cross section that are enhanced near the production threshold, which include contributions from spin-dependent potentials and so-called annihilation corrections. The NNLL corrections at $\\sqrt{s}=13$ TeV range from up to $20\\%$ for squark-squark production to $90\\%$ for gluino pair production relative to the NLO results and reduce the theoretical uncertainties of the perturbative calculation to the $10\\%$ level. Grid files with our numerical results are publicly available.
Heavy ion reactions around the Coulomb barrier
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.
Coulomb chronometry to probe the decay mechanism of hot nuclei
Gruyer, Diego; Bonnet, E; Chbihi, A; Ademard, G; Boisjoli, M; Borderie, B; Bougault, R; Galichet, E; Gauthier, J; Guinet, D; Lautesse, Philippe; Neindre, N Le; Legouée, E; Lopez, O; Marini, P; Mazurek, K; Nadtochy, P N; Pârlog, M; Rivet, M F; Roy, R; Rosato, E; Spadaccini, G; Verde, G; Vient, E; Vigilante, M; Wileczko, J -P
2013-01-01
In $^129$Xe+$^{nat}$Sn central collisions from 12 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is unambiguously determined. Strong Coulomb proximity effects are observed in the three fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy $E^*=4.0\\pm0.5$ MeV/A.
An algebraic model of Coulomb scattering with spin
Energy Technology Data Exchange (ETDEWEB)
Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)
2001-05-11
A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)
Gribov horizon and Gribov copies effect in lattice Coulomb gauge
Burgio, Giuseppe; Reinhardt, Hugo; Vogt, Hannes
2016-01-01
Following a recent proposal by Cooper and Zwanziger we investigate via lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e. the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g. the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.
Coulomb field in a constant electromagnetic background
Adorno, T C; Shabad, A E
2016-01-01
Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.
Plane density of induced vacuum charge in a supercritical Coulomb potential
Khalilov, V R
2016-01-01
An expression for the density of a planar induced vacuum charge is obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in this potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. The behavior of the obtained vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. We calculate the real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in the supercritical Coulomb potential due to the so-called real vacuum polarization. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supe...
Coulomb excitation of radioactive {sup 79}Pb
Energy Technology Data Exchange (ETDEWEB)
Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Coulomb dissociation in nonrelativistic and relativistic collisions
International Nuclear Information System (INIS)
Electromagnetic excitations in the Coulomb field of nuclei have been studied using quantum as well as semiclassical methods. Even at relatively modest incident energies, the Coulomb dissociation cross sections of projectiles with relatively low particle thresholds could be of sizeable order of magnitude. Such a study complements our knowledge about radiative capture processes, which are of interest for nuclear astrophysics. Quite a few questions remain to be answered, like the importance of nuclear interactions for small angle scattering, interference of different multipolarities for triple differentiial cross sections and distortion effects on the three-body final states. In the case of dissociation at relativistic energies it is shown that only for the total cross section both semiclassical and quantim-mechanical methods yield the same results. As an example the Primakoff effect is considered, where in an M1 excitation of ≅ 80 MeV a Λ hyperion is converted into a Σo hyperion by means of the virtual photon field of heavy target nuclei. Virtual photon spectra for all multipolarities can be calculated. This provides a sound basis for the analysis of electromagnetic dissociation experiments at relativistic heavy ion accelerators, like the BEVALAC. 10 figs., 25 refs
Jönsson, B; Söderberg, B
1993-01-01
A variational approach is used to calculate free energy and conformational properties in polyelectrolytes. The true bond and Coulomb potentials are approximated by a trial isotropic harmonic energy containing monomer-monomer force constants as variational parameters. By a judicious choice of representation and the use of incremental matrix inversion, an efficient and fast-convergent iterative algorithm is constructed, that optimizes the free energy. The computational demand scales as N^3. The method has the additional advantage that the entropy is easily computed. An analysis of the high and low temperature limits is given. Also, the variational formulation is shown to respect the appropriate virial identities. The accuracy of the approximations introduced are tested against Monte Carlo simulations for problem sizes ranging from N=20 to 1024. Very good performance is obtained for chains with unscreened Coulomb interactions. The addition of salt is described through a screened Coulomb interaction, for which th...
Molecular Dynamics Simulation of Shear Moduli for Coulomb Crystals
Horowitz, C J
2008-01-01
Torsional (shear) oscillations of neutron stars may have been observed in quasiperiodic oscillations of Magnetar Giant Flares. The frequencies of these modes depend on the shear modulus of neutron star crust. We calculate the shear modulus of Coulomb crystals from molecular dynamics simulations. We find that electron screening reduces the shear modulus by about 10% compared to previous Ogata et al. results. Our MD simulations can be extended to calculate the effects of impurities and or polycrystalline structures on the shear modulus.
Coulomb excitation of {sup 107}Sn
Energy Technology Data Exchange (ETDEWEB)
DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)
2012-07-15
The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)
Ferroelectric instability under screened Coulomb interactions.
Wang, Yong; Liu, Xiaohui; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y
2012-12-14
We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO(3), we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices. PMID:23368377
Retardation effects and the Coulomb pseudopotential in the theory of superconductivity
Bauer, Johannes; Han, Jong E.; Gunnarsson, Olle
2012-01-01
In the theory of electron-phonon superconductivity both the magnitude of the electron-phonon coupling $\\lambda$ as well as the Coulomb pseudopotential $\\mu^*$ are important to determine the transition temperature $T_c$ and other properties. We calculate corrections to the conventional result for the Coulomb pseudopotential. Our calculation are based on the Hubbard-Holstein model, where electron-electron and electron-phonon interactions are local. We develop a perturbation expansion, which acc...
One-Step Direct Return Method For Mohr-Coulomb Plasticity
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Andersen, Lars
2004-01-01
A new return method for the Mohr-Coulomb yield criteria is presented. The idea is to transform the problem into the principal direction and thereby achieve very simple formulas for calculating the elastic return stresses.......A new return method for the Mohr-Coulomb yield criteria is presented. The idea is to transform the problem into the principal direction and thereby achieve very simple formulas for calculating the elastic return stresses....
CubeSat testing of Coulomb drag propulsion
Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne
2016-01-01
In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.
The effect of Coulombic friction on spatial displacement statistics
Menzel, Andreas M
2010-01-01
The phenomenon of Coulombic friction enters the stochastic description of dry friction between two solids and the statistic characterization of vibrating granular media. Here we analyze the corresponding Fokker-Planck equation including both velocity and spatial components, exhibiting a formal connection to a quantum mechanical harmonic oscillator in the presence of a delta potential. Numerical solutions for the resulting spatial displacement statistics show a crossover from exponential to Gaussian displacement statistics. We identify a transient intermediate regime that exhibits multiscaling properties arising from the contribution of Coulombic friction. These results are relevant to recent experimental studies of the displacement of colloidal particles along bilayer membrane tubes.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
Coulomb-Blockade Oscillations in Semiconductor Nanostructures
Houten, van, H.; Beenakker, C. W. J.; Staring, A.A.M.
2005-01-01
I. Introduction (Preface, Basic properties of semiconductor nanostructures). II. Theory of Coulomb-blockade oscillations (Periodicity of the oscillations, Amplitude and lineshape). III. Experiments on Coulomb-blockade oscillations (Quantum dots, Disordered quantum wires, Relation to earlier work on disordered quantum wires). IV. Quantum Hall effect regime (The Aharonov-Bohm effect in a quantum dot, Coulomb blockade of the Aharonov-Bohm effect, Experiments on quantum dots, Experiments on disor...
Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2010-01-01
We present lattice calculations for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our results were previously summarized in a letter publication. This paper provides full details of the calculations. We include isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.
International Nuclear Information System (INIS)
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.S.
1977-11-01
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.
Coulomb crystals in the harmonic lattice approximation
Baiko, D A; De Witt, H E; Slattery, W L
2000-01-01
The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...
Revised variational approach to QCD in Coulomb gauge
Campagnari, Davide R; Reinhardt, Hugo; Vastag, Peter
2016-01-01
The variational approach to QCD in Coulomb gauge is revisited. By assuming the non-Abelian Coulomb potential to be given by the sum of its infrared and ultraviolet parts, i.e.~by a linearly rising potential and an ordinary Coulomb potential, and by using a Slater determinant ansatz for the quark wave functional, which contains the coupling of the quarks and the gluons with two different Dirac structures, we obtain variational equations for the kernels of the fermionic vacuum wave functional, which are free of ultraviolet divergences. Thereby, a Gaussian type wave functional is assumed for the gluonic part of the vacuum. By using the results of the pure Yang--Mills sector for the gluon propagator as input, we solve the equations for the fermionic kernels numerically and calculate the quark condensate and the effective quark mass in leading order. Assuming a value of $\\sigma_{\\mathrm{C}} = 2.5 \\sigma$ for the Coulomb string tension (where $\\sigma$ is the usual Wilsonian string tension) the phenomenological valu...
Institute of Scientific and Technical Information of China (English)
Wang Liwei; Chen Qifu
2012-01-01
Static Coulomb stress change induced by earthquake slip is frequently used to explain earthquake activities and aftershock distribution. However, some parameters for the Coulomb stress calculation are unable to be well constrained from laboratory experiments and field observations. Different parameters may directly affect the pattern of static Coulomb stress. The static Coulomb stress changes induced by the Wenchuan earthquake calculated by six research groups are not consistent with each other. To investigate how the parameters affect the calculation results, we change the parameters in turn through modeling and compare the results of different calculation parameters. We find that gravity, position and strike of receiver faults have little influence on coseismic Coulomb stress calculations, but other parameters can change the value and sign of the results in various degrees especially around the earthquake rupture plane. Therefore the uncertainty analysis of static Coulomb stress change induced by earthquake should be taken into consideration in the earthquake hazard analysis.
Glass, S; Li, G; Adler, F; Aulbach, J; Fleszar, A; Thomale, R; Hanke, W; Claessen, R; Schäfer, J
2015-06-19
Two-dimensional (2D) atom lattices provide model setups with Coulomb correlations that induce competing ground states. Here, SiC emerges as a wide-gap substrate with reduced screening. We report the first artificial high-Z atom lattice on SiC(0001) by Sn adatoms, based on experimental realization and theoretical modeling. Density-functional theory of our triangular structure model closely reproduces the scanning tunneling microscopy. Photoemission data show a deeply gapped state (∼2 eV gap), and, based on our calculations including dynamic mean-field theory, we argue that this reflects a pronounced Mott-insulating scenario. We also find indications that the system is susceptible to antiferromagnetic superstructures. Such artificial lattices on SiC(0001) thus offer a novel platform for coexisting Coulomb correlations and spin-orbit coupling, with bearing for unusual magnetic phases and proposed topological quantum states of matter. PMID:26197013
Applicability of the molecular dynamics technique to a Coulomb plasma
Energy Technology Data Exchange (ETDEWEB)
Zhidkov, A.G.; Galeev, R.Kh.
1993-09-01
In the present work, we report the calculations of the local Lyapunov parameter which determines the nature of the motion for a system of n particles interacting according to Coulomb`s law. These calculations have been performed for the most probable states of a fully ionized plasma, and they were performed using a Microvax-3 computer with the NAG(FO2) program package for a plasma consisting of particles with the same mass and for a fully ionized hydrogen plasma. The particle coordinates were prescribed as a uniformly distributed set of random numbers obtained using the NAG(GO5) routine. Results for the Lyapunov parameter are presented, and it is shown that the values of the parameter increases sharply as a function of particle number up to n=100 and then saturate. This latter observation is attributed to shielding, related to Debye effects.
Scaling laws for near barrier Coulomb and Nuclear Breakup
Hussein, M S; Lubian, J; Otomar, D R; Canto, L F
2013-01-01
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
HCI-induced molecule fragmentation: non-Coulombic explosion and three-body effects
International Nuclear Information System (INIS)
The study of highly charged ion-induced diatomic (CO) and triatomic (CO2) molecules fragmentation by the coincident measurement of the fragment momenta is presented. It is shown that the experimental results together with ab initio calculations including a large number of potential energy curves evidence the limitation of the Coulomb explosion model to reproduce the dynamics of the fragmentation. The geometry modification of the CO2 molecule during the breakup is explored and the concerted or sequential nature of the dissociation is discussed for two fragmentation channels. Finally, the fragmentation of the H2 molecules following collisions with slow multicharged ions is analysed for various projectiles and energies. From the energy spectra, the effect of the projectile on the H+ fragments is evidenced. This three-body effect is discussed in connection with the results of two model calculations including or not the role of the projectile. (orig.)
Thermodynamic Curvature and Phase Transitions from Black Hole with a Coulomb-Like Field
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; BAO Zhi-Qing; HONG Yun
2011-01-01
In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field.Moreover, we obtain the geometric description of the black hole thermodynamics.We find that for the black hole with a coulomb-like field the Weinhold geometry is flat, whereas its Ruppeiner geometry is curved.For the heat capacity and curvature calculation shows the Ruppeiner geometry has a transition point.
Institute of Scientific and Technical Information of China (English)
章韦芳; 贾昌春; 肖全志; 陈姣姣
2011-01-01
在玻恩近似理论中分别采用扭曲波、平面波、库仑波,计算在250、150、54.4 eV三种入射能下氢原子(e,2e)反应的三重微分截面(TDCS),并与实验数据进行对比.发现在这些入射能下,采用扭曲波和平面波描述入射电子所得的TDCS相差不大;但当考虑散射电子与核的库仑相互作用时,其计算结果比扭曲波描述的更符合实验数据.%In the(e,2e)reaction of hydrogen,distorted wave,plane wave and Coulomb wave in the Born approximation theory were to calculate the triple differential cross sections(TDCS)at incident energies of 250,150 and 54.4 eV respectively,and the theoretical results were compared with experiments.The authors found that there was little difference between the results from the two models,one using the description of plane wave and the other of distorted wave.However,if the interaction between the scattered electron and the nucleus was considered,the result of the calculation coincided with the result of the experiments was better-than the calculation resulted from the description of distorted wave.
Suitability of linear quadrupole ion traps for large Coulomb crystals
Tabor, D A; Odom, B
2011-01-01
Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of diff...
Antiproton-Nucleus Interaction and Coulomb Effect at High Energies
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; WU Qing; GU Yun-Ting; MA Wei-Xing; TAN Zhen-Qiang; HU Zhao-Hui
2005-01-01
The Coulomb effect in high energy antiproton-nucleus elastic and inelastic scattering from 12C and 16O is studied in the framework of Glauber multiple scattering theory for five kinetic energies ranged from 0.23 to 1.83 GeV.A microscopic shell-model nuclear wave functions, Woods-Saxon single-particle wave functions, and experimental pN amplitudes are used in the calculations. The results show that the Coulomb effect is of paramount importance for filling up the dips of differential cross sections. We claim that the present result for inelastic scattering of antiproton-12C is sufficiently reliable to be a guide for measurements in the very near future. We also believe that antiproton nucleus elastic and inelastic scattering may produce new information on both the nuclear structure and the antinucleon-nucleon interaction, in particular the p-neutron interaction.
Coulomb effects in low-energy nuclear fragmentation
Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah
1993-01-01
Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.
Coulomb field of an accelerated charge physical and mathematical aspects
Alexander, F J; Alexander, Francis J.; Gerlach, Ulrich H.
1991-01-01
The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.
Kartavykh, Yulia; Droege, Wolfgang; Klecker, Berndt; Kocharov, Leon; Kovaltsov, Gennady; Moebius, Eberhard
We investigate the enrichment of ultraheavy ions in the mass range 84 -210 amu as observed in impulsive SEP events. To consider the acceleration of such ions we have calculated the ionization and recombination rates for Kr, Te and Pb ions and their resulting charge state as a function of their energy. Making use of a charge-consistent acceleration model, including the effects of stochastic acceleration, spatial diffusion, Coulomb losses and charge changing processes, energy spectra of O, Fe, Kr, Te and Pb are calculated for a wide range of plasma parameters and under different assumptions for the spectral index of an underlying turbulence in the plasma. Our conclusion is that Coulomb losses can be a reason for a considerable enrichment of ultraheavy ions relative to O in impulsive SEP events.
Smooth models for the Coulomb potential
González-Espinoza, Cristina E; Karwowski, Jacek; Savin, Andreas
2016-01-01
Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.
Coulomb Friction Driving Brownian Motors
International Nuclear Information System (INIS)
We review a family of models recently introduced to describe Brownian motors under the influence of Coulomb friction, or more general non-linear friction laws. It is known that, if the heat bath is modeled as the usual Langevin equation (linear viscosity plus white noise), additional non-linear friction forces are not sufficient to break detailed balance, i.e. cannot produce a motor effect. We discuss two possibile mechanisms to elude this problem. A first possibility, exploited in several models inspired to recent experiments, is to replace the heat bath's white noise by a “collisional noise”, that is the effect of random collisions with an external equilibrium gas of particles. A second possibility is enlarging the phase space, e.g. by adding an external potential which couples velocity to position, as in a Klein—Kramers equation. In both cases, non-linear friction becomes sufficient to achieve a non-equilibrium steady state and, in the presence of an even small spatial asymmetry, a motor effect is produced. (general)
Deep inelastic scattering near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Gehring, J.; Back, B.; Chan, K. [and others
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
On the effect of Coulomb interaction on the multiphoton ionization probability
International Nuclear Information System (INIS)
The nonresonant multiphoton ionization problem is considered in the case of one-dimensional Coulomb potential. The continuous spectrum wave function in the presence of electromagnetic field and Coulomb interaction is calculated in the quasiclassical approximation. The Coulomb interaction is taken into account by the use of the perturbation theory in that part of action which arises due to interaction with an electromagnetic field. Criteria of this approximation validity are found and it is shown that such an approach allows the process of nonresonant multiphoton ionization to be described in the field range εa (εa is the characteristic atomic field) for arbitrary values of the adiabaticity parameter γ. Within the range γ>>1 the Coulomb factor in the ionization probability is independing of the field strength and has to be taken into account
Comments on Coulomb pairing in aromatic hydrocarbons
Huber, D L
2013-01-01
Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.
Numerical path integration with Coulomb potential
Myrheim, Jan
2003-01-01
A simple and efficient method for quantum Monte Carlo simulation is presented, based on discretization of the action in the path integral, and a Gaussian averaging of the potential, which works well e.g. with the Coulomb potential.
Coulomb Interaction Does Not Spread Instantaneously
Tzontchev, R I; Rivera-Juarez, J M
2000-01-01
The experiment is described which shows that Coulomb interaction spreads with a limit velocity and thus this kind of interaction cannot be considered as so called "instantaneous action at a distance".
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan;
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Coulomb Distortion in the Inelastic Regime
Energy Technology Data Exchange (ETDEWEB)
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Gaussian expansion approach to Coulomb breakup
Egami, T; Matsumoto, T; Iseri, Y; Kamimura, M; Yahiro, M
2004-01-01
An accurate treatment of Coulomb breakup reactions is presented by using both the Gaussian expansion method and the method of continuum discretized coupled channels. As $L^2$-type basis functions for describing Coulomb breakup processes, we take complex-range Gaussian functions, which form in good approximation a complete set in a large configuration space being important for the processes. Accuracy of the method is tested quantitatively for $^{8}{\\rm B}+^{58}$Ni scattering at 25.8 MeV.
16O Coulomb decomposition project '93
International Nuclear Information System (INIS)
The adaptability of magnetic analyzers in Japan to this research project was compared and investigated, and the Coulomb decomposition process and the experimental conditions for 16O were examined. By the measurement of the delayed-α spectrum in 16N decay, a new restriction was set to the E1 reaction rate of 12C(α, γ)16O reaction. Hereafter, the research on the E2 reaction rate is urgently needed. There is large expectation for the Coulomb decomposition reaction of 16O as the probe especially sensitive to the E2 reaction rate of the important reaction for celestial body physics. At the meeting held on July 30, the RIKEN SMART spectrometer (F2) was judged as optimal, and its merits are explained. Also a demerit is pointed out. The ion optic parameters of the SMART F2 are shown. In the meeting held on December 17, investigation was carried out on α-12C coincidence count rate and projectile fragmentation background, Coulomb decomposition process and focal plane detector. The reaction cross section of Coulomb E2 excitation was evaluated by Monte Carlo method. As to the possibility of applying Coulomb decomposition process under the circumstance that nuclear force and Coulomb force compete, the new direction was indicated. The experimental plan is shown. (K.I.)
Exponential representation in the Coulomb three-body problem
International Nuclear Information System (INIS)
The exponential representation in the Coulomb three-body problem is considered. It is shown that the exponential variational expansion in relative coordinates r32, r31 and r21 has a number of advantages for the bound state calculations in Coulomb three-body systems. Moreover, it appears that the exponential (or Laplace-Fourier) representation of the Coulomb three-body problem is an optimal approach to analyse and solve various three-body problems. The optimization of nonlinear parameters in the trial wavefunctions is also considered. The developed methods are used to determine the highly accurate ground 11S(L = 0)-state energies and other bound state properties for a number of He-like two-electron ions (Li+, Be2+, B3+, C4+, N5+, O6+, F7+ and Ne8+). To represent the ground state energies of these He-like ions we apply the Z-1 expansion. The asymptotic form of the ground state wavefunctions at large electron-nuclear distances for the He-like ions is briefly discussed. Considered hypervirial theorems are of great interest for these ions, since they allow one to obtain some useful relations between different expectation values. The generalization of the exponential variational expansion in relative coordinates to the four-body non-relativistic systems is also considered
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages
Grabert, Hermann
2015-12-01
The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589
Coulomb interaction effect in tilted Weyl fermion in two dimensions
Isobe, Hiroki; Nagaosa, Naoto
2015-01-01
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor $\\alpha$-(BEDT-TTF)$_2$I$_3$ and three-dimensional WTe$_2$. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the...
Guthmuller, Julien
2016-02-01
Sum-over-state (SOS) expressions to simulate absorption spectroscopy and resonance Raman (RR) scattering including Franck-Condon (FC) and Herzberg-Teller (HT) effects are described. Starting from the general SOS method, several simplified SOS formulae are derived. In particular, within the so-called independent mode displaced harmonic oscillator model, it is shown that including the vibronic structure in the absorption and RR spectra only requires the calculation of FC overlap integrals of the type , where g, e, and v stand for the electronic ground state, excited state, and vibrational quantum number, respectively. Additionally, an approximation of the latter approach is introduced, referred as the simplified Φe method, in which the FC factors are neglected. This method is advantageous from the computational point of view and it is demonstrated that it reproduces the main characteristics of the more involved approaches. The merits and drawbacks of the different methods are discussed by applying them to the prototypical compound of Rhodamine 6G. Overall, this work intends to unravel and clarify some differences in the SOS theories of RR scattering.
Theory of intervalley Coulomb interactions in monolayer transition-metal dichalcogenides
Dery, Hanan
2016-08-01
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe2 and WS2 have shown that, while the low-temperature photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self-energy includes a moderate redshift due to exchange and, most importantly, a correlation-induced virtual state in the band gap. The latter sheds light on the origin of the luminescence in monolayer WSe2 and WS2 in the presence of pronounced many-body interactions.
Low-energy Coulomb excitation of neutron-rich zinc isotopes
International Nuclear Information System (INIS)
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in 74-80Zn, B(E2,41+→21+) values in 74,76Zn and the determination of the energy of the first excited 21+ states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart
International Nuclear Information System (INIS)
Highlights: • Electromagnetic (EM) loads were calculated on the ITER machine for various disruption scenarios. • Plenty of narrow slits in the in-vessel components were numerically modeled without increase of the computation memory. • Time-varying plasma data obtained from plasma simulation were precisely converted to the finite element model. • We investigated the worst disruption case and its consequent design-driving force for each ITER system. • Effect of the narrow slits on EM loads was also investigated. -- Abstract: We evaluate electromagnetic (EM) loads on the main systems of the ITER machine using a single finite element model. The 20° sector of the full ITER machine includes the main in-vessel components as well as the vacuum vessel. Narrow slits of the in-vessel components are effectively modeled by using the element splitting method without significant increase of computation memory and time as well as without sacrificing the accuracy. Furthermore, the halo current is taken into account at the same time together with the plasma current. To apply both currents concurrently, dedicated conversion codes are utilized to transfer the plasma simulation results by DINA to the electromagnetic analysis by ANSYS-EMAG used here. The electromagnetic loads on the ITER machine are calculated for various disruption scenarios. Investigation on the analysis results is made to find the worst plasma disruption case and the design-driving load component for each system as well as to compare load contribution from eddy and halo currents. The effect of the narrow slits on load reduction is also examined
Observation of multistep Coulomb excitation during ion-atom collisions
International Nuclear Information System (INIS)
Well below the Coulomb barrier energies two colliding nuclei may share the energy via electromagnetic interactions and it can lead to excite the nuclear states of one or both the participating nuclei. This long range Coulombic interaction leading to nuclear excitation is called Coulomb excitation. In the present work, we have studied heavy ion induced Coulomb excitation process in 12C nuclei at the sub-Coulomb barrier energies using x-ray spectroscopy technique in combination with the nuclear techniques.
Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping
Card, D A
2000-01-01
The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...
Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung
Energy Technology Data Exchange (ETDEWEB)
Feuchter, C.
2006-07-01
In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)
Institute of Scientific and Technical Information of China (English)
LIU Jian-Ye; GUO Wen-Jun; XING Yong-Zhong; Li Xi-Guo
2004-01-01
We investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. We also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section.In this case, Coulomb interaction does not change obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential.
Resonant and nonresonant Coulomb break up of 6Li
International Nuclear Information System (INIS)
The resonant and nonresonant cross section for break up of 6Li in the Coulomb field of a heavy nucleus is theoretically studied on the basis of a DWBA approach and analysed in view of a possible experimental access to electromagnetic transition matrix elements between the ground state of the projectile and α+d continuum states at small relative energies. The calculation explicitly uses some simplifications appearing in the particular case of quadrupole transitions which dominate the considered case. Various sensitivities of the cross sections are discussed. (orig.)
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-01
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.
The simplest model for non-congruent fluid-fluid phase transition in Coulomb system
Stroev, N. E.; Iosilevskiy, I. L.
2015-11-01
The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM(˜)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with “linear mixture” (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM(˜) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM(˜) there were reproduced two-dimensional remarkable (“banana-like”) structure of two-phase region P — T diagram and the characteristic non-monotonic shape of caloric phase enthalpy-temperature diagram, similar to the non-congruent evaporation of reactive plasma products in high-temperature heating with the uranium-oxygen system. The parameters of critical points (CP) line were calculated on the entire range of proportions of ions 0 < X < 1, including two reference values, when CP coincides with a point of extreme temperature and extreme pressure, XT and Xp. Finally, it is clearly demonstrated the low-temperature property of non-congruent gas-liquid transition — “distillation”, which is weak in chemically reactive plasmas.
Level lifetimes and quadrupole moments from Coulomb excitation in the Ba chain
Energy Technology Data Exchange (ETDEWEB)
Bauer, Christopher; Guastalla, Giulia; Leske, Joerg; Moeller, Thomas; Pietralla, Norbert; Stahl, Christian; Stegmann, Robert; Wiederhold, Johannes [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Seweryniak, Darek; Zhu, Shaofei [Argonne National Lab., Chicago, IL (United States); Collaboration: IS411-Collaboration
2013-07-01
The chain of Barium isotopes enables us to study experimentally the evolution of nuclear quadrupole collectivity from the shell closure at N=82 towards neutron-deficient or neutron-rich deformed nuclei. The TU Darmstadt group has investigated several nuclei from stable {sup 130,132}Ba up to radioactive {sup 140,142}Ba with the projectile-Coulomb excitation technique including the use of the Doppler-shift attenuation method (DSAM). Lifetimes of quadrupole-collective states of {sup 132}Ba and {sup 140}Ba were obtained for the first time as well as the static electric quadrupole moments Q(2{sup +}{sub 1}) for {sup 130,132}Ba and {sup 140,142}Ba. The results are compared to Monte Carlo shell model and Beyond-Mean-Field calculations.
Coulomb collisional effects on high energy particles in the presence of driftwave turbulence
Huang, B; Cheng, C Z
2013-01-01
High energy particles' behavior including fusion born alpha particles in an ITER like tokamak in the presence of background driftwave turbulence is investigated by an orbit following calculation. The background turbulence is given by the toroidal driftwave eigenmode combined with a random number generator. The transport level is reduced as the particle energy increase; the widths of the guiding center islands produced by the passing particles are inverse proportional to the square root of parallel velocities. On the other hand, the trapped particles are sensitive to $E \\times B$ drift at the banana tips whose radial displacement is larger for lower energy particles. Coulomb collisional effects are incorporated which modifies the transport process of the trapped high energy particles whose radial excursion resides in limited radial domains without collisions.
"Safe" Coulomb excitation of $^{30}$Mg
Niedermaier, O; Alvarez, C; Ames, F; Äystö, J; Behrens, T; Bildstein, V; Boie, H; Bollen, G; Butler, P A; Cederkäll, J; Davinson, T; Delahaye, P; Eberth, J; Emhofer, S; Fitting, J; Forstner, O; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gerl, J; Gernhäuser, R; Gersch, G; Habs, D; Hess, H; Huber, G; Hurst, A; Huyse, M; Ivanov, O; Iwanicki, J; Jonson, B; Kester, O; Köck, F; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lieb, P; Liljeby, L; Lutter, R; Mayet, P; Münch, M; Nilsson, T; Oinonen, M; Pal, U K; Pantea, M; Pasini, M; Podlech, H; Reiter, P; Repnow, R; Richter, A; Rudolph, K; Scheit, H; Schempp, A; Scherillo, A; Schmidt, P; Schrieder, G; Schwalm, D; Sieber, T; Simon, H; Thelen, O; Thirolf, P G; Van Duppen, P; Van de Walle, J; Van den Bergh, P; Walter, G; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Von Hahn, R
2005-01-01
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25 MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2$^{+}$ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$- ray yields the B(E2; 0$_{gs}^{+} \\rightarrow 2_{1}^{+}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$ fm$^{4}$. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg resides outside the "island of inversion".
"Safe" Coulomb Excitation of $^{30}$Mg
Niedermaier, O; Bildstein, V; Boie, H; Fitting, J; Von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Äystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile-Prieto, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G
2005-01-01
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \\rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-energy Coulomb excitation method and confirms that the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg lies still outside the "island of inversion".
Farrance, Ian; Frenkel, Robert
2014-02-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship
Leading order QCD in Coulomb gauge
Watson, Peter
2011-01-01
Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.
Orbital Ordering Induced by Direct Coulomb Repulsion
Institute of Scientific and Technical Information of China (English)
HUANG Yuan-Yie; ZHANG Yu-Heng
2011-01-01
We consider the covalence characters of the 3d electron with the eg orbital freedoms and put forward a new mechanism of the orbital ordering (OO) based on the direct coulomb repulsion in this article. The results show that the orbital-orbital interaction (OO-I) between the adjacent ions in 180-degree configuration is dominated by the superexchange energy accompanied by a weak orbital-spin coupling, and the OO-I in 90-degree configuration is monitored by the oxygen on-site coulomb repulsion. The ferro-OO is the stable ground state for the one-dimensional chain in the case of the 90-degree configuration.
Testing of Coulomb-Volkov functions
International Nuclear Information System (INIS)
A time-dependent generalization of the Siegert theorem is applied to test the accuracy of the Coulomb-Volkov functions (CVFs) widely used for the description of electron motion in a laser field combined with the Coulomb field of the atomic core. Free-free transitions in the case of arbitrary elliptic polarization of the electromagnetic field are investigated. It is shown that the ratio between the strength of the light wave electric field and its frequency (in atomic units) has crucial importance for estimation of the CVF accuracy. (author)
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis
2016-07-01
A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. PMID:27265044
Relativistic many-body calculations of energies for n=3 states in aluminiumlike ions
Energy Technology Data Exchange (ETDEWEB)
Safronova, U.I.; Namba, C. [National Inst. for Fusion Science, Toki, Gifu (Japan); Johnson, W.R.; Safronova, M.S. [Department of Physics, Univ. of Notre Dame, Notre Dame, IN (United States)
2001-01-01
Energies of the 148 (3l3l'3l'') states for aluminiumlike ions with Z =14-100 are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb shift. A detailed discussion of the various contributions to the energy levels is given for aluminiumlike germanium (Z=32). Comparisons of the calculated energy levels with available experimental data are made for the entire sequence. (author)
Module of System Galactica with Coulomb's Interaction
Smulsky, Joseph J
2014-01-01
The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.
BRST invariance in Coulomb gauge QCD
Andrasi, A
2015-01-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order h^2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g^4), example.
BRST invariance in Coulomb gauge QCD
Andraši, A.; Taylor, J. C.
2015-12-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...
Coulomb Correction to the Screening Angle of the Moliere Multiple Scattering Theory
Kuraev, E A; Tarasov, A V
2012-01-01
Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge from Z=4 to Z=82. Comparison with the approximate Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material.
Stability of the three-body Coulomb systems with J=1 in the oscillator representation
International Nuclear Information System (INIS)
The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A+A-e-), (pe-C+), (pB-e-) and (D+e-e+), the values for the critical masses of A-, B-, C- and D-particles are obtained: mA=2.22me, mB=1.49me, mC=2.11me and mD=4.15me. 18 refs., 1 fig., 3 tabs
Dimension two condensates in the Gribov-Zwanziger theory in the Coulomb gauge
Guimaraes, M S; Sorella, S P
2015-01-01
We investigate the dimension two condensate $$ within the Gribov-Zwanziger approach to Euclidean Yang-Mills theories in the Coulomb gauge, in both 3 and 4 dimensions. An explicit calculation shows that, at the first order, the condensate $$ is plagued by a non-integrable IR divergence in 3D, while in 4D it exhibits a logarithmic UV divergence, being proportional to the Gribov parameter $\\gamma^2$. These results indicate that in 3D the transverse spatial Coulomb gluon two-point correlation function exhibits a scaling behaviour, in agreement with Gribov's expression. In 4D, however, they suggest that, next to the scaling behaviour, a decoupling solution might emerge too.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Institute of Scientific and Technical Information of China (English)
Zhou Zhao-Yan; Yuan Jian-Min
2007-01-01
Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method.The high-order harmonic generation (HHG) of the initial state separately being the ground and excited states is presented.When the hardness parameter α in the soft Coulomb potential V(x) =-1/(x2+α) is chosen to be small enough,the so-called hard Coulomb potential V(x) =-1/|x| can be obtained.It is Well knawn that the hard one-dimensional Coulomb atom has an unstable ground state with an energy eigenvalue of ～0.5 and it has no states corresponding to physical states in the true atoms,and has the first and second excited states being degenerate.The parity effects on the HHG can be seen from the first and second excited states of the hard one-dimensional Coulomb atom.The HHG spectra of the excited states from both the soft and hard Coulomb atom models are shown to have more complex structures and to be much stronger than the corresponding HHG spectrum of the ground state of the soft Coulomb model with α=2 in the same laser field.Laser-induced non-resonant one-photon emission is also observed.
Wilcox, E Clinton; Trout, Arthur M
1951-01-01
A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.
Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime
2008-08-14
Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.
Molecular modeling study of chiral drug crystals: lattice energy calculations.
Li, Z J; Ojala, W H; Grant, D J
2001-10-01
The lattice energies of a number of chiral drugs with known crystal structures were calculated using Dreiding II force field. The lattice energies, including van der Waals, Coulombic, and hydrogen-bonding energies, of homochiral and racemic crystals of some ephedrine derivatives and of several other chiral drugs, are compared. The calculated energies are correlated with experimental data to probe the underlying intermolecular forces responsible for the formation of racemic species, racemic conglomerates, or racemic compounds, termed chiral discrimination. Comparison of the calculated energies among ephedrine derivatives reveals that a greater Coulombic energy corresponds to a higher melting temperature, while a greater van der Waals energy corresponds to a larger enthalpy of fusion. For seven pairs of homochiral and racemic compounds, correlation of the differences between the two forms in the calculated energies and experimental enthalpy of fusion suggests that the van der Waals interactions play a key role in the chiral discrimination in the crystalline state. For salts of the chiral drugs, the counter ions diminish chiral discrimination by increasing the Coulombic interactions. This result may explain why salt forms favor the formation of racemic conglomerates, thereby facilitating the resolution of racemates.
Spin diffusion in doped semiconductors: the role of Coulomb interactions
D'Amico, Irene; Vignale, Giovanni
2000-01-01
We examine the effect of the Coulomb interaction on the mobility and diffusion of spin packets in doped semiconductors. We find that the diffusion constant is reduced, relative to its non-interacting value, by the combined effect of Coulomb-enhanced spin susceptibility and spin Coulomb drag. In ferromagnetic semiconductors, the spin diffusion constant vanishes at the ferromagnetic transition temperature.
Hamiltonian Approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge
Reinhardt, H
2008-01-01
We study the Hamiltonian approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the ...
Coulomb excitation of the N=50 nucleus 80Zn
van de Walle, Jarno; Aksouh, Farouk; Ames, F.; Behrens, Thomas; Bildstein, V.; Blazhev, A.; Cederkall, Joakim; Clement, Emmanuel; Cocolios, Thomas Elias; Davinson, T.; Delahaye, Pierre; Eberth, J.; Ekstrom, Andreas; Fedorov, Dima V; Fedosseev, Valentin N.
2008-01-01
Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+->01+) values are compared to two sets of large scale shell model calcula...
Proton radiography, nuclear cross sections and multiple Coulomb scattering
Energy Technology Data Exchange (ETDEWEB)
Sjue, Sky K. [Los Alamos National Laboratory
2015-11-04
The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.
Jönsson, B; Söderberg, B
1995-01-01
A variational approach, based on a discrete representation of the chain, is used to calculate free energy and conformational properties in polyelectrolytes. The true bond and Coulomb potentials are approximated by a trial isotropic harmonic energy containing force constants between {\\em all}monomer-pairs as variational parameters. By a judicious choice of representation and the use of incremental matrix inversion, an efficient and fast-convergent iterative algorithm is constructed, that optimizes the free energy. The computational demand scales as $N^3$ rather than $N^4$ as expected in a more naive approach. The method has the additional advantage that in contrast to Monte Carlo calculations the entropy is easily computed. An analysis of the high and low temperature limits is given. Also, the variational formulation is shown to respect the appropriate virial identities.The accuracy of the approximations introduced are tested against Monte Carlo simulations for problem sizes ranging from $N=20$ to 1024. Very g...
Matsumoto, T; Iseri, Y; Kamimura, M; Ogata, K; Yahiro, M
2006-01-01
We accurately analyze the $^6$He+$^{209}$Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the $n$+$n$+$^4$He+$^{209}$Bi four-body model. The three-body breakup continuum of $^6$He is discretized by diagonalizing the internal Hamiltonian of $^6$He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of $^6$He, i.e., the $^2n$+$^{4}$He+$^{209}$Bi three-body model, does not reproduce the data.
Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y
2011-01-01
Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...
Simbuca, using a graphics card to simulate Coulomb interactions in a penning trap
Van Gorp, S; Friedag, P; De Leebeeck, V; Tandecki, M; Weinheimer, C; Breitenfeldt, M; Traykov, E; Severijn, N; Mader, J; Soti, G; Iitaka, T; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Roccia, S
2011-01-01
In almost all cases, N-body simulations are limited by the computation time available. Coulomb interaction calculations scale with O(N(2)) with N the number of particles. Approximation methods exist already to reduce the computation time to O(NlogN) although calculating the interaction still dominates the total simulation time. We present Simbuca, a simulation package for thousands of ions moving in a Penning trap which will be applied for the WITCH experiment. Simbuca uses the output of the Cunbody-1 library, which calculates the gravitational interaction between entities on a graphics card, and adapts it for Coulomb calculations. Furthermore the program incorporates three realistic buffer gas models, the possibility of importing realistic electric and magnetic fieldmaps and different order integrators with adaptive step size and error control. The software is released under the GNU General Public License and free for use. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Simbuca, using a graphics card to simulate Coulomb interactions in a penning trap
Energy Technology Data Exchange (ETDEWEB)
Van Gorp, S., E-mail: simon.vangorp@fys.kuleuven.b [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Beck, M. [Universitaet Muenster, Institut fuer Kernphysik, Wilhelm-Klemm-Strasse 9, D-48149 Muenster (Germany); Breitenfeldt, M.; De Leebeeck, V. [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Friedag, P. [Universitaet Muenster, Institut fuer Kernphysik, Wilhelm-Klemm-Strasse 9, D-48149 Muenster (Germany); Herlert, A. [CERN, CH-1211 Geneve 23 (Switzerland); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mader, J. [Universitaet Muenster, Institut fuer Kernphysik, Wilhelm-Klemm-Strasse 9, D-48149 Muenster (Germany); Kozlov, V. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Postfach 3640, D-76021 Karlsruhe (Germany); Roccia, S.; Soti, G.; Tandecki, M.; Traykov, E.; Wauters, F. [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Weinheimer, Ch. [Universitaet Muenster, Institut fuer Kernphysik, Wilhelm-Klemm-Strasse 9, D-48149 Muenster (Germany); Zakoucky, D. [Nuclear Physics Institute, ASCR, CZ-250 68 Rez (Czech Republic); Severijns, N. [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2011-05-11
In almost all cases, N-body simulations are limited by the computation time available. Coulomb interaction calculations scale with O(N{sup 2}) with N the number of particles. Approximation methods exist already to reduce the computation time to O(NlogN), although calculating the interaction still dominates the total simulation time. We present Simbuca, a simulation package for thousands of ions moving in a Penning trap which will be applied for the WITCH experiment. Simbuca uses the output of the Cunbody-1 library, which calculates the gravitational interaction between entities on a graphics card, and adapts it for Coulomb calculations. Furthermore the program incorporates three realistic buffer gas models, the possibility of importing realistic electric and magnetic fieldmaps and different order integrators with adaptive step size and error control. The software is released under the GNU General Public License and free for use.
Model potential calculations of lithium transitions.
Caves, T. C.; Dalgarno, A.
1972-01-01
Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.
Marashdeh, A.; Frankcombe, T.J.
2008-01-01
The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski’s direct method. The dehydrog
Coulomb bound states of strongly interacting photons
Maghrebi, M F; Bienias, P; Choi, S; Martin, I; Firstenberg, O; Lukin, M D; Büchler, H P; Gorshkov, A V
2015-01-01
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
Feynman rules for Coulomb gauge QCD
International Nuclear Information System (INIS)
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ–Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as ‘pseudo-Feynman’ integrals. We also explain how energy divergences cancel. - Highlights: ► In Coulomb gauge QCD, we re-express Christ–Lee terms in the Hamiltonian as pseudo-Feynman integrals. ► This gives a subgraph structure, and allows the ordinary renormalization process. ► It also leads to cancellation of energy-divergences.
Coulomb drag in topological insulator films
Liu, Hong; Liu, Weizhe Edward; Culcer, Dimitrie
2016-05-01
We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer system, and analyze the electron-electron interaction in detail in order to recover all terms responsible for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm, we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is proportional to T2d-4 na-3/2 np-3/2 at low temperature T and low electron density na,p, with a denoting the active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron-hole layers.
Non-linear conductivity in Coulomb glasses
Energy Technology Data Exchange (ETDEWEB)
Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.
2009-12-15
We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Manifestation of nuclear cluster structure in Coulomb sums
Buki, A Yu
2016-01-01
Experimental Coulomb sum values of 6^Li and 7^Li nuclei have been obtained, extending the earlier reported momentum transfer range of Coulomb sums for these nuclei up to q = 0.750 ... 1.625 fm^-1. The dependence of the Coulomb sums on the momentum transfers of 6^Li and 7^Li is shown to differ substantially from similar dependences for all the other nuclei investigated. Relationship between the nuclear cluster structure and Coulomb sums has been considered. The momentum transfer value, above which the Coulomb sum becomes constant, is found to be related to the cluster isolation parameter x, which characterizes the degree of nuclear clusterization.
Bebbington, Mark; Harte, David; Williams, Charles
2016-01-01
Using 2 years of aftershock data and three fault-plane solutions for each of the initial M7.1 Darfield earthquake and the larger (M >6) aftershocks, we conduct a detailed examination of Coulomb stress transfer in the Canterbury 2010-2011 earthquake sequence. Moment tensor solutions exist for 283 of the events with M ≥ 3.6, while 713 other events of M ≥ 3.6 have only hypocentre and magnitude information available. We look at various methods for deciding between the two possible mechanisms for the 283 events with moment tensor solutions, including conformation to observed surface faulting, and maximum ΔCFF transfer from the Darfield main shock. For the remaining events, imputation methods for the mechanism including nearest-neighbour, kernel smoothing, and optimal plane methods are considered. Fault length, width, and depth are arrived at via a suite of scaling relations. A large (50-70 %) proportion of the faults considered were calculated to have initial loading in excess of the final stress drop. The majority of faults that accumulated positive ΔCFF during the sequence were `encouraged' by the main shock failure, but, on the other hand, of the faults that failed during the sequence, more than 50 % of faults appeared to have accumulated a negative ΔCFF from all preceding failures during the sequence. These results were qualitatively insensitive to any of the factors considered. We conclude that there is much unknown about how Coulomb stress triggering works in practice.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field and the temperature dependence of rho(21). Numerical results are compared with recent experiments....
Coulomb dissociation studies for astrophysical thermonuclear reactions
Energy Technology Data Exchange (ETDEWEB)
Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)
1998-06-01
The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)
Module of System Galactica with Coulomb's Interaction
Directory of Open Access Journals (Sweden)
Joseph J. Smulsky
2014-12-01
Full Text Available The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.
Lorenz or Coulomb in Galilean Electromagnetism ?
Rousseaux, Germain
2005-01-01
PDF version International audience Galilean Electromagnetism was discovered thirty years ago by Levy-Leblond & Le Bellac. However, these authors only explored the consequences for the fields and not for the potentials. Following De Montigny & al., we show that the Coulomb gauge condition is the magnetic limit of the Lorenz gauge condition whereas the Lorenz gauge condition applies in the electric limit of Lévy-Leblond & Le Bellac. Contrary to De Montigny & al. who used Galilean tensor c...
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....
International Nuclear Information System (INIS)
The approach proposed in the 70s (Dementiji et al. in Sov J Nucl Phys 22:6–9, 1976), when describing the elastic and inelastic electron scattering off 4He, and elaborated in (Shebeko et al.in Eur Phys J A27:143–155, 2006) for calculations of the one-body, two-body and more complex density matrices of finite bound systems has been applied (Shebeko and Grigorov in Ukr J Phys 52:830–842, 2007; Shebeko et al. in Eur. Phys. J. A48:153–172, 2012) in studying a combined effect of the center-of-mass motion and nucleon–nucleon short-range correlations on the nucleon density and momentum distributions in light nuclei beyond the independent particle model. Unlike a common practice, suitable for infinite bound systems, these distributions are determined as expectation values of appropriate intrinsic operators that depend upon the relative coordinates and momenta (Jacobi variables) and act on the intrinsic ground–state wave functions (WFs). The latter are constructed in the so-called fixed center-of-mass approximation, starting with a mean–field Slater determinant modified by some correlator (e.g., after Jastrow or Villars). Our numerical calculations of the charge form factors (FCH (q)), densities and momentum distributions have been carried out for nuclei 4 He and 16 O choosing, respectively, the 1s and 1s−1p Slater determinants of the harmonic oscillator model as trial, nontranslationally invariant WFs. (author)
Rollins, John C.; Stein, Ross S.
2010-01-01
The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.
Dynamics of Coulombic and gravitational periodic systems
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
Energy Technology Data Exchange (ETDEWEB)
Fakir, H.; Gaede, S.; Mulligan, M.; Chen, J. Z. [Department of Physics, London Regional Cancer Program, London, Ontario N6A 4L6 (Canada)
2012-07-15
Purpose: To design a versatile, nonhomogeneous insert for the dose verification phantom ArcCHECK{sup Trade-Mark-Sign} (Sun Nuclear Corp., FL) and to demonstrate its usefulness for the verification of dose distributions in inhomogeneous media. As an example, we demonstrate it can be used clinically for routine quality assurance of two volumetric modulated arc therapy (VMAT) systems for lung stereotactic body radiation therapy (SBRT): SmartArc{sup Registered-Sign} (Pinnacle{sup 3}, Philips Radiation Oncology Systems, Fitchburg, WI) and RapidArc{sup Registered-Sign} (Eclipse{sup Trade-Mark-Sign }, Varian Medical Systems, Palo Alto, CA). Methods: The cylindrical detector array ArcCHECK{sup Trade-Mark-Sign} has a retractable homogeneous acrylic insert. In this work, we designed and manufactured a customized heterogeneous insert with densities that simulate soft tissue, lung, bone, and air. The insert offers several possible heterogeneity configurations and multiple locations for point dose measurements. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT were generated and copied to ArcCHECK{sup Trade-Mark-Sign} for each inhomogeneity configuration. Dose delivery was done on a Varian 2100 ix linac. The evaluation of dose distributions was based on gamma analysis of the diode measurements and point doses measurements at different positions near the inhomogeneities. Results: The insert was successfully manufactured and tested with different measurements of VMAT plans. Dose distributions measured with the homogeneous insert showed gamma passing rates similar to our clinical results ({approx}99%) for both treatment-planning systems. Using nonhomogeneous inserts decreased the passing rates by up to 3.6% in the examples studied. Overall, SmartArc{sup Registered-Sign} plans showed better gamma passing rates for nonhomogeneous measurements. The discrepancy between calculated and measured point doses was increased up to 6.5% for the nonhomogeneous
Efficient Finite Element Calculation of Nγ
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....
DEFF Research Database (Denmark)
Flindt, Christian; Novotny, Tomás; Braggio, Alessandro;
2010-01-01
. These experimental advances call for a solid theoretical platform for equally accurate calculations of distribution functions and their cumulants. Here we develop a general framework for calculating zero-frequency current cumulants of arbitrary orders for transport through nanostructures with strong Coulomb...
Proton and alpha-particle capture reactions at sub-Coulomb energies relevant to the p process
Energy Technology Data Exchange (ETDEWEB)
Harissopulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Lagoyannis, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Spyrou, A [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Zarkadas, Ch [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Galanopoulos, S [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Perdikakis, G [Tandem Accelerator Facility, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece); Becker, H-W [Dynamitron-Tandem-Laboratorium, Ruhr Universitaet Bochum, 44801 Bochum (Germany); Rolfs, C [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Strieder, F [Institut fuer Physik mit Ionenstrahlen, EP-II, Ruhr-Universitaet BochumI, 44801 Bochum (Germany); Kunz, R [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Fey, M [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Hammer, J W [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Dewald, A [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Zell, K-O [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Brentano, P von [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Cologne (Germany); Julin, R [Department of Physics, University of Jyvaeskylae, 40014 Jyvaeskylae (Finland); Demetriou, P [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP226, 1050 Brussels (Belgium)
2005-10-01
Several cross-section measurements of proton as well as {alpha}-particle capture reactions in the Se-Sb region have been carried out at sub-Coulomb energies with the aim to obtain global input parameters for Hauser-Feshbach (HF) calculations. Some of the results are compared with HF calculations using various optical model potentials and nuclear level densities.
Bagge, Meike; Hampel, Andrea
2016-04-01
Investigating the stress interaction of faults plays a crucial role for assessing seismic hazard of a region. The calculation of Coulomb stress changes allows quantifying stress changes on so-called receiver faults in the surrounding of a source fault that was ruptured during an earthquake. Positive Coulomb stress changes bring receiver faults closer to failure, while a negative value indicates a delay of the next earthquake. Besides the coseismic ('static') stress changes, postseismic ('transient') stress changes induced by postseismic viscoelastic relaxation occur. Here we use 3D finite-element models with arrays of normal or thrust faults to study the coseismic stress changes and the stress changes arising from postseismic relaxation in the lower crust. The lithosphere is divided into an elastic upper crust, a viscoelastic lower crust and a viscoelastic lithospheric mantle. Gravity is included in the models. Driven by extension or shortening of the model, slip on the fault planes develops in a self-consistent way. We modelled an earthquake on a 40-km-long source fault with a coseismic slip of 2 m and calculated the displacement fields and Coulomb stress changes during the coseismic and postseismic phases. The results for the coseismic phase (Bagge and Hampel, Tectonophysics in press) show that synthetic receiver faults in the hanging wall and footwall of the source fault exhibit a symmetric distribution of the coseismic Coulomb stress changes on each fault, with large areas of negative stress changes but also some smaller areas of positive values. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its hanging wall and footwall undergo mostly positive stress changes. Postseismic stress changes caused by viscous flow modify the static stress changes in a way that the net Coulomb stress changes on the receiver faults change significantly through space and time. Our models allow deciphering the combined effect of stress
Neelam,; Chatterjee, R
2015-01-01
Purpose : The aim of this paper is to calculate the $^{15}$N($n, \\gamma$)$^{16}$N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of $^{16}$N to the cross section. Method : A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of $^{16}$N on Pb at 100 MeV/u. This is then related to the photodisintegration cross section of $^{16}$N($\\gamma, n$)$^{15}$N and subsequently invoking the principle of detailed balance, the $^{15}$N($n, \\gamma$)$^{16}$N capture cross section is calculated. Results : The non-resonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seems to favor a more single particle nature for the low-lying states of $^{16}$N. The total neutron capture rate i...
On Calculation of Amplitudes in Quantum Electrodynamics
Karplyuk, Kostyantyn; Zhmudsky, Oleksandr
2012-01-01
A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.
Kojic, M.; Mijailovic, S.; Zdravkovic, N.
Complex behaviour of connective tissue can be modeled by a fiber-fiber kinetics material model introduced in Mijailovic (1991), Mijailovic et al. (1993). The model is based on the hypothesis of sliding of elastic fibers with Coulomb and viscous friction. The main characteristics of the model were verified experimentally in Mijailovic (1991), and a numerical procedure for one-dimensional tension was developed considering sliding as a contact problem between bodies. In this paper we propose a new and general numerical procedure for calculation of the stress-strain law of the fiber-fiber kinetics model in case of Coulomb friction. Instead of using a contact algorithm (Mijailovic 1991), which is numerically inefficient and never enough reliable, here the history of sliding along the sliding length is traced numerically through a number of segments along the fiber. The algorithm is simple, efficient and reliable and provides solutions for arbitrary cyclic loading, including tension, shear, and tension and shear simultaneously, giving hysteresis loops typical for soft tissue response. The model is built in the finite element technique, providing the possibility of its application to general and real problems. Solved examples illustrate the main characteristics of the model and of the developed numerical method, as well as its applicability to practical problems. Accuracy of some results, for the simple case of uniaxial loading, is verified by comparison with analytical solutions.
Recoil ions from molecular targets: sequential Coulomb explosions
International Nuclear Information System (INIS)
Fast ion collision processes appear to be ideal for producing multiply charged molecular ions. The advantage of this technique has not been appreciated so far and very little work has been carried out so far. We have initiated a programme to study the formation of multiply charged molecular ions and their dissociation dynamics using fast ion beam from the pelletron. Measurements have been carried out on several molecules including N2, CO, CO2, CS2, CH4 and CH3I. Measurements of the kinetic energy distributions of the fragment ions provided novel results on the fragmentation of CS2 and CO2 ions. As expected the positive ions of S and O possessed very large kinetic energies resulting from the Coulomb explosion of highly charged molecular ions. The surprising result was that the positive ions (C+ and C2+) from the central carbon atom of the linear symmetric molecules possessed much larger energies that what is expected from the conventional physical picture of Coulomb explosion. It is concluded that the observed high kinetic energy C+ and C2+ ions are formed by sequential fragmentation of CO2n+ ions through an intermediate K-shell excited CO+* ions. (author). 4 refs., 1 fig
Wang, Z S; Fuchs, C; Maheswari, V S U; Kosov, D S; Faessler, Amand
1998-01-01
Coulomb final-state interaction of positive charged kaons in heavy ion reactions and its impact on the kaon transverse flow and the kaon azimuthal distribution are investigated within the framework of QMD (Quantum Molecular Dynamics) model. The Coulomb interaction is found to tend to draw the flow of kaons away from that of nucleons and lead to a more isotropic azimuthal distribution of kaons in the target rapidity region. The recent FOPI data have been analyzed by taking into accout both the Coulomb interaction and a kaon in-medium potential of the strong interaction. It is found that both the calculated kaon flows with only the Coulomb interaction and with both the Coulomb interaction and the strong potential agree within the error bars with the data. The kaon azimuthal distribution exhibits asymmetries of similar magnitude in both theoretical approaches. This means, the inclusion of the Coulomb potential makes it more difficult to extract information of the kaon mean field potential in nuclear matter from ...
Action principle for Coulomb collisions in plasmas
Hirvijoki, Eero
2016-09-01
An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Coulombic dragging of molecular assemblies on nanotubes
Kral, Petr; Sint, Kyaw; Wang, Boyang
2009-03-01
We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).
Resonances in the two centers Coulomb system
Energy Technology Data Exchange (ETDEWEB)
Seri, Marcello
2012-09-14
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Feynman rules for Coulomb gauge QCD
Andrasi, A
2012-01-01
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the subgraph structure of ordinary Feynamn graphs. The CL terms do not have subgraph structure. We show how to carry out enormalization in the presene of CL erms, by re-expressing these as `pseudo-Feynman' inegrals. We also explain how energy divergences cancel.
Directory of Open Access Journals (Sweden)
Fedotkin Sergey
2015-01-01
Full Text Available We consider the process of the annihilation of a positron emitted at β+- decay and a K-electron of the daughter atom. A part of energy during this process is passed to another K- electron and it leaves the atom. The influence of the Coulomb field on the positron and the ejected electron is considered. It was calculated the probability of this process for an atom with arbitrary Z is calculated. For the nucleus Ti the effect of the Coulomb field essentially increases the probability of the considered process.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene
Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.
2016-07-01
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron–electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ∼ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.
Wavelength calculation of highly stripped ions S10+→S13+, Br23+, Br24+, Ge20+, Ge21+
International Nuclear Information System (INIS)
Wavelengths of highly stripped ions S10+ →S13+ , Br23+ , Br24+ , Ge20+ , Ge21+ are calculated by means of GRASP code. The calculations are performed based on multiconfiguration Dirac-Fock technique. Corrections to the energy levels due to the retarded Coulomb interaction (Breit interaction) and the polarization of the vacuum by the nuclear distribution and electron self-energy are included in a perturbation approximation. Comparisons with the new experimental data by CIAE group are presented
From the Coulomb breakup of halo nuclei to neutron radiative capture
Capel, Pierre
2016-01-01
Coulomb breakup is used to infer radiative-capture cross sections at astrophysical energies. We test theoretically the accuracy of this indirect technique in the particular case of 15C, for which both the Coulomb breakup to ^{14}C+n and the radiative capture 14C(n,{\\gamma})15C have been measured. We analyse the dependance of Coulomb-breakup calculations on the projectile description in both its initial bound state and its continuum. Our calculations depend not only on the Asymptotic Normalisation Coefficient (ANC) of the 15C ground state, but also on the 14C-n continuum. This questions the method proposed by Summers and Nunes [Phys. Rev. C 78, 011601 (2008), ibid. 78, 069908 (2008)], which assumes that an ANC can be directly extracted from the comparison of calculations to breakup data. Fortunately, the sensitivity to the continuum description can be absorbed in a normalisation constant obtained by a simple {\\chi}2 fit of our calculations to the measurements. By restricting this fit to low 14C-n energy in the...
Pseudospin, Spin, and Coulomb Dirac-Symmetries: Doublet Structure and Supersymmetric Patterns
Leviatan, A
2005-01-01
Relativistic symmetries of the Dirac Hamiltonian with a mixture of spherically symmetric Lorentz scalar and vector potentials, are examined from the point of view of supersymmetric quantum mechanics. The cases considered include the Coulomb, pseudospin and spin limits relevant, respectively, to atoms, nuclei and hadrons.
Transport Through a Coulomb Blockaded Majorana Nanowire
Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd
In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.
Effect of Coulomb interaction on multi-electronwave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Long range effects on the optical model of 6He around the Coulomb barrier
Fernández-García, J. P.; Rodríguez-Gallardo, M.; Alvarez, M. A. G.; Moro, A. M.
2010-09-01
We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He + 27Al and 6He + 208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the São Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He + 208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms.
Long range effects on the optical model of 6He around the Coulomb barrier
Fernandez-Garcia, J P; Alvarez, M A G; Moro, A M
2010-01-01
We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the Sao Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some ...
Application of finite field-dependent BRS transformations to problems of the Coulomb gauge
Joglekar, S D
2001-01-01
We discuss the Coulomb propagator in the formalism developed recently in which we construct the Coulomb gauge path-integral by correlating it with the well-defined Lorentz gauge path-integrals through a finite field-dependent BRS transformation. We discover several features of the Coulomb gauge from it. We find that the singular Coulomb gauge HAS to be treated as the gauge parameter lambda --> 0 limit. We further find that the propagator so obtained has good high energy behavior (k_0^{-2}) for lambda and epsilon nonzero. We further find that the behavior of the propagator so obtained is sensitive to the order of limits k_0 -->infinity, lambda -->0 and epsilon --> 0; so that these have to be handled carefully in a higher loop calculation. We show that we can arrive at the result of Cheng and Tsai for the ambiguous two loop Feynman integrals without the need for an extra ad hoc regularization and within the path integral formulation.
Probing single-particle and collective states in atomic nuclei with Coulomb excitation
DiJulio, Douglas
A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...
International Nuclear Information System (INIS)
Analytic approximations for the eigenvalues have been obtained using the two-point quasifractional approximants method. Here we extend and generalize previous work where the method was applied to determine eigenenergies of two-dimensional Coulomb potentials in the presence of a magnetic field of arbitrary strength. We have also shown the advantage of our results with respect to other calculations using the shifted 1/N method or Pade approximants. (author)
Bauer, Johannes; Han, Jong E.; Gunnarsson, Olle
2012-01-01
The theory of electron-phonon superconductivity depends on retardation drastically reducing effects of the strong Coulomb repulsion. The standard theory only treats the lowest order diagram, which is an uncontrolled approximation. We study retardation in the Hubbard-Holstein model in a controlled way using perturbation theory and dynamical mean-field theory. We calculate analytically second order results for the pseudopotential $\\mu^*$ and demonstrate the validity up to intermediate couplings...
The giant-dipole-resonance effect in coulomb excitation of 10B
International Nuclear Information System (INIS)
Coulomb excitation of the 0.718-MeV, Jsup(π) = 1+, first excited state of 10B has been studied using projectile excitation by 208Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation
Coulomb Corrections to the Parameters of the Moliere Multiple Scattering Theory
Kuraev, Eduard; Tarasov, Alexander
2013-01-01
High-energy Coulomb corrections to the parameters of the Moliere multiple scattering theory are obtained. Numerical calculations are presented in the range of the nuclear charge number of the target atom 4
Relativistic Scattering States of Coulomb Potential Plus a New Ring-Shaped Potential
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yuan; LU Fa-Lin; SUN Dong-Sheng
2006-01-01
In this paper, exact solutions of scattering states of the Klein-Gordon equation with Coulomb potential plus a new ring-shaped potential are studied under the condition that the scalar potential is equal to the vector potential.The normalized wave functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed.
Coulomb dissociation and momentum distributions for 11Li → 9Li + n + n breakup reactions
International Nuclear Information System (INIS)
Momentum distributions for the 11Li → 9Li+n+n breakup reaction, generated by Coulomb dipole excitations, axe calculated in a 3-body model for 11Li. The relative momentum distribution of the two neutrons is in good agreement with recent 3-body coincidence measurements but the momentum distribution for the 9Li recoil and the decay energy spectrum are much narrower than observed. These discrepancies may be due to higher order dynamical effects which have been ignored
Primakoff production of $\\pi^0$, $\\eta$ and $\\eta'$ in the Coulomb field of a nucleus
Kaskulov, Murat M.; Mosel, Ulrich
2011-01-01
Photoproduction of neutral pseudoscalar mesons $\\pi^0,\\eta(547)$ and $\\eta'(958)$ in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of $C$-parity odd Regge trajectories. In the coherent production the isospin filtering makes the $\\omega(782)$ a dominant trajectory. The calculations are in agreement with $\\pi^0$ data from JLAB provid...
Coulomb interaction effect in tilted Weyl fermion in two dimensions
Isobe, Hiroki; Nagaosa, Naoto
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.
Ahrens, Thomas J.
2001-01-01
We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.
Gauge Theories on the Coulomb branch
Schwarz, John H
2014-01-01
We construct the world-volume action of a probe D3-brane in $AdS_5 \\times S^5$ with $N$ units of flux. It has the field content, symmetries, and dualities of the $U(1)$ factor of ${\\cal N} =4$ $U(N+1)$ super Yang--Mills theory, spontaneously broken to $U(N) \\times U(1)$ by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a `highly effective action' (HEA). We construct an $SL(2,Z)$ multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that it reproduces the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a `soliton bubble', which is interpreted as a phase boundary.
Coulomb blockade of spin-dependent shuttling
Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.
2013-12-01
We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.
The ghost propagator in Coulomb gauge
Watson, P
2010-01-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Coulomb dissociation of light unstable nuclei
Energy Technology Data Exchange (ETDEWEB)
Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki
1997-05-01
The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)
Ion Coulomb Crystals and Their Applications
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
Simplistic Coulomb Forces in Molecular Dynamics
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...... salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...... measures for the convergence of the Wolf method to the Ewald summation method. The SF approximation is also tested for the SPC/Fw model of liquid water at room temperature, showing good agreement with both the Wolf and the particle mesh Ewald methods; this confirms previous findings [Fennell, C. J...
Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems
Sleutels, T.H.J.A.; Darus, L.; Hamelers, H.V.M.; Buisman, C.J.N.
2011-01-01
To create an efficient bioelectrochemical system, a high Coulombic efficiency is required. This efficiency is a direct measure for the competition between electrogens and methanogens when acetate is used as substrate. In this study the Coulombic efficiency in a microbial electrolysis cell was invest
Coulomb interaction between a spherical and a deformed nuclei
Takigawa, N; Ihara, N; Takigawa, Noboru; Rumin, Tamanna; Ihara, Naoki
2000-01-01
We present analytic expressions of the Coulomb interaction between a spherical and a deformed nuclei which are valid for all separation distance. We demonstrate their significant deviations from commonly used formulae in the region inside the Coulomb radius, and show that they remove various shortcomings of the conventional formulae.
Antilocalization of Coulomb Blockade in a Ge-Si Nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum;
2014-01-01
The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...
ATOMIC SCREENING AND INTERSITE COULOMB REPULSION IN STRONGLY CORRELATED SYSTEMS
Meinders, M.B J; van den Brink, J.; Lorenzana, J.; Sawatzky, G.A
1995-01-01
We consider the influence of a nearest-neighbor Coulomb interaction in an extended Hubbard model and introduce an interaction term which simulates atomic polarizabilities. The inclusion of atomic polarizabilities in the model has the effect of screening the on-site Coulomb interaction for charged ex
Magneto-Coulomb effect in spin-valve devices
van der Molen, SJ; Tombros, N; van Wees, BJ
2006-01-01
We discuss the influence of the magneto-Coulomb effect (MCE) on the magnetoconductance of spin-valve devices. We show that the MCE can induce magnetoconductances of several percent or more, depending on the strength of the Coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sig
Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier
Avrigeanu, V; Mănăilescu, C
2016-01-01
A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.
Many-Body Coulomb Gauge Exotic and Charmed Hybrids
Llanes-Estrada, F J; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2001-01-01
Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasiparticle ($q\\bar{q}g$) calculation with the 9 dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA spectrum for the nonexotic $1^{--}$ charmed ($c\\bar{c}$ and $c\\bar{c}g$) system provides an explanation for the overpopulation of the observed $J/\\psi$ states. For the important $1^{-+}$ light exotic channel we obtain hybrid masses above 2 $GeV$, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 $GeV$ are of di...
International Nuclear Information System (INIS)
Graphical abstract: The caloric curve (T vs. E), heat capacity (C) (per ion), and relative rms fluctuation in the interatomic distances (δ) of the 64-atom binary cluster for three different sets of values of the (γ, B) shielding parameters (0.000, 1.000), (0.350, 5.230), and (0.500, 9.723) (see the text for details). As the range of the Coulomb part of the interaction potential becomes shorter, the energy of the most preferred structure of the cluster decreases, and the structure itself changes from rocksalt cubic, which is the native form of (KCl)32, through an amorphous, to a hollow cage type. The energy segment in which the heat capacity is negative narrows and eventually vanishes. Highlights: ► Effects of the range of Coulombic interactions on structures of binary systems. ► Effects of the range of Coulombic interactions on dynamics of binary systems. ► Effects of the range of Coulombic interactions on energy landscapes. ► We explain changes in structures and dynamics through changes in energy landscapes. - Abstract: By introducing two shielding parameters into the Coulombic part of the Coulomb plus Born–Mayer potential originally developed for (KCl)n systems, we study the effects of the range of the Coulombic interactions on the structures, thermodynamic properties and the potential energy landscapes of binary ionically bonded systems as illustrated by the case of n = 32. Our calculations show that shortening of the Coulomb interaction range leads to a decrease in the energy of the most stable structure, and the structure itself changes from the rocksalt cubic to a hollow cage type. The energy range, in which the heat capacity exhibits a negative value, gradually narrows and eventually disappears. The number of stationary points on the potential energy surface increases, and their energies get spread over a larger interval. The extent of the Coulombic interaction also affects the energy difference (gap) between the most stable structure and the
Energy Technology Data Exchange (ETDEWEB)
Bauer, H.
1998-12-31
The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)
Study of the elastic scattering of 6He on 208Pb at energies around the Coulomb barrier
International Nuclear Information System (INIS)
The elastic scattering of 6He on 208Pb has been measured at laboratory energies of 14, 16, 18 and 22 MeV. These data were analyzed using phenomenological Woods-Saxon form factors and optical model calculations. A semiclassical polarization potential was used to study the effect of the Coulomb dipole polarizability. Evidence for long range absorption, partially arising from Coulomb dipole polarizability, is reported. The energy variation of the optical potential was found to be consistent with the dispersion relations which connect the real and imaginary parts of the potential
Semiclassical Green's function for electron motion in combined Coulomb and electric fields
Ambalampitiya, Harindranath; Fabrikant, Ilya
2016-05-01
We are developing an extension of the Green-function approach to the theory of ionization of a multielectron atom in a strong laser field by using the semiclassical Van Vleck-Gutzwiller propagator. For a static field the exact quantum mechanical Green's function can be calculated with an arbitrary accuracy. Therefore, as a first step towards solution of the problem, we apply the semiclassical method to the static field case for the energies above the ionization threshold where all classical trajectories contributing to the Green's function are real. Required trajectories are determined by solving the problem of finding initial velocity and traveling time corresponding to two position points. For the pure electric field case of two trajectories the semiclassical Green's function agrees very well with the exact Green's function. With the inclusion of the Coulomb field, the number of classical trajectories between two points grows rapidly and here we observe that the agreement between the semiclassical and exact Green's functions increases when more trajectories are included in the computation. Supported by the National Science Foundation.
Socrates, A; Stone, J M; Socrates, Aristotle; Parrish, Ian J.; Stone, James M.
2007-01-01
We perform a linear magnetohydrodynamic perturbation analysis for a stratified magnetized envelope where the diffusion of heat is mediated by charged particles that are confined to flow along magnetic field lines. We identify an instability, the ``coulomb bubble instability,'' which may be thought of as standard magnetosonic fast and slow waves, driven by the rapid diffusion of heat along the direction of the magnetic field. We calculate the growth rate and stability criteria for the coulomb bubble instability for various choices of equilibrium conditions. The coulomb bubble instability is most strongly driven for weakly magnetized atmospheres that are strongly convectively stable. We briefly discuss a possible application of astrophysical interest: diffusion of interstellar cosmic rays in the hot T ~ 10^6 K Galactic corona. We show that for commonly accepted values of the cosmic ray and gas pressure as well as its overall characteristic dimensions, the Galactic corona is in a marginal state of stability with...
Coulomb excitation of the two proton-hole nucleus $^{206}$Hg
We propose to use Coulomb excitation of the single magic two-proton-hole nucleus $^{206}$Hg. In a single-step excitation both the first 2$^{+}$ and the highly collective octupole 3$^{-}$ states will be populated. Thus, information on both quadrupole and octupole collectivity will be gained in this neutron-rich nucleus. Due to the high beam intensity, we will be able to observe multi-step Coulomb excitation as well, providing further test on theoretical calculations. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei. The experiment will use the new HIE-ISOLDE facility and the MINIBALL array, and will take advantage of the recently developed $^{206}$Hg beam from the molten lead target.
Casal, J; Arias, J M; Gómez-Camacho, J
2016-01-01
A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly-bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of $B(E1)$ distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to $^{11}$Li ($^{9}$Li+n+n) and $^6$He ($^{4}$He+n+n) three-body systems for which some data exist.
Thickness effects on the Coulomb drag rate in double quantum layer systems
Vazifehshenas, T.; Eskourchi, A.
2007-02-01
In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.
Exact solution to the Coulomb wave using the linearized phase-amplitude method
Directory of Open Access Journals (Sweden)
Shuji Kiyokawa
2015-08-01
Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.
On the Aharonov-Casher system subject to a Coulomb-type potential
Barboza, P. M. T.; Bakke, K.
2016-02-01
By considering the confinement of the Aharonov-Casher system to a Coulomb-type potential, we show that the energy levels depends on the Aharonov-Casher geometric phase and obtain the persistent spin currents. Besides, we investigate the influence of the Coulomb-type potential on the Landau-Aharonov-Casher system by showing that bound states solutions to the Schrödinger-Pauli equation can be obtained. We show that the Landau-Aharonov-Casher cyclotron frequency is modified and discuss a quantum characterized by the dependence of the angular frequency on the quantum numbers of the system. As a particular case, we calculate the possible values of the angular frequency associated with the ground state.
Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.
2016-04-01
A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.
Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier
Avrigeanu, V
2016-01-01
Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...
Analysis of uncertainties in α -particle optical-potential assessment below the Coulomb barrier
Avrigeanu, V.; Avrigeanu, M.
2016-08-01
Background: Recent high-precision measurements of α -induced reaction data below the Coulomb barrier have pointed out questions about the α -particle optical-model potential (OMP) which are still unanswered within various mass ranges. Purpose: The applicability of previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly γ -ray strength functions, have been involved within statistical model calculation of the (α ,x ) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent α -induced reaction data with no empirical rescaling factors of the γ and/or nucleon widths. Conclusions: A suitable assessment of α -particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysis of independent data.
Hamiltonian approach to QCD in Coulomb gauge: From the vacuum to finite temperatures
Reinhardt, H; Heffner, J; Quandt, M; Vastag, P
2015-01-01
The variational Hamiltonian approach to QCD in Coulomb gauge is reviewed and the essential results obtained in recent years are summarized. First the results for the vacuum sector are discussed, with a special emphasis on the mechansim of confinement and chiral symmetry breaking. Then the deconfinement phase transition is described by introducing temperature in the Hamiltonian approach via compactification of one spatial dimension. The effective action for the Polyakov loop is calculated and the order of the phase transition as well as the critical temperatures are obtained for the color group SU(2) and SU(3). In both cases, our predictions are in good agreement with lattice calculations.
Scalar-QED {Dirac_h}-corrections to the Coulomb potential
Energy Technology Data Exchange (ETDEWEB)
Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisica (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: helayel@cbpf.br; Penna-Firme, A.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Educacao. E-mail: andrepf@cbpf.br; Shapiro, I.L. [Juiz de Fora Univ., MG (Brazil). Dept. de Fisica. E-mail: shapiro@fisica.ufjf.br
2000-05-01
The leading long-distance 1-loop quantum corrections to the Coulomb potential are derived for scalar QED and their gauge-independence is explicitly checked. The potential is obtained from the direct calculation of the 2-particle scattering amplitude, taking into account all relevant 1-loop diagrams. Our investigation should be regarded as first step towards the same programme for effective Quantum Gravity. In particular, with our calculation in the framework of scalar QED, we are able to demonstrate the incompleteness of some previous studies concerning the quantum Gravity counterpart. (author)
Coulomb versus nuclear break-up of 11Be halo nucleus in a non perturbative framework
Fallot, M; Lacroix, D; Chomaz, P; Margueron, J; Chomaz, Ph.
2002-01-01
The 11Be break-up is calculated using a non perturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.
2015-10-15
Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
Electron attraction mediated by Coulomb repulsion
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Quark sector of Coulomb gauge Quantum Chromodynamics
Popovici, Carina
2011-01-01
The quark sector of Coulomb gauge quantum chromodynamics is considered within the functional integral approach. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented. The problem of confinement is addressed in the heavy quark limit, by rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion. By restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact. Analytic nonperturbative solutions to the Bethe-Salpeter equation for quark-antiquark bound states and Faddeev equation for three-quark bound states, in the case of equal quark separations, are presented. The quark-antiquark and three-quark confining potentials are derived and a direct connection between the temporal gluon propagator and the corresponding string tensions is ...
Strong Coulomb Coupling in the Todorov Equation
Bawin, M.; Cugnon, J.; Sazdjian, H.
A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.
Dark Coulomb binding of heavy neutrinos of fourth family
Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.
2015-11-01
Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.
Scattering of 11Be around the Coulomb barrier
International Nuclear Information System (INIS)
The 11Be is a halo nucleus composed of a 10Be core and a weakly bound neutron. Due to its loosely bound structure, the coupling of the ground and exited states to the continuum should strongly affect the elastic cross sections at energies around the Coulomb barrier [1, 2]. Another important issue is the role played by the highly deformed 10Be core on the scattering cross sections [3]. Accurate data on 11Be scattering are needed to study these effects. However, existing data for 11Be + 209Bi scattering [4, 5], suffer of large experimental uncertainties, and elastic and other reaction channels could not be studied separately. Aiming to improve the experimental situation we have recently performed measurements of 11Be scattered on 120Sn at 32 MeV (Lab) at the REX-ISOLDE facility at CERN (Geneva), covering a wide angular range. In this work, we present preliminary results of the experiment for the 11Be+120Sn quasi-elastic scattering as well as for the 11Be→ 10Be + n breakup. The accuracy and angular range of the presented results provide stronger constrains to the theoretical interpretation than existing published results. We compare the experimental results with CDCC and DWBA calculations performed as in references [6-8] for the 6He + 208Pb system. The role played by transfer and breakup channels in the elastic scattering is discussed.(author)
Molecular dynamics calculations for sodium using pseudopotential theory
International Nuclear Information System (INIS)
The equation of state of sodium is studied using the molecular dynamics technique whereby the classical motion of a system of ions is solved with the aid of computers. The interaction potential between pairs of sodium ions consists of Coulomb and Born-Mayer repulsion terms and an effective ion-ion interaction derived from pseudopotential theory. This theory includes the effects of electron gas screening, exchange, and correlation. A model pseudopotential with parameters fit to experimental low-temperature data is used. By using this technique, an atomic description of a simple metal proceeds to the calculation of macroscopic thermodynamic properties
Non-Perturbative Relativistic Calculation of the Muonic Hydrogen Spectrum
Carroll, J D; Thomas, A. W.; Rafelski, J.; Miller, G A
2011-01-01
We investigate the muonic hydrogen 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition through a precise, non-perturbative numerical solution of the Dirac equation including the finite-size Coulomb force and finite size vacuum polarization. The results are compared with earlier perturbative calculations of (primarily) Borie, Martynenko, and Pachucki; and experimental results recently presented by Pohl et al., in which this very comparison is interpreted as requiring a modification of the proton charg...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The spatiotemporal evolution patterns of complete Coulomb stress changes caused by 1988 Ms7.6 earthquake in Lancang-Gengma,Yunnan,are calculated and studied.And the triggering problems of Ms7.2 Gengma shock occurring 13 minutes after the main shock and of Ms5.0―6.9 aftershocks within 24 days after the main shock are discussed.The results show that the spatial distribution patterns of complete Coulomb stress changes of the Ms7.6 main shock are strongly asymmetric.The areas of positive dynamic and static Coulomb stress are both coincident well with the strong aftershocks' locations.The Ms7.2 Gengma shock and most of strong aftershocks are subjected to the triggering effect of dynamic and static Coulomb stresses induced by the Ms7.6 Lancang earthquake.
Capture cross-section and rate of the 14C(, )15C reaction from the Coulomb dissociation of 15C
Indian Academy of Sciences (India)
Shubhchintak; Neelam; R Chatterjee
2014-10-01
We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the photodisintegration of 15C, using the principle of detailed balance. Our theoretical model is free from the uncertainties associated with the multipole strength distributions of the projectile.
The generalized Coulomb interactions for relativistic scalar bosons
Zarrinkamar, S.; Panahi, H.; Rezaei, M.
2016-07-01
Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.
Fano effect through parallel-coupled double Coulomb islands
International Nuclear Information System (INIS)
By means of the nonequilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dot (DQD) in the presence of on-dot Coulomb interaction U. With focus on the quantum interference in the U-dominant parallel-coupled DQD, we find two types of Fano interferences in the conductance spectra. If the one-particle DQD bonding and antibonding bands are well separated from their Coulomb blockade counterparts, the main features of Fano interference in usual DQD systems are recovered with minor revisions. The most interesting is the hybridization between the antibonding state and the Coulomb counterpart of the bonding state, which gives rises to two new channels for Fano resonance. The Fano interference in the Coulomb hybridized systems can be controlled by the electrostatic and magnetic approaches, and exhibits properties quite different from what are reported in the noninteracting Fano-Anderson model
Neelam, Shubhchintak, Chatterjee, R.
2015-10-01
Background: The 15N(n ,γ )16N reaction plays an important role in red giant stars and also in inhomogeneous big bang nucleosynthesis. However, there are controversies regarding spectroscopic factors of the four low-lying states of 16N, which have direct bearing on the total direct capture cross section and also on the reaction rate. Direct measurements of the capture cross section at low energies are scarce and available only at three energies below 500 keV. Purpose: The aim of this paper is to calculate the 15N(n ,γ )16N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of 16N to the cross section. Method: A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of 16N on Pb at 100 MeV/u . This is then related to the photodisintegration cross section of 16N(γ ,n )15N and subsequently invoking the principle of detailed balance, the 15N(n ,γ )16N capture cross section is calculated. Results: The nonresonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seem to favor a more single particle nature for the low-lying states of 16N. The total neutron capture rate is also calculated by summing up nonresonant and resonant (significant only at temperatures greater than 1 GK) contributions and comparison is made with other charged particle capture rates. In the typical temperature range of 0.1 -1.2 GK, almost all the contributions to the reaction rate come from capture cross sections below 0.25 MeV. Conclusion: We have attempted to resolve the discrepancy in the spectroscopic factors of low-lying 16N levels and conclude that it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture
The calibration of sub-Coulomb heavy ion proton transfer reactions
International Nuclear Information System (INIS)
Measurements were made of the cross sections for the 27Al(16O,15N)28Si, 89Y(15N,16O)88Sr and 89Y(27Al,28Si)88Sr reactions at energies near and below the Coulomb barrier. The first reaction required separate measurements of the transfer to elastic cross section ratio for particular charge states, the charge state distribution for 27Al and 28Si ions, and the absolute elastic scattering cross section for the 27Al + 16O system. The ratio measurement required the combined use of two relatively new scientific instruments: the momentum filter and the Bragg curve spectrometer. The latter two transfer measurements were performed using the same setup involving surface barrier detectors at backward angles. Additional elastic scattering data for the 15N + 28Si, 89Y + 15N, 89Sr + 27Al, and 88Sr + 28Si systems was collected to provide entrance and exit channel parameters needed for the theoretical calculations of the transfer reaction cross sections. The calculations were made using the DWBA code, LOLA, which assumes a one-step direct reaction mechanism. A correction was made to the code to properly include the effects of the spin-orbit force in the proton binding potentials. The original goal of these measurements was to combine the three normalization factors to determine the ground state proton spectroscopic factors for 16O, 28Si and 89Y. Such an analysis was found to yield a spectroscopic factor which significantly exceeded the shell model limit in the case of 16O. It is possible that the inclusion of multi-step processes may resolve this disagreement. 36 refs., 109 figs., 21 tabs
COULOMB BLOCKADE OSCILLATIONS OF Si SINGLE-ELECTRON TRANSISTORS
Institute of Scientific and Technical Information of China (English)
王太宏; 李宏伟; 周均铭
2001-01-01
Coulomb blockade oscillations of Si single-electron transistors, which are fabricated completely by the conventional photolithography technique, have been investigated. Most of the single-electron transistors clearly show Coulomb blockade oscillations and these oscillations can be periodic by applying negative voltages to the in-plane gates. A shift of the peak positions is observed at high temperatures. It is also found that the fluctuation of the peak spacing cannot be neglected.
Primakoff effect: synchrotron and coulomb mechanisms of axion emission
International Nuclear Information System (INIS)
For the first time the axion radiative emission by alternating electromagnetic field Fa → γa is considered due to Primakoff effect. As a concrete supplement, the synchrotron and Coulomb mechanisms are discussed and in the last case the alternating field is formed at the infinite motion of a charge in a Coulomb center field. The estimates for contributions of these effects into axion luminosity of magnetic neutron stars and the Sun are determined
Primakoff effect: Synchrotron and Coulomb mechanisms of axion emission
International Nuclear Information System (INIS)
The Primakoff effect-induced radiative emission of axions by an alternating electromagnetic field, Fa → γa, is considered for the first time. The synchrotron mechanism and the Coulomb mechanism--in the latter case, the alternating field is formed when a charge executes an infinite motion in the field of a Coulomb center--are considered as specific examples. The contributions of these effects to the axion emissivity of magnetic neutron stars and of the Sun are estimated
Functional theory of extended Coulomb systems
International Nuclear Information System (INIS)
A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society
Efros-Shklovskii variable range hopping conductivity without Coulomb gap
Chen, Tianran; Skinner, Brian
In doped semiconductors and Coulomb glasses, in the limit of weak coupling, the electron conductivity primarily proceeds by phonon-assisted tunneling or hopping between different sites through the insulating gaps that separate them. Electron conduction can occur both through nearest-neighbor hopping and through cotunneling of electrons between distant sites via a chain of intermediate virtual states. In the presence of some disorder, the latter mechanism dominates at low temperatures, where the length of the hops grows to optimize the conductivity. This transport mechanism was introduced by Mott, and is called variable range hopping. When the Coulomb interaction between localized electrons is taken into account, it can be shown that at a sufficiently low temperature, variable range hopping conductivity obeys the Efros-Shklovskii (ES) law, which has been observed in a number of amorphous semiconductors and granular metal systems at low temperatures. ES conductivity has been long understood as the result of a soft, Coulomb gap at the Fermi level. However, such a theory overlooks the presence of spatial correlations between site energies and their possible effects on electrical conductivity. In this talk, we show both analytically and numerically that in systems where spatial correlations must be taken into account, ES conductivity may persist far outside the Coulomb gap, in contrast to conventional transport theory for doped semiconductors and Coulomb glasses where ES conductivity only occurs within the Coulomb gap.
Coulomb sink effect on coarsening of metal nanostructures on surfaces
Institute of Scientific and Technical Information of China (English)
Yong HAN; Feng LIU
2008-01-01
We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.
Xie, Hong-Yi; Foster, Matthew S.
2016-05-01
We study the electric and thermal transport of the Dirac carriers in monolayer graphene using the Boltzmann-equation approach. Motivated by recent thermopower measurements [F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016), 10.1103/PhysRevLett.116.136802], we consider the effects of quenched disorder, Coulomb interactions, and electron-optical-phonon scattering. Via an unbiased numerical solution to the Boltzmann equation we calculate the electrical conductivity, thermopower, and electronic component of the thermal conductivity, and discuss the validity of Mott's formula and of the Wiedemann-Franz law. An analytical solution for the disorder-only case shows that screened Coulomb impurity scattering, although elastic, violates the Wiedemann-Franz law even at low temperature. For the combination of carrier-carrier Coulomb and short-ranged impurity scattering, we observe the crossover from the interaction-limited (hydrodynamic) regime to the disorder-limited (Fermi-liquid) regime. In the former, the thermopower and the thermal conductivity follow the results anticipated by the relativistic hydrodynamic theory. On the other hand, we find that optical phonons become non-negligible at relatively low temperatures and that the induced electron thermopower violates Mott's formula. Combining all of these scattering mechanisms, we obtain the thermopower that quantitatively coincides with the experimental data.
Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26
Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F
2015-01-01
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...
Energy Technology Data Exchange (ETDEWEB)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Sciences, University of Northumbria, Newcastle upon Tyne NE1 2XP (United Kingdom)
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.
Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems
Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M
2003-01-01
A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.
Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems
International Nuclear Information System (INIS)
A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration
Coulomb interaction effects in many-particle nuclear reactions with two-fragment resonance formation
International Nuclear Information System (INIS)
The modified final-state interaction theory taking into consideration the Coulomb interaction between two-fragment nuclear resonance decay products and accompanying reaction products is developed including the case of near-threshold resonances. The branching ratio change is also studied for the near-threshold resonance 7Li*(Ex = 7.45 MeV), which is formed in the reaction 7Li(α,α)7Li*at Eα = 27.2 MeV
Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.
Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R
2015-12-17
Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.
Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.
Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R
2015-12-17
Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions. PMID:26406306
Kim, K S; Cheon, I T; Chung, Y G
1998-01-01
In this paper, we study the electron Coulomb distortion effects on the first, second, and third structure functions for the exclusive reaction (e, e'p) in the quasielastic region. For a heavy target ( sup 2 sup 0 sup 8 Pb) or a light nucleus ( sup 1 sup 6 O), these structure functions calculated using the distorted wave Born approximation for the electron Coulomb distortion have shapes similar to those calculated using the plane wave Born approximation, but the effects are changed in magnitude. We use the approximate Moeller potential which has a 'plane-wave-like' form and hence permits the separation of the cross section into five structure functions. We investigate the dependence of the azimuthal angle for the outgoing proton on each structure functions. In this calculation, we use the Dirac-Hartree single particle wave functions for the ground state and the relativistic optical wave functions for the continuum proton.
Determination of S17 from Systematic Analysis of 8B Coulomb Dissociation
Ogata, K; Iseri, Y; Matsumoto, T; Yamashita, N; Kamimura, M; Ogata, Kazuyuki
2003-01-01
Systematic analysis of 8B Coulomb dissociation with the Asymptotic Normalization Coefficient (ANC) method is proposed to determine the astrophysical factor S17 accurately. An important advantage of the analysis is that uncertainties of the extracted S17 coming from the use of the ANC method can quantitatively be evaluated, in contrast to previous analyses using the Virtual Photon Theory (VPT). Calculation of measured spectra in dissociation experiments is done by means of the method of Continuum-Discretized Coupled-Channels (CDCC). From the analysis of 58Ni(8B,7Be+p)58Ni at 25.8 MeV, S17=22.83 +/- 0.51(theo) +/- 2.28(expt) (eVb) is obtained; the ANC method turned out to work in this case within 1% of error. Preceding systematic analysis of experimental data at intermediate energies, we propose hybrid (HY) Coupled-Channels (CC) calculation of 8B Coulomb dissociation, which makes numerical calculation much simple, retaining its accuracy. The validity of the HY calculation is tested for 58Ni(8B,7Be+p)58Ni at 240...
Zhang, Aiwu
2016-01-01
The geometric-mean method is often used to estimate the spatial resolution of a position-sensitive detector probed by tracks. It calculates the resolution solely from measured track data without using a detailed tracking simulation and without considering multiple Coulomb scattering effects. Two separate linear track fits are performed on the same data, one excluding and the other including the hit from the probed detector. The geometric mean of the widths of the corresponding exclusive and inclusive residual distributions for the probed detector is then taken as a measure of the intrinsic spatial resolution of the probed detector: $\\sigma=\\sqrt{\\sigma_{ex}\\cdot\\sigma_{in}}$. The validity of this method is examined for a range of resolutions with a stand-alone Geant4 Monte Carlo simulation that specifically takes multiple Coulomb scattering in the tracking detector materials into account. Using simulated as well as actual tracking data from a representative beam test scenario, we find that the geometric-mean ...
Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier
Keeley, N; Raabe, R; Sida, J L
2007-01-01
The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The dat...
International Nuclear Information System (INIS)
We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > Ip: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)
Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier
2016-07-01
Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.
Direct Observation of a Semi-Bare Electron Coulomb Field Recover
Naumenko, G; Shevelev, M
2011-01-01
The problem of "semi-bare electron" was first considered in frame of quantum electrodynamics by E.L. Feinberg in 1980. In theory in frame of classical electrodynamics this problem was touched on in articles of N.F. Shul'ga and X. Artru. In 2008 the experimental investigations of this phenomenon in millimeter wavelength region were started by the group of scientists, including authors of this article. Used technique allowed us to study this effect in macroscopic mode. In this paper we present the results of direct observation of a semi-bare electron coulomb field recovery. The semi-bare state was obtained by passing of electron beam through the hole in a conductive screen. Measured spatial distribution of electromagnetic field shows the process of recover of the electron coulomb field, which is followed by a forward radiation. The experiments were performed on the relativistic electron beam of the microtron of Tomsk Polytechnic University.
Onset of collectivity in 96,98Sr studied via Coulomb excitation
Directory of Open Access Journals (Sweden)
Clément E.
2014-03-01
Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.
The impact of sharp screening on the Coulomb scattering problem in three dimensions
Yakovlev, S L; Yarevsky, E; Elander, N
2010-01-01
The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complimentary situations, firstly when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long range tail is considered as the potential. The partial wave results are summed up to obtain the wave function in three dimensions. It is shown that in the domains where the wave function is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wave function. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schr\\"odinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three dimensional scattering problem with long range potentials.
Onset of collectivity in $^{96,98}$Sr studied via Coulomb excitation
Clement, E; Dijon, A; de France, G; Bastin, B; Blazhev, A; Bree, N; Butler, P; Delahaye, P; Ekstrom, A; Georgiev, G; Hasan, N; Iwanicki, J; Jenkins, D; Korten, W; Larsen, A C; Ljungvall, J; Moschner, K; Napiorkowski, P; Pakarinen, J; Petts, A; Renstrom, T; Seidlitz, M; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Warr, N; Wrzosek-Lipska, K; Zielinska, M; Bauer, C; Bruyneel, B; Butterworth, J; Fitzpatrick, C; Fransen, C; GernhäUser, R; Hess, H; Lutter, R; Marley, P; Reiter, P; Siebeck, B; Vermeulen, M; Wiens, A; De Witte, H
2014-01-01
A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.
Liao, Boi-Yee; Huang, Huey-Chu
2016-07-01
Due to the two earthquakes, 27 March 2013 event (ML6.2, namely 0327 event) and 2 June 2013 event (ML6.5, namely 0602 event), occurring at the Nantou area of the central Taiwan, we investigate the relationship between the Coulomb stress changes and the seismicity in the paper. We first employed the refined homomorphic deconvolution method to invert the kinematic source processes of these two earthquakes from the teleseismic data recorded by Incorporated Research Institutions for Seismology (IRIS), and then calculated the Coulomb stress changes of these two events. The total durations of the rupture process for the 0327 and 0602 events were 12 s and 15 s, respectively. The epicenter of the 0602 event and the epicenters of the aftershocks (ML > 3) of the 0327 event were concentrated in a region with positive Coulomb stresses caused by the 0327 event. This indicates that the derived source process was available and coincided with physical properties in a manner that strongly suggests that the 0602 event was triggered by the 0327 event. According to the Coulomb stress changes caused by the 0602 event at a depth of 4 km and its vertical cross section, most of the aftershocks (ML > 3) of the 0602 event were located in a region with positive Coulomb stress changes greater than 0.1 bar. In addition, almost all the epicenters of the earthquakes (ML > 3) in central Taiwan between July 15, 2013, and January 27, 2015, were located in a region with positive Coulomb stress changes at a depth of 6 km contributed by the 0327 and 0602 events. These findings indicate that if the background stress in the central Taiwan is intense high, the Coulomb stress changes contributed by the two events may affect the seismicity of central Taiwan in this period of time, and that a region with extreme positive Coulomb stress changes may be the place in which potential earthquakes will occur in the future. Moreover, the proposed inversion method can derive the proper source model efficiently
Density functional theory of the Seebeck coefficient in the Coulomb blockade regime
Yang, Kaike; Perfetto, Enrico; Kurth, Stefan; Stefanucci, Gianluca; D'Agosta, Roberto
2016-08-01
The Seebeck coefficient plays a fundamental role in identifying the efficiency of a thermoelectric device. Its theoretical evaluation for atomistic models is routinely based on density functional theory calculations combined with the Landauer-Büttiker approach to quantum transport. This combination, however, suffers from serious drawbacks for devices in the Coulomb blockade regime. We show how to cure the theory through a simple correction in terms of the temperature derivative of the exchange correlation potential. Our results compare well with both rate equations and experimental findings on carbon nanotubes.
Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes
We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.
Two Dimensional Coulomb Potential of Confined Excitons in Quantum Well Structures
Directory of Open Access Journals (Sweden)
M. Solaimani
2012-12-01
Full Text Available In this study, we have investigated an exciton confined in a single quantum well. For the first time, we have compared the different methods of approximating the effective two dimensional Coulomb potentials which had been previously reported in the literatures. The effect of different previously introduced trial wave functions on the exciton binding energy is also investigated. In order to have a consistent and stable calculation we have tried to find the true region of variations for free parameters of these trial wave functions. Effects of the barrier thickness and doping fraction are also investigated.
Bystritskiy, Yu M; Pervushin, V N; Volkov, M K
2009-01-01
The charge pion polarizability is calculated in the Nambu-Jona-Lasinio model, where the quark loops (in the mean field approximation) and the meson loops (in the $1/N_c$ approximation) are taken into account. We show that quark loop contribution dominates, because the meson loops strongly conceal each other. The sigma-pole contribution $(m^2_\\sigma-t)^{-1}$ plays the main role and contains strong t-dependence of the effective pion polarizability at the region $|t|\\geq 4M_\\pi^2$. Possibilities of experimental test of this sigma-pole effect in the reaction of Coulomb Nuclear Scattering are estimated for the COMPASS experiment.
N. Andres; Catara, F.; Lanza, E. G.; Chomaz, Ph.; FALLOT M.; Scarpaci, J.A.
2001-01-01
We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quad...
Three-body Coulomb breakup of 11Li in the complex scaling method
Myo, T.; Aoyama, S.; Kato, K.; Ikeda, K.
2003-01-01
Coulomb breakup strengths of 11Li into a three-body 9Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body ``10Li+n'' and three-body ``9Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enha...
Cold chemistry with electronically excited Ca+ Coulomb crystals
International Nuclear Information System (INIS)
Rate constants for chemical reactions of laser-cooled Ca+ ions and neutral polar molecules (CH3F, CH2F2, or CH3Cl) have been measured at low collision energies (coll>/kB=5-243 K). Low kinetic energy ensembles of 40Ca+ ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca+ ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of 40Ca+ involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state (2S1/2) and the combined excited states (2D3/2 and 2P1/2) of 40Ca+. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.
Cold chemistry with electronically excited Ca+ Coulomb crystals
Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.
2010-11-01
Rate constants for chemical reactions of laser-cooled Ca+ ions and neutral polar molecules (CH3F, CH2F2, or CH3Cl) have been measured at low collision energies (⟨Ecoll⟩/kB=5-243 K). Low kinetic energy ensembles of C40a+ ions are prepared through Doppler laser cooling to form "Coulomb crystals" in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca+ ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of C40a+ involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state (S21/2) and the combined excited states (D23/2 and P21/2) of C40a+. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.
Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture
Stroev, N E
2016-01-01
Non-congruent gas-liquid phase transition (NCPT) have been studied in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a \\textit{uniformly compressible} ideal electronic background /BIM($\\sim$)/. The features of NCPT in improved version of the BIM($\\sim$) model for the same mixture on background of \\textit{non-ideal} electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to EoS of electronic and ionic subsystems were used in present calculations within the Gibbs--Guggenheim conditions of non-congruent phase equilibrium.Parameters of critical point-line (CPL) were calculated on the entire range of proportions of mixed ions $0
Lipparini, Filippo; Gauss, Jürgen
2016-09-13
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application. PMID:27464026
The secondary supernova machine: Gravitational compression, stored Coulomb energy, and SNII displays
Clayton, Donald D.; Meyer, Bradley S.
2016-04-01
Radioactive power for several delayed optical displays of core-collapse supernovae is commonly described as having been provided by decays of 56Ni nuclei. This review analyses the provenance of that energy more deeply: the form in which that energy is stored; what mechanical work causes its storage; what conservation laws demand that it be stored; and why its release is fortuitously delayed for about 106 s into a greatly expanded supernova envelope. We call the unifying picture of those energy transfers the secondary supernova machine owing to its machine-like properties; namely, mechanical work forces storage of large increases of nuclear Coulomb energy, a positive energy component within new nuclei synthesized by the secondary machine. That positive-energy increase occurs despite the fusion decreasing negative total energy within nuclei. The excess of the Coulomb energy can later be radiated, accounting for the intense radioactivity in supernovae. Detailed familiarity with this machine is the focus of this review. The stored positive-energy component created by the machine will not be reduced until roughly 106 s later by radioactive emissions (EC and β +) owing to the slowness of weak decays. The delayed energy provided by the secondary supernova machine is a few × 1049 erg, much smaller than the one percent of the 1053 erg collapse that causes the prompt ejection of matter; however, that relatively small stored energy is vital for activation of the late displays. The conceptual basis of the secondary supernova machine provides a new framework for understanding the energy source for late SNII displays. We demonstrate the nuclear dynamics with nuclear network abundance calculations, with a model of sudden compression and reexpansion of the nuclear gas, and with nuclear energy decompositions of a nuclear-mass law. These tools identify excess Coulomb energy, a positive-energy component of the total negative nuclear energy, as the late activation energy. If the
Fermi Surface of Sr2 RuO4 : Spin-Orbit and Anisotropic Coulomb Interaction Effects
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-01
The topology of the Fermi surface of Sr2 RuO4 is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix—responsible for the reshaping of the Fermi surface—sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr2 RuO4 .
Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-11
The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}. PMID:27015496
International Nuclear Information System (INIS)
A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power. (paper)
Imaging quantum Hall Coulomb islands inside a quantum ring
Martins, Frederico; Hackens, Benoit; Faniel, Sebastien; Bayot, Vincent; Pala, Marco; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier
2011-03-01
In the quantum Hall regime near integer filling factors, electrons are transmitted through edge states confined at the borders of the device. In mesoscopic samples, however, edge states may be sufficiently close to allow electrons to tunnel, or to be transmitted through localized states (``Coulomb islands''). Here, we use the biased tip of a low temperature scanning gate microscope to alter tunneling through quantum Hall Coulomb islands localized inside a quantum ring patterned in an InGaAs/InAlAs heterostructure. Simultaneously, we map the quantum ring resistance and observe different sets of concentric resistance fringes, due to charging/discharging of each Coulomb island. Tuning the magnetic field and the tip voltage, we reveal the rich and complex behaviour of these fringes.
Observation of ionic Coulomb blockade in nanopores.
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels. PMID:27019385
Geometrically-frustrated pseudogap phase of Coulomb liquids
International Nuclear Information System (INIS)
We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime αc in any dimension d≥2, reflecting the strong geometric frustration produced by long-range interactions. A nearly frozen Coulomb liquid then survives in a broad pseudogap phase found at T>Tc, which is characterized by an unusual temperature dependence of all quantities. In contrast, the leading critical behavior very close to the charge-ordering temperature remains identical as in models with short-range interactions.
Lyapunov spectra of Coulombic and gravitational periodic systems
Kumar, Pankaj
2016-01-01
We compute Lyapunov spectra for Coulombic and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary conditions. Exact time evolution of tangent-space vectors are derived and are utilized toward computing Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov-entropy density for each system at different degrees of freedom. Our approach forms an effective and approximation-free tool toward studying the dynamical properties exhibited by the Coulombic and gravitational systems and finds applications in investigating indications of thermodynamic transitions in large versions of the spatially periodic systems.
Coulomb Blockade in an Ultrathin Ti Nanowire at Room Temperature
Institute of Scientific and Technical Information of China (English)
CAIQiyu; YANGTao; CAIBingchu; YINYou; JIANGJianfei
2003-01-01
A scanning tunneling microscope operated in ambient air was employed to fabricate a～ 30nm-wide and ～ 700nm-long Ti nanowire connecting the source and drain electrodes on a 3nm-thick Ti film. The ultraflne but nonuniform Ti nanowire was well defined between two ox-idized lines. The gate electrode was capacitively coupled to the nanowire by a ～150nm-wide oxidized line. The electrical properties measured at room temperature of the Ti nanowire showed Coulomb blockade in highly nonlinear Ids-Vds characteristics and Coulomb oscillation in Ids - Vgs characteristics.
Correlated Coulomb drag in capacitively coupled quantum-dot structures
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-01-01
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.
Sato, Tamao; Hiratsuka, Shinya; Mori, Jim
2012-12-01
Coulomb stress triggering is examined using well-determined aftershock focal mechanisms and source models of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. We tested several slip distributions obtained by inverting onshore GPS-derived coseismic displacements under different a priori constraints on the initial fault parameters. The aftershock focal mechanisms are most consistent with the Coulomb stress change calculated for a slip distribution having a center of slip close to the trench. This demonstrates the capability of the Coulomb stress change to help constrain the slip distribution that is otherwise difficult to determine. Coulomb stress changes for normal-fault aftershocks near the Japan Trench are found to be strongly dependent on the slip on the shallow portion of the fault. This fact suggests the possibility that the slip on the shallow portion of the fault can be better constrained by combining information of the Coulomb stress change with other available data. The case of normal-fault aftershocks near some trench segment which are calculated to be negatively stressed shows such an example, suggesting that the actual slip on the shallow portion of the fault is larger than that inverted from GPS-derived coseismic displacements.
升、降温火灾下混凝土瞬态热应变的计算%CALCULATION OF CONCRETE TRANSIENT STRAIN UNDER FIRE INCLUDING HEATING AND COOLING
Institute of Scientific and Technical Information of China (English)
谭清华; 周侃
2015-01-01
该文首先借助等效热膨胀系数将混凝土瞬态热应变转化为自由热膨胀应变;接着基于已有一维瞬态热应变模型和通用有限元程序的开放接口,自编程序实现了考虑升、降温火灾条件和三维应力状态下混凝土瞬态热应变的计算;最后利用相关试验数据对方法验证.结果表明考虑瞬态热应变,结构在升、降温阶段的变形会增大,且计算结果更接近试验值;进一步表明了采用等效热膨胀系数的方法考虑瞬态热应变的合理性.%The concrete transient strain is transformed into the free expansive strain by a equivalent thermal expansive coefficient firstly;and then,based on the one-dimensional model for transient strain and the open service interface of general commercial program software,a subsroutine is developed to include the transient strain under the state of three-dimensional stress and the fire including heating and cooling;in the end,test data are used to verify the method.The comparison results show that:with the inclusion of transient strain,the deformations of structures under heating and cooling increase,and the calculation results are much closer to the test results,which demonstates the equivalent expansive coefficient is a feasible method to include transient strain explicitly.
Toda, S.; Enescu, B.; Stein, R. S.
2009-12-01
A principal tenet of the Coulomb hypothesis is that stress increases promote, and decreases inhibit, fault failure. In support of such a simple hypothesis, a growing number of studies have found that seismicity rates climb where the stress increases and fall where the stress drops. However, they are all evaluated retrospectively, which may permit unintentionial bias to enter into data interpretation. Further, retrospective tests do not contribute to earthquake disaster mitigation. In particular, the probability rate for triggered seismicity is highest immediately after a mainshock, as suggested by rate/state friction. Thus, to make the stress-based earthquake forecasting rapidly available and to permit objective prospective testing, we have developed CoulombExpress, an automatic stress calculation system, which uses near real-time information, such as earthquake magnitude, location, depth, and its rapid moment tensor solution. Two versions of CoulombExpress, “CoulombExpress Global” and “CoulombExpress Regional” are in progress. 1) CoulombExpress Global: The system quickly computes the Coulomb stress change caused by an M≥6 around the globe. It automatically accesses the USGS National Earthquake Information Center parameters. In order of time, the system uses the NEIC W-phase, central, and body-wave moment tensor solutions, when available, to make the two-nodal-plane source fault models using the empirical scaling relations of Wells and Coppersmith [1994]. The stress changes are resolved on receiver faults parallel to the sources and also on both nodal planes of the nearby 1967-2005 Global CMT earthquakes, as stand-in's for active faults. The color-coded displays allow the viewer to grasp where and by how much the off-fault aftershocks might become active. Keeping long-term records of our results in an official archive will allow evaluators to examine rigorously the forecasting skills of our model. 2) CoulombExpress Regional: This is a forecasting system
The simplest model for non-congruent fluid-fluid phase transition in Coulomb system
Stroev, Nikita
2015-01-01
The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM($\\sim$)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with ``linear mixture'' (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM($\\sim$) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM($\\sim$) there were reproduced two-dimensional r...
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
Klintefjord, M; Görgen, A; Bauer, C; Garrote, F L Bello; Bönig, S; Bounthong, B; Damyanova, A; Delaroche, J-P; Fedosseev, V; Fink, D A; Giacoppo, F; Girod, M; Hoff, P; Imai, N; Korten, W; Larsen, A C; Libert, J; Lutter, R; Marsh, B A; Molkanov, P L; Naïdja, H; Napiorkowski, P; Nowacki, F; Pakarinen, J; Rapisarda, E; Reiter, P; Renstrøm, T; Rothe, S; Seliverstov, M D; Siebeck, B; Siem, S; Srebrny, J; Stora, T; Thöle, P; Tornyi, T G; Tveten, G M; Van Duppen, P; Vermeulen, M J; Voulot, D; Warr, N; Wenander, F; De Witte, H; Zielińska, M
2016-01-01
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...
Coulomb excitation of neutron-rich odd-$A$ Cd isotopes
Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M
We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...
Structure of low-lying states in 140Sm studied by Coulomb excitation
Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-01
The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.
Coulomb interaction parameters in bcc iron: an LDA+DMFT study
Belozerov, A. S.; Anisimov, V. I.
2014-09-01
We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.
Dynamics of He2++H ionization with exponential cosine-screened Coulomb potential
International Nuclear Information System (INIS)
Dynamics of He2++H ionization in dense quantum plasmas (DQPs) has been studied by the classical trajectory Monte Carlo method. The interactions between charged particles have been described by the exponential cosine-screened Coulomb potential. It is found that ionization cross sections in plasma environments are obviously larger than those in plasma-free environments due to the screening effects. Cross sections for H+ also have been calculated for comparison. For H+, cross sections increase with the increase of screening effects. However, for He2+, cross sections begin to decrease in strong screening effects at intermediate energies. Furthermore, He2+ impact ionization cross sections in weakly coupled plasmas (WCPs) also have been calculated. The interactions have been described by the static screened Coulomb potential. It is found that when screening effects are weak, cross sections in DQPs and WCPs are approximately the same. As screening effects increase, cross sections in DQPs become larger than those in WCPs at high energies. However, when screening effects are strong enough, cross sections in DQPs become smaller than those in WCPs at low and intermediate energies. (paper)
Demirci, Alper
2013-04-01
The Coulomb Stress changes due to the some moderate and large earthquakes are shaped according to the orientations of reciever faults or weakness zones along the corresponding seismogenic zones. In some cases, the determination of the fault plane parameters (e.g. length, width, strike, dip) of the receiver faults are more difficult due to the tectonical complexity of the region. Therefore, in order to understand the aftershock distrubition in such areas Coulomb stress changes can be calculated under the assumption of optimally oriented fault planes which increases the spatial correlation between stress changes and aftershock distribution. In the scope of the present sutdy, aftershock distrubiton of some contemporary earthquakes in Turkey (Simav (Mw 5.8), May 2011; Van (Mw 7.0), Oct 2011 and Gulf of Fethiye (Mw 6.1), June 2012) and their coulomb stress changes were correlated. Fault plane parameters of these earthquakes which suggest three different types of focal mechanism were calculated using moment tensor inversion technique and aftershock location data in a period of 30 days for each corresponding events were taken from Kandilli Observatory and Earthquake Research Institute (KOERI) catalog. The focal mechanisms of the selected earthquakes represent normal, strike slip and thrust faulting for the earthquakes of Simav, Gulf of Fethite and Van, respectively. Coulomb Stress Changes were calculated using the open source Matlab based (Coulomb 3.3) codes. The calculations were performed by assuming Poisson's ratio and apparent friction coefficient to be 0.25 and 0.4, respectively. The coulomb stress variations were calculated at fixed depths for each event and aftershocks were selected as ±4 km for corresponding depths. Keeping in mind that the increase of static stress more than 0.5 bar can cause the triggered events in an area, the accordance rates of Coulomb stress changes and aftershock distribution under different tectonic regimes were disscussed. The accordance
Superconformal models and the supersymmetric coulomb gas
International Nuclear Information System (INIS)
The obtention of the supersymmetric 19-vertex model from an inhomogeneous 6-vertex model, is discussed. The 19-vertex model is considered the underlying theory and applied to calculate the partition function of the torus. A similar scheme to that for the critical models obtention, concerning the restriction procedure at special points of the gaussian line (of the 6-vertex model) is used. The critical line, in the supersymmetric model, is described by a free superfield and related to the XY model. The ''fused'' lattice models are outlined. It is shown that the results can be generalized to the models obtained by SU(2) coset construction
Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians
DEFF Research Database (Denmark)
Avery, James Emil
2013-01-01
of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...
Interpolating the Coulomb Phase of Little String Theory
Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi
2015-01-01
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.
Existence of the thermodynamic limit for disordered quantum Coulomb systems
Blanc, Xavier
2012-01-01
Following a recent method introduced by C. Hainzl, J.P. Solovej and the second author of this article, we prove the existence of the thermodynamic limit for a system made of quantum electrons, and classical nuclei whose positions and charges are randomly perturbed in an ergodic fashion. All the particles interact through Coulomb forces.
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, Pierre; Hussein, Mahir S
2016-01-01
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...
The Coulomb law and atomic levels in a superstrong B
Directory of Open Access Journals (Sweden)
Vysotsky M.I.
2014-04-01
Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.
Limits to Electron Beam Emittance from Stochastic Coulomb Interactions
Energy Technology Data Exchange (ETDEWEB)
Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi
2008-08-22
Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.
Coulomb potential from a particle in uniform ultrarelativistic motion
Baltz, A. J.
1995-01-01
The Coulomb potential produced by an ultrarelativistic particle (such as a heavy ion) in uniform motion is shown in the appropriate gauge to factorize into a longitudinal Dirac delta function of (z - t) times the simple two dimensional potential solution in the transverse direction. This form makes manifest the source of the energy independence of the interaction.
Plasmon-mediated Coulomb drag between graphene waveguides
DEFF Research Database (Denmark)
Shylau, Artsem A.; Jauho, Antti-Pekka
2014-01-01
We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...
International Nuclear Information System (INIS)
In this paper we have solved the two-body spinless-Salpeter (SS) equation under the Coulomb and exponential type potentials. We have applied an approximation for the centrifugal term in our calculations. The energy eigenvalues and the corresponding eigenfunctions are reported by using the Laplace transform approach for any n, l states. (authors)
Ivanov, D Yu
1999-01-01
The size of $\\pi^+\\pi^-$ atom in the low lying states is considerably smaller than the radius of atomic screening. Due to that we can neglect this screening calculating the contribution of multi-photon exchanges. We obtain the analytic formula for Coulomb corrections which works with a very good accuracy for the ground state of $\\pi^+\\pi^-$ atom.
DEFF Research Database (Denmark)
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek;
2016-01-01
corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the 4-component Dirac-Coulomb Hamiltonian using Dyall’s acv4z basis sets. The relativistic corrections to the nuclear magnetic...
Towards reliable calculations of the correlation function
Maj, Radoslaw; 10.1142/S0218301307009221
2008-01-01
The correlation function of two identical pions interacting via Coulomb potential is computed for a general case of anisotropic particle's source of finite life time. The effect of halo is taken into account as an additional particle's source of large spatial extension. Due to the Coulomb interaction, the effect of halo is not limited to very small relative momenta but it influences the correlation function in a relatively large domain. The relativistic effects are discussed in detail and it is argued that the calculations have to be performed in the center-of-mass frame of particle's pair where the (nonrelativistic) wave function of particle's relative motion is meaningful. The Bowler-Sinyukov procedure to remove the Coulomb interaction is tested and it is shown to significantly underestimate the source's life time.
A Note on AdS/SYM Correspondence on the Coulomb Branch
Wu, Yi-Yen
1998-01-01
We study Maldacena's conjecture and the AdS/SYM correspondence on the Coulomb branch. Several interesting aspects of this conjectured AdS/SYM correspondence on the Coulomb branch are pointed out and clarified.
Coulomb time delays in high harmonic generation
Smirnova, Olga
2016-01-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization using newly developed attosecond spectroscopies has been a focus of many recent experiments. However, the outcome of such measurement depends on measurement protocols and specific observables available in each particular experiment. One of such protocols relies on high harmonic generation. First, we derive rigorous and general expressions for ionization and recombination times in high harmonic generation experiments. We show that these times are different from, but related to ionization times measured in photo-electron spectroscopy, i.e. using attosecond streak camera, RABBITT and atto-clock methods. Second, we use the Analytical R-Matrix theory (ARM) to calculate these times and compare them with experimental values.
Quantum Monte Carlo Calculations of Nucleon-Nucleus Scattering
Wiringa, R. B.; Nollett, Kenneth M.; Pieper, Steven C.; Brida, I.
2009-10-01
We report recent quantum Monte Carlo (variational and Green's function) calculations of elastic nucleon-nucleus scattering. We are adding the cases of proton-^4He, neutron-^3H and proton-^3He scattering to a previous GFMC study of neutron-^4He scattering [1]. To do this requires generalizing our methods to include long-range Coulomb forces and to treat coupled channels. The two four-body cases can be compared to other accurate four-body calculational methods such as the AGS equations and hyperspherical harmonic expansions. We will present results for the Argonne v18 interaction alone and with Urbana and Illinois three-nucleon potentials. [4pt] [1] K.M. Nollett, S. C. Pieper, R.B. Wiringa, J. Carlson, and G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)
Andreoiu, C; Paul, E S; Czosnyka, T; Hammond, N
2002-01-01
We propose to study the Coulomb excitation of a radioactive beam of $^{70}$Se at 2.2 MeV/u obtained from the REX-ISOLDE facility in order to determine the sign of the quadrupole moment and, hence, the sign of the quadrupole deformation. Calculations suggest a 33~\\% sensitivity in Coulomb excitation yield for a nickel target depending on whether the nuclear shape is oblate or prolate. Such a determination would provide compelling evidence for the presence of oblate shapes in the vicinity of N=Z=34.
Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model
Tao, C; Zhang, G Q; Cao, X G; Wang, D Q Fang H W
2012-01-01
Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been investigated by Coulomb excitation in the framework of the Isospin-dependent Quantum Molecular Dynamics model (IQMD). The spectra of $\\gamma$ rays are calculated and the peak energy, the strength and Full Width at Half Maximum (FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear equation of state, especially to its symmetry energy term are also explored. By a comparison with the other mean-field calculations, we obtain the reasonable values for symmetry energy and its slope parameter at saturation, which gives an important constrain for IQMD model. In addition, we also studied the neutron excess dependence of GDR and PDR parameters for Ni isotopes and found that the energy-weighted sum rule (EWSR) $PDR_{m_1}/GDR_{m_1}%$ increases linearly with the neutron excess.
On the role of deformed Coulomb potential in fusion using energy density formalism
Indian Academy of Sciences (India)
Lavneet Kaur; Raj Kumari
2015-10-01
Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei. However, this dependence due to deformed Coulomb potential is found to be very weak.
Weatherford, Charles; Gebremedhin, Daniel
2016-03-01
A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.
Directory of Open Access Journals (Sweden)
Rudziński Wojciech
2013-01-01
Full Text Available Spin-dependent tunneling through a quantum dot coupled to one ferromagnetic and one superconducting electrodes is studied in the Andreev reﬂection (AR regime. Electrical conductance is calculated within the nonequilibrium Green function technique. Eﬀects due to a competition between the Coulomb correlations on the dot and intradot spin-ﬂip processes are considered in the linear transport regime and for diﬀerent coupling strengths between the dot and the external electrodes. It is shown that when a coherent spin rotation is present on the dot, Coulomb interactions may lead to a signiﬁcant enhancement of the AR tunneling current and even to the perfect AR transmission. Origin of occurrence of a variety of the multipeak structure of the linear conductance is also discussed.
Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL
International Nuclear Information System (INIS)
In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following 'safe' Coulomb excitation. The highly efficient MINIBALL array consists of 8 triple clusters of six-fold segmented HPGe detectors. Recent results concerning the investigation of nuclear shapes are presented and discussed. These results include studies on deformation in 94,96Kr nuclei, on quadrupole collectivity around 132Sn, on shape coexistence in neutron-deficient Hg, Po and Rn isotopes, and on octupole states in 122Rn and 224Ra nuclei
Linear-response theory of Coulomb drag in coupled electron systems
DEFF Research Database (Denmark)
Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka;
1995-01-01
We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...... for dirty systems with constant impurity scattering rates. Furthermore, we show that for energy-dependent relaxation times, the final result is not expressible in terms of standard density-response functions. Other results include (i) at T = 0, the frequency dependence of the transfer rate is found...
DEFF Research Database (Denmark)
Muniruzzaman, Muhammad; Rolle, Massimo
Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... the ionic interactions by mapping the Coulombic cross-coupling between the dispersive fluxes of the charged species in the heterogeneous domains. The outcomes of this study are important in many subsurface applications including migration of contaminants and propagation of reaction fronts....
Coherence-Like States of Two Coulomb-Correlated Ions Confined in a Paul Trap
Institute of Scientific and Technical Information of China (English)
LI Hui; HAI Wen-Hua; CHEN Wen-Qin; XU Jun
2007-01-01
We report the n×n'coherence-like state solutions in the cases of n,n'=1,2,…for the system including two Coulomb-correlated ions confined in a one-dimensional Paul trap with a time-dependent harmonic potential.One of the n'exact solutions of the centre-of-mass motion describes a generalized coherent state.For a small driving strength the n approximate solutions of relative motion are constructed,which describe the coherent oscillations of the two ions around the classical equilibrium position.
Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods
International Nuclear Information System (INIS)
In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2005-01-01
We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bi-layer plasmons and the drag resistivity are calcula...
Coulomb versus nuclear break-up of sup 1 sup 1 Be halo nucleus in a nonperturbative framework
Fallot, M; Lacroix, D; Chomaz, P; Margueron, J
2002-01-01
The sup 1 sup 1 Be break-up is calculated at 41 MeV per nucleon incident energy on different targets using a nonperturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data.
International Nuclear Information System (INIS)
A 98% pure 242mAm (K=5-, t1/2=141 years) isomeric target was Coulomb excited with a 170.5-MeV 40Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18(ℎ/2π) in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast Kπ=6- rotational band, and 13 in a band tentatively identified as the predicted yrast Kπ=5+ band. The rotational bands based on the Kπ=5- isomer and the 6- bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The γ-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete ΔK=1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5- and 6- bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the IKπ=66- state in the nominal 65- isomer band state is measured within the PRM as 45.6-1.1+0.3%. The E2 and M1 strengths coupling the 5- and 6- bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5+ band are reproduced by an E3 strength of ≅15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in 242Am are compared with the single-particle alignments in 241Am.
International Nuclear Information System (INIS)
We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms. - Highlights: ► We investigate action-at-a-distance effects in electrodynamics in detail. ► We calculate the instantaneous interactions for scalar and vector potentials. ► The cancellation mechanism involves the retarded Green function. ► The mechanism is confirmed on the example of moving point charges. ► The Green function has to be treated with care for nontrivial boundary terms.
Mohr, Peter
2016-01-01
In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that "it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture cross section for the reaction" $^{15}$N(n,$\\gamma$)$^{16}$N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in $^{16}$N which do not contribute in a Coulomb dissociation experiment. An estimate of the total $^{15}$N(n,$\\gamma$)$^{16}$N cross section from Coulomb dissociation of $^{16}$N requires a precise knowledge of the $\\gamma$-ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground state branching of the order of 0.05\\% to 0.6\\% at energies between 100 and 500 keV which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, S...
Low-energy Coulomb excitation of neutron-rich zinc isotopes
Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M
2009-01-01
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...
B(E1) Strengths from Coulomb Excitation of 11Be
Summers, N C; Ashwood, N I; Bouchat, V; Catford, W N; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Lecouey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Orr, N A; Pain, S D; Soic, N; Stuttgé, L; Thompson, I J; Timis, C N; Winfield, J S; Ziman, V
2007-01-01
The $B$(E1;$1/2^+\\to1/2^-$) strength for $^{11}$Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for $^{11}$Be+$^{208}$Pb at 38.6 MeV/nucleon is reported. The $B$(E1) strength of 0.105(12) e$^2$fm$^2$ derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a...
Coulomb Excitation of 68,70Cu First Use of Postaccelerated Isomeric Beams
Stefanescu, I
2007-01-01
We report on the first low-energy Coulomb excitation measurements with radioactive Iπ=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. γ rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the π2p3/2ν1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6-→4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core shows the importance of the proton excitations across the Z=28 shell gap to the understanding of the nuclear structure in the neutron-rich nuclei with N≈40.
Wedmore, L. N. J.; Faure Walker, J.; Roberts, G.; McCaffrey, K. J. W.; Sammonds, P. R.; Cowie, P. A.; Gregory, L. C.
2015-12-01
A record of 27 historical earthquakes in central Italy extending back to 1349 AD on faults with known geological slip-rates enables us to investigate the effect of Coulomb stress interactions between faults over long time scales. Modeling the effect of these interactions between active faults in low strain-rate regions is challenging due to a paucity of long earthquake records and poorly constrained long-term strain rates, yet this is key if we are to understand the effect of these interactions on earthquake occurrence. The central Apennines, Italy, with 27 well constrained historical earthquakes over 660 years and over 100 measurements of fault slip rate, provides a natural laboratory for testing models of fault interaction and determining how Coulomb stress interactions between faults affect the timing and location of future earthquakes. The central Apennines has parallel sets of NW-SE striking active normal faults. Since 1349, earthquakes have clustered along the northeast side of the fault system whereas Holocene averaged strain-rates are more evenly distributed across strike. We model the Coulomb stress changes caused by each of the 27 events and resolve stresses on all faults in the region. Our modeling includes interseismic loading over this period, with stress accumulating on shear zones beneath the seismogenic portion of each fault constrained by the measurements of fault slip-rate, and measurements of fault kinematics from frictional wear striae on bedrock fault scarps. We show that earthquakes occurred on faults where the net accumulation of stress was positive over the timescale modeled. Co-seismic Coulomb stress increases on the order of 0.01-0.1 MPa along strike appear to occasionally trigger large earthquakes yet are more often eclipsed by interseismic loading stresses on the order of 10-3 MPa/yr. Importantly, the effect of across strike co-seismic Coulomb stress decreases is more pervasive and can cause changes in earthquake recurrence of 102
Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf
2014-10-28
Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated
Structural phase transitions and topological defects in ion Coulomb crystals
International Nuclear Information System (INIS)
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation
Structural phase transitions and topological defects in ion Coulomb crystals
Energy Technology Data Exchange (ETDEWEB)
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2014-11-19
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Coulomb-Born-Oppenheimer approximation in Ps-H scattering
Indian Academy of Sciences (India)
Hasi Ray
2006-02-01
To improve the Coulomb-Born approximation (CBA) theory of ionization in positronium (Ps) and atom scattering, the effect of exchange is introduced. The nine-dimensional exchange amplitude for ionization of Ps in Ps-H scattering is reduced to a two-dimensional integral using the present Coulomb-Born-Oppenheimer approximation (CBOA). The methodology is extremely useful to evaluate ionization parameters for different target systems and for different types of ionization processes. It is then applied to evaluate the Ps-ionization cross-section and to estimate the effect of exchange on Ps-ionization in Ps-H system. We establish the importance of exchange at lower energy region.
A Coulomb collision algorithm for weighted particle simulations
Miller, Ronald H.; Combi, Michael R.
1994-01-01
A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.
Structural phase transitions and topological defects in ion Coulomb crystals
Energy Technology Data Exchange (ETDEWEB)
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)
2015-03-01
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Coulomb and Nuclear Breakup at Low Energies: Scaling Laws
Directory of Open Access Journals (Sweden)
Hussein M. S.
2013-12-01
Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-01-01
We develop a field theoretical approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD
Liu, Tao; Rayyan, Ahmed
2016-01-01
We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na\\"ive" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives $M_{\\Upsilon(1S)}-M_{\\eta_b(1S)}=52.9\\pm 5.5~{\\rm MeV}$ [1].
Imaging Coulomb islands in a quantum Hall interferometer.
Hackens, B; Martins, F; Faniel, S; Dutu, C A; Sellier, H; Huant, S; Pala, M; Desplanque, L; Wallart, X; Bayot, V
2010-01-01
In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states. PMID:20975700
Characterization of ion Coulomb crystals for fundamental sciences
Energy Technology Data Exchange (ETDEWEB)
Okada, Kunihiro, E-mail: okada-k@sophia.ac.jp [Sophia University, Department of Physics (Japan); Ichikawa, Masanari [RIKEN Nishina Center for Accelerator-Based Science (Japan); Wada, Michiharu, E-mail: mw@riken.go.jp [Sophia University, Department of Physics (Japan)
2015-11-15
We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled {sup 165}Ho{sup 14+} ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho{sup 14+} ions will be achieved by sympathetic cooling with a single laser-cooled Be{sup +}.
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-08-01
We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Structure of light neutron-rich nuclei through Coulomb dissociation
Indian Academy of Sciences (India)
U Datta Pramanik; T Aumann; D Cortina; H Emling; H Geissel; M Hellström; R Holzmann; N Iwasa; Y Leifels; G Münzenberg; M Rejmund; C Scheidenberger; K Sümmerer; A Leistenschneider; Th W Elze; A Grünschloss; S Ilievski; K Boretzky; J V Kratz; R Kulessa; E Lubkiewicz; E Wajda; W Walus; P Reiter; H Simon
2001-08-01
Coulomb breakup of neutron-rich nuclei around mass ∼ 20 has been studied experimentally using secondary beams (∼ 500–600 MeV/u) of unstable nuclei produced at GSI. The spectroscopic factor deduced for the neutron occupying 1/2 level in 15C ground state is consistent with the earlier reported value. The data analysis for Coulomb breakup of 17C shows that most of the cross section yields the 16C core in its excited state. For 17-22O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with 16O as a core is almost exhausted for 17,18O, while for more neutron rich isotopes the strength with respect to that limit decreases.
Coulomb Traps and Charge Transport in Molecular Solids
Scher, Harvey
2000-03-01
A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.
Cooling of cryogenic electron bilayers via the Coulomb interaction
Gamble, John King; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.
2011-09-01
Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure and analyze the power transfer. We show that, across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.
Interplay of Coulomb interaction and spin-orbit coupling
Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian
2016-07-01
We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .
Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater—Type Orbitals
Institute of Scientific and Technical Information of China (English)
F.Oner; R.A.Mamedoy
2002-01-01
Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of the average Coulomb interaction between two particles.Coulomb energy difference according to shell model of light mirror nuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions.In this study,using the one-center expansion of exponential-type wavefunctions in terms of Slater-type orbitals with the same center,we derived formula for Coulomb energy difference of light mirror nuclei.
Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater-Type Orbitals
Institute of Scientific and Technical Information of China (English)
F. Oner; B.A. Mainedov
2002-01-01
Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of theaverage Coulomb interaction between two particles. Coulomb energy difference according to shell model of light mirrornuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions. Inthis study, using the one-center expansion of exponential-type wavcfunctions in terms of Slater-type orbitals with thesame center, we derived formula for Coulomb energy difference of light mirror mulei.
Toward a Universal Model of Damping--Modified Coulomb Friction
Peters, Randall D.
2002-01-01
A modification of Coulomb's law of friction uses a variable coefficient of friction that depends on a power law in the energy of mechanical oscillation. Through the use of three different exponents: 0, 1/2 and 1; all commonly encountered non-viscous forms of damping are accommodated. The nonlinear model appears to yield good agreement with experiment in cases of surface, internal, and amplitude dependent damping.
Dynamical Coulomb blockade and spin-entangled electrons
Recher, Patrik; Loss, Daniel
2003-01-01
We consider the production of mobile and nonlocal pairwise spin-entangled electrons from tunneling of a BCS-superconductor (SC) to two normal Fermi liquid leads. The necessary mechanism to separate the two electrons coming from the same Cooper pair (spin-singlet) is achieved by coupling the SC to leads with a finite resistance. The resulting dynamical Coulomb blockade effect, which we describe phenomenologically in terms of an electromagnetic environment, is shown to be enhanced for tunneling...
Coulomb excitation of 144,146,148,150Nd
Ahmad, A.; Bomar, G.; Crowell, H.; Hamilton, J. H.; Kawakami, H.; Maguire, C. F.; Nettles, W. G.; Piercey, R. B.; Ramayya, A. V.; Soundranayagam, R.; Ronningen, R. M.; Scholten, O.; Stelson, P. H.
1988-01-01
Coulomb excitation of 144,146,148,1605060Nd by 10.5 and 11 MeV alpha particles was studied by magnetic analysis of particles scattered into 150°. Values of B(E20+-->2+) for the 2+ states at 696, 454, 302, and 130 keV are 0.58(1), 0.78(1), 1.390(20), and 2.816(35) e2b2, respectively. For 148,150Nd, v
Intermediate-energy Coulomb excitation of Fe-52
Yurkewicz, KL; Bazin, D.; Brown, BA; Campbell, CM; Church, JA; Dinca, DC; A. Gade; Glasmacher, T.(National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824, United States); Honma, M.; Mizusaki, T.; Mueller, WF; Olliver, H; Otsuka, Taka; Riley, LA; Terry, Jr., Jeffrey H.
2004-01-01
The nucleus 52 Fe with s N = Z =26 d has been investigated using intermediate-energy Coulomb excitation in inverse kinematics. A reduced transition probability of B s E 2;0 1 + ! 2 1 + d = 817 s 102 d e 2 fm 4 to the first excited 2 + state at 849.0 ( 5 ) keV was deduced. The increase in excitation strength B s E 2 " d with respect to the even-mass neighbor 54...
Suitability of linear quadrupole ion traps for large Coulomb crystals
Tabor, D. A.; Rajagopal, V.; Lin, Y-W.; Odom, B.
2011-01-01
Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial co...
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid
Buyukdagli, Sahin; Blossey, Ralf
2013-01-01
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent generalizing the point-like Dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (J. Phys. Chem 100, 2612 (1996)) and Abrashkin et al. (Phys. Rev. Lett. 99, 077801 (2007)). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevanc...
Coulombic potentials in the semi-classical limit
Energy Technology Data Exchange (ETDEWEB)
Chantelau, K. (Technische Univ. Berlin (Germany, F.R.). Fachbereich 3 - Mathematik)
1990-05-01
This paper is devoted to Schroedinger operators in two dimensions with singular (Coulombic) potentials. We investigate the behaviour of the eigenvalues at the bottom of the spectrum in the semi-classical limit. To overcome the difficulties due to the singularities, we use some kind of generalisation of the Levi-Civita transform. After this regularisation, we apply the theory of Helffer and Sjoestrand to get the full asymptotics for the eigenvalues. (orig.).
Two Approaches to Accelerated Monte Carlo Simulation of Coulomb Collisions
Ricketson, Lee
2014-01-01
In plasma physics, the direct simulation of inter-particle Coulomb collisions is often necessary to capture the relevant physics, but presents a computational bottleneck because of the complexity of the process. In this thesis, we derive, test and discuss two methods for accelerating the simulation of collisions in plasmas in certain scenarios. The first is a hybrid fluid-Monte Carlo scheme that reduces the number of collisions that must be simulated. Coupling between the fluid and particl...
Imaging Coulomb Islands in a Quantum Hall Interferometer
Hackens, B.; Martins, F.; Faniel, S.; Dutu, C. A.; Sellier, H.; S. Huant; Pala, M; L. Desplanque; Wallart, X; Bayot, V.
2010-01-01
In the Quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially-separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we ...
Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study
DEFF Research Database (Denmark)
Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka
2005-01-01
effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...... zigzaglike or armchairlike, which have two different nonzero crystal angular momenta m(a), M-b and only zero angular momentum, respectively....
Resonances in the two-center Coulomb systems
Seri, Marcello; Knauf, Andreas; Esposti, Mirko Degli; Jecko, Thierry
2016-09-01
We investigate the existence of resonances for two-center Coulomb systems with arbitrary charges in two dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. We construct the resolvent kernels of the operators and prove that they can be extended analytically to the second Riemann sheet. The resonances are then analyzed by means of perturbation theory and numerical methods.
Leptoproduction of neutrino pairs in the nuclear coulomb field
Pich, Antonio; Bernabéu, José
1985-01-01
[IT] Si calcola la sezione d'urto per la produzione di coppie v-V per leptoni ad alta energia nel campo nucleare di Coulomb nella teoria standard, tenendo conto della polarizzazione arbitraria nel fascio leptonico incidente. Si studiano le distribuzioni differenziali del leptone canco uscente, mostrando che il leptone diffuso forma un picco ad alta energia ed emerge per angoli di un'ampiezza notevole. Si discutono anche i contributi incoerenti alla sezione d'urto.
Kistryn, S; Bodek, K; Ciepal, I; Deltuva, A; Fonseca, A; Kalantar-Nayestanaki, N; Kis, M; Klos, B; Kozela, A; Mahjour-Shafiei, M; Micherdzinska, A; Sauer, P U; Stephan, E; Sworst, R; Zejma, J; Zipper, W; Kistryn, St.
2006-01-01
High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.
Jackson, M I; Hiley, M J; Yeadon, M R
2011-10-13
In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. PMID:21889150
McIntosh, R.; Mohanta, N.; Taraphder, A.; Bhattacharyya, S.
2015-01-01
The influence of disorder, both structural (non-diagonal) and on-site (diagonal), is studied through the inhomogeneous Bogoliubov-de Gennes (BdG) theory in narrow-band disordered superconductors with a view towards understanding superconductivity in boron doped diamond (BDD) and boron- doped nanocrystalline diamond (BNCD) films. We employ the attractive Hubbard model within the mean field approximation, including the Coulomb interaction between holes in the narrow acceptor band. We study subs...
Muonic molecules as three-body Coulomb problem in adiabatic approximation
International Nuclear Information System (INIS)
The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d3Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)
Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons
Efimkin, Dmitry K.; Galitski, Victor
2016-01-01
Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.
Novel method for equivalent stiffness and Coulomb's damping ratio analyses of leaf spring
Energy Technology Data Exchange (ETDEWEB)
Wen Jun, Wu; Yu, Xiang [GuangXi Univ. of Technology, Liuzhou (China); Le Mei, Zhu [Beijing Institute of Technology, Beijing (China); Li Jun, He [Nanchang Hangkong Univ., Nanchang (China)
2012-11-15
The leaf spring is a representative type of laminated structure. Based on the linear theories of curve beams, the first derivatives of the leave's status vector of the leaf spring are provided. The first derivatives of the combination status-vector are obtained by properly dealing with the nonlinear interacted forces between adjacent leaves. Moreover, the precise integration technology and the transform matrix method are introduced to solve the equations. The force displacement curve of a leaf spring is then calculated separately by using the present method and the finite element software ANSYS. From the results, the precision and advantages of the present methods for analyzing the leaf spring are revealed. The Coulomb's damping ratio of the leaf spring is studied by using the present method.
Fictitious time wave packet dynamics: I. Nondispersive wave packets in the quantum Coulomb problem
Fabčič, T; Wunner, G
2009-01-01
Nondispersive wave packets in a fictitious time variable are calculated analytically for the field-free hydrogen atom. As is well known by means of the Kustaanheimo-Stiefel transformation the Coulomb problem can be converted into that of a four-dimensional harmonic oscillator, subject to a constraint. This regularization makes use of a fictitious time variable, but arbitrary Gaussian wave packets in that time variable in general violate that constraint. The set of "restricted Gaussian wave packets" consistent with the constraint is constructed and shown to provide a complete basis for the expansion of states in the original three-dimensional coordinate space. Using that expansion arbitrary localized Gaussian wave packets of the hydrogen atom can be propagated analytically, and exhibit a nondispersive periodic behavior as functions of the fictitious time. Restricted wave packets with and without well defined angular momentum quantum n umbers are constructed. They will be used as trial functions in time-depende...
Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge
Reinhardt, H
2016-01-01
The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature $\\beta^{-1}$ is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold $\\mathbb{R}^2 \\times S^1(\\beta)$. The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as function of the temperature. From their inflection points the pseudo-critical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 226 MeV and 262 MeV, respectively, for the chiral and deconfinement transition.
Determination of absolute transition probabilities in 128Xe via projectile Coulomb excitation
International Nuclear Information System (INIS)
Recently, lifetimes of low-lying excited states in 128Xe were measured using the plunger technique after projectile Coulomb excitation. This experiment was performed at the JYFL, Jyvaeskylae using the JUROGAM Ge-detector array and the Cologne coincidence plunger device equipped with an array of 32 small Si-detectors. The Si-detectors were used to measure the reaction kinematics by registering target-like nuclei scattered in forward direction. In order to cross-check the results obtained from the recoil distance Doppler shift analysis an evaluation of the measured excitation cross-sections was performed with the computer code GOSIA. In addition deorientation effects were investigated and effort was made to extract absolute quadrupole moments. Details of the experiment and the calculations are presented.
Primakoff production of $\\pi^0$, $\\eta$ and $\\eta'$ in the Coulomb field of a nucleus
Kaskulov, Murat M
2011-01-01
Photoproduction of neutral pseudoscalar mesons $\\pi^0,\\eta(547)$ and $\\eta'(958)$ in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of $C$-parity odd Regge trajectories. In the coherent production the isospin filtering makes the $\\omega(782)$ a dominant trajectory. The calculations are in agreement with $\\pi^0$ data from JLAB provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in $\\eta$ and $\\eta'$ photoproduction off nuclei are further discussed. We also give predictions for the higher energies available at the JLAB upgrade.
Primakoff production of π0, η, and η' in the Coulomb field of a nucleus
International Nuclear Information System (INIS)
Photoproduction of neutral pseudoscalar mesons π0,η(547), and η'(958) in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of C-parity odd Regge trajectories. In the coherent production the isospin filtering makes the ω(782) a dominant trajectory. The calculations are in agreement with π0 data from JLAB provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in η and η' photoproduction off nuclei are further discussed. We also give predictions for the higher energies available at the JLAB upgrade.
Primakoff production of π0, η and η' in the Coulomb field of a nucleus
International Nuclear Information System (INIS)
The Primakoff production of neutral pseudoscalar mesons π0, η(587) and η'(958) in the Coulomb field of an atomic nucleus is studied using a model which describes the coherent electromagnetic and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of C-parity odd Regge trajectories. In the coherent production the isospin filtering makes the ω(782) a dominant trajectory. We revise the production of pions which has been used to measure the π0→γγ decay width at JLAB. The calculations are in agreement with data provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in η and η' photoproduction off nuclei are further discussed.
Coulomb expansion of a van der Waals C60 solid film
Institute of Scientific and Technical Information of China (English)
薛其坤; 厉建龙; 孙牧; 陆华; T.Hashizume; Y.Hasegawa; K.Ohno; Y.Kawazoe; T.Sakurai; H.Kamiyama; H.Shinohara
2000-01-01
Scanning tunneling microscopy study revealed a van der Waals C60, solid film with 13% room-temperature lattice expansion on the GaAs(001) 2×4 surface. The mechanism involves fundamental Coulomb interaction due to charge transfer from the GaAs substrate. Theoretical calculation determines the charge transfer to be 1.76 electrons per C60 molecule. Oriented at its (110) crystallo-graphic axis this film also distinguishes itself from those formed on all other semiconductor and metal substrates where only the low-energy (111) hexagonal packing of C60 molecules was developed. It is shown that this is due to the one-dimensional confinement effect of the anisotropic substrate, which may have the prospect of controlling crystal growth.
A non-variational approach to the quantum three-body Coulomb problem
Chi, Xuguang
2005-07-01
This thesis presents a general non-variational approach to the solution of three-body Schrodinger's equation with Coulomb interactions, based on the utilization of symmetries intrinsic to the three-body Laplacian operator first proposed by W. Y. Hsiang. Through step by step reductions, the center of mass degree of freedom is first removed, followed by the separation of all the rotational degrees of freedom, leading to a coupled partial differential equations (PDEs) in terms of the rotationally invariant internal variables {f1, f2, f3}. A crucial observation is that in the subspace where all the rotational degrees of freedom have been removed, there is an intrinsic spherical symmetry which can be fully utilized through the introduction of hyperspherical coordinates. By expressing the reduced Schrodinger's PDEs (with all the rotational degrees of freedom separated out) in terms of the hyperspherical coordinates, with the subsequent introduction of Jacobi polynomials as the angular eigenfunctions and Laguerre polynomials to expand the radial component, a system of infinite linear algebraic equations is obtained for the expansion coefficients. A numerical scheme is presented whereby the Coulomb interaction matrix elements are calculated to a very high degree of accuracy with minimal effort, and the truncation of the linear equations is carried out through a systematic procedure. The resulting matrix equations are solved through an iteration process, carried out on a PC. Numerical results are presented for the hydrogen negative ion H-, the helium and helium-like ions (Z = 3˜6), the hydrogen molecule ion H+2 and the positronium negative ion Ps-. Comparison with the variational and other approaches shows our results to be of comparable accuracy for the eigenenergies, but can yield highly accurate wave functions as by-products. Results on low-lying excited states are obtained simultaneously with the ground state properties with no extra effort. In particular, for the
Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd
Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.
2016-09-01
Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.
Collision between two ortho-positronium (Ps) atoms: A four-body Coulomb problem
Indian Academy of Sciences (India)
RAY HASI
2016-05-01
The elastic collision between two ortho-positronium (e.g. $S = 1$) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly. A coupled channel methodology in momentum space is used to solve Lippman–Schwinger equation following the integral approach. A new SEM code is developed in which the Born–Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude adapting the partial wave analysis. The $s$-, $p$- and $d$-wave elastic phase shifts and the corresponding partial cross-sections for the spin alignment $S = 0$, i.e., singlet (+) and $S = 2$, i.e., triplet (−) states are studied. An augmented Born approximation is used to includethe contribution of higher partial waves more accurately to determine the total/integrated elastic cross-section $(\\sigma)$, the quenching cross-section (σq) and ortho-to-para conversion ratio $(\\sigma/\\sigma q)$. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The theory includes the non-adiabatic short-range effects due to exchange.
The impact of sharp screening on the Coulomb scattering problem in three dimensions
Yakovlev, S. L.; Volkov, M. V.; Yarevsky, E.; Elander, N.
2010-06-01
The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complementary situations, firstly, when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long-range tail is considered as the potential. The partial wave results are summed up to obtain the wavefunction in three dimensions. It is shown that in the domains where the wavefunction is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wavefunction. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schrödinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three-dimensional scattering problem with long-range potentials.
Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States
Andreoiu, C; Napiorkowski, P J; Iwanicki, J S
2002-01-01
We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...
Coulomb Corrections in Deep Inelastic Scattering and the Nuclear Dependence of R =σL /σT
Gaskell, David
2011-04-01
Measurements of Deep Inelastic structure functions from nuclei are typically performed at very high energies, hence effects from the Coulombic acceleration or deceleration of the incident and scattered lepton due to additional protons in a heavy nucleus are typically ignored. However, re-analysis of data taken at SLAC from experiments E140 and E139 indicates that the effect of including Coulomb corrections, while not large, is non-zero and impacts the extracted results non-trivially. In particular, there is a significant impact when these data are used to extrapolate the magnitude of the EMC effect to nuclear matter. In addition, the conclusion from E140 that there is no evidence for a nuclear dependence of R =σL /σT is thrown into question. When combined with recent data from Jefferson Lab, RA -RD at x = 0 . 5 is found to differ from zero by two σ.
Harb, Moussab
2014-09-11
Relevant properties to visible-light overall water splitting reactions of perfect and self-defective bulk Ta3N5 semiconductor photocatalysts are investigated using accurate first-principles quantum calculations on the basis of density functional theory (DFT, including the perturbation theory DFPT) within the screened coulomb hybrid (HSE06) exchange-correlation formalism. Among the various explored self-defective structures, a strong stabilization is obtained for the configuration displaying a direct interaction between the created N- and Ta-vacancies. In the lowest-energy structure, each of the three created Ta-vacancies and the five created N-vacancies is found to be in aggregated disposition, leading to the formation of cages into the lattice. Although the calculated structural, electronic, and optical properties of the two materials are found to be very similar and in good agreement with available experimental works, their photocatalytic features for visible-light overall water splitting reactions show completely different behaviors. On the basis of calculated band edge positions relative to water redox potentials, the perfect Ta3N5 (calculated band gap of 2.2 eV) is predicted by HSE06 to be a good candidate only for H+ reduction while the self-defective Ta3N5 (calculated band gap of 2.0 eV) reveals suitable band positions for both water oxidation and H+ reduction similar to the experimental data reported on Ta3N5 powders. Its ability to reduce H+ is predicted to be lower than the perfect one. However, the strongly localized electronic characters of the valence band (VB) and conduction band (CB) edge states of the self-defective material only on the N 2p and Ta 5d orbitals surrounding the aggregated N- and Ta-vacancies are expected to strongly limit the probability of photogenerated carrier mobility through its crystal structure.
Multiple Coulomb excitation experiment of sup 6 sup 6 Zn
Koizumi, M; Oshima, M; Osa, A; Kimura, A; Hatsukawa, Y; Shizuma, T; Hayakawa, T; Matsuda, M; Katakura, J; Seki, A; Czosnyka, T; Sugawara, M; Morikawa, T; Kusakari, H
2003-01-01
A Coulomb excitation experiment was carried out with a sup 6 sup 6 Zn beam bombarding a sup n sup a sup t Pb target. Four E2 matrix elements and the quadrupole moment of the 2 sub 1 sup + state were derived with the least-squares search code GOSIA. According to the B(E2) values, the ground band can be interpreted as a quasirotational band. It was found that the 2 sub 1 sup + level has a positive quadrupole moment, which may be interpreted as a soft triaxial deformation.
Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians
Indian Academy of Sciences (India)
Danilo Calderini; Simonetta Cavalli; Cecilia Coletti; Gaia Grossi; Vincenzo Qquilanti
2012-01-01
The simple connection between the Slater orbitals, venerable in quantum chemistry, and the Coulomb Sturmian orbitals, more recently employed in atomic and molecular physics, is pointed out explicitly in view of the renewed interest in both as basis sets in applied quantum mechanics. Research in Slater orbitals mainly concerns multicentre, many-body integrals, whereas that on Sturmians exploits their orthonormality and completeness with no need of continuum states. An account of recent progress is outlined, also with reference to relationships between the two basis sets, and with the momentum space and hyperspherical harmonics representations.
On the Analysis of Intermediate-Energy Coulomb Excitation Experiments
Scheit, Heiko; Glasmacher, Thomas; Motobayashi, Tohru
2008-01-01
In a recent publication (Bertulani et al., PLB 650 (2007) 233 and arXiv:0704.0060v2) the validity of analysis methods used for intermediate-energy Coulomb excitation experiments was called into question. Applying a refined theory large corrections of results in the literature seemed needed. We show that this is not the case and that the large deviations observed are due to the use of the wrong experimental parameters. We furthermore show that an approximate expression derived by Bertulani et al. is in fact equivalent to the theory of Winther and Alder (NPA 319 (1979) 518), an analysis method often used in the literature.
Analytical approach to quasiperiodic beam Coulomb field modeling
Rubtsova, I. D.
2016-09-01
The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.
Relation between the Fukui function and the Coulomb hole
Indian Academy of Sciences (India)
P Senet; M Yang
2005-09-01
By using a coarse-grain representation of the molecular electronic density, we demonstrate that the value of the condensed Fukui function at an atomic site is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and overstrengthening.
Improving Student Understanding of Coulomb's Law and Gauss's Law
Singh, Chandralekha
2016-01-01
We discuss the development and evaluation of five research-based tutorials on Coulomb's law, superposition, symmetry and Gauss's Law to help students in the calculus-based introductory physics courses learn these concepts. We discuss the performance of students on the pre-/post-tests given before and after the tutorials in three calculus-based introductory physics courses. We also discuss the performance of students who used the tutorials and those who did not use it on a multiple-choice test which employs concepts covered in the tutorials.
Coulomb Interaction in Quantum Dot with a Precessing Magnetic Field
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.
Aspects of nuclear collectivity studied in projectile Coulomb excitation experiments
Möller, Thomas
2014-01-01
Projectile Coulomb excitation experiments have been performed on the nuclei 130,132Ba, 154Sm, and 194,196Pt. A detailed description of the experiments and the data analysis is given. The results on absolute decay rates of the low-lying collective states of these nuclei allow for a comparison with predictions from different theoretical models of nuclear quadrupole collectivity. For the nucleus 154Sm the data on the decay rates of the states of the first K=0 band support the assignment of this ...
COULOMB BLOCKADE EFFECT IN SELF-ASSEMBLED GOLD QUANTUM DOTS
Institute of Scientific and Technical Information of China (English)
Shu-Fen Hu; Ru-Ling Yeh; Ru-Shi Liu
2004-01-01
Nanometer-scale Au quantum dots have been assembled on SiO2 by controlling the reaction of raw materials to form a citrate Au sol and an aminosilane/dithiol-treated patterned Si wafer. The detailed formation mechanism has been studied. Three gold colloidal particles (～15 nm), aligned in a chain to form a one-dimensional current path, was bridged across an 80-nm gap between source and drain metal electrodes. The device exhibited a Coulomb blockade effect at 33 K.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
International Nuclear Information System (INIS)
The radial Schroedinger equation and its bound-state solutions for the interaction V(r)=Vsub(coulomb)+Vsub(Pade), where Vsub(Pade)(r)=(b+cr)/(1+drsup(2)) are considered. In order to construct exactly the Feshbach effective Hamiltonian Hsup(eff), the fixed-point-substraction technique is employed and its simplification is proposed. The first two terms in the resulting asymptotic expansions of PSIsub(n) and Hsup(eff) are calculated and interpreted as a new type of perturbation theory
Coulomb excitation of radioactive 132,134,136Te beams and the low B(E2) of 136Te
International Nuclear Information System (INIS)
The B(E2;0+→2+) values for the first 2+ excited states of neutron-rich 132,134,136Te have been measured using Coulomb excitation of radioactive ion beams. The B(E2) values obtained for 132,134Te are in excellent agreement with expectations based on the systematics of heavy stable Te isotopes, while that for 136Te is unexpectedly small. These results are discussed in terms of proton-neutron configuration mixing and shell-model calculations using realistic effective interactions
Institute of Scientific and Technical Information of China (English)
郝平; 傅征祥; 田勤俭; 刘杰; 刘桂萍
2004-01-01
The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Coulomb failure stress reveal that 4 of 5 large aftershocks occurred in areas with △σf>0 ～10(2～10-1 MPa) and one aftershock occurred in an area with △σf =-0.56 MPa. It is concluded that the permanent fault displacement due to the main shock is the main cause of activity of large aftershocks, but not the whole cause.
Kuraev, E A; Torosyan, H T
2013-01-01
Using the Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory we obtained analytically and numerically the Coulomb corrections to the quantities of the Migdal LPM effect theory. We showed that the Coulomb corrections to the spectral bremsstrahlung rate allow completely to eliminate the discrepancy between the predictions of the LPM effect theory and its measuremens and also additionally improve the agreement between predictions of the LPM effect theory analogue for a thin target and experimental data.
Kodera, Ryosuke
2016-01-01
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $\\mathfrak{gl}(1)$.
Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts
Directory of Open Access Journals (Sweden)
Christian Holm
2013-10-01
Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.
Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications
Energy Technology Data Exchange (ETDEWEB)
Ershova, Olga
2012-03-09
Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)
Quasiequilibrium Characterization of Mixed-Ion Coulomb Crystals
Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu; Schuessler, Hans A.
2015-11-01
We demonstrate the application of reliable methods to determine both the average micromotion energies and the number of sympathetically cooled ions (SCIs) embedded in mixed-ion Coulomb crystals in a linear Paul trap. The number of the SCIs and the micromotion energies for the observed mixed-ion crystals are determined by comparing experimentally obtained images with molecular-dynamics simulations, where the kinetic energies of SCIs trapped in rf fields are averaged in cold elastic collisions between the laser-cooled ions and virtual very light atoms. This combined method quickly achieves the quasiequilibrium state of large mixed Coulomb crystals with over 103 ions, regardless of the initial conditions, and shows that the previously used pseudopotential-based adiabatic approximations should be replaced by such molecular-dynamics simulations. In addition, a pattern-matching recognition procedure is introduced which objectively ascertains the number of ions. We also apply the presented characterization method to determine the reaction-rate constant between slow acetonitrile molecules and sympathetically cooled Ne+ ions at a translational temperature lower than 10 K.
Theory of Coulomb drag for massless Dirac fermions
International Nuclear Information System (INIS)
Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)
Super-Coulombic atom-atom interactions in hyperbolic media
Cortes, Cristian L
2016-01-01
Dipole-dipole interactions which govern phenomena like cooperative Lamb shifts, superradiant decay rates, Van der Waals forces, as well as resonance energy transfer rates are conventionally limited to the Coulombic near-field. Here, we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic (QED) interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a Super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media and propose practical implementations with phonon-polaritonic hexagonal boron nitride in the infrared spectral range and plasmonic super-lattice structures in the visible range. Our work paves the way for the control of cold atoms in hyperbolic media and the study of many-body atomic states where optical phonons mediate qua...
Energy Technology Data Exchange (ETDEWEB)
Mueller-Heuser, G. [Ministerium fuer Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Duesseldorf (Germany); Altmann, B.R. [Deutsche Wissenschaftliche Gesellschaft fuer Erdoel, Erdgas und Kohle e.V., Hamburg (Germany); Arp, J. [Staatliches Umweltamt, Itzehoe (Germany); Schoenwald, H. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Itzehoe (Germany)
2000-09-01
Since the publication of DGMK Research Report 499 in October 1977 the knowledge of the technology for cleaning cruide oil tanks has improved, so that it appears possible that emissions of hydrocarbons less than 0,5 kg/m2 tank bottom area, according to the attached calculation examples, can be achieved. Secondary measures for cleaning crude oil tanks are currently under development so that further emission reductions of hydrocarbons up to 90% of the remaining emissions from working and evaporating can be expected. By increasing installation of double bottoms and time extension with regard to the inside inspections the number of the annual crude oil tank cleaning procedures is decreasing. The follow up of DGMK-Research Report 499 extensively describes the questions of work protection. An additional important item is the information of relevant authorities with a special paper for instructions. (orig.) [German] Seit dem Erscheinen der Erstausgabe des DGMK-Forschungsberichtes 499 im Oktober 1997 hat sich der Stand der Rohoeltankreinigungstechnik fortentwickelt, so dass Emissionen an Kohlenwasserstoffen {<=}0,5 kg je m{sup 2} Tankbodenflaeche nach den anliegenden Berechnungsbeispielen sicher einhaltbar erscheinen. Sekundaermassnahmen bei der Rohoeltankreinigung befinden sich gegenwaertig in der Entwicklung und lassen eine weitere Minderung der Kohlenwasserstoffemissionen bis zu 90% der verbleibenden Emission aus Verdraengung und Belueftung erwarten. Durch den zunehmenden Einbau von Doppelboeden sowie Fristverlaengerung in Bezug auf die Innenbesichtigungspflichten sinkt die Zahl der jaehrlichen Rohoeltankreinigungen. In der Fortschreibung des DGMK-Forschungsberichtes 499 wird auf die Belange des Arbeitsschutzes ausfuehrlich eingegangen. Ein weiterer wesentlicher Punkt ist die Mitteilung an die zustaendigen Behoerden, fuer die ein Formblatt mit Hinweisen erarbeitet worden ist. (orig.)
Coulomb excitation of the odd-odd isotopes {sup 106,108}In
Energy Technology Data Exchange (ETDEWEB)
Ekstroem, A.; Fahlander, C. [University of Lund, Physics Department, Box 118, Lund (Sweden); Cederkaell, J. [University of Lund, Physics Department, Box 118, Lund (Sweden); CERN, PH Department, Geneva 23 (Switzerland); Hjorth-Jensen, M.; Engeland, T. [University of Oslo, Physics Department and Center of Mathematics for Applications, Oslo (Norway); Blazhev, A.; Eberth, J.; Finke, F.; Reiter, P.; Warr, N.; Weisshaar, D. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Butler, P.A.; Hurst, A.M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Goergen, A. [Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Ivanov, O.; Stefanescu, I. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Koester, U. [CERN, PH Department, Geneva 23 (Switzerland); Institut Laue Langevin, Grenoble (France); Marsh, B.A. [University of Manchester, Department of Physics, Manchester (United Kingdom); CERN, AB Department, Geneva 23 (Switzerland); Mierzejewski, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Siem, S. [University of Oslo, Department of Physics, Oslo (Norway); Sletten, G. [University of Copenhagen, Physics Department, Copenhagen (Denmark); Tveten, G.M. [CERN, PH Department, Geneva 23 (Switzerland); University of Oslo, Department of Physics, Oslo (Norway); Van de Walle, J. [CERN, PH Department, Geneva 23 (Switzerland); Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Voulot, D.; Wenander, F. [CERN, AB Department, Geneva 23 (Switzerland)
2010-06-15
The low-lying states in the odd-odd and unstable isotopes {sup 106,108}In have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the {pi}g{sub 9/2}{sup -1} x {nu}d{sub 5/2} and {pi}g{sub 9/2}{sup -1} x {nu} g{sub 7/2} multiplets have been re-analyzed and are modified compared to previous results. The observed {gamma} -ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6{sup +} ground state in {sup 106}In. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in {sup 108}In is inverted compared to the shell model prediction. Limits on B(E2) values have been extracted where possible. A previously unknown low-lying state at 367keV in {sup 106}In is also reported. (orig.)
Coulomb excitation of the odd-odd isotopes $^{106, 108}$In
Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D
2010-01-01
The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
The Coulomb-nuclear force interference in the system 32S + 60Ni
International Nuclear Information System (INIS)
For the reaction 60Ni(32S,32S*)60Ni* using particle-γ-coincidences the excitation functions of 32S(2+1) and 60Ni(2+1) for projectile energies of 70-100 MeV as well as with Si single counters the angular distribution of the elastically and inelastically scattered 32S ions for incident energies of 90, 95, and 100 MeV were measured. A comparison of the measurements with the results of different computer codes led to following results: 1.) At the determination of the static quadrupole moment Q2 of 32S using the reorientation effect the influence of the nuclear force can be neglected for projectile energies Esub(P) 32S the value Q2 = -0.18 +- 0.04 eb was found. (Hereby destructive interference with the virtual excitation of the 2+2-state is assumed). 3.) For projectile energies Esub(P) >= 72 MeV at which the excitation by nuclear forces was small against the Coulomb excitation, an evaluation of the excitation function of 32S(2+1) by the semiclassical code NCL, which regards the influence of the nuclear interaction approximatively, yielded values for the static quadrupole moment, which agree within the measurement errors with the above value. 4.) For the quantitative analysis of the measured angular distributions a quantum mechanical CC-code was required. 5.) Using the semiclassical CC-code NCL an illustrative and detailed interpretation of the excitation functions of 32S(2+1) and 60Ni(2+1) could be given. 6.) The code NCL allows the study of the influence of the Coulomb-nuclear force interference on the temporal behaviour of the excitation process. 7.) Using the code NCL the angular distribution of the decay γ quanta for a fixed particle-scattering angle theta approx. 0 in dependence on the incident energy was calculated. (orig.)
International Nuclear Information System (INIS)
We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass), the system is shown to behave as a free gas of 'molecules' (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ≠0 is included, the analogy with a Coulomb gas still holds with μ playing the role of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed
Ray, Hasi
2014-01-01
The collision between two positronium (Ps) atoms is a four-body Coulomb problem with all the particles of equal masses. It is very difficult to compute the Born-Oppenheimer (BO) scattering amplitude involving the nine-dimensional integrals with four Coulomb interaction terms between the atoms. It is extremely difficult in the electron-electron correlation term to include the exchange or antisymmetry between two system electrons exactly. Earlier the Ps and H system was easily approximated as a three-body problem, due to the light mass of Ps the center of mass of the system was confined in the H-nucleus. A simple substitution of variables using no approximation has enabled to evaluate the electron-electron Coulomb exchange-correlation term exactly in such a four-center problem in the center of mass frame involving a nine dimensional integral. The present code of Ps-Ps collision using an ab-initio and exact static-exchange model (SEM) that uses the BO amplitude as input, can reproduce exactly the same data of Ps...
Mageed, K E Abd El; Gado, K A; Shalaby, Asmaa G
2016-01-01
We have applied the Coulomb and proximity potential model,CPPM to calculate the half lives for various clusters decay of the selected even-even isotopes of the chosen nuclei. These nuclei are Hf, W, Os, Pt, and Hg in the 5d transition metal region in the periodic table with atomic number 72 greater or equal Z less than or equal 80. Furthermore, the half-lives are calculated using the universal formula for cluster decay. The calculated half-lives of alpha decay for the chosen isotopes are in good agreement with the experimental data, especially with the CPPM results. The alpha and cluster decays are more probable from the parents in the heavier mass number A equal 168,180 than from the parents in the lighter mass number A equal 156, 166.
Perturbative calculation of the cross section in double ionization by high-energy Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Kaliman, Z. [Rijeka Univ., Dept. of Physics, Faculty of Arts and Sciences (Croatia); Pisk, K.; Suric, T. [Rudjer Boskovic Institute, Zagreb (Croatia)
2007-06-15
In this paper we investigate double ionization in high-energy Compton scattering from the He-atom including both the shake-off mechanism and a perturbative correction to that mechanism. The correction is calculated in second-order perturbation theory and includes Coulomb electron-electron interaction in addition to the correlation in the ground state of the He-atom. Our calculations for the ratio of double to single cross section cover the range from 30 to 300 keV of impact photon energy and explain the slow convergence of the ratio towards the asymptotic value. We have found that the ratio approaches the constant value within 10% at about 100 keV. Our results agree reasonably well with the existing experimental data.
Directory of Open Access Journals (Sweden)
E. V. B. Leite
2015-01-01
Full Text Available Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.
A New Efficient Method for Calculation of Frenkel Exciton Parameters in Molecular Aggregates
Plötz, Per-Arno; Kühn, Oliver
2013-01-01
The Frenkel exciton Hamiltonian is at the heart of many simulations of excitation energy transfer in molecular aggregates. It separates the aggregate into Coulomb-coupled monomers. Here it is shown that the respective parameters, i.e. monomeric excitation energies and Coulomb couplings between transition densities, can be efficiently calculated using time-dependent tight-binding-based density functional theory (TD-DFTB). Specifically, Coulomb couplings are expressed in terms of self-consistently determined Mulliken transition charges. The determination of the sign of the coupling requires an additional super-molecule calculation. The approach is applied to two dimer systems. First, formaldehyde oxime for which a detailed comparison with standard DFT using the B3LYP and the PBE functionals is provided. Second, the Coulomb coupling is explored in dependence on the intermolecular coordinates for a perylene bisimide dimer. This provides structural evidence for the previously observed biphasic aggregation behavior...
Energy Technology Data Exchange (ETDEWEB)
Zielinska, M. [CEA Saclay, IRFU/SPhN, Gif-sur-Yvette (France); Gaffney, L.P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of the West of Scotland, School of Engineering, Paisley (United Kingdom); Wrzosek-Lipska, K. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Clement, E. [GANIL, Caen Cedex (France); Grahn, T.; Pakarinen, J. [University of Jyvaskylae, Department of Physics, Jyvaskylae (Finland); University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); Kesteloot, N. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium); Napiorkowski, P. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Duppen, P. van [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Warr, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2016-04-15
With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA. (orig.)
Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions.
Isobe, Hiroki; Nagaosa, Naoto
2016-03-18
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)_{2}I_{3} and three-dimensional WTe_{2}. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions. PMID:27035318
Rumyantsev, Artem M.; Rudov, Andrey A.; Potemkin, Igor I.
2015-05-01
Structurally homogeneous polyelectrolyte microgels in dilute aqueous solutions are shown to exhibit inhomogeneous density profile including intraparticle "phase" coexistence of hollow core and dense "skin." This effect is a consequence of long-range Coulomb repulsion of charged groups which appear because of entropy-driven escape of monovalent counterions into the outer solvent. Excess of the charged groups at the periphery of the microgel particle reduces electrostatic energy and overall free energy of the system despite a penalty in the elastic free energy of strongly stretched subchains in the hole. This finding can serve as additional tool controlling encapsulation, transport, and release of high- and low-molecular-weight species in processes where the microgels are used as delivery systems.
Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region
International Nuclear Information System (INIS)
The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer (-t). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute normalization over multiple stores, while the target polarization is constantly monitored in a Breit-Rabi polarimeter. In 2005, the jet polarimeter has been used with both RHIC beams. We present results from the jet polarimeter including a detailed analysis of background contributions to asymmetries and to the beam polarization
Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions
Isobe, Hiroki; Nagaosa, Naoto
2016-03-01
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.
Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai
2010-12-01
FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been
Efficient Finite Element Calculation of Ny
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
The performance of a return mapping scheme for plasticity with linear yield planes in principal stress space is evaluated in relation to a Mohr-Coulomb material. For purely frictional materials this material model is known to cause problems in numerical calculations, but these problems...
Relativistic Coulomb excitation within Time Dependent Superfluid Local Density Approximation
Stetcu, I; Bulgac, A; Magierski, P; Roche, K J
2014-01-01
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus $^{238}$U. The approach is based on Superfluid Local Density Approximation (SLDA) formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We have computed the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance and giant quadrupole modes were excited during the process. The one body dissipation of collective dipole modes is shown to lead a damping width $\\Gamma_\\downarrow \\approx 0.4$ MeV and the number of pre-equilibrium neutrons emitted has been quantified.
Laser-driven recollisions under the Coulomb barrier
Keil, Th; Bauer, D
2016-01-01
Photoelectron spectra obtained from the ab initio solution of the time-dependent Schr\\"odinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA) not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is reasonably good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking branch cuts due to soft-recollisions properly into account.
Imaging of Coulomb-Driven Quantum Hall Edge States
Lai, Keji
2011-10-01
The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.
Ion-induced molecular fragmentation: beyond the Coulomb explosion picture
International Nuclear Information System (INIS)
The fragmentation of the CO molecule by O7+ ion impact is investigated in two different energy regimes by fragment ion momentum spectroscopy. The improved resolution of the present kinetic energy release measurement together with application of a time-dependent wave packet dynamics method used in conjunction with new high-level computations of a large number of dication potential energy curves enables one to unambiguously assign each line to an excited state of the transient molecular dication produced during the collision. This is the first direct experimental evidence of the limitations of the Coulomb explosion model to reproduce the molecular fragmentation dynamics induced by ion impact. Electron removal due to a capture process is shown to transfer less excitation to the target than direct ionization. At low collision velocity, the three-body interaction between the projectile and the two fragments is also clearly highlighted. (author). Letter-to-the-editor
Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.
Lotkhov, Sergey V
2013-06-14
In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. PMID:23670293
Classical Kepler-Coulomb problem on SO(2, 2) hyperboloid
Energy Technology Data Exchange (ETDEWEB)
Petrosyan, D., E-mail: petrosyan@theor.jinr.ru; Pogosyan, G. S., E-mail: pogosyan@ysu.am [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics (Russian Federation)
2013-10-15
In the present work, the problem of the motion of the classical particle in the Kepler-Coulomb field in three-dimensional hyperbolic space H{sub 2}{sup 2}: z{sub 2}{sup 0} + z{sub 2}{sup 1} - z{sub 2}{sup 2} - z{sub 2}{sup 3} = R{sup 2} is solved in the framework of Hamilton-Jacobi equation. The requirements for the existence of bounded motion of particle are formulated. The equation of the trajectory of particle is obtained, and it is shown that all the finite trajectories are closed. It is also demonstrated that under the certain values (zero or negative) of the separation constant A the fall of the particle onto the center takes place.
Coulomb and nuclear excitations of narrow resonances in 17Ne
Directory of Open Access Journals (Sweden)
J. Marganiec
2016-08-01
Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Coulomb blockade in turnstile with multiple tunnel junctions
Lee, S C; Kang, D S; Kim, D C; Choi, C K; Ryu, J Y
1999-01-01
On the basis of the analytic solutions to the electrostatic problem of the multi-grated-small-junction systems, the stable domain for the Coulomb blockade of turnstile with multiple tunnel junctions at zero temperature has been analyzed as a function of the number of tunnel junction, the ratio of the gate capacitance to the junction capacitance, and the asymmetric factor. Our results show that domains form various shaped regions according to the asymmetric factor and their size depends on the number of junction and the ratio of the gate capacitance to the junction capacitance. In particular, it is shown that electrons can be transferred in positive and/or negative bias voltage depending on the asymmetric factor when an appropriate gate cycle is applied. Thus, the asymmetric factor plays an important role in determining the turnstile operation.
Plunger lifetime measurements after Coulomb excitation at intermediate beam energies
Energy Technology Data Exchange (ETDEWEB)
Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)
2008-07-01
Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.
Spectrum (super-)symmetries of particles in a Coulomb potential
Energy Technology Data Exchange (ETDEWEB)
D' Hoker, E.; Vinet, L.
1985-10-14
The Schroedinger equation for a spin-O particle in the field of a dyon is obtained by dimensional reduction of the four-dimensional harmonic oscillator; the reduction is effected by imposing an equivariance condition on the wave functions of the latter system. This geometrical construction allows for a simple derivation of the SO(4,2) spectrum symmetry of the dyon system. A supermultiplet of one spin-1/2 and two spin-O particles in a Coulomb potential is demonstrated to possess an N=2 conformal supersymmetry through a generalization of the same method. The states and wave functions for these systems can be obtained from the representation theory of the corresponding symmetry algebras. A particular case for which this approach provides a complete group theoretical analysis is that of the Pauli equation for a spin-1/2 particle in the field of a dyon. (orig.).
The Coulomb gauge ghost Dyson-Schwinger equation
Watson, Peter
2010-01-01
A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery ...
Coulomb and nuclear excitations of narrow resonances in 17Ne
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.
2016-08-01
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Bound States at Threshold resulting from Coulomb Repulsion
Gridnev, Dmitry K
2011-01-01
The eigenvalue absorption for a many-particle Hamiltonian depending on a parameter is analyzed in the framework of non-relativistic quantum mechanics. The long-range part of pair potentials is assumed to be pure Coulomb and no restriction on the particle statistics is imposed. It is proved that if the lowest dissociation threshold corresponds to the decay into two likewise non-zero charged clusters then the bound state, which approaches the threshold, does not spread and eventually becomes the bound state at threshold. The obtained results have applications in atomic and nuclear physics. In particular, we prove that atomic ion with atomic critical charge $Z_{cr}$ and $N_e$ electrons has a bound state at threshold given that $Z_{cr} \\in (N_e -2, N_e -1)$, whereby the electrons are treated as fermions and the mass of the nucleus is finite.
Thermoelectric properties of Coulomb-blockaded fractional quantum Hall islands
Directory of Open Access Journals (Sweden)
Lachezar S. Georgiev
2015-05-01
Full Text Available We show that it is possible and rather efficient to compute at non-zero temperature the thermoelectric characteristics of Coulomb blockaded fractional quantum Hall islands, formed by two quantum point contacts inside of a Fabry–Pérot interferometer, using the conformal field theory partition functions for the chiral edge excitations. The oscillations of the thermopower with the variation of the gate voltage as well as the corresponding figure-of-merit and power factors, provide finer spectroscopic tools which are sensitive to the neutral multiplicities in the partition functions and could be used to distinguish experimentally between different universality classes sharing the same electric properties. We also propose a procedure for measuring the ratio r=vn/vc of the Fermi velocities of the neutral and charged edge modes for filling factor νH=5/2 from the power-factor data in the low-temperature limit.
On the analysis of intermediate energy Coulomb excitation experiments
Scheit, Heiko; Gade, Alexandra; Glasmacher, Thomas; Motobayashi, Tohru
2008-01-01
In a recent publication [C.A. Bertulani, G. Cardella, M. De Napoli, G. Raciti, E. Rapisarda, Phys. Lett. B 650 (2007) 233] the validity of analysis methods used for intermediate-energy Coulomb excitation experiments was called into question. Applying a refined theory large corrections of results in the literature seemed needed. We show that this is not the case and that the large deviations observed in above mentioned reference are due to the use of the wrong experimental parameters in that publication. We furthermore show that an approximate expression derived in above mentioned reference is in fact equivalent to the theory of Winther and Alder, an analysis method often used in the literature.
Phase diagram of a bulk 1d lattice Coulomb gas
Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.
2016-01-01
The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.
Electric and Magnetic Coulomb Potentials in the Deuteron
Directory of Open Access Journals (Sweden)
Bernard Schaeffer
2013-02-01
Full Text Available After one century of nuclear physics, the underlying fun- damental laws of nuclear physics are still missing. Bohr had found a formula for the H atom and another for the H2 molecule but no equivalent formula exists for the deuteron 2H. The only known Coulomb interaction in a nucleus by the mainstream nuclear physics is the long range repulsion between protons, forgetting that the neutron contains elec- tric charges with no net charge. The neutron is attracted by the proton in a way discovered two millenaries ago by the Greeks. This attraction is equilibrated by the repulsion between the opposite magnetic moments of the proton and of the neutron in the deuteron. The bare application of ge- ometry together with electric and magnetic Coulomb’s in- teractions accounts for the binding energy of the deuteron, without fitting, with only 4 per cent discrepancy, proving the electromagnetic nature of the nuclear energy.
Properties of nuclear and Coulomb breakup of 8B
Ogata, K; Iseri, Y; Yahiro, M
2008-01-01
Dependence of breakup cross sections of 8B at 65 MeV/nucleon on target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than in preceding study. The scaling law of the nuclear breakup cross section as A_T^(1/3) is found to be satisfied only in the middle A_T region of 40 < A_T < 150. Interference between nuclear and Coulomb breakup amplitudes turns out to vanish at very forward angles with respect to the center-of-mass of 8B, independent of target nucleus. Truncation of the relative energy between the p and 7Be fragments slightly reduces contribution from nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.
Attractive Coulomb interaction of two-dimensional Rydberg excitons
Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.
2016-06-01
We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.
Quasi-exactly solvable relativistic soft-core Coulomb models
Agboola, Davids
2013-01-01
By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials $V_q(r)=-Z/\\left(r^q+\\beta^q\\right)^{1/q}$, $Z>0$, $\\beta>0$, $q\\geq 1$. We consider cases $q=1$ and $q=2$ and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtain using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derive in terms of the roots of a set of Bethe ansatz equations.
Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
Lehtinen, J S; Zakharov, K; Arutyunov, K Yu
2012-11-01
Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.