WorldWideScience

Sample records for calculations 1-dimensional

  1. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  2. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  3. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  4. Efficient computer program EPAS-J1 for calculating stress intensity factors of three-dimensional surface cracks

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Watanabe, Takayuki; Yagawa, Genki.

    1982-03-01

    A finite element computer program EPAS-J1 was developed to calculate the stress intensity factors of three-dimensional cracks. In the program, the stress intensity factor is determined by the virtual crack extension method together with the distorted elements allocated along the crack front. This program also includes the connection elements based on the Lagrange multiplier concept to connect such different kinds of elements as the solid and shell elements, or the shell and beam elements. For the structure including three-dimensional surface cracks, the solid elements are employed only at the neighborhood of a surface crack, while the remainder of the structure is modeled by the shell or beam elements due to the reason that the crack singularity is very local. Computer storage and computational time can be highly reduced with the application of the above modeling technique for the calculation of the stress intensity factors of the three-dimensional surface cracks, because the three-dimensional solid elements are required only around the crack front. Several numerical analyses were performed by the EPAS-J1 program. At first, the accuracies of the connection element and the virtual crack extension method were confirmed using the simple structures. Compared with other techniques of connecting different kinds of elements such as the tying method or the method using anisotropic plate element, the present connection element is found to provide better results than the others. It is also found that the virtual crack extension method provides the accurate stress intensity factor. Furthermore, the results are also presented for the stress intensity factor analyses of cylinders with longitudinal or circumferential surface cracks using the combination of the various kinds of elements together with the connection elements. (author)

  5. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  6. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  7. Best-estimated multi-dimensional calculation during LB LOCA for APR1400

    International Nuclear Information System (INIS)

    Oh, D. Y.; Bang, Y. S.; Cheong, A. J.; Woong, S.; Korea, W.

    2010-01-01

    Best-estimated (BE) calculation with uncertainty quantification for the emergency core cooling system (ECCS) performance analysis during Loss of Coolant Accident (LOCA) is more broadly used in nuclear industries and regulations. In Korea, demand on regulatory audit calculation is continuously increasing to support the safety review for life extension, power up-rating and advanced nuclear reactor design. The thermal-hydraulic system code, MARS (Multi-dimensional Analysis of Reactor Safety), with multi-dimensional capability is used for audit calculation. It achieves to describe the complicated phenomena in reactor coolant system by very effectively consolidating the one dimensional RELAP5/MOD3 with the multidimensional COBRA-TF codes. The advanced power reactors (APR1400) to be evaluated has four separated hydraulic trains of the high pressure injection system (HPSI) with direct vessel injection (DVI) which is different from the existing commercial PWRs. Also, the therma-hydraulic behavior of DVI plant would be considerably different from that of a cold-leg safety injection since the low pressure safety injection system are eliminated and the high pressure safety flow are injected into the specific elevation of reactor vessel downcomer. The ECCS bypass induced by the downcomer boiling due to hot wall heating of reactor vessel during reflooding phase is one of the important phenomena which should be considered in DVI plants. Therefore, in this study, BE calculation with one-dimensional (1-D) and multi-dimensional (multi-D) MARS models during LBLOCA are performed for APR1400 plant. In the multi-D evaluation, the reactor vessel is modeled by multi-D components and the specific treatment of flow path inside reactor vessel, e.g., upper guide structure, is essential. The concept of hot zone is adopted to simulate the limiting thermal-hydraulic conditions surrounding hot rod, which is similar to hot channel in 1-D. Also, alternative treatment of the hot rods in multi-D is

  8. Appropriateness of one-dimensional calculations for repository analysis

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1994-01-01

    This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

  9. HAMMER, 1-D Multigroup Neutron Transport Infinite System Cell Calculation for Few-Group Diffusion Calculation

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1984-01-01

    1 - Description of problem or function: HAMMER performs infinite lattice, one-dimensional cell multigroup calculations, followed (optionally) by one-dimensional, few-group, multi-region reactor calculations with neutron balance edits. 2 - Method of solution: Infinite lattice parameters are calculated by means of multigroup transport theory, composite reactor parameters by few-group diffusion theory. 3 - Restrictions on the complexity of the problem: - Cell calculations - maxima of: 30 thermal groups; 54 epithermal groups; 20 space points; 20 regions; 18 isotopes; 10 mixtures; 3 thermal up-scattering mixtures; 200 resonances per group; no overlap or interference; single level only. - Reactor calculations - maxima of : 40 regions; 40 mixtures; 250 space points; 4 groups

  10. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  11. Analytical approach to (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev-Petviashvili equation

    Energy Technology Data Exchange (ETDEWEB)

    Sariaydin, Selin; Yildirim, Ahmet [Ege Univ., Dept. of Mathematics, Bornova-Izmir (Turkey)

    2010-05-15

    In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation u{sub tt} - u{sub xx} - u{sub yy} - (u{sup 2}){sub xx} - u{sub xxxx} = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation u{sub xt} - 6u{sub x}{sup 2} + 6uu{sub xx} - u{sub xxxx} - u{sub yy} - u{sub zz} = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically. (orig.)

  12. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    Science.gov (United States)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  13. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  14. Calculation of three-dimensional groundwater transport using second-order moments

    International Nuclear Information System (INIS)

    Pepper, D.W.; Stephenson, D.E.

    1987-01-01

    Groundwater transport of contaminants from the F-Area seepage basin at the Savannah River Plant (SRP) was calculated using a three-dimensional, second-order moment technique. The numerical method calculates the zero, first, and second moment distributions of concentration within a cell volume. By summing the moments over the entire solution domain, and using a Lagrangian advection scheme, concentrations are transported without numerical dispersion errors. Velocities obtained from field tests are extrapolated and interpolated to all nodal points; a variational analysis is performed over the three-dimensional velocity field to ensure mass consistency. Transport predictions are calculated out to 12,000 days. 28 refs., 9 figs

  15. Prospects in deterministic three dimensional whole-core transport calculations

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2012-01-01

    The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.

  16. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  17. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  18. One-dimensional calculation of flow branching using the method of characteristics

    International Nuclear Information System (INIS)

    Meier, R.W.; Gido, R.G.

    1978-05-01

    In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements

  19. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  20. Preparation of functions of computer code GENGTC and improvement for two-dimensional heat transfer calculations for irradiation capsules

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Someya, Hiroyuki; Ito, Haruhiko.

    1992-11-01

    Capsules for irradiation tests in the JMTR (Japan Materials Testing Reactor), consist of irradiation specimens surrounded by a cladding tube, holders, an inner tube and a container tube (from 30mm to 65mm in diameter). And the annular gaps between these structural materials in the capsule are filled with liquids or gases. Cooling of the capsule is done by reactor primary coolant flowing down outside the capsule. Most of the heat generated by fission in fuel specimens and gamma absorption in structural materials is directed radially to the capsule container outer surface. In thermal performance calculations for capsule design, an one(r)-dimensional heat transfer computer code entitled (Generalyzed Gap Temperature Calculation), GENGTC, originally developed in Oak Ridge National Laboratory, U.S.A., has been frequently used. In designing a capsule, are needed many cases of parametric calculations with respect to changes materials and gap sizes. And in some cases, two(r,z)-dimensional heat transfer calculations are needed for irradiation test capsules with short length fuel rods. Recently the authors improved the original one-dimensional code GENGTC, (1) to simplify preparation of input data, (2) to perform automatic calculations for parametric survey based on design temperatures, ect. Moreover, the computer code has been improved to perform r-z two-dimensional heat transfer calculation. This report describes contents of the preparation of the one-dimensional code GENGTC and the improvement for the two-dimensional code GENGTC-2, together with their code manuals. (author)

  1. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  2. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  3. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  4. OPT-TWO: Calculation code for two-dimensional MOX fuel models in the optimum concentration distribution

    International Nuclear Information System (INIS)

    Sato, Shohei; Okuno, Hiroshi; Sakai, Tomohiro

    2007-08-01

    OPT-TWO is a calculation code which calculates the optimum concentration distribution, i.e., the most conservative concentration distribution in the aspect of nuclear criticality safety, of MOX (mixed uranium and plutonium oxide) fuels in the two-dimensional system. To achieve the optimum concentration distribution, we apply the principle of flattened fuel importance distribution with which the fuel system has the highest reactivity. Based on this principle, OPT-TWO takes the following 3 calculation steps iteratively to achieve the optimum concentration distribution with flattened fuel importance: (1) the forward and adjoint neutron fluxes, and the neutron multiplication factor, with TWOTRAN code which is a two-dimensional neutron transport code based on the SN method, (2) the fuel importance, and (3) the quantity of the transferring fuel. In OPT-TWO, the components of MOX fuel are MOX powder, uranium dioxide powder and additive. This report describes the content of the calculation, the computational method, and the installation method of the OPT-TWO, and also describes the application method of the criticality calculation of OPT-TWO. (author)

  5. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  6. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  7. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  8. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  9. Effect of local automatic control rods on three-dimensional calculations of the power distribution in an RBMK

    International Nuclear Information System (INIS)

    Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.

    1993-01-01

    Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution

  10. One dimensional benchmark calculations using diffusion theory

    International Nuclear Information System (INIS)

    Ustun, G.; Turgut, M.H.

    1986-01-01

    This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)

  11. Point kinetics improvements to evaluate three-dimensional effects in transients calculation

    International Nuclear Information System (INIS)

    Castellotti, U.

    1987-01-01

    A calculation method, which considers the flux axial perturbations in the parameters related to the reactivity within a point kinetics model, is described. The method considered uses axial factors of consideration which act on the thermohydraulic variables included in the reactivity calculation. The PUMA three-dimensional code as reference model for the comparisons, is used. The limitations inherent to the reactivity balance of the point models used in the transients calculation, are given. (Author)

  12. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  13. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  14. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    Science.gov (United States)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  15. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  16. Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.

    1979-01-01

    The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium

  17. An alternative pseudo-harmonics methodology; application to the reactors two-dimensional calculations

    International Nuclear Information System (INIS)

    Abreu, M.P. de.

    1988-01-01

    An alternative pseudo-harmonics method for two-dimensional reactor calculations is presented together with some one-energy group results, namely, eigenvalue and flux reconstruction. A brief description of the Standard and Modified versions of the method is presented for critical purposes, i.e., it was intended to discuss the previously developed versions and in some sense to improve the solution of the K-th eigenvalue and flux terms of the corresponding expansions. Intense and localized perturbations, where a significant imbalance between neutron production and destruction rates exists, were simulated. Since convergence in flux and eigenvalue were achieved for all test-cases, there is a tendency to consider the alternative method to be very promising for two-dimensional calculations. (author)

  18. Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge

    International Nuclear Information System (INIS)

    Reinhardt, H.; Schleifenbaum, W.

    2009-01-01

    We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case

  19. Calculation of band alignments and quantum confinement effects in zero- and one-dimensional pseudomorphic structures

    International Nuclear Information System (INIS)

    Yang, M.; Sturm, J.C.; Prevost, J.

    1997-01-01

    The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society

  20. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  1. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  2. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  3. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  4. A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses

    Directory of Open Access Journals (Sweden)

    Pei-Yuan Li

    2015-05-01

    Full Text Available This paper presents an optimization design method for centrifugal compressors based on one-dimensional calculations and analyses. It consists of two parts: (1 centrifugal compressor geometry optimization based on one-dimensional calculations and (2 matching optimization of the vaned diffuser with an impeller based on the required throat area. A low pressure stage centrifugal compressor in a MW level gas turbine is optimized by this method. One-dimensional calculation results show that D3/D2 is too large in the original design, resulting in the low efficiency of the entire stage. Based on the one-dimensional optimization results, the geometry of the diffuser has been redesigned. The outlet diameter of the vaneless diffuser has been reduced, and the original single stage diffuser has been replaced by a tandem vaned diffuser. After optimization, the entire stage pressure ratio is increased by approximately 4%, and the efficiency is increased by approximately 2%.

  5. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  6. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  7. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  8. RHEIN, Modular System for Reactor Design Calculation

    International Nuclear Information System (INIS)

    Reiche, Christian; Barz, Hansulrich; Kunzmann, Bernd; Seifert, Eberhard; Wand, Hartmut

    1990-01-01

    1 - Description of program or function: RHEIN is a modular reactor code system for neutron physics calculations. It consists of a small number of system codes for execution control, data management, and handling support, as well as of the physical calculation routines. The execution is controlled by input data containing mathematical and physical parameters and simple commands for routine calls and data manipulations. The calculation routines are in tune with one another and the system takes care of the data transfer between them. Cross-section libraries with self shielding parameters are added to the system. 2 - Method of solution: The calculation routines can be used for solving the following physics problems: - Calculation of cross-section sets for infinite mediums, taking into account chord length. - Zero-dimensional spectrum calculation in diffusion, P1, or B1 approximation. - One-dimensional calculation in diffusion, P1, or collision probability approximation. - Two-dimensional diffusion calculation. - Cell calculation by THERMOS. - Zone-wise homogenized group collapsing within zero, one, or two-dimensional models. - Normalization, summarizing, etc. - Output of cross-section sets to off systems Sn and Monte-Carlo calculations

  9. Two-dimensional nucleonics calculations for a ''FIRST STEP'' conceptual ICF reactor

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.; Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1985-01-01

    A detailed two-dimensional nucleonic analysis has been performed for the FIRST STEP conceptual ICF reactor blanket design. The reactor concept incorporated in this design is a modified wetted-wall cavity with target illumination geometry left as a design variable. The 2-m radius spherical cavity is surrounded by a blanket containing lithium and 238 U as fertile species and also as energy multipliers. The blanket is configured as 0.6-m-thick cylindrical annuli containing modified LMFBR-type fuel elements with 0.5-m-thick fuel-bearing axial end plugs. Liquid lithium surrounds the inner blanket regions and serves as the coolant for both the blanket and the first wall. The two-dimensional analysis of the blanket performance was made using the 2-D discrete-ordinates code TRISM, and benchmarked with the 3-D Monte Carlo code MCNP. Integral responses including the tritium breeding ratio (TBR), plutonium breeding ratio (PUBR), and blanket energy multiplication were calculated for axial and radial blanket regions. Spatial distributions were calculated for steady-state rates of fission, neutron heating, prompt gamma-ray heating, and fuel breeding

  10. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  11. Graphic system for the analysis of representation of a complex three-dimensional configuration for radiation shield calculation

    International Nuclear Information System (INIS)

    Berezhkov, A.B.; Gordeeva, E.K.; Mazanov, V.L.; Solov'ev, V.Yu.; Ryabov, A.V.; Khokhlov, V.F.; Shejno, I.N.

    1987-01-01

    Programs for obtaining phantom images when calculating the radiation shield structure for nuclear-engineering plants, using computer graphics, are developed. Programs are designed to accompany calculational investigations using the SUPER2/RRI3-PICSCH program and ZAMOK-TOMOGRAF program comutering complexes. Design geometry techniques, allowing to present three-dimensional object in the form of two-dimensional perspective projection to the screen plane, are realized in the programs

  12. Influence of cusps and intersections on the calculation of the Wilson loop in ν-dimensional space

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1984-01-01

    A discussion is given about the influence of cusps and intersections on the calculation of the Wilson Loop in ν-dimensional space. In particular, for the two-dimensional case, it is shown that there are no divergences. (Author) [pt

  13. Stochastic confinement and dimensional reduction. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-03-01

    By Monte Carlo calculations on a 16 4 lattice the authors investigate four dimensional SU(2) lattice guage theory with respect to the conjecture that at large distances this theory reduces approximately to two dimensional SU(2) lattice gauge theory. Good numerical evidence is found for this conjecture. As a by-product the SU(2) string tension is also measured and good agreement is found with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (Auth.)

  14. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  15. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  16. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  17. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

  18. AUS diffusion module POW checkout - 1- and 2-dimensional kinetics calculations

    International Nuclear Information System (INIS)

    Pollard, J.P.

    1977-01-01

    POW is the diffusion module 'workhorse' of the AUS reactor neutronics modular code system; its steady state calculations have been checked out against other diffusion codes (particularly CRAM and GOG). Checkout of kinetic aspects, however, is difficult as kinetic codes are not freely available. In this report POW has been checked against three benchmark calculations as well as a calculation on the 100 KW Argonaut reactor Moata. (author)

  19. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  20. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  1. Stochastic confinement and dimensional reduction. Pt. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-01-01

    By Monte Carlo calculations on a 12 4 lattice we investigate four-dimensional SU(2) lattice gauge theory with respect to the conjecture that at large distances this theory reduces approximately to two-dimensional SU(2) lattice gauge theory. We find good numerical evidence for this conjecture. As a by-product we also measure the SU(2) string tension and find reasonable agreement with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (orig.)

  2. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  3. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  4. Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Kwon, Y.; Ceperley, D.M.; Martin, R.M.

    1994-01-01

    Excitations of the two-dimensional electron gas, including many-body effects, are calculated with a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy differences between different excitations. The usual pair-product (Slater-Jastrow) trial wave function is found to lack certain correlations entirely so that backflow correlation is crucial. From the excitation energies calculated here, we determine Fermi-liquid parameters and related physical quantities such as the effective mass and the Lande g factor of the system. Our results for the effective mass are compared with previous analytic calculations

  5. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  6. Final results of the fifth three-dimensional dynamic Atomic Energy Research benchmark problem calculations

    International Nuclear Information System (INIS)

    Hadek, J.

    1999-01-01

    The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)

  7. The reaction rate for dissociative adsorption of N-2 on stepped Ru(0001): Six-dimensional quantum calculations

    DEFF Research Database (Denmark)

    van Harrevelt, Rob; Honkala, Johanna Karoliina; Nørskov, Jens Kehlet

    2005-01-01

    Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N-2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential...

  8. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  9. Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering

    1997-12-31

    The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.

  10. Fully-converged three-dimensional collision-induced dissociation calculations with Faddeev-AGS theory

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1981-09-01

    The first fully-converged quantum-mechanical calculation of the collision-induced dissociation cross section in a three-dimensional-model system of three helium-like atoms is reported. Faddeev-AGS theory is used. It yields as a bonus the elastic atom-diatom cross section. The obtained results resemble those from some collinear models but indicate clearly the futility of multiple-scattering approximations except at hyperthermal energies. (orig.)

  11. One-dimensional thermal evolution calculation based on a mixing length theory: Application to Saturnian icy satellites

    Science.gov (United States)

    Kamata, S.

    2017-12-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.

  12. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  13. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  14. From Two- to Three-Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations.

    Science.gov (United States)

    Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I

    2017-08-14

    With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  16. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-20

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  17. Efficient Basis Formulation for (1+1-Dimensional SU(2 Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Directory of Open Access Journals (Sweden)

    Mari Carmen Bañuls

    2017-11-01

    Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  18. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Science.gov (United States)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  19. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    International Nuclear Information System (INIS)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl

    2017-01-01

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  20. Identification, Calculation Of The Three Dimensional Orbit, And Flux Of Asteroid 2007 TD14

    Science.gov (United States)

    Pereira, Vincent; Martin, E.; Millan, J.

    2012-01-01

    In recent years the rate of discovery of asteroids has improved dramatically and has far outstripped efforts to physically characterize them. In this work, we took part in the International Astronomical Search Campaign and confirmed the discovery of asteroid 2007 TD14. We then calculated the two and three dimensional orbit of the asteroid around the sun, given its six elements of orbit. Once the heliocentric and geocentric distances are known, and the visual magnitude of the asteroid obtained through photometry, its diameter can be calculated assuming a suitable value for the albedo. The diameter was 0.718 km and the albedo was 0.039. Using the Standard Thermal Model we calculated the temperature distribution on the surface of the asteroid and the flux of the asteroid in the thermal infrared (1.095 mJy at 22 microns on March 19, 2010). To the best of our knowledge there have been no previous reports of the diameter and flux of the asteroid. Our ultimate goal is to compare our flux values with newly released data from NASA Wide-field Infrared Survey Explorer Mission and thus obtain better estimates of the asteroid diameter and albedo.

  1. Two-dimensional magnetohydrodynamic calculations for a 5 MJ plasma focus

    International Nuclear Information System (INIS)

    Maxon, S.

    1983-01-01

    This article describes the calculation of the performance of a 5 MJ plasma focus using a two-dimensional magnetohydrodynamic (2-D MHD) code. Discusses two configurations, a solid and a hollow anode. Finds an instability in the current sheath of the hollow anode which has the characteristics of the short wave length sausage instability. As the current sheath reaches the axis, the numerical solution is seen to break down. When the numerical solution breaks down, the code shows a splitting of the current sheath (from the axis to the anode) and the loss of a large amount of magnetic energy. Current-sheath stagnation is observed in the hollow anode configuration

  2. The development of a collapsing method for the mixed group and point cross sections and its application on multi-dimensional deep penetration calculations

    International Nuclear Information System (INIS)

    Bor-Jing Chang; Yen-Wan H. Liu

    1992-01-01

    The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations

  3. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  4. Three-dimensional solution structure of a DNA duplex containing the BclI restriction sequence: Two-dimensional NMR studies, distance geometry calculations, and refinement by back-calculation of the NOESY spectrum

    International Nuclear Information System (INIS)

    Banks, K.M.; Hare, D.R.; Reid, B.R.

    1989-01-01

    A three-dimensional solution structure for the self-complementary dodecanucleotide [(d-GCCTGATCAGGC)] 2 has been determined by distance geometry with further refinements being performed after back-calculation of the NOESY spectrum. This DNA dodecamer contains the hexamer [d(TGATCA)] 2 recognized and cut by the restriction endonuclease BclI, and its structure was determined in hopes of obtaining a better understanding of the sequence-specific interactions which occur between proteins and DNA. Preliminary examination of the structure indicates the structure is underwound with respect to idealized B-form DNA though some of the local structural parameters (glycosyl torsion angle and pseudorotation angle) suggest a B-family type of structure is present. This research demonstrates the requirements (resonance assignments, interproton distance measurements, distance geometry calculations, and NOESY spectra back-calculation) to generate experimentally self-consistent solution structures for short DNA sequences

  5. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  6. Improvement of the efficiency of two-dimensional multigroup transport calculations assuming isotropic reflection with multilevel spatial discretisation

    International Nuclear Information System (INIS)

    Stankovski, Z.; Zmijarevic, I.

    1987-06-01

    This paper presents two approximations used in multigroup two-dimensional transport calculations in large, very homogeneous media: isotropic reflection together with recently proposed group-dependent spatial representations. These approximations are implemented as standard options in APOLLO 2 assembly transport code. Presented example calculations show that significant savings in computational costs are obtained while preserving the overall accuracy

  7. Relative entanglement entropies in 1+1-dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Paola; Calabrese, Pasquale [International School for Advanced Studies (SISSA) and INFN,Via Bonomea 265, 34136, Trieste (Italy)

    2017-02-08

    We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ{sub 1}∥ρ{sub 0}) between two given reduced density matrices ρ{sub 1} and ρ{sub 0} of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ{sub 1}ρ{sub 0}{sup n−1}) and define a set of Rényi relative entropies S{sub n}(ρ{sub 1}∥ρ{sub 0}). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.

  8. Calculation of three-dimensional MHD equilibria with islands and stochastic regions

    International Nuclear Information System (INIS)

    Reiman, A.; Greenside, H.

    1986-08-01

    A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands

  9. Three-dimensional calculation analysis of ICRF heating in LHD

    International Nuclear Information System (INIS)

    Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

    2004-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

  10. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  11. PASC-1, Petten AMPX-II/SCALE-3 Code System for Reactor Neutronics Calculation

    International Nuclear Information System (INIS)

    Yaoqing, W.; Oppe, J.; Haas, J.B.M. de; Gruppelaar, H.; Slobben, J.

    1995-01-01

    1 - Description of program or function: The Petten AMPX-II/SCALE-3 Code System PASC-1 is a reactor neutronics calculation programme system consisting of well known IBM-oriented codes, that have been translated into FORTRAN-77, for calculations on a CDC-CYBER computer. Thus, the portability of these codes has been increased. In this system, some AMPX-II and SCALE-3 modules, the one-dimensional transport code ANISN and the 1 to 3-dimensional diffusion code CITATION are linked together on the CDC-CYBER/855 computer. The new cell code XSDRNPM-S and the old XSDRN code are included in the system. Starting from an AMPX fine group library up to CITATION, calculations can be performed for each individual module. Existing AMPX master interface format libraries, such as CSRL-IV, JEF-1, IRI and SCALE-45, and the old XSDRN-formatted libraries such as the COBB library can be used for the calculations. The code system contains the following modules and codes at present: AIM, AJAX, MALOCS, NITAWL-S, REVERT-I, ICE-2, CONVERT, JUAN, OCTAGN, XSDRNPM-S, XSDRN, ANISN and CITATION. The system will be extended with other SCALE modules and transport codes. 2 - Method of solution: The PASC-1 system is based on AMPX-II/SCALE-3 modules. Except for some SCALE-3 modules taken from the SCALIAS package, the original AMPX-II modules were IBM versions written in FORTRAN IV. These modules have been translated into CDC FORTRAN V. In order to test these modules and link them with some codes, some of the sample problem calculations have been performed for the whole PASC-1 system. During these calculations, some FORTRAN-77 errors were found in MALOCS, REVERT, CONVERT and some subroutines of SUBLIB (FORTRAN-77 subroutine library). These errors have been corrected. Because many corrections were made for the REVERT module, it is renamed as REVERT-I (improved version of REVERT). After these corrections, the whole system is running on a CDC-CYBER Computer (NOS-BE operating system). 3 - Restrictions on the

  12. Exact one-fermion-loop contributions in (1+1)-dimensional solitons

    International Nuclear Information System (INIS)

    Shepard, J.R.; Price, C.E.; Ferree, T.C.

    1993-01-01

    We find solutions to the (1+1)-dimensional scalar-only linear σ model. A new method is used to compute one-fermion-loop contributions exactly, and agreemment with published results employing other methods is excellent. A renormalization scheme which differs from that commonly used in such calculations but is similar to that required in 1+3 dimensions is also presented. We compare ''kink'' versus ''shallow bag'' solutions, paying careful attention to the implications of the one-fermion-loop contributions for the stability of the former. We find that, for small fermion multiplicities, self-consistent shallow bag solutions are always more bound than their metastable kink counterparts. However, as the fermion multiplicity increases, shallow bags evolve into kinks which eventually are the only self-consistent configurations. This situation is qualitatively the same for the two renormalization schemes considered. When we construct ''baryons,'' each containing three fermions, the kink configuration is typically more bound than the shallow bag when one-fermion-loop contributions are included

  13. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  14. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  15. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  16. Peculiarities of cyclotron magnetic system calculation with the finite difference method using two-dimensional approximation

    International Nuclear Information System (INIS)

    Shtromberger, N.L.

    1989-01-01

    To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs

  17. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  18. Neutron spectra calculation in material in order to compute irradiation damage

    International Nuclear Information System (INIS)

    Dupont, C.; Gonnord, J.; Le Dieu de Ville, A.; Nimal, J.C.; Totth, B.

    1982-01-01

    This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)

  19. BERMUDA-1DG: a one-dimensional photon transport code

    International Nuclear Information System (INIS)

    Suzuki, Tomoo; Hasegawa, Akira; Nakashima, Hiroshi; Kaneko, Kunio.

    1984-10-01

    A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)

  20. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    International Nuclear Information System (INIS)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen

    2016-01-01

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm 2 beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm 2 field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  1. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen [Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Calgary, AB (Canada)

    2016-08-15

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm{sup 2} beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm{sup 2} field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  2. Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Dong Li

    2018-05-01

    Full Text Available This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM. Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM. Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.

  3. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  4. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  5. Three-dimensional equilibria and Mercier stability calculations

    International Nuclear Information System (INIS)

    Lynch, V.E.; Dominguez, N.; Carreras, B.A.; Varias, A.; Alejaldre, C.; Fraguas, A.L.

    1989-01-01

    It is well known that an equilibrium to be used for stability calculations must be extremely accurate. These high accuracy requirements, in a fixed boundary calculation, are translated into high accuracy in the representation of the boundary. These requirements are even stricter for stellarator configurations, for which all the information about the magnetic configuration is given externally through the boundary. Many Fourier components are required to accurately represent the boundary input from a realistic coil system. For torsatron-type configurations, as many as 50 components can be needed to describe the last closed magnetic surface for the vacuum field. For a heliac configuration, the number of components can go up to 200. For 3-D calculations, there is another question of accuracy that does not apply to stability calculations for axisymmetric systems. This is the role of resonant components in the calculation of the geodesic curvature or the Pfirsch-Schlueter current. As Boozer argues, local flattening of the pressure profile eliminates the singularities generated by the resonant components. However, to implement it in a numerical calculation and to eliminate the resonant components, it is necessary to work in a coordinate system with straight magnetic field lines. This creates another problem, since the equilibrium representation in a straight magnetic field lines coordinate system requires many more components than the optimal equilibrium representation developed by Hirshman and co-workers over the last decade and implemented in the VMEC equilibrium code. In this paper, we use the VMEC equilibrium code and tranform the results to the straight magnetic field line coordinate system to calculate the input for the stability analysis. The accuracy of the transformation and the convergence of the equilibrium in the new coordinate system are the major points discussed in this paper. 6 refs., 1 fig

  6. Four-loop divergences of the two-dimensional (1,1) supersymmetric non-linear sigma model with a Wess-Zumino-Witten term

    International Nuclear Information System (INIS)

    Deriglazov, A.A.; Ketov, S.V.

    1991-01-01

    The four-loop divergences of the (1,1) supersymmetric two-dimensional non-linear σ-model with a Wess-Zumino-Witten term are analyzed. All the four-loop 1/ε-divergences in the general case (and an overall coefficient at the total four-loop contribution to the β-function) are shown to be reducible to only structures proportional to ζ(3). We explicitly calculate non-derivative contributions to the four-loop β-function from logarithmically divergent graphs. As a by-product, we obtain the complete four-loop β-function for the supersymmetric Wess-Zumino-Witten model. We use the partial results for the general four-loop β-function to shed some light on the structure of the (α') 3 -corrections to the superstring effective-action with antisymmetric-tensor field coupling. An inconsistency of the supersymmetrical dimensional regularisation via dimensional reduction in the presence of torsion is discovered at four loops, unless the string interpretation for the σ-model is adopted. (orig.)

  7. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  8. 3D and 1D calculation of hysteresis loops and energy products for anisotropic nanocomposite films with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Yuan, X.H.; Zhao, G.P.; Yue, Ming; Ye, L.N.; Xia, J.; Zhang, X.C.; Chang, J.

    2013-01-01

    In this paper, the magnetic reversal process, hysteresis loops and energy products for exchange-coupled Nd 2 Fe 14 B/α-Fe bilayers are studied systematically by a three-dimensional (3D) model. The 3D calculations are numerically solved using the finite difference method, where the results are carefully compared with those calculated by one-dimensional (1D) model. It is found that the calculated hysteresis loops and energy products based on the two methods are consistent with each other. Both nucleation fields and coercivities decrease monotonically as the soft layer thickness L s increases. In addition, the calculated spatial distributions of magnetization orientations in the thickness direction at various applied fields based on both methods signify a three-step magnetic reversal process, which are nucleation, growth and displacement of the domain wall. The calculated magnetic orientations within the film plane, however, are totally different according to the two methods. The 3D calculation exhibits a process of vortex formation and annihilation. On the other hand, the 1D calculation gives a quasi-coherent one, where magnetization orientation is coherent in the film plane and varies in the thickness direction. This new reversal mechanism displayed in the film plane has a systematic influence on the nucleation fields, coercivity and energy products. - Highlights: • Consistent hysteresis loops and energy products for 3D and 1D calculation. • Domain wall formation, evolution and displacement perpendicular to the film plane. • Vortex formation, annihilation and better loop squareness in 3D calculation. • Larger nucleation fields, remanence and smaller coercivity in 3D calculation

  9. The Albedo method for tri-dimensional calculations of fast reactors, with application to PEC

    International Nuclear Information System (INIS)

    Bianchini, G.; Loizzo, P.

    1983-01-01

    The Pec core simulator computer code, being now defined at Enea, is a relatively simple and inexpensive calculational model used by the reactor operator to derive the core life and the single subassemblies power and sodium flow. The diffusion module of this code will be based on the neutronic design code Citation. Here are outlined the theoretical foundations and the procedures to reduce the tri-dimensional diffusion computer time by the use of the following approximations: 1) the reactor zones far from the core are substituted by boundary conditions (albedo method); suitable flux logarithmic derivates are defined; 2) the fuel elements are represented by exagonal meshes; appropriate normalization factors are defined. With respect to the standard design procedures the computer cpu time is reduced from 90 minutes to 2 minutes (Ibm 4341/2). The errors amount to a few mk on the multiplication factor and to a few percent on the power distribution. The approximations (1) and (2) are equally important with respect to the time reduction

  10. 1-Dimensional Analysis of Ultrasound at Closed Interface of Solid

    International Nuclear Information System (INIS)

    Yamawaki, H

    2014-01-01

    As a first step to investigate mechanism of nonlinear ultrasonic generation at closed cracks, computer simulation for ultrasonic propagation in 1 -dimensional solid including closed interface was examined using Improved-FDM. Fundamental calculation model which described interaction between open / closure motion of the interface and ultrasonic stress was developed. In the model, compression stress is distributed over the entire solid, as motive force for closure of the interface. The interface is exhibited by the small region, and its open / closure are determined using calculated strain of the region. As a result, motion of the interface causing generation of saw-tooth like displacement waveform was observed. Amplitude modulation of displacement waveform was also observed, and it indicated possibility that small fluctuation of open / closure timing caused the modulation of the amplitude

  11. Calculation of three-dimensional MHD equilibria with magnetic islands and chaotic field line trajectories

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.; Pomphrey, N.

    1993-01-01

    The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices

  12. ALPHA/PHOENIX-P/ANC system validation for Angra-1 neutronic calculations

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso; Fernandes, Vanderlei Borba; Fetterman, R.J.

    1995-01-01

    The ALPHA/PHOENIX-P/ANC (APA) code package is an advanced neutronic calculation system for pressurized water reactor (PWR). PHOENIX-P generates the required cross sections for the fuel, burnable absorbers, control rods and baffle/reflector region. The ALPHA code is used to automate the generation of these cross-sections as well as process the PHOENIX-P results to generate the ANC model input. ANC is a three dimensional advanced nodal code used for the modeling of the, depletion of the fuel in the core, and for the calculation of power distributions, rod worths and other reactivity parameters. This paper provides brief overview of the APA methodology for reload core design of Angra Unit 1 Cycles 1 and 2. Results included are predicted power distributions, control rod worths and other reactivity parameters compared to plant measurements. These results demonstrate that the APA system can be used for the reload core design. (author). 7 refs, 9 figs

  13. ALPHA/PHOENIX-P/ANC system validation for Angra-1 neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni Filho, Pedro; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso; Fernandes, Vanderlei Borba [FURNAS, Rio de Janeiro, RJ (Brazil); Fetterman, R.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-12-31

    The ALPHA/PHOENIX-P/ANC (APA) code package is an advanced neutronic calculation system for pressurized water reactor (PWR). PHOENIX-P generates the required cross sections for the fuel, burnable absorbers, control rods and baffle/reflector region. The ALPHA code is used to automate the generation of these cross-sections as well as process the PHOENIX-P results to generate the ANC model input. ANC is a three dimensional advanced nodal code used for the modeling of the, depletion of the fuel in the core, and for the calculation of power distributions, rod worths and other reactivity parameters. This paper provides brief overview of the APA methodology for reload core design of Angra Unit 1 Cycles 1 and 2. Results included are predicted power distributions, control rod worths and other reactivity parameters compared to plant measurements. These results demonstrate that the APA system can be used for the reload core design. (author). 7 refs, 9 figs.

  14. Consistent calculation of the stopping power for slow ions in two-dimensional electron gases

    International Nuclear Information System (INIS)

    Wang, You-Nian; Ma, Teng-Gai

    1997-01-01

    Within the framework of quantum scattering theory, we present a consistent calculation of the stopping power for slow protons and antiprotons moving in two-dimensional electron gases. The Friedel sum rule is used to determine the screening constant in the scattering potential. For the stopping power our results are compared with that of the random-phase approximation dielectric theory and that predicted by the linear Thomas-Fermi potential. copyright 1997 The American Physical Society

  15. An algorithm for the calculation of three-dimensional ICRF fields in tokamak geometry

    International Nuclear Information System (INIS)

    Smithe, D.N.; Kammash, T.

    1987-01-01

    A computational scheme is developed which permits tractable calculation of three-dimensional full-wave solutions to the Vlasov-Maxwell equations under typical ion cyclotron range of frequencies (ICRF) experimental conditions. The method is unique in that power deposition to the plasma is determined via the anti-Hermitian part of a truncated warm plasma dielectric operator, rather than as the result of an assumed phenomenological collision frequency. The resulting computer code allows arbitrary variation of density, temperature, magnetic field and minority concentration in the poloidal plane by performing a convolution of poloidal modes to produce a coupled system of differential equations in the radial variable. By assuming no inhomogeneity along the toroidal axis, an inverse transform over k parallel is performed, yielding the global three-dimensional fast wave field solutions. The application of the code to TFTR-like plasmas shows a mild resonance structure in antenna loading related to the changing number of wavelengths between the antenna and the resonance layer. (author)

  16. Benchmark test of JEF-1 evaluation by calculating fast criticalities

    International Nuclear Information System (INIS)

    Pelloni, S.

    1986-06-01

    JEF-1 basic evaluation was tested by calculating fast critical experiments using the cross section discrete-ordinates transport code ONEDANT with P/sub 3/S/sub 16/ approximation. In each computation a spherical one dimensional model was used, together with a 174 neutron group VITAMIN-E structured JEF-1 based nuclear data library, generated at EIR with NJOY and TRANSX-CTR. It is found that the JEF-1 evaluation gives accurate results comparable with ENDF/B-V and that eigenvalues agree well within 10 mk whereas reaction rates deviate by up to 10% from the experiment. U-233 total and fission cross sections seem to be underestimated in the JEF-1 evaluation in the fast energy range between 0.1 and 1 MeV. This confirms previous analysis based on diffusion theory with 71 neutron groups, performed by H. Takano and E. Sartori at NEA Data Bank. (author)

  17. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    Science.gov (United States)

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  18. Implementation of an implicit method into heat conduction calculation of TRAC-PF1/MOD2 code

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1990-08-01

    A two-dimensional unsteady heat conduction equation is solved in the TRAC-PF/MOD2 code to calculate temperature transients in fuel rod. A large CPU time is often required to get stable solution of temperature transients in the TRAC calculation with a small axial node size (less than 1.0 mm), because the heat conduction equation is discretized explicitly. To eliminate the restriction of the maximum time step size by the heat conduction calculation, an implicit method for solving the heat condition equation was developed and implemented into the TRAC code. Several assessment calculations were performed with the original and modified TRAC codes. It is confirmed that the implicit method is reliable and is successfully implemented into the TRAC code through comparison with theoretical solutions and assessment calculation results. It is demonstrated that the implicit method makes the heat conduction calculation practical even for the analyses of temperature transients with the axial node size less than 0.1 mm. (author)

  19. Complex reactor cell calculation by means of consecutive use of the one-dimensional algorithms based on the DSsub(n)-method

    International Nuclear Information System (INIS)

    Kalashnikov, A.G.; Elovskaya, L.F.; Glebov, A.P.; Kuznetsova, L.I.

    1981-01-01

    The technique for approximate calculation of the water cooled and moderated reactor cell based on using the DSn-method and the TESI-2S program for the BESM-6 computer in which the proposed technique is realized are described. The calculational technique is based on division of the reactor complex cell into simple one-dimensional cylindrical cells. Series of cells obtained that way is calculated beginning from the first one. After each cell calculation the macrocross sections are averaged over the cell vomome using the neutron spatial and energy distribution. The possibility of approximate account for neutron transport between the cells of the same rank by equating neutron fluxes on the cell boundary is supposed. The spatially and energy neutron flux distribution over cells is performed using the conditions of isotropic neutron reflection on the cell boundary. The results of the proposed technique approbation on the example of the ABV-1.5 reactor fuel assembly high accuracy and reliability of the employed algorithm [ru

  20. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  1. One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites

    Science.gov (United States)

    Kamata, Shunichi

    2018-01-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.

  2. Multi-dimensional fission-barrier calculations from Se to the SHE; from the proton to the neutron drip lines

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Bengtsson, Ragnar; Iwamoto, Akira

    2003-01-01

    We present fission-barrier-height calculations for nuclei throughout the periodic system based on a realistic theoretical model of the multi-dimensional potential-energy surface of a fissioning nucleus. This surface guides the nuclear shape evolution from the ground state, over inner and outer saddle points, to the final configurations of separated fission fragments. We have previously shown that our macroscopic-microscopic nuclear potential-energy model yields calculated 'outer' fission-barrier heights (E B ) for even-even nuclei throughout the periodic system that agree with experimental data to within about 1.0 MeV. We present final results of this work. Just recently we have enhanced our macroscopic-microscopic nuclear potential-energy model to also allow the consideration of axially asymmetric shapes. This shape degree of freedom has a substantial effect on the calculated height (E A ) of the inner peak of some actinide fission barriers. We present examples of fission-barrier calculations by use of this model with its redetermined constants. Finally we discuss what the model now tells us about fission barriers at the end of the r-process nucleosynthesis path. (author)

  3. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    Science.gov (United States)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  4. Integrative shell of the program complex MARS (Version 1.0) radiation transfer in three-dimensional geometries

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Lokhovitskij, A.E.; Maslov, M.A.; Yazynin, I.A.

    1994-01-01

    The first version of integrative shell of the program complex MARS is written for calculating radiation transfer in the three-dimensional geometries. The integrative shell allows the user to work in convenient form with complex MARS, creat input files data and get graphic visualization of calculated functions. Version 1.0 is adapted for personal computers of types IBM-286,386,486 with operative size memory not smaller than 500K. 5 refs

  5. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  6. Multi-dimensional analysis of the ECC behavior in the UPI plant Kori Unit 1

    International Nuclear Information System (INIS)

    Bae, Sungwon; Chung, Bub-Dong; Bang, Young Seok

    2008-01-01

    A multi-dimensional transient analysis during the LBLOCA of the Kori Unit 1 has been performed by using the MARS code. Based on 1-D nodalization of the Kori Unit 1, the reactor vessel nodalizations have been replaced by the multi-dimensional component. The multi-dimensional component for the reactor vessel is designed as 5 radial, 8 peripheral, and 21 vertical grids. It is assumed that the fuel assemblies are homogeneously distributed in inner 3 radial grids. The outer 1 radial grid region is modeled as the core bypass. The outer-model 1 radial grid is used for the downcomer region. The corresponding heat structures and fuels are modified to fit for the multi-dimensional reactor vessel model. The form drag coefficients for the upper plenum and the core have been designated as 0.6 and 9.39, respectively. The form drag coefficients for the radial and peripheral directions are assigned to the same on the assumption of homogeneous distribution of the flow obstacles. After obtaining the 102% power steady operation condition, cold leg LOCA simulation is performed during 400 second period. The multi-dimensional steady run results show no severe differences compared to the traditional 1-D nodalization results. After the ECC injection starts, a liquid pool is maintained at the upper plenum because the ECCS water can not overcome the upward gas flow that comes from the reactor core through the upper tie plate. The depth of ECCS water pool is predicted as about 20% of the total height from the upper tie plate and the center line of the hot leg pipe. At the vicinity region of the active ECCS show higher depth of liquid pool. The accumulated water flow rate passing the upper tie plate is calculated by the transient result. Much downward water flow is obtained at the outer-most region of upper plenum space. The downward flow dominant region is about 32.3% of the total upper tie plate area. The accumulated ECCS bypass ratio is predicted as 27.64% at 300 second. It is calculated

  7. 47 CFR 1.1623 - Probability calculation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be...

  8. Multi-parameter variational calculations for the (2+1)-dimensional U(1) lattice gauge theory and the XY model

    International Nuclear Information System (INIS)

    Heys, D.W.; Stump, D.R.

    1987-01-01

    Variational calculations are described that use multi-parameter trial wave functions for the U(1) lattice gauge theory in two space dimensions, and for the XY model. The trial functions are constructed as the exponential of a linear combination of states from the strong-coupling basis of the model, with the coefficients treated as variational parameters. The expectation of the hamiltonian is computed by the Monte Carlo method, using a reweighting technique to evaluate expectation values in finite patches of the parameter space. The trial function for the U(1) gauge theory involves six variational parameters, and its weak-coupling behaviour is in reasonable agreement with theoretical expectations. (orig.)

  9. Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk

    International Nuclear Information System (INIS)

    Milinazzo, F.; Saffman, P.G.

    1977-01-01

    The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster

  10. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    Science.gov (United States)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  11. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain

    International Nuclear Information System (INIS)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.; Martinez, M.J.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time of solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium

  12. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....

  13. Two-dimensional magnetohydrodynamic calculations for a 5 MJ plasma focus

    International Nuclear Information System (INIS)

    Maxon, S.

    1979-01-01

    The performance of a 5 MJ plasma focus is calculated using our two-dimensional magnetohydrodynamic (2-D MHD) code. Two configurations are discussed, a solid and a hollow anode. In the case of the hollow anode, we find an instability in the current sheath which has the characteristics of the short wave length sausage instability. As the current sheath reaches the axis, the numerical solution is seen to break down. Just before this time, plasma parameters take on the characteristic values rho/rho 0 = 143, kT/sup i/ = 7.4 keV, B/sub theta/ = 4.7 MG, and V/sub z/ = 60 cm/μs for a zone with r = 0.2 mm. When the numerical solution breaks down, the code shows a splitting of the current sheath (from the axis to the anode) and the loss of a large amount of magnetic energy. Current-sheath stagnation is observed in the hollow anode configuration, also

  14. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  15. Numerical simulations of N=(1,1) 1+1-dimensional super Yang-Mills theory with large supersymmetry breaking

    International Nuclear Information System (INIS)

    Filippov, I.; Pinsky, S.

    2002-01-01

    We consider the N=(1,1) super Yang-Mills (SYM) theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using supersymmetric discrete light-cone quantization when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson discrete light-cone quantization calculations of Klebanov, Demeterfi, Bhanot and Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot

  16. Aspects of noncommutative (1+1)-dimensional black holes

    International Nuclear Information System (INIS)

    Mureika, Jonas R.; Nicolini, Piero

    2011-01-01

    We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length √(θ) cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.

  17. BETHSY 9.1b Test Calculation with TRACE Using 3D Vessel Component

    International Nuclear Information System (INIS)

    Berar, O.; Prosek, A.

    2012-01-01

    Recently, several advanced multidimensional computational tools for simulating reactor system behaviour during real and hypothetical transient scenarios were developed. One of such advanced, best-estimate reactor systems codes is TRAC/RELAP Advanced Computational Engine (TRACE), developed by the U.S. Nuclear Regulatory Commission. The advanced TRACE comes with a graphical user interface called SNAP (Symbolic Nuclear Analysis Package). It is intended for pre- and post-processing, running codes, RELAP5 to TRACE input deck conversion, input deck database generation etc. The TRACE code is still not fully development and it will have all the capabilities of RELAP5. The purpose of the present study was therefore to assess the 3D capability of the TRACE on BETHSY 9.1b test. The TRACE input deck was semi-converted (using SNAP and manual corrections) from the RELAP5 input deck. The 3D fluid dynamics within reactor vessel was modelled and compared to 1D fluid dynamics. The 3D calculation was compared both to TRACE 1D calculation and RELAP5 calculation. Namely, the geometry used in TRACE is basically the same, what gives very good basis for the comparison of the codes. The only exception is 3D reactor vessel model in case of TRACE 3D calculation. The TRACE V5.0 Patch 1 and RELAP5/MOD3.3 Patch 4 were used for calculations. The BETHSY 9.1b test (International Standard Problem no. 27 or ISP-27) was 5.08 cm equivalent diameter cold leg break without high pressure safety injection and with delayed ultimate procedure. BETHSY facility was a 3-loop replica of a 900 MWe FRAMATOME pressurized water reactor. For better presentation of the calculated physical phenomena and processes, an animation model using SNAP was developed. In general, the TRACE 3D code calculation is in good agreement with the BETHSY 9.1b test. The TRACE 3D calculation results are as good as or better than the RELAP5 calculated results. Also, the TRACE 3D calculation is not significantly different from TRACE 1D

  18. Darboux transformation and explicit solutions for some (2+1)-dimensional equations

    International Nuclear Information System (INIS)

    Wang Yan; Shen Lijuan; Du Dianlou

    2007-01-01

    Three systems of (2+1)-dimensional soliton equations and their decompositions into the (1+1)-dimensional soliton equations are proposed. These equations include KPI, CKP, MKPI. With the help of Darboux transformation of (1+1)-dimensional equations, we get the explicit solutions of the (2+1)-dimensional equations

  19. N = 1 supercurrents of eleven-dimensional supergravity

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Butter, Daniel; Linch, William D.

    2018-05-01

    Eleven-dimensional supergravity can be formulated in superspaces locally of the form X × Y where X is 4D N = 1 conformal superspace and Y is an arbitrary 7-manifold admitting a G 2-structure. The eleven-dimensional 3-form and the stable 3-form on Y define the lowest component of a gauge superfield on X × Y that is chiral as a superfield on X. This chiral field is part of a tensor hierarchy giving rise to a superspace Chern-Simons action and its real field strength defines a lifting of the Hitchin functional on Y to the G 2 superspace X × Y . These terms are those of lowest order in a superspace Noether expansion in seven N = 1 conformal gravitino superfields Ψ. In this paper, we compute the O(Ψ) action to all orders in the remaining fields. The eleven-dimensional origin of the resulting non-linear structures is parameterized by the choice of a complex spinor on Y encoding the off-shell 4D N = 1 subalgebra of the eleven-dimensional super-Poincaré algebra.

  20. Performance of a fine-grained parallel model for multi-group nodal-transport calculations in three-dimensional pin-by-pin reactor geometry

    International Nuclear Information System (INIS)

    Masahiro, Tatsumi; Akio, Yamamoto

    2003-01-01

    A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)

  1. Stochastic quantum gravity-(2+1)-dimensional case

    International Nuclear Information System (INIS)

    Hosoya, Akio

    1991-01-01

    At first the amazing coincidences are pointed out in quantum field theory in curved space-time and quantum gravity, when they exhibit stochasticity. To explore the origin of them, the (2+1)-dimensional quantum gravity is considered as a toy model. It is shown that the torus universe in the (2+1)-dimensional quantum gravity is a quantum chaos in a rigorous sense. (author). 15 refs

  2. Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory. II

    International Nuclear Information System (INIS)

    Pinsky, S.S.; van de Sande, B.

    1994-01-01

    We discuss spontaneous symmetry breaking of (1+1)-dimensional φ 4 theory in light-front field theory using a Tamm-Dancoff truncation. We show that, even though light-front field theory has a simple vacuum state which is an eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum expectation value. This occurs because the zero mode of the field must satisfy an operator-valued constraint equation. In the context of (1+1)-dimensional φ 4 theory we present solutions to the constraint equation using a Tamm-Dancoff truncation to a finite number of particles and modes. We study the behavior of the zero mode as a function of coupling and Fock space truncation. The zero mode introduces new interactions into the Hamiltonian which breaks the Z 2 symmetry of the theory when the coupling is stronger than the critical coupling. We investigate the energy spectrum in the symmetric and broken phases, show that the theory does not break down in the vicinity of the critical coupling, and discuss the connection to perturbation theory. Finally, we study the spectrum of the field φ and show that, in the broken phase, the field is localized away from φ=0 as one would expect from equal-time calculations. We explicitly show that tunneling occurs

  3. A three-dimensional transient calculation for the reactor model RAMONA using the COMMIX-2(V) code

    International Nuclear Information System (INIS)

    Weinberg, D.; Frey, H.H.; Tschoeke, H.

    1993-01-01

    The safety graded decay heat removal system of the European Fast Reactor needs a high availability. This system operates entirely under natural convection. To guarantee a proper design, experiments are carried out to verify thermal-hydraulic computer codes able to predict precisely local temperature loadings of the components and the reactor tank in the transition region from nominal operation under forced convection to the decay heat removal operation. - With the COMMIX-2 (V) code three-dimensional transient calculations have been performed to simulate experiments in the 360 deg. reactor model RAMONA, scaled 1:20 to the reality with water as simulant fluid for sodium. The computed average and local temperatures as well as the velocity distributions show a good agreement with the experimental results. Further efforts are necessary to reduce the computation time. (orig.)

  4. The effective action in (2+1)-dimensional gravity and generalized BF topological field theory

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech Univ., Ruston, LA (United States))

    1991-07-11

    The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the {eta}-function of a particular first order operator, is calculated using a momentum space technique. It is found that the {eta}-function is proportional to the classical action. (orig.).

  5. The effective action in (2+1)-dimensional gravity and generalized BF topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Gibbs, R.; Mokhtari, S.

    1991-01-01

    The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the η-function of a particular first order operator, is calculated using a momentum space technique. It is found that the η-function is proportional to the classical action. (orig.)

  6. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All...

  7. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies

    Science.gov (United States)

    Shivakumar, K. N.; Tan, P. W.; Newman, J. C., Jr.

    1988-01-01

    A three-dimensional virtual crack-closure technique is presented which calculates the strain energy release rates and the stress intensity factors using only nodal forces and displacements from a standard finite element analysis. The technique is an extension of the Rybicki-Kanninen (1977) method, and it assumes that any continuous function can be approximated by a finite number of straight line segments. Results obtained by the method for surface cracked plates with and without notches agree favorably with previous results.

  8. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  9. Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation

    International Nuclear Information System (INIS)

    Lu Hailing; Liu Xiqiang

    2009-01-01

    In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+1)-dimensional KK equation by the symmetry method and the (G'/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions. (general)

  10. ERATO - a computer program for the calculation of induced eddy-currents in three-dimensional conductive structures

    International Nuclear Information System (INIS)

    Benner, J.

    1985-10-01

    The computer code ERATO is used for the calculation of eddy-currents in three-dimensional conductive structures and their secondary magnetic field. ERATO is a revised version of the code FEDIFF, developed at IPP Garching. For the calculation the Finite-Element-Network (FEN) method is used, where the structure is simulated by an equivalent electric network. In the ERATO-code, the calculation of the finite-element discretization, the eddy-current analysis, and the final evaluation of the results are done in separate programs. So the eddy-current analysis as the central step is perfectly independent of a special geometry. For the finite-element discretization there are two so called preprocessors, which treat a torus-segment and a rectangular, flat plate. For the final evaluation postprocessors are used, by which the current-distributions can be printed and plotted. In the report, the theoretical foundation of the FEN-Method is discussed, the structure and the application of the programs (preprocessors, analysis-program, postprocessors, supporting programs) are shown, and two examples for calculations are presented. (orig.) [de

  11. One dimensional neutron kinetics in the TRAC-BF1 code

    International Nuclear Information System (INIS)

    Weaver, W.L. III; Wagner, K.C.

    1987-01-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model

  12. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  13. Calculation of nonstationary two-dimensional temperature field in a tube wall in burnout

    International Nuclear Information System (INIS)

    Kashcheev, V.M.; Pykhtina, T.V.; Yur'ev, Yu.S.

    1977-01-01

    Numerically solved is a nonstationary two-dimensional equation of heat conduction for a tube wall of fuel element simulator with arbitrary energy release. The tube is heat-insulated from the outside. The vapour-liquid mixture flows inside the tube. The burnout is realized, when the heat transfer coefficient corresponds to the developed boiling in one part of the tube, and to the deteriorated regime in the other part of it. The thermal losses are regarded on both ends of the tube. Given are the statement of the problem, the algorithm of the solution, the results of the test adjusting problem. Obtained is the satisfactory agreement of calculated fixed temperature with experimental one

  14. Topological aspects of classical and quantum (2+1)-dimensional gravity

    International Nuclear Information System (INIS)

    Soda, Jiro.

    1990-03-01

    In order to understand (3+1)-dimensional gravity, (2+1)-dimensional gravity is studied as a toy model. Our emphasis is on its topological aspects, because (2+1)-dimensional gravity without matter fields has no local dynamical degrees of freedom. Starting from a review of the canonical ADM formalism and York's formalism for the initial value problem, we will solve the evolution equations of (2+1)-dimensional gravity with a cosmological constant in the case of g=0 and g=1, where g is the genus of Riemann surface. The dynamics of it is understood as the geodesic motion in the moduli space. This remarkable fact is the same with the case of (2+1)-dimensional pure gravity and seen more apparently from the action level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity in the case of g=1. For g ≥ 2, unfortunately we are not able to explicitly perform the phase space reduction of (2+1)-dimensional gravity due to the complexity of the Hamiltonian constraint equation. Based on this result, we will attempt to incorporate matter fields into (2+1)-dimensional pure gravity. The linearization and mini-superspace methods are used for this purpose. By using the linearization method, we conclude that the transverse-traceless part of the energy-momentum tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory, we observe that the Wilson lines interact with the geometry to bend the geodesic motion. We analyze the mini-superspace model of (2+1)-dimensional gravity with the matter fields in the case of g=0 and g=1. For g=0, a wormhole solution is found but for g=1 we can not find an analogous solution. Quantum gravity is also considered and we succeed to perform the phase space reduction of (2+1)-dimensional gravity in the case of g=1 at the quantum level. From this analysis we argue that the conformal rotation is not necessary in the sense that the Euclidean quantum gravity is inappropriate for the full gravity. (author)

  15. Invert 1.0: A program for solving the nonlinear inverse heat conduction problem for one-dimensional solids

    International Nuclear Information System (INIS)

    Snider, D.M.

    1981-02-01

    INVERT 1.0 is a digital computer program written in FORTRAN IV which calculates the surface heat flux of a one-dimensional solid using an interior-measured temperature and a physical description of the solid. By using two interior-measured temperatures, INVERT 1.0 can provide a solution for the heat flux at two surfaces, the heat flux at a boundary and the time dependent power, or the heat flux at a boundary and the time varying thermal conductivity of a material composing the solid. The analytical solution to inversion problem is described for the one-dimensional cylinder, sphere, or rectangular slab. The program structure, input instructions, and sample problems demonstrating the accuracy of the solution technique are included

  16. Resolution of the multigroup scattering equation in a one-dimensional geometry and subsidiary calculations: the MUDE code; Resolution de l'equation multigroupe de la diffusion dans une geometrie a une dimension et calculs annexes: code MUDE

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C; Dandeu, Y; Saint-Amand, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    MUDE is a nuclear code written in FORTRAN II for IBM 7090-7094. It resolves a system of difference equations approximating to the one-dimensional multigroup neutron scattering problem. More precisely, this code makes it possible to: 1. Calculate the critical condition of a reactor (k{sub eff}, critical radius, critical composition) and the corresponding fluxes; 2. Calculate the associated fluxes and various subsidiary results; 3. Carry out perturbation calculations; 4. Study the propagation of fluxes at a distance; 5. Estimate the relative contributions of the cross sections (macroscopic or microscopic); 6. Study the changes with time of the composition of the reactor. (authors) [French] MUDE est un code nucleaire ecrit en FORTRAN II pour IBM 7090-7094. Il resout un systeme d'equations aux differences approchant le probleme de diffusion neutronique multigroupe a une dimension. Plus precisement ce code permet de: 1. Calculer la condition critique d'un reacteur (k{sub eff}, rayon critique, composition critique) et les flux correspondants; 2. Calculer les flux adjoints et divers resultats connexes; 3. Effectuer des calculs de perturbation; 4. Etudier la propagation des flux a longue distance; 5. Ponderer des sections efficaces (macroscopiques ou microscopiques); 6. Etudier l'evolution de la composition du reacteur au cours du temps. (auteurs)

  17. Research in string theory and two dimensional conformal field theory: Progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Friedan, D.H.; Martinec, E.J.; Shenker, S.H.

    1988-12-01

    The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics

  18. IRIS core criticality calculations

    International Nuclear Information System (INIS)

    Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.

    2003-01-01

    Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)

  19. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    International Nuclear Information System (INIS)

    Guo Xiu-Rong

    2016-01-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A 1 , then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. (paper)

  20. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  1. Methodology of calculation in one-dimensional kinetic

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    This paper resulted from a study of the WIGLE's program calculation method ]1], which is RESTRICTED to USA users. In view of this fact, a successful attempt was made to fully understand and reproduce the WIGLE methodology, thus providing support for national development on the subject. After finishing the theoretical study, CITER-1D, a program for search of control rod position in PWR slabs under steady-state conditions was written and is supposed to correctly reproduce WIGL3 ]4] version behavior. Program restriction to steady-state conditions was due to scarcity of examples, thought to be intentional, as well as to time limitations for conclusion of a M.Sc. Thesis ]2], which originated this work. Results obtained with CITER-1D agree very well with the ones found in the the available literature pertaining to WIGL3. Further work on CITER-1D is being pursued, in order to complete the program. (Author) [pt

  2. Theory for disordered phase in Heisenberg and non-Heisenberg two-dimensional S=1 ferromagnets

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Yu.A.

    2003-01-01

    We apply a modification of self-consistent spin-wave theory to investigation of two-dimensional S=1 isotropic Heisenberg and non-Heisenberg ferromagnets at nonzero temperatures. We use Hubbard operators method and bosonization technique. We calculated chemical potential and found dependence of correlation length on temperature. Specific heat has Schottky-type peak and decreases at high temperatures. Disordered phase in non-Heisenberg ferromagnet is also studied. The results for such a model differ from those of Heisenberg one

  3. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  4. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  5. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    Science.gov (United States)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  6. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.

    Science.gov (United States)

    Leclerc, Arnaud; Carrington, Tucker

    2014-05-07

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.

  7. Three-dimensional Monte Carlo calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement and comparisons with measurements

    International Nuclear Information System (INIS)

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties

  8. FINEDAN - an explicit finite-element calculation code for two-dimensional analyses of fast dynamic transients in nuclear reactor technology

    International Nuclear Information System (INIS)

    Adamik, V.; Matejovic, P.

    1989-01-01

    The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs

  9. Development of a reactivity worth correction scheme for the one-dimensional transient analysis

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time

  10. Supersymmetric Racah basis, family of infinite-dimensional superalgebras, SU(∞ + 1|∞) and related 2D models

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-10-01

    The irreducible Racah basis for SU(N + 1|N) is introduced. An analytic continuation with respect to N leads to infinite-dimensional superalgebras su(υ + 1|υ). Large υ limit su(∞ + 1|∞) is calculated. The higher spin Sugawara construction leading to generalizations of the Virasoro algebra with infinite tower of higher spin currents is proposed and related WZNW and Toda models as well as possible applications in string theory are discussed. (author). 32 refs

  11. Neutronic calculation of the next fuel elements for the Argonaut reactor

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.; Brito Aghina, L.O. de

    1981-01-01

    The best parameters of the next fuel elements of the Argonaut reactor, at IEN (Instituto de Engenharia Nuclear - Brazil), were determined. The next fuel elements will be rods of an uranium mixture (19.98% enriched), graphite and bakelite. The parameters to be determined are: mixture density, percentage of uranium in the mixture, pellet radius, rod material and elements arrangement (step). The calculations routines consisted in the analysis of several steps, using the LEOPARD computer code for cell calculations and RMAT1D for one dimensional spatial calculations (criticality) with four energy groups. Finally a neutronic study of the Argounat reactors present configuration was done, using the HAMMER computer code (cell), the EXTERMINATOR computer code (two-dimensional calculations) and RAMAT1D. (Author) [pt

  12. On the calculation of linear stability with the aid of asymptotic solutions of Orr-Sommerfeld equation, 1

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1980-11-01

    The numerical treatment of Orr-Sommerfeld equation which is the fundamental equation of linear hydrodynamic stability theory is described. Present calculation procedure is applied to the two-dimensional quasi-parallel flow for which linearized disturbance equation (Orr-Sommerfeld equation) contains one simple turning point and αR >> 1. The numerical procedure for this problem and one numerical example for Jeffery-Hamel flow (J-H III 1 ) are presented. These treatment can be extended to the other velocity profiles by slight midifications. (author)

  13. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  14. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.; Bhat, U.; Batra, Nitin M; Sharona, H.; Vishal, B.; Sarkar, S.; Devi, Assa Aravindh Sasikala; Peter, S. C.; Roqan, Iman S.; Costa , P. M. F. J.; Datta, Ranjan

    2017-01-01

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition

  15. Exact effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    International Nuclear Information System (INIS)

    Maciel, Soraya G.; Perez, Silvana

    2008-01-01

    In this paper we study the effects of a nonzero chemical potential in (1+1)-dimensional quantum field models at finite temperature. We particularly consider massless fermions in an Abelian gauge field background and calculate the effective action by evaluating the n-point functions. We find that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike in the absence of a chemical potential, odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of μ, while the odd point functions are odd functions of μ which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left- and right-handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory.

  16. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  17. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  18. FLUST-2D - A computer code for the calculation of the two-dimensional flow of a compressible medium in coupled retangular areas

    International Nuclear Information System (INIS)

    Enderle, G.

    1979-01-01

    The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de

  19. JNC results of BN-600 benchmark calculation (phase 4)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    2003-01-01

    The present work is the results of JNC, Japan, for the Phase 4 of the BN-600 core benchmark problem (Hex-Z fully MOX fuelled core model) organized by IAEA. The benchmark specification is based on 1) the RCM report of IAEA CRP on 'Updated Codes and Methods to Reduce the Calculational Uncertainties of LMFR Reactivity Effects, Action 3.12' (Calculations for BN-600 fully fuelled MOX core for subsequent transient analyses). JENDL-3.2 nuclear data library was used for calculating 70 group ABBN-type group constants. Cell models for fuel assembly and control rod calculations were applied: homogeneous and heterogeneous (cylindrical supercell) model. Basic diffusion calculation was three-dimensional Hex-Z model, 18 group (Citation code). Transport calculations were 18 group, three-dimensional (NSHEC code) based on Sn-transport nodal method developed at JNC. The generated thermal power per fission was based on Sher's data corrected on the basis of ENDF/B-IV data library. Calculation results are presented in Tables for intercomparison

  20. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  1. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  2. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    Science.gov (United States)

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (Pvolumetry. If not, three-dimensional images could be essential. PMID:21850689

  3. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  4. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  5. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Science.gov (United States)

    Günay, Mehtap; Şeker, Gökmen

    2017-09-01

    In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  6. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Directory of Open Access Journals (Sweden)

    Günay Mehtap

    2017-01-01

    Full Text Available In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99–95% Li20Sn80 + 1-5% RG-Pu, 99–95% Li20Sn80 + 1-5% RG-PuF4, and 99–95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion–fission hybrid reactor system. Beryllium (Be zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR, energy multiplication factor (M, heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  7. Three-dimensional neutron dose distribution in the environment around a 1-GeV electron synchrotron facility at INS

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1987-01-01

    The three-dimensional (surface and altitude) skyshine neutron-dose-equivalent distribution around the 1-GeV electron synchrotron (ES) of the Institute for Nuclear Study, University of Tokyo, was measured with a high-sensitivity dose-equivalent counter. The neutron spectrum in the environment was also measured with a multimoderator spectrometer incorporating a 3 He counter. The dose-equivalent distribution and the leakage neutron spectrum at the surface of the ES building were measured with a Studsvik 2202D counter and the multimoderator spectrometer, including an indium activation detector. Skyshine neutron transport calculations, beginning with the photoneutron spectrum and yielding the dose-equivalent distribution in the environment, were performed with the DOT3.5 code and two Monte Carlo codes, MMCR-2 and MMCR-3, using the DLC-87/HILO group cross sections. The calculated neutron spectra at the top surface of the concrete ceiling and at a point 111 m from the ES agreed well with the measured results, and the calculated three-dimensional dose-equivalent distribution also agreed. The dose value increased linearly with altitude, and the slope was estimated for neutron-producing facilities. (author)

  8. A2TiF5.nH2O (A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    International Nuclear Information System (INIS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-01-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A 2 TiF 5 .nH 2 O (A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A 2 TiF 5 .nH 2 O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A 2 TiF 5 .nH 2 O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+ F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations. -- Graphical abstract: Ball-and-stick and polyhedral representations for (a) β-K 2 TiF 5 and (b) Rb 2 TiF 5 .H 2 O or Cs 2 TiF 5 .H 2 O with the K + and Rb + (or Cs + ) coordination environment emphasized. Display Omitted Research highlights: → Synthesis, structure, characterization, and calculation of new titanium fluorides. → Study of reduction of starting Ti 4+ cations to Ti 3+ by DMF. → Novel 1-D chain structures with Jahn-Teller distorted TiF 6 octahedra.

  9. Solutions and Conservation Laws of a (2+1-Dimensional Boussinesq Equation

    Directory of Open Access Journals (Sweden)

    Letlhogonolo Daddy Moleleki

    2013-01-01

    Full Text Available We study a nonlinear evolution partial differential equation, namely, the (2+1-dimensional Boussinesq equation. For the first time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1-dimensional Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation laws of the (2+1-dimensional Boussinesq equation.

  10. Dimensional Reduction of N=1, E_8 SYM over SU(3)/U(1) x U(1) x Z_3 and its four-dimensional effective action

    CERN Document Server

    Irges, Nikos; Zoupanos, George

    2011-01-01

    We present an extension of the Standard Model inspired by the E_8 x E_8 Heterotic String. In order that a reasonable effective Lagrangian is presented we neglect everything else other than the ten-dimensional N=1 supersymmetric Yang-Mills sector associated with one of the gauge factors and certain couplings necessary for anomaly cancellation. We consider a compactified space-time M_4 x B_0 / Z_3, where B_0 is the nearly-Kaehler manifold SU(3)/U(1) x U(1) and Z_3 is a freely acting discrete group on B_0. Then we reduce dimensionally the E_8 on this manifold and we employ the Wilson flux mechanism leading in four dimensions to an SU(3)^3 gauge theory with the spectrum of a N=1 supersymmetric theory. We compute the effective four-dimensional Lagrangian and demonstrate that an extension of the Standard Model is obtained with interesting features including a conserved baryon number and fixed tree level Yukawa couplings and scalar potential. The spectrum contains new states such as right handed neutrinos and heavy ...

  11. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    Science.gov (United States)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  12. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  13. Advances in supercell calculation methods and comparison with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, B [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Baril, R; Hotte, G [Hydro-Quebec, Central Nucleaire Gentilly, Montreal, Quebec (Canada)

    1996-07-01

    In the last few years, modelling techniques have been developed in new supercell computer codes. These techniques have been used to model the CANDU reactivity devices. One technique is based on one- and two-dimensional transport calculations with the WIMS-AECL lattice code followed by super homogenization and three-dimensional flux calculations in a modified version of the MULTICELL code. The second technique is based on two- and three-dimensional transport calculations in DRAGON. The code calculates the lattice properties by solving the transport equation in a two-dimensional geometry followed by supercell calculations in three dimensions. These two calculation schemes have been used to calculate the incremental macroscopic properties of CANDU reactivity devices. The supercell size has also been modified to define incremental properties over a larger region. The results show improved agreement between the reactivity worth of zone controllers and adjusters. However, at the same time the agreement between measured and simulated flux distributions deteriorated somewhat. (author)

  14. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    Science.gov (United States)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  15. Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets

    International Nuclear Information System (INIS)

    Zinke, R; Richter, J; Drechsler, S-L

    2010-01-01

    We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.

  16. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  17. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  18. Low dimensional equivalence of core neutronics model and its application to transient analysis

    International Nuclear Information System (INIS)

    Song Hongbing; Zhao Fuyu

    2015-01-01

    Three-dimensional coupled neutronics thermal-hydraulics reactor analysis is time consuming and occupies huge memory. A one-dimensional model is preferable than the three one in nuclear system analysis, control system design and load following. In this paper, a corewide three dimensional to one dimensional equivalent method has been developed. On the basis of this method 1D axial few groups constants were obtained. The equivalent cross sections were calculated by general spatial homogenization while the transverse buckling was computed through an equivalence based on the 3D flux conservation. Three steady test cases were performed on one dimensional finite difference code ODTAC and the results were compared with TRIVAC-5. The comparison shows that the one dimensional axial power distribution computed by ODTAC correlates well with the three dimensional results calculated by TRIVAC-5. In this study, DRAGON-4 was used to generate the few-group constants of fuel assemblies and the reflector few-group parameters were calculated by WIMS-D4. These collapsed few-group constants were tabulated in a database sorted in ascending order of fuel temperature, coolant temperature and concentration of boric acid. Trilinear interpolation was adopted in cross sections feedback during the transient analysis. In this paper, G1 rod drop accident (RDA) and G1 rod ejection accident (REA) were performed on ODTAC and the computation results were consistent of the physical rules. (author)

  19. Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Pinsky, S.; van de Sande, B.

    1993-01-01

    We study spontaneous symmetry breaking in (1+1)-dimensional φ 4 theory using the light-front formulation of field theory. Since the physical vacuum is always the same as the perturbative vacuum in light-front field theory the fields must develop a vacuum expectation value through the zero-mode components of the field. We solve the nonlinear operator equation for the zero mode in the one-mode approximation. We find that spontaneous symmetry breaking occurs at λ critical =4π(3+ √3 )μ 2 , which is consistent with the value λ critical =54.27μ 2 obtained in the equal-time theory. We calculate the vacuum expectation value as a function of the coupling constant in the broken phase both numerically and analytically using the δ expansion. We find two equivalent broken phases. Finally we show that the energy levels of the system have the expected behavior for the broken phase

  20. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    Science.gov (United States)

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  1. Validation of the blurring of a small object on CT images calculated on the basis of three-dimensional spatial resolution

    International Nuclear Information System (INIS)

    Okubo, Masaki; Wada, Shinichi; Saito, Masatoshi

    2005-01-01

    We determine three-dimensional (3D) blurring of a small object on computed tomography (CT) images calculated on the basis of 3D spatial resolution. The images were characterized by point spread function (PSF), line spread function (LSF) and slice sensitivity profile (SSP). In advance, we systematically arranged expressions in the model for the imaging system to calculate 3D images under various conditions of spatial resolution. As a small object, we made a blood vessel phantom in which the direction of the vessel was not parallel to either the xy scan-plane or the z-axis perpendicular to the scan-plane. Therefore, when scanning the phantom, non-sharpness must be induced in all axes of the image. To predict the image blurring of the phantom, 3D spatial resolution is essential. The LSF and SSP were measured on our scanner, and two-dimensional (2D) PSF in the scan-plane was derived from the LSF by solving an integral equation. We obtained 3D images by convolving the 3D object-function of the phantom with both 2D PSF and SSP, corresponding to the 3D convolution. Calculated images showed good agreement with scanned images. Our technique of determining 3D blurring offers an accuracy advantage in 3D shape (size) and density measurements of small objects. (author)

  2. Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model

    International Nuclear Information System (INIS)

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2002-01-01

    We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model

  3. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  4. Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory

    International Nuclear Information System (INIS)

    Liu Guozhu; Li Wei; Cheng Geng

    2010-01-01

    We study chiral phase transition and confinement of matter fields in (2+1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, r=0, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point r=0 and the Coulomb phase with r>0. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value N f c , which depends quantitatively on the flavor N b and the scalar boson mass r. When N f f c , the matter fields carrying internal gauge charge are all confined if r≠0 but are deconfined at the quantum critical point r=0. The system has distinct low-energy elementary excitations at the critical point r=0 and in the Coulomb phase with r≠0. We calculate the specific heat and susceptibility of the system at r=0 and r≠0, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place.

  5. Remarks on the development of a multiblock three-dimensional Euler code for out of core and multiprocessor calculations

    International Nuclear Information System (INIS)

    Jameson, A.; Leicher, S.; Dawson, J.; Tel Aviv Univ., Israel)

    1985-01-01

    A multiblock modification of the FLO57 code for three-dimensional wing calculations is described and demonstrated. The theoretical basis of the multistage time-stepping algorithm is reviewed; the multiblock grid structure is explained; and results from a computation of vortical flow past a delta wing, using 2.5 x 10 to the 6th grid points and performed on a Cray X/MP computer with a 128-Mword solid-state storage device, are presented graphically. 6 references

  6. Low dimensionality semiconductors: modelling of excitons via a fractional-dimensional space

    Science.gov (United States)

    Christol, P.; Lefebvre, P.; Mathieu, H.

    1993-09-01

    An interaction space with a fractionnal dimension is used to calculate in a simple way the binding energies of excitons confined in quantum wells, superlattices and quantum well wires. A very simple formulation provides this energy versus the non-integer dimensionality of the physical environment of the electron-hole pair. The problem then comes to determining the dimensionality α. We show that the latter can be expressed from the characteristics of the microstructure. α continuously varies from 3 (bulk material) to 2 for quantum wells and superlattices, and from 3 to 1 for quantum well wires. Quite a fair agreement is obtained with other theoretical calculations and experimental data, and this model coherently describes both three-dimensional limiting cases for quantum wells (L_wrightarrow 0 and L_wrightarrow infty) and the whole range of periods of the superlattice. Such a simple model presents a great interest for spectroscopists though it does not aim to compete with accurate but often tedious variational calculations. Nous utilisons un espace des interactions doté d'une dimension fractionnaire pour calculer simplement l'énergie de liaison des excitons confinés dans les puits quantiques, superréseaux et fils quantiques. Une formulation très simple donne cette énergie en fonction de la dimensionalité non-entière de l'environnement physique de la paire électron-trou. Le problème revient alors à déterminer cette dimensionalité α, dont nous montrons qu'une expression peut être déduite des caractéristiques de la microstructure. α varie continûment de 3 (matériau massif) à 2 pour un puits quantique ou un superréseau, et de 3 à 1 pour un fil quantique, selon le confinement du mouvement des porteurs. Les comparaisons avec d'autres calculs théoriques et données expérimentales sont toujours très convenables, et cette théorie décrit d'une façon cohérente les limites tridimensionnelles du puits quantique (L_wrightarrow 0 et L

  7. (2+1-dimensional regular black holes with nonlinear electrodynamics sources

    Directory of Open Access Journals (Sweden)

    Yun He

    2017-11-01

    Full Text Available On the basis of two requirements: the avoidance of the curvature singularity and the Maxwell theory as the weak field limit of the nonlinear electrodynamics, we find two restricted conditions on the metric function of (2+1-dimensional regular black hole in general relativity coupled with nonlinear electrodynamics sources. By the use of the two conditions, we obtain a general approach to construct (2+1-dimensional regular black holes. In this manner, we construct four (2+1-dimensional regular black holes as examples. We also study the thermodynamic properties of the regular black holes and verify the first law of black hole thermodynamics.

  8. WIMS-IST/DRAGON-IST side-step calculation of reactivity device and structural material incremental cross sections for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Dahmani, M.; McArthur, R.; Kim, B.G.; Kim, S.M.; Seo, H.-B.

    2008-01-01

    This paper describes the calculation of two-group incremental cross sections for all of the reactivity devices and incore structural materials for an RFSP-IST full-core model of Wolsong NPP Unit 1, in support of the conversion of the reference plant model to two energy groups. This is of particular interest since the calculation used the new standard 'side-step' approach, which is a three-dimensional supercell method that employs the Industry Standard Toolset (IST) codes DRAGON-IST and WIMS-IST with the ENDF/B-VI nuclear data library. In this technique, the macroscopic cross sections for the fuel regions and the device material specifications are first generated using the lattice code WIMS-IST with 89 energy groups. DRAGON-IST then uses this data with a standard supercell modelling approach for the three-dimensional calculations. Incremental cross sections are calculated for the stainless-steel adjuster rods (SS-ADJ), the liquid zone control units (LZCU), the shutoff rods (SOR), the mechanical control absorbers (MCA) and various structural materials, such as guide tubes, springs, locators, brackets, adjuster cables and support bars and the moderator inlet nozzle deflectors. Isotopic compositions of the Zircaloy-2, stainless steel and Inconel X-750 alloys in these items are derived from Wolsong NPP Unit 1 history dockets. Their geometrical layouts are based on applicable design drawings. Mid-burnup fuel with no moderator poison was assumed. The incremental cross sections and key aspects of the modelling are summarized in this paper. (author)

  9. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    International Nuclear Information System (INIS)

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  10. New Exact Solutions for (1 + 1)-Dimensional Dispersion-Less System

    International Nuclear Information System (INIS)

    Naranmandula; Hu Jianguo; Bao Gang; Tubuxin

    2008-01-01

    Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately

  11. A simplified, coarse-mesh, three-dimensional diffusion scheme for calculating the gross power distribution in a boiling water reactor

    International Nuclear Information System (INIS)

    Borresen, S.

    1995-01-01

    A simplified, finite-difference diffusion scheme for a three-dimensional calculation of the gross power distribution in the core of a boiling water reactor (BWR) is presented. Results obtained in a series of one- and two-dimensional test cases indicate that this method may be of sufficient accuracy and simplicity for implementation in BWR-simulator computer programs. Computer requirements are very modest; thus, only 3N memory locations are required for in-core treatment of the inner iteration in the solution of a problem with N mesh points. The mesh width may be chosen equal to the fuel assembly pitch. Input data are in the form of conventional 2-group diffusion parameters. It is concluded that the method presented has definite advantages in comparison with the nodal coupling method. (author)

  12. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    Science.gov (United States)

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Explanation of the Spectral Shape Anomaly

    Science.gov (United States)

    Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.

    1996-03-01

    We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.

  14. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Jürgen; Ortlepp, Thomas

    2011-01-01

    Accurate inductance calculations are critical for the design of both digital and analogue superconductive integrated circuits, and three-dimensional calculations are gaining importance with the advent of inductive biasing, inductive coupling and sky plane shielding for RSFQ cells. InductEx, an extraction programme based on the three-dimensional calculation software FastHenry, was proposed earlier. InductEx uses segmentation techniques designed to accurately model the geometries of superconductive integrated circuit structures. Inductance extraction for complex multi-terminal three-dimensional structures from current distributions calculated by FastHenry is discussed. Results for both a reflection plane modelling an infinite ground plane and a finite segmented ground plane that allows inductive elements to extend over holes in the ground plane are shown. Several SQUIDs were designed for and fabricated with IPHT's 1 kA cm −2 RSFQ1D niobium process. These SQUIDs implement a number of loop structures that span different layers, include vias, inductively coupled control lines and ground plane holes. We measured the loop inductance of these SQUIDs and show how the results are used to calibrate the layer parameters in InductEx and verify the extraction accuracy. We also show that, with proper modelling, FastHenry can be fast enough to be used for the extraction of typical RSFQ cell inductances.

  15. A method of paralleling computer calculation for two-dimensional kinetic plasma model

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Demchenko, V.V.; Dem'yanov, V.G.; D'yakov, V.E.; Ol'shanskij, V.V.; Panchenko, V.I.

    1987-01-01

    A method for parallel computer calculation and OSIRIS program complex realizing it and designed for numerical plasma simulation by the macroparticle method are described. The calculation can be carried out either with one or simultaneously with two computers BESM-6, that is provided by some package of interacting programs functioning in every computer. Program interaction in every computer is based on event techniques realized in OS DISPAK. Parallel computer calculation with two BESM-6 computers allows to accelerate the computation 1.5 times

  16. An Angular Leakage Correction for Modeling a Hemisphere, Using One-Dimensional Spherical Coordinates

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.; Eberle, C.S.

    2003-01-01

    A radially dependent, angular leakage correction was applied to a one-dimensional, multigroup neutron diffusion theory computer code to accurately model hemispherical geometry. This method allows the analyst to model hemispherical geometry, important in nuclear criticality safety analyses, with one-dimensional computer codes, which execute very quickly. Rapid turnaround times for scoping studies thus may be realized. This method uses an approach analogous to an axial leakage correction in a one-dimensional cylinder calculation. The two-dimensional Laplace operator was preserved in spherical geometry using a leakage correction proportional to 1/r 2 , which was folded into the one-dimensional spherical calculation on a mesh-by-mesh basis. Hemispherical geometry is of interest to criticality safety because of its similarity to piles of spilled fissile material and accumulations of fissile material in process containers. A hemisphere also provides a more realistic calculational model for spilled fissile material than does a sphere

  17. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  18. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  19. Thermodynamics of event horizons in (2+1)-dimensional gravity

    International Nuclear Information System (INIS)

    Reznik, B.

    1992-01-01

    Although gravity in 2+1 dimensions is very different in nature from gravity in 3+1 dimensions, it is shown that the laws of thermodynamics for event horizons can be manifested also for (2+1)-dimensional gravity. The validity of the classical laws of horizon mechanics is verified in general and exemplified for the (2+1)-dimensional analogues of Reissner-Nordstroem and Schwarzschild--de Sitter spacetimes. We find that the entropy is given by 1/4L, where L is the length of the horizon. A consequence of having consistent thermodynamics is that the second law fixes the sign of Newton's constant to be positive

  20. (2+1)-dimensional stable spatial Raman solitons

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Yavuz, D.D.; Walker, D.R.

    2004-01-01

    We analyze the formation, propagation, and interaction of stable two-frequency (2+1)-dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions

  1. Comparison of calculational methods for EBT reactor nucleonics

    International Nuclear Information System (INIS)

    Henninger, R.J.; Seed, T.J.; Soran, P.D.; Dudziak, D.J.

    1980-01-01

    Nucleonic calculations for a preliminary conceptual design of the first wall/blanket/shield/coil assembly for an EBT reactor are described. Two-dimensional Monte Carlo, and one- and two-dimensional discrete-ordinates calculations are compared. Good agreement for the calculated values of tritium breeding and nuclear heating is seen. We find that the three methods are all useful and complementary as a design of this type evolves

  2. Advanced 3-dimensional electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.; Bers, A.; Ram, A.; Harvey, R.

    2004-01-01

    Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-dimensional calculations based on a finite difference scheme and an incomplete L and U matrices factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvements. (authors)

  3. Polarization and sidewall effects in a coal fired MHD channel - three-dimensional calculation

    International Nuclear Information System (INIS)

    Ishikawa, M.; Scott, M.H.; Wu, Y.C.L.

    1981-01-01

    The effects of slag polarization of electrodes and the sidewall configuration on generator performance are studied experimentally and analytically. An analysis of the voltage-current characteristics between two generator frames measured during the operation of the TP40-07 experiment is given, along with an examination of nonuniformities of interframe voltage. Experimental data show that the polarization effect reduces about 3% of the overall electrical performance of the 60 deg diagonal conducting channel used in the study. Analytically, the effect of polarization on the local current and potential distributions is examined by solving the three-dimensional electrical potential using a finite element method. A moderate increase in conductivity in the vicinity of the cathode-side frame is found to give a calculated leakage resistance which approximates the value derived experimentally. The polarization effect results in a large change in the potential and current distributions near the frame but has a small effect on the overall electrical performance. Alternate sidewall/electrode configurations are treated analytically

  4. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  5. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  6. Standing, Periodic and Solitary Waves in (1 + 1)-Dimensional Caudry-Dodd-Gibbon-Sawada-Kortera System

    International Nuclear Information System (INIS)

    Zheng Chunlong; Qiang Jiye; Wang Shaohua

    2010-01-01

    In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfully extended to a (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively. Based on the derived exact solutions, some significant types of localized excitations such as standing waves, periodic waves, solitary waves are simultaneously derived from the (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera system by entrancing appropriate parameters. (general)

  7. A novel and efficient analytical method for calculation of the transient temperature field in a multi-dimensional composite slab

    International Nuclear Information System (INIS)

    Lu, X; Tervola, P; Viljanen, M

    2005-01-01

    This paper provides an efficient analytical tool for solving the heat conduction equation in a multi-dimensional composite slab subject to generally time-dependent boundary conditions. A temporal Laplace transformation and novel separation of variables are applied to the heat equation. The time-dependent boundary conditions are approximated with Fourier series. Taking advantage of the periodic properties of Fourier series, the corresponding analytical solution is obtained and expressed explicitly through employing variable transformations. For such conduction problems, nearly all the published works necessitate numerical work such as computing residues or searching for eigenvalues even for a one-dimensional composite slab. In this paper, the proposed method involves no numerical iteration. The final closed form solution is straightforward; hence, the physical parameters are clearly shown in the formula. The accuracy of the developed analytical method is demonstrated by comparison with numerical calculations

  8. Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes

    International Nuclear Information System (INIS)

    Clarkson, R.; Fatibene, L.; Mann, R.B.

    2003-01-01

    We consider the thermodynamic properties of (d+1)-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti-de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either (d-1)-dimensional (called 'bolts') or of lower dimensionality (pure 'NUTs'). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in 4k+2 dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in 4k dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for which thermodynamic stability can be realized

  9. Verification of the three-dimensional FLAME code

    International Nuclear Information System (INIS)

    Mays, C.W.

    1976-08-01

    FLAME calculations are compared with operating data from Oconee Unit 1 and with two independent three-dimensional PDQ07 calculations for a feed-and-bleed plant containing lumped burnable poison. The Oconee 1 comparisons consider both steady-state and transient data. The steady-state calculations are compared with operating data from two cycles of operation. The comparisons with PDQ07 calculations are for a design transient. Direct comparisons are made between calculations and measurements for the Oconee 1 analyses. No uncertainty is applied to measured power densities. The difference in measured and calculated total peak for 95% of the assemblies considered in these comparisons is less than 5.3%. Based on these analyses, it is concluded that FLAME can calculate the total peak to within 5.3% for both steady-state and transient plant conditions. The maximum deviation in the total peak calculated by FLAME and one of the PDQ07 calculations is 5.6%. The maximum deviation with the other PDQ07 calculation is 2.5%. It is concluded that the FLAME calculations gave the most conservative results of the three

  10. Comparison of the dimensional stability of alginate impressions disinfected with 1% sodium hypochlorite using the spray or immersion method.

    Science.gov (United States)

    Oderinu, O H; Adegbulugbe, I C; Shaba, O P

    2007-01-01

    To determine and compare the dimensional stability of alginate impressions disinfected with Sodium hypochlorite using the spray and immersion methods. Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from 3.5% household bleach using the spray and immersion technique for 10; 20 and 30 minutes. Impressions were cast in dental stone and the linear dimensional differences between the inter-abutment distances were measured with an electronic caliper. One sample T test and percentage differences were calculated. There were no statistically significant differences in dimensions of alginate impressions of the control and those disinfected by either spraying or immersion methods when compared with the master model at 10 minutes. However, there was a statistically significant difference at 20 and 30 minutes. The spray technique showed the least percentage difference from the master model. Disinfection of alginate impressions with 1% sodium hypochlorite constituted from commercially available household bleach by the spray or immersion techniques for ten minutes will produce casts with minimal dimensional changes.

  11. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  12. Dimensionality effects on magnetic properties of FexCo1-x nanoclusters on Pt(1 1 1)

    Science.gov (United States)

    Miranda, I. P.; Igarashi, R. N.; Klautau, A. B.; Petrilli, H. M.

    2017-11-01

    The behavior of local magnetic moments and exchange coupling parameters of FexCo1-x nanostructures (nanowires and compact clusters) on the fcc Pt(1 1 1) surface is here investigated using the first-principles real-space RS-LMTO-ASA method, in the framework of the DFT. Different configurations of FexCo1-x trimers and heptamers on Pt(1 1 1) are considered, varying the positions and the concentration of Fe or Co atoms. We discuss the influence of dimensionality and stoichiometry changes on the magnetic properties, specially on the orbital moments, which are very important in establishing a nanoscopic understanding of delocalized electron systems. We demonstrate the existence of a strictly decreasing nonlinear trend of the average orbital moments with the Fe concentration for the compact clusters, different from what was found for FexCo1-x nanowires on Pt(1 1 1) and also for corresponding higher-dimensional systems (FexCo1-x monolayer on Pt(1 1 1) and FexCo1-x bulk). The average spin moments, however, are invariably described by a linear function with respect to stoichiometry. In all studied cases, the nearest neighbors exchange couplings have shown to be strongly ferromagnetic.

  13. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  14. Initialization bias suppression in iterative Monte Carlo calculations: benchmarks on criticality calculation

    International Nuclear Information System (INIS)

    Richet, Y.; Jacquet, O.; Bay, X.

    2005-01-01

    The accuracy of an Iterative Monte Carlo calculation requires the convergence of the simulation output process. The present paper deals with a post processing algorithm to suppress the transient due to initialization applied on criticality calculations. It should be noticed that this initial transient suppression aims only at obtaining a stationary output series, then the convergence of the calculation needs to be guaranteed independently. The transient suppression algorithm consists in a repeated truncation of the first observations of the output process. The truncation of the first observations is performed as long as a steadiness test based on Brownian bridge theory is negative. This transient suppression method was previously tuned for a simplified model of criticality calculations, although this paper focuses on the efficiency on real criticality calculations. The efficiency test is based on four benchmarks with strong source convergence problems: 1) a checkerboard storage of fuel assemblies, 2) a pin cell array with irradiated fuel, 3) 3 one-dimensional thick slabs, and 4) an array of interacting fuel spheres. It appears that the transient suppression method needs to be more widely validated on real criticality calculations before any blind using as a post processing in criticality codes

  15. Neutron data error estimate of criticality calculations for lattice in shielding containers with metal fissionable materials

    International Nuclear Information System (INIS)

    Vasil'ev, A.P.; Krepkij, A.S.; Lukin, A.V.; Mikhal'kova, A.G.; Orlov, A.I.; Perezhogin, V.D.; Samojlova, L.Yu.; Sokolov, Yu.A.; Terekhin, V.A.; Chernukhin, Yu.I.

    1991-01-01

    Critical mass experiments were performed using assemblies which simulated one-dimensional lattice consisting of shielding containers with metal fissile materials. Calculations of the criticality of the above assemblies were carried out using the KLAN program with the BAS neutron constants. Errors in the calculations of the criticality for one-, two-, and three-dimensional lattices are estimated. 3 refs.; 1 tab

  16. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  17. Three-Dimensional Elasto-Plastic Calculations Using Yield Surfaces with Corner Discontinuities

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2009-01-01

    This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples.......This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples....

  18. Direct calculation of current drive efficiency in FISIC code

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1996-01-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. copyright 1996 American Institute of Physics

  19. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo

    2018-01-01

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high

  20. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  1. Analytic calculation of the dynamical aperture for the two dimensional betatron motion in storage rings

    International Nuclear Information System (INIS)

    Hagel, J.; Moshammer, H.

    1988-01-01

    In this paper the authors study the on- momentum nonlinear equations of motion for the coupled transverse motion of a single charged particle in a storage ring. The authors seek for the maximum initial linear amplitudes in the two transverse directions x and y which lead to bounded particle motion as t tends to infinity. Although the authors restrict themselves to sextupole fields in this paper, the authors may easily extend the method to any order multipole. The aim of this work is to derive an analytic approximate expression for the dynamical aperture. The authors approach the solutions of x and y by use of a classical secular perturbation theory. Every coefficient of the perturbation series can be expressed as an analytic function of all the lower order coefficients. Although perturbation theory if it is evaluated to certain specific order leads only to an approximation in terms of bounded (trigonometric) functions the authors may derive information about the stability limit by considering the convergency radius of the general perturbation. This is done in the present paper by deriving an approximate analytic expression for the n-th order perturbation contribution of the whole series using only results up to second order. The actual calculations have been performed for the fully two dimensional case but for simplicity the authors shall explain only the one dimensional case of the pure horizontal motion

  2. A (1+1)-dimensional example of Quarkyonic matter

    International Nuclear Information System (INIS)

    Kojo, Toru

    2012-01-01

    We analyze the (1+1)-dimensional QCD (QCD 2 ) at finite density to consider a number of qualitative issues: confinement in dense quark matter, the chiral symmetry breaking near the Fermi surface, the relation between chiral spirals and quark number density, and a possibility of the spontaneous flavor symmetry breaking. We argue that while the free energy is dominated by perturbative quarks, confined excitations at zero density can persist up to high density. So quark matter in QCD 2 is an example of Quarkyonic matter. The non-Abelian bosonization and associated charge–flavor–color separation are mainly used in order to clarify basic structures of QCD 2 at finite density.

  3. Two-dimensional orbital ordering in d{sup 1} Mott insulator Sr{sub 2}VO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Viennois, R; Giannini, E; Teyssier, J; Elia, J; Van der Marel, D [DPMC, Universite de Geneve, 24 quai Ernest Ansermet, CH-1211 Geneve (Switzerland); Deisenhofer, J, E-mail: Romain.Viennois@unige.c [Institute of Physics, University of Augsburg, Augsburg (Germany)

    2010-01-15

    The Mott insulator Sr{sub 2}VO{sub 4} is a unique d{sup 1} two-dimensional compound exhibiting an orbital ordering transition. In addition to the orbital ordering transition at about 100 K, we discovered a ferromagnetic transition below 10 K, thus confirming the predictions of recent band structure calculations. The magnetic properties proved to be strongly sensitive to the material purity, the actual oxygen stoichiometry and the crystallographic parameters. An additional transition is observed at 125 K, which is believed to be due to structural modifications.

  4. Chirality Made Simple: A 1 - and 2-Dimensional Introduction to Stereochemistry

    Science.gov (United States)

    Gawley, Robert E.

    2005-01-01

    The introduction of chirality in one and two dimensions, along with the concepts of internal and external reflection, can be combined with concepts familiar to all students. Once familiar with 1-Dimensional and 2-Dimensional chirality, the same concepts can be extended to 3-Dimensional and by projecting 3-D back to two, it is possible to interpret…

  5. Hypocycloidal throat for 2 + 1-dimensional thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2015-11-15

    Recently we have shown that for 2 + 1-dimensional thin-shell wormholes a non-circular throat may lead to a physical wormhole in the sense that the energy conditions are satisfied. By the same token, herein we consider an angular dependent throat geometry embedded in a 2 + 1-dimensional flat spacetime in polar coordinates. It is shown that, remarkably, a generic, natural example of the throat geometry is provided by a hypocycloid. That is, two flat 2 + 1 dimensions are glued together along a hypocycloid. The energy required in each hypocycloid increases with the frequency of the roller circle inside the large one. (orig.)

  6. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  7. Complexity of hierarchically and 1-dimensional periodically specified problems

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.; Radhakrishnan, V.

    1995-08-23

    We study the complexity of various combinatorial and satisfiability problems when instances are specified using one of the following specifications: (1) the 1-dimensional finite periodic narrow specifications of Wanke and Ford et al. (2) the 1-dimensional finite periodic narrow specifications with explicit boundary conditions of Gale (3) the 2-way infinite1-dimensional narrow periodic specifications of Orlin et al. and (4) the hierarchical specifications of Lengauer et al. we obtain three general types of results. First, we prove that there is a polynomial time algorithm that given a 1-FPN- or 1-FPN(BC)specification of a graph (or a C N F formula) constructs a level-restricted L-specification of an isomorphic graph (or formula). This theorem along with the hardness results proved here provides alternative and unified proofs of many hardness results proved in the past either by Lengauer and Wagner or by Orlin. Second, we study the complexity of generalized CNF satisfiability problems of Schaefer. Assuming P {ne} PSPACE, we characterize completely the polynomial time solvability of these problems, when instances are specified as in (1), (2),(3) or (4). As applications of our first two types of results, we obtain a number of new PSPACE-hardness and polynomial time algorithms for problems specified as in (1), (2), (3) or(4). Many of our results also hold for O(log N) bandwidth bounded planar instances.

  8. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  9. MARS14 deep-penetration calculation for the ISIS target station shielding

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Nunomiya, Tomoya; Iwase, Hiroshi; Nakamura, Takashi

    2004-01-01

    The calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility of Rutherford Appleton Laboratory. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation, a three-dimensional multi-layer technique and energy cut-off method were used considering a spatial statistical balance. Finally, the energy spectra of neutrons behind the very thick shield could be calculated down to the thermal energy with good statistics, and the calculated results typically agree well within a factor of two with the experimental data over a broad energy range. The 12 C(n,2n) 11 C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem

  10. Observations and calculations of two-dimensional angular optical scattering (TAOS) patterns of a single levitated cluster of two and four microspheres

    International Nuclear Information System (INIS)

    Krieger, U.K.; Meier, P.

    2011-01-01

    We use single bi-sphere particles levitated in an electrodynamic balance to record two-dimensional angular scattering patterns at different angles of the coordinate system of the aggregate relative to the incident laser beam. Due to Brownian motion the particle covers the whole set of possible angles with time and allows to select patterns with high symmetry for analysis. These are qualitatively compared to numerical calculations. A small cluster of four spheres shows complex scattering patterns, comparison with computations suggest a low compactness for these clusters. An experimental procedure is proposed for studying restructuring effects occurring in mixed particles upon evaporation. - Research highlights: → Single levitated bi-sphere particle. → Two-dimensional angular scattering pattern. → Comparison experiment with computations.

  11. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  12. Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three-dimensional geometries

    International Nuclear Information System (INIS)

    Matvienko, Anna; Mandelis, Andreas

    2006-01-01

    The thermal-wave field in a photopyroelectric thermal-wave cavity was calculated with two theoretical approaches: a computationally straightforward, conventional, one-dimensional approach and a three-dimensional experimentally more realistic approach. The calculations show that the dimensionality of the thermal-wave field in the cavity depends on the lateral heat transfer boundary conditions and the relation between the beam size of the laser impinging on the thermal-wave generating metallic film and the diameter of the film itself. The theoretical calculations and the experimental data on the photopyroelectric signal in the cavity were compared. The study resulted in identifying ranges of heat transfer rates, beam sizes, and cavity radii for which accurate quantitative measurements of the thermal diffusivity of intracavity fluids can be made within the far simpler, but only approximate, one-dimensional approach conventionally adopted by users of thermal-wave cavities. It was shown that the major parameters affecting the dimensionality of thermal-wave cavities are the laser beam spot size and the Biot number of the medium comprising the sidewalls of the (cylindrical) cavity

  13. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  14. Adjusts of control rod cross sections and its utilization in power distribution calculations for Angra-1 reactor

    International Nuclear Information System (INIS)

    Pina, C.M. de

    1981-01-01

    One of the most important part in neutronics calculations is the study of core behavior with inserted control rods. The first stage of this calculations consists in generating equivalent microscopic cross sections for the basic cells containing fuel or absorbed material. The cross sections will be then adjusted. The choice of parameters that help in those adjustments, were obtained by the comparisons of data coming from the control rod supercell calculations with the Hammer and Citation computer codes. The effect of those adjustments in core integral parameters was evaluated; in this work only the core power two-dimensional distribution calculations with the D bank completely inserted, is studied. (E.G.) [pt

  15. (2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations

    International Nuclear Information System (INIS)

    Benedetti, D.; Loll, R.; Zamponi, F.

    2007-01-01

    We perform a nonperturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of causal dynamical triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labeled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than 2 that a Hamiltonian has been derived from such a model by mainly analytical means, and it opens the way for a better understanding of scaling and renormalization issues

  16. Two-dimensional impurity transport calculations for a high recycling divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1986-04-01

    Two dimensional analysis of impurity transport in a high recycling divertor shows asymmetric particle fluxes to the divertor plate, low helium pumping efficiency, and high scrapeoff zone shielding for sputtered impurities

  17. Integrable models in 1+1 dimensional quantum field theory

    International Nuclear Information System (INIS)

    Faddeev, Ludvig.

    1982-09-01

    The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR

  18. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    Palau, J.M.

    2005-01-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  19. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J M [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  20. Verification of the three-dimensional FLAME code

    International Nuclear Information System (INIS)

    Mays, C.W.

    1976-04-01

    FLAME calculations are compared with operating data from Oconee Unit 1 and with two independent three-dimensional PDQ07 calculations for a feed-and-bleed plant containing lumped burnable poison. The Oconee 1 comparisons consider both steady-state and transient data.The steady-state calculations are compared with operating data from two cycles of operation. The comparisons with PDQ07 calculations are for a design transient. Direct comparisons are made between calculations and measurements for the Oconee 1 analyses. No uncertainty is applied to measured power densities. The difference in measured and calculated total peak for 95 percent of the assemblies considered in these comparisons is less than 5.3 percent. Based on these analyses, it is concluded that FLAME can calculate the total peak to within 5.3 percent for both steady-state and transient plant conditions. The maximum deviation in the total peak calculated by FLAME and one of the PDQ07 calculations is 5.6 percent. The maximum deviation with the other PDQ07 calculation is 2.5 percent. It is concluded that the FLAME calculations gave the most conservative results of the three

  1. On the partition function of d+1 dimensional kink-bearing systems

    International Nuclear Information System (INIS)

    Radosz, A.; Salejda, W.

    1987-01-01

    It is suggested that the problem of finding a partition function of d+1 dimensional kink-bearing system in the classical approximation may be formulated as an eigenvalue problem of an appropriate d dimensional quantum

  2. A generalized approach for the calculation and automation of potentiometric titrations Part 1. Acid-Base Titrations

    NARCIS (Netherlands)

    Stur, J.; Bos, M.; van der Linden, W.E.

    1984-01-01

    Fast and accurate calculation procedures for pH and redox potentials are required for optimum control of automatic titrations. The procedure suggested is based on a three-dimensional titration curve V = f(pH, redox potential). All possible interactions between species in the solution, e.g., changes

  3. Quantum interest in (3+1)-dimensional Minkowski space

    International Nuclear Information System (INIS)

    Abreu, Gabriel; Visser, Matt

    2009-01-01

    The so-called 'quantum inequalities', and the 'quantum interest conjecture', use quantum field theory to impose significant restrictions on the temporal distribution of the energy density measured by a timelike observer, potentially preventing the existence of exotic phenomena such as 'Alcubierre warp drives' or 'traversable wormholes'. Both the quantum inequalities and the quantum interest conjecture can be reduced to statements concerning the existence or nonexistence of bound states for a certain one-dimensional quantum mechanical pseudo-Hamiltonian. Using this approach, we shall provide a simple variational proof of one version of the quantum interest conjecture in (3+1)-dimensional Minkowski space.

  4. The (2+1)-dimensional axial universes—solutions to the Einstein equations, dimensional reduction points and Klein–Fock–Gordon waves

    International Nuclear Information System (INIS)

    Fiziev, P P; Shirkov, D V

    2012-01-01

    The paper presents a generalization and further development of our recent publications, where solutions of the Klein–Fock–Gordon equation defined on a few particular D = (2 + 1)-dimensional static spacetime manifolds were considered. The latter involve toy models of two-dimensional spaces with axial symmetry, including dimensional reduction to the one-dimensional space as a singular limiting case. Here, the non-static models of space geometry with axial symmetry are under consideration. To make these models closer to physical reality, we define a set of ‘admissible’ shape functions ρ(t, z) as the (2 + 1)-dimensional Einstein equation solutions in the vacuum spacetime, in the presence of the Λ-term and for the spacetime filled with the standard ‘dust’. It is curious that in the last case the Einstein equations reduce to the well-known Monge–Ampère equation, thus enabling one to obtain the general solution of the Cauchy problem, as well as a set of other specific solutions involving one arbitrary function. A few explicit solutions of the Klein–Fock–Gordon equation in this set are given. An interesting qualitative feature of these solutions relates to the dimensional reduction points, their classification and time behavior. In particular, these new entities could provide us with novel insight into the nature of P- and T-violations and of the Big Bang. A short comparison with other attempts to utilize the dimensional reduction of the spacetime is given. (paper)

  5. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  6. Validation of one-dimensional module of MARS 2.1 computer code by comparison with the RELAP5/MOD3.3 developmental assessment results

    International Nuclear Information System (INIS)

    Lee, Y. J.; Bae, S. W.; Chung, B. D.

    2003-02-01

    This report records the results of the code validation for the one-dimensional module of the MARS 2.1 thermal hydraulics analysis code by means of result-comparison with the RELAP5/MOD3.3 computer code. For the validation calculations, simulations of the RELAP5 code development assessment problem, which consists of 22 simulation problems in 3 categories, have been selected. The results of the 3 categories of simulations demonstrate that the one-dimensional module of the MARS 2.1 code and the RELAP5/MOD3.3 code are essentially the same code. This is expected as the two codes have basically the same set of field equations, constitutive equations and main thermal hydraulic models. The results suggests that the high level of code validity of the RELAP5/MOD3.3 can be directly applied to the MARS one-dimensional module

  7. Determination of Scaled Wind Turbine Rotor Characteristics from Three Dimensional RANS Calculations

    International Nuclear Information System (INIS)

    Burmester, S; Gueydon, S; Make, M

    2016-01-01

    Previous studies have shown the importance of 3D effects when calculating the performance characteristics of a scaled down turbine rotor [1-4]. In this paper the results of 3D RANS (Reynolds-Averaged Navier-Stokes) computations by Make and Vaz [1] are taken to calculate 2D lift and drag coefficients. These coefficients are assigned to FAST (Blade Element Momentum Theory (BEMT) tool from NREL) as input parameters. Then, the rotor characteristics (power and thrust coefficients) are calculated using BEMT. This coupling of RANS and BEMT was previously applied by other parties and is termed here the RANS-BEMT coupled approach. Here the approach is compared to measurements carried out in a wave basin at MARIN applying Froude scaled wind, and the direct 3D RANS computation. The data of both a model and full scale wind turbine are used for the validation and verification. The flow around a turbine blade at full scale has a more 2D character than the flow properties around a turbine blade at model scale (Make and Vaz [1]). Since BEMT assumes 2D flow behaviour, the results of the RANS-BEMT coupled approach agree better with the results of the CFD (Computational Fluid Dynamics) simulation at full- than at model-scale. (paper)

  8. Universality and clustering in 1 + 1 dimensional superstring-bit models

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1996-01-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits

  9. New Explicit Solutions of (1 + 1)-Dimensional Variable-Coefficient Broer-Kaup System

    International Nuclear Information System (INIS)

    Yan Zhilian; Zhou Jianping

    2010-01-01

    By using the compatibility method, many explicit solutions of the (1 + 1)-dimensional variable-coefficient Broer-Kaup system are constructed, which include new solutions expressed by error function, Bessel function, exponential function, and Airy function. Some figures of the solutions are given by the symbolic computation system Maple. (general)

  10. Development of three-dimensional nuclear design program for large fast breeder reactor

    International Nuclear Information System (INIS)

    Inoue, Kohtaro

    1987-01-01

    The report describes a calculation program for core design, called HICOM, and its calculation accuracy. HICOM is designed for three-dimensional neutron diffusion calculation and combustion calculation for large fast breeder reactors to be conducted according to a control rod plan and fuel replacement plan. The improved coarse mesh technique is applied to neutron diffusion calculation. It is demostrated that HICOM permits rapid and accurate operation. For the evaluation of the applicability of HICOM, three-dimensional six-group neutron diffusion calculation is conducted for a 1,000 MWe axial heterogeneous FBR core. Results demonstrate that the program can perform numerical calculation in a time period shorter than 1-40 that for calculation by CITATION (triangle mesh method). This is achieved by using the improved coarse mesh method and carrying out the operation by a vectorial procedure. For the evaluation of the nuclear calculation accuracy of HICOM, analysis is made of reactivity, output distribution and B 4 C control rod worth emasured in an FCA criticality experiment carried out by the Japan Atomic Energy Research Institute. Calculations are found to agree with measurements within a permissible error. The same level of calculation accuracy is obtained for homogneous core, axial heterogeneous core and cores with internal blankets with different forms. (Nogami, K.)

  11. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    Science.gov (United States)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  12. Baicklund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation

    Institute of Scientific and Technical Information of China (English)

    张解放; 吴锋民

    2002-01-01

    We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.

  13. Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period strong modulation

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Smrčka, Ludvík

    2002-01-01

    Roč. 66, č. 20 (2002), s. 205318-1 - 205318-8 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * short-period superlattices * two-dimensional electron gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  14. Curvature of super Diff(S1)/S1

    International Nuclear Information System (INIS)

    Oh, P.; Ramond, P.

    1987-01-01

    Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds Diff(S 1 )/S 1 and Super Diff(S 1 )/S 1 using standard finite-dimensional coset space techniques. We regularize the infinite by ζ-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion. (orig.)

  15. Vectorization of nuclear codes for atmospheric transport and exposure calculation of radioactive materials

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Shinozawa, Naohisa; Ishikawa, Hirohiko; Chino, Masamichi; Hayashi, Takashi

    1983-02-01

    Three computer codes MATHEW, ADPIC of LLNL and GAMPUL of JAERI for prediction of wind field, concentration and external exposure rate of airborne radioactive materials are vectorized and the results are presented. Using the continuous equation of incompressible flow as a constraint, the MATHEW calculates the three dimensional wind field by a variational method. Using the particle-in -cell method, the ADPIC calculates the advection and diffusion of radioactive materials in three dimensional wind field and terrain, and gives the concentration of the materials in each cell of the domain. The GAMPUL calculates the external exposure rate assuming Gaussian plume type distribution of concentration. The vectorized code MATHEW attained 7.8 times speedup by a vector processor FACOM230-75 APU. The ADPIC and GAMPUL are estimated to attain 1.5 and 4 times speedup respectively on CRAY-1 type vector processor. (author)

  16. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    Science.gov (United States)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  17. Soliton solutions of the (2 + 1)-dimensional Harry Dym equation via Darboux transformation

    International Nuclear Information System (INIS)

    Halim, A.A.

    2008-01-01

    This work introduces solitons solutions for the (2 + 1)-dimensional Harry Dym equation using Darboux transformation. The link between the (2 + 1)-dimensional Harry Dym equation and the linear system associated with the modified Kadomtzev-Patvishvili equation is used. Namely, soliton solutions for the linear system associated with the later equation are produced using Darboux transformation. These solutions are inserted in the mentioned link to produce soliton solutions for the (2 + 1)-dimensional Harry Dym equation

  18. Comparison calculation of a large sodium-cooled fast breeder reactor using the cell code MICROX-2 in connection with ENDF/B-VI and JEF-1.1 neutron data

    International Nuclear Information System (INIS)

    Pelloni, S.

    1992-02-01

    We have obtained results for a large sodium-cooled fast breeder reactor benchmark using data from the ENDF/B-VI and from Revision 1 of the JEF-1 (JEF-1.1) evaluation. The required cross sections were processed with the NJOY code system (Version 89.62) and homogenized with the spectrum cell code MICROX-2. Multigroup transport-theory calculations in 33 neutron groups (forward and adjoint) were performed using the two-dimensional code TWODANT and kinetic parameters were determined using the first-order perturbation-theory code PERT-V. We calculated eigenvalues, neutron balance data, global and regional breeding and conversion ratios, central rate ratios and reactivity worths with and without sodium, effective delayed neutron fraction and inhour reactivity, regional sodium void reactivity, and isothermal core fuel Doppler-reactivities. In particular, it is shown that good agreement (generally within one standard deviation) is achieved between these results and the average values over sixteen benchmark solutions obtained in the past. The eigenvalues predicted with ENDF/B-VI are up to 0.7% larger than those calculated with JEF-1.1 cross sections. This discrepancy is mainly due to different inelastic scattering cross sections for 23 Na and 238 U, and to different fast fission and nubar data for 239 Pu. (author) 5 figs., 30 tabs., 24 refs

  19. Exact and variational calculations of eigenmodes for three-dimensional free electron laser interaction with a warm electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.

  20. Topics in 2 + 1 and 3 + 1 dimensional physics

    International Nuclear Information System (INIS)

    Camperi, M.F.

    1994-01-01

    This thesis is concerned with the study of two different topics pertaining to two different dimensionalities in Field Theory. First, the issues Chern-Simons Gauge Field Theory in 2 + 1 dimensions, mainly as a field theoretic description of knots and links in three euclidean dimensions is addressed. The author provides both a non-perturbative and a perturbative approach, relating them in the large-N limit. A non-perturbative duality was found between the SU(N) k Chern-Simons theory and the SU(k) N one, providing a possible physical consequences of these constructions, notably the case of Fractional Statistics. Second, this thesis addresses the study of the so-called open-quotes vector modelclose quotes, written in the language of Chiral Perturbation Theory in the physical (3 + 1)-dimensional space time. This model was introduced as a possible way to study the physics of vector and pseudoscalar mesons and is based on the assumption that there is a limit of QCD where the vector mesons become massless. The author relates this model to the Hidden Symmetry Scheme, a model sharing the motivation with the previous one, but based on different assumptions. Considering only well established physical results as vector meson dominance, The thesis concludes that the vector model does not appear to be a good candidate for the effective description of vector mesons

  1. Dimensionality of the human electroencephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Kress, G.; Layne, S.P.

    1986-01-01

    The goal was to evaluate anesthetic depth in patients by dimensional analysis. Although it was difficult to obtain clean EEG records from the operating room due to noise of electrocautery and movement of the patient's head by operating room personnel. The results are presented on one case of our calculations, followed by a discussion of problems associated with dimensional analysis of the EEG. We consider only two states: aware but quiet, and medium anesthesia. The EEG data we use comes from Hanley and Walts. It was selected because anesthesia was induced by a single agent, and because of its uninterrupted length and lack of artifacts. 26 refs., 27 figs., 1 tab.

  2. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  3. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    Science.gov (United States)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  4. Topology and incompleteness for 2+1-dimensional cosmological spacetimes

    Science.gov (United States)

    Fajman, David

    2017-06-01

    We study the long-time behavior of the Einstein flow coupled to matter on 2-dimensional surfaces. We consider massless matter models such as collisionless matter composed of massless particles, massless scalar fields and radiation fluids and show that the maximal globally hyperbolic development of homogeneous and isotropic initial data on the 2-sphere is geodesically incomplete in both time directions, i.e. the spacetime recollapses. This behavior also holds for open sets of initial data. In particular, we construct classes of recollapsing 2+1-dimensional spacetimes with spherical spatial topology which provide evidence for a closed universe recollapse conjecture for massless matter models in 2+1 dimensions. Furthermore, we construct solutions with toroidal and higher genus topology for the massless matter fields, which in both cases are future complete. The spacetimes with toroidal topology are 2+1-dimensional analogies of the Einstein-de Sitter model. In addition, we point out a general relation between the energy-momentum tensor and the Kretschmann scalar in 2+1 dimensions and use it to infer strong cosmic censorship for all these models. In view of this relation, we also recall corresponding models containing massive particles, constructed in a previous work and determine the nature of their initial singularities. We conclude that the global structure of non-vacuum cosmological spacetimes in 2+1 dimensions is determined by the mass of particles and—in the homogeneous and isotropic setting studied here—verifies strong cosmic censorship.

  5. GAPER-1D, 1-D Multigroup 1. Order Perturbation Transport Theory for Reactivity Coefficient

    International Nuclear Information System (INIS)

    Koch, P.K.

    1976-01-01

    1 - Description of problem or function: Reactivity coefficients are computed using first-order transport perturbation theory for one- dimensional multi-region reactor assemblies. The number of spatial mesh-points and energy groups is arbitrary. An elementary synthesis scheme is employed for treatment of two- and three-dimensional problems. The contributions to the change in inverse multiplication factor, delta(1/k), from perturbations in the individual capture, net fission, total scattering, (n,2n), inelastic scattering, and leakage cross sections are computed. A multi-dimensional prompt neutron lifetime calculation is also available. 2 - Method of solution: Broad group cross sections for the core and perturbing or sample materials are required as input. Scalar neutron fluxes and currents, as computed by SN transport calculations, are then utilized to solve the first-order transport perturbation theory equations. A synthesis scheme is used, along with independent SN calculations in two or three dimensions, to treat a multi- dimensional assembly. Spherical harmonics expansions of the angular fluxes and scattering source terms are used with leakage and anisotropic scattering treated in a P1 approximation. The angular integrations in the perturbation theory equations are performed analytically. Various reactivity coefficients and material worths are then easily computed at specified positions in the assembly. 3 - Restrictions on the complexity of the problem: The formulation of the synthesis scheme used for two- and three-dimensional problems assumes that the fluxes and currents were computed by the DTF4 code (NESC Abstract 209). Therefore, fluxes and currents from two- or three-dimensional transport or diffusion theory codes cannot be used

  6. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  7. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  8. Three-dimensional magnetic probe measurements of EXTRAP T1 equilibria

    International Nuclear Information System (INIS)

    Hedin, E.R.

    1988-12-01

    Internal probes are described for use in measuring the three orthogonal components of the magnetic field in the Extrap T1 device. The data analysis process for numerical processing of the probe signals is also explained. Results include radial and vertical profiles of the field components, three-dimensional field plots, inverse field strength contours, two-dimensional magnetic flux plots and toroidal current profiles. (author)

  9. Time-dependent Flow and Transport Calculations for Project Opalinus Clay (Entsorgungsnachweis)

    International Nuclear Information System (INIS)

    Kosakowski, G.

    2004-07-01

    This report describes two specific assessment cases used in the safety assessment for a proposed deep geological repository for spent fuel, high level waste and long-lived intermediate-level waste, sited in the Opalinus Clay of the Zuercher Weinland in northern Switzerland (Project Entsorgungsnachweis, NAG RA, 2002d). In this study the influence of time dependent flow processes on the radionuclide transport in the geosphere is investigated. In the Opalinus Clay diffusion dominates the transport of radionuclides, but processes exist that can locally increase the importance of the advective transport for some time. Two important cases were investigated: (1) glaciation-induced flow due to an additional overburden in the form of an ice shield of up to 400 m thickness and (2) fluid flow driven by tunnel convergence. For the calculations the code FRAC3DVS (Therrien and Sudicky, 1996) was used. FRAC3DVS solves the three-dimensional flow and transport equation in porous and fractured media. For the case of glaciation-induced flow (1) a two-dimensional reference model without glaciations was calculated. During the glaciations the geosphere release-rates are up to a factor of about 1.7 higher compared to the reference model. The influence of glaciations on the transport of cations or neutral species is less than for anions, since the importance of the advective transport for anions is higher due to the lower accessible porosity for anions. The increase in the release rates during glaciations is lower for sorbing compared to non-sorbing radionuclides. The influence of the tunnel convergence (2) on the transport of radionuclides in the geosphere is very small. Due to the higher source term the geosphere release rates are slightly higher if tunnel convergence is considered. In addition to the two assessment cases this report investigates the applicability of the one-dimensional approximation for modelling transport through the Opalinus Clay. For the reference case of the safety

  10. Neutron shielding point kernel integral calculation code for personal computer: PKN-pc

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sakamoto, Yukio; Nakane, Yoshihiro; Tomita, Ken-ichi; Kurosawa, Naohiro.

    1994-07-01

    A personal computer version of PKN code, PKN-pc, has been developed to calculate neutron and secondary gamma-ray 1cm depth dose equivalents in water, ordinary concrete and iron for neutron source. Characteristics of PKN code are, to able to calculate dose equivalents in multi-layer three-dimensional system, which are described with two-dimensional surface, for monoenergetic neutron source from 0.01 to 14.9 MeV, 252 Cf fission and 241 Am-Be neutron source quick and easily. In addition to these features, the PKN-pc is possible to process interactive input and to get graphical system configuration and graphical results easily. (author)

  11. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  12. Three-dimensional viewing and dosimetric calculations of Au-198 implants of the prostate

    International Nuclear Information System (INIS)

    Avizonis, V.N.; Anderson, K.M.; Jani, S.K.; Hussey, D.H.

    1991-01-01

    Dose gradients for brachytherapy vary considerably in three dimensions, which complicates conventional two-dimensional dosimetry. Recent developments in computer graphics technology have enabled visualization of anatomy and radiation doses in three dimensions. The objective of this paper is to develop a three-dimensional viewing and dosimetry program for brachytherapy and to test this system in phantoms and in patients undergoing Au-198 implants in the prostate. Three-dimensional computer algorithms for the author's Silicon Graphics supercomputing workstation were developed, tested, and modified on the basis of studies in phantoms and patients. Studies were performed on phantoms of known dimensions and gold seeds in known locations to assess the accuracy of volume reconstruction, seed placement, and isodose distribution. Isodose curves generated with the three-dimensional system were compared with those generated by a Theratronics Treatment Planning Computer using conventional methods. Twenty patients with permanent Au-198 interstitial implants in the prostate were similarly studied

  13. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  14. New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.

  15. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  16. Information Gain Based Dimensionality Selection for Classifying Text Documents

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.

  17. The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to the generalized discrete Painleve hierarchy

    International Nuclear Information System (INIS)

    Zhu Zuonong

    2007-01-01

    In this paper, we will concentrate on the topic of integrable discrete hierarchies in 2+1 dimensions, and their connection with discrete Painleve hierarchies. By considering a (2+1)-dimensional nonisospectral discrete linear problem, two new (2+1)-dimensional nonisospectral integrable lattice hierarchies-the 2+1 nonisospectral relativistic Toda lattice hierarchy and the 2+1 nonisospectral negative relativistic Toda lattice hierarchy-are constructed. It is shown that the reductions of the two new 2+1 nonisospectral lattice hierarchies lead to the (2+1)-dimensional nonisospectral Volterra lattice hierarchy and the (2+1)-dimensional nonisospectral negative Volterra lattice hierarchy. We also obtain two new (1+1)-dimensional nonisospectral integrable lattice hierarchies and two new ordinary difference hierarchies which are direct reductions of the two 2+1 nonisospectral integrable lattice hierarchies. One of the two difference hierarchies yields our previously obtained generalized discrete first Painleve (dP I ) hierarchy and another one yields a generalized alternative discrete second Painleve (alt-dP II ) hierarchy

  18. Symmetries, Traveling Wave Solutions, and Conservation Laws of a (3+1-Dimensional Boussinesq Equation

    Directory of Open Access Journals (Sweden)

    Letlhogonolo Daddy Moleleki

    2014-01-01

    Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.

  19. Nucleonic calculations for possible irradiation experiments in SAPHIR

    International Nuclear Information System (INIS)

    Caro, M.; Pelloni, S.

    1990-01-01

    Accurate two-dimensional calculations show that a 'neutronic environment' exists in the SAPHIR reactor at the Paul Scherrer Institute (PSI) to simulate the inner surface of a given trepan of the Gundremmingen reactor. Neutron fluences and DPA rates were calculated at two positions in SAPHIR using the modern codes and nuclear data (from JEF-1). A particular region of the reactor can be found in which fluences and DPA rates agree well within a few percent with the Gundremmingen reference case. (author) 13 figs., 4 tabs., 18 refs

  20. Double ionization in Helium. Ab initio calculations beyond the one dimensional approximation

    International Nuclear Information System (INIS)

    Camilo Ruiz; Luis Plaja; Luis Roso; Andreas Becker

    2006-01-01

    Complete test of publication follows. We present ab-initio computations of the ionization of two-electron atoms by short pulses of coherent radiation beyond the one-dimensional approximation. In the model the electron correlation is included in its full dimensionality, while the center-of-mass motion is restricted along the polarization axis. We show some result for Non Sequential Double Ionization (NSDI) as well as for SDI for high intensity low IR frequency. Some recent applications for this correlated system is also presented.

  1. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  2. Giant 1/f noise in two-dimensional polycrystalline media

    International Nuclear Information System (INIS)

    Snarskii, A.; Bezsudnov, I.

    2008-01-01

    The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant

  3. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  4. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  5. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  6. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  7. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.

    Science.gov (United States)

    Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A

    1999-08-01

    To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of

  8. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  9. Calculations of three-dimensional collapse and fragmentation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1978-01-01

    Calculations of the fragmentation of an isothermally collapsing cloud have been carried out using a method that follows the motion of individual fluid particles and includes pressure and viscosity forces between neighbouring particles. In a cloud or region whose mass is comparable to the Jeans mass, a highly condensed core forms, surrounded by a diffuse envelope that continues to accrete on to the core; in the presence of rotation, the inner part of the envelope becomes essentially an accretion disc. If the mass exceeds the Jeans mass, several such accreting cores are formed, the number being comparable to the initial number of jeans masses in the cloud. Binary systems and hierarchical multiple systems are frequently obtained. The mass of the largest object formed is independent of the Jeans mass but depends on the angular momentum and viscosity of the cloud, and is essentially the maximum mass accretable by a single object. The resulting mass spectrum may be determined by the development of a hierarchy of accreting objects of different sizes, such that each object has several smaller ones associated with it. The hypothesis of a self-similar accretion hierarchy predicts a power-law mass spectrum, which in the limit of inefficient accretion has an exponent x = 1, in reasonable agreement with observations. (author)

  10. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  11. Statistical mechanical analysis of (1 + ∞) dimensional disordered systems

    International Nuclear Information System (INIS)

    Skantzos, Nikolaos Stavrou

    2001-01-01

    Valuable insight into the theory of disordered systems and spin-glasses has been offered by two classes of exactly solvable models: one-dimensional models and mean-field (infinite-range) ones, which, each carry their own specific techniques and restrictions. Both classes of models are now considered as 'exactly solvable' in the sense that in the thermodynamic limit the partition sum can been carried out analytically and the average over the disorder can be performed using methods which are well understood. In this thesis I study equilibrium properties of spin systems with a combination of one-dimensional short- and infinite-range interactions. I find that such systems, under either synchronous or asynchronous spin dynamics, and even in the absence of disorder, lead to phase diagrams with first-order transitions and regions with a multiple number of locally stable states. I then proceed to the study of recurrent neural network models with (1+∞)-dimensional interactions, and find that the competing short- and long-range forces lead to highly complex phase diagrams and that unlike infinite-range (Hopfield-type) models these phase diagrams depend crucially on the number of patterns stored, even away from saturation. To solve the statics of such models for the case of synchronous dynamics I first make a detour to solve the synchronous counterpart of the one-dimensional random-field Ising model, where I prove rigorously that the physics of the two random-field models (synchronous vs. sequential) becomes asymptotically the same, leading to an extensive ground state entropy and an infinite hierarchy of discontinuous transitions close to zero temperature. Finally, I propose and solve the statics of a spin model for the prediction of secondary structure in random hetero-polymers (which are considered as the natural first step to the study of real proteins). The model lies in the class of (1+∞)-dimensional disordered systems as a consequence of having steric- and hydrogen

  12. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  13. Sensitivity of trajectory calculations to the temporal frequency of wind data

    Science.gov (United States)

    Doty, Kevin G.; Perkey, Donald J.

    1993-01-01

    A mesoscale primitive equation model is used to create a 36-h simulation of the three-dimensional wind field of an intense maritime extratropical cyclone. The control experiment uses the simulated wind field every 15 min in a trajectory model to calculate back trajectories from various horizontal and vertical positions of interest relative to synoptic features of the storm. The latter trajectories are compared to trajectories that were calculated with the simulated wind data degraded in time to 30 min, 1 h, 3 h, 6h, and 12 h. Various error statistics reveal significant deterioration in trajectory accuracy between trajectories calculated with 1- and 3-h data frequencies. Trajectories calculated with 15-min, 30-min, and 1-h data frequencies yielded similar results, while trajectories calculated with data time frequencies 3 h and greater yielded results with unacceptably large errors.

  14. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  15. Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...

    Indian Academy of Sciences (India)

    In this paper, the new generalized (′/)-expansion method is executed to find the travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation. The efficiency of this method for finding exact and travelling wave solutions has been demonstrated. It is shown ...

  16. (2+1)-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Hosoya, Akio; Nakao, Ken-ichi.

    1989-05-01

    The (2+1)-dimensional pure Einstein gravity is studied in the canonical ADM formalism, assuming that the spatial surface is closed and compact. Owing to the constraints, the dynamical variables are reduced to the moduli parameters of the 2-surface. Upon quantization, the system becomes a quantum mechanics of moduli parameters in a curved space endowed with the Weil-Petersson metric. In the case of torus in particular, the superspace, on which the wave function of universe is defined, turns out to be the fundamental region is the moduli space. The solution of the Wheeler-DeWitt equation is explicitly given as the Maass form which is perfectly regular in the superspace. (author)

  17. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  18. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  19. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  20. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  1. Causal approach to (2+1)-dimensional Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.

    1993-05-01

    It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs

  2. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  3. One-loop calculations in QED in axial gauge

    International Nuclear Information System (INIS)

    Boos, E.E.; Kurannoy, S.S.

    1983-01-01

    The present paper pursued the aim to test at the simple example of the calculation of the anomalous magnetic moment in quantum electrodynamics the methods of calculating one-loop integrals in the axial gauge, using the dimensional regularization, and to investigate the independence of the results on the choice of the recipe of how to treat the poles in the denominators (k eta) -1 . It is shown that the techniques developed in another paper, as well as in the present paper, can be successfully applied in such calculations, in spite of the peculiarities of the axial gauge that have been discussed previously. The results of the two different ways of treating singularities (k eta) -1 (the principal value and 't Hooft's prescription) turn out to be equal. At the same time it was verified that the Green functions obtained by these calculations near the mass shell in the one-loop approximation satisfy the ward identity

  4. Calculation of Voltages in Electric Power Transmission Lines During Historic Geomagnetic Storms: An Investigation Using Realistic Earth Impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-02-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  5. Qualities of Wigner function and its applications to one-dimensional infinite potential and one-dimensional harmonic oscillator

    International Nuclear Information System (INIS)

    Xu Hao; Shi Tianjun

    2011-01-01

    In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)

  6. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    Science.gov (United States)

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  7. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  8. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    Balaji, K.S.

    1986-01-01

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  9. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  10. 3-D flux distribution and criticality calculation of TRIGA Mark-II

    International Nuclear Information System (INIS)

    Can, B.

    1982-01-01

    In this work, the static calculation of the (I.T.U. TRIGA Mark-II) flux distribution has been made. The three dimensional, r-θ-z, representation of the core has been used. In this representation, for different configuration, the flux distribution has been calculated depending on two group theory. The thermal-hydraulics, the poisoning effects have been ignored. The calculations have been made by using the three dimensional and multigroup code CAN. (author)

  11. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  12. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters

    Science.gov (United States)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.

    2018-03-01

    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  13. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  14. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  15. DRAGON, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: DRAGON is a collection of models to simulate the neutronic behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations which can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. The user must supply cross sections. DRAGON can access directly standard microscopic cross-section libraries in the following formats: DRAGON, MATXS (TRANSX-CTR), WIMSD4, WIMS-AECL, and APOLLO. It has the capability of exchanging macroscopic and microscopic cross-section libraries with a code such as PSR-0206/TRANSX-CTR or PSR-0317/TRANSX-2 by the use of the GOXS and ISOTXS format files. Macroscopic cross sections can also be read in DRAGON via the input data stream. 2 - Method of solution: DRAGON contains a multigroup iterator conceived to control a number of different algorithms for the solution of the neutron transport equation. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are included in a source term. The current version, DRAGON 9 71124 (Release 3.02), which was released in January 1998, contains three such algorithms. The JPM option solves the integral transport equation using the interface current method applied to homogeneous blocks; the SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional (1-D) or two-dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; and the

  16. Particle Collision Near 1 + 1-Dimensional Horava-Lifshitz Black Hole and Naked Singularity

    Directory of Open Access Journals (Sweden)

    M. Halilsoy

    2017-01-01

    Full Text Available The unbounded center-of-mass (CM energy of oppositely moving colliding particles near horizon emerges also in 1+1-dimensional Horava-Lifshitz gravity. This theory has imprints of renormalizable quantum gravity characteristics in accordance with the method of simple power counting. Surprisingly the result obtained is not valid for a 1-dimensional Compton-like process between an outgoing photon and an infalling massless/massive particle. It is possible to achieve unbounded CM energy due to collision between infalling photons and particles. The source of outgoing particles may be attributed to an explosive process just outside the horizon for a black hole and the naturally repulsive character for the case of a naked singularity. It is found that absence of angular momenta in 1+1-dimension does not yield unbounded energy for collisions in the vicinity of naked singularities.

  17. Preliminary results of the seventh three-dimensional AER dynamic benchmark problem calculation. Solution with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Bencik, M.; Hadek, J.

    2011-01-01

    The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)

  18. (1 +1 )D Calculation Provides Evidence that Quantum Entanglement Survives a Firewall

    Science.gov (United States)

    Martín-Martínez, Eduardo; Louko, Jorma

    2015-07-01

    We analyze how preexisting entanglement between two Unruh-DeWitt particle detectors evolves when one of the detectors falls through a Rindler firewall in (1 +1 )-dimensional Minkowski space. The firewall effect is minor and does not wash out the detector-detector entanglement, in some regimes even preserving the entanglement better than Minkowski vacuum. The absence of cataclysmic events should continue to hold for young black hole firewalls. A firewall's prospective ability to resolve the information paradox must hence hinge on its detailed gravitational structure, presently poorly understood.

  19. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  20. Solution structures of α-conotoxin G1 determined by two-dimensional NMR spectroscopy

    International Nuclear Information System (INIS)

    Pardi, A.; Galdes, A.; Florance, J.; Maniconte, D.

    1989-01-01

    Two-dimensional NMR data have been used to generate solution structures of α-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro 5 and Arg 9 . The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins

  1. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  2. Convergent-beam electron diffraction study of incommensurately modulated crystals. Pt. 2. (3 + 1)-dimensional space groups

    International Nuclear Information System (INIS)

    Terauchi, Masami; Takahashi, Mariko; Tanaka, Michiyoshi

    1994-01-01

    The convergent-beam electron diffraction (CBED) method for determining three-dimensional space groups is extended to the determination of the (3 + 1)-dimensional space groups for one-dimensional incommensurately modulated crystals. It is clarified than an approximate dynamical extinction line appears in the CBED discs of the reflections caused by an incommensurate modulation. The extinction enables the space-group determination of the (3 + 1)-dimensional crystals or the one-dimensional incommensurately modulated crystals. An example of the dynamical extinction line is shown using an incommensurately modulated crystal of Sr 2 Nb 2 O 7 . Tables of the dynamical extinction lines appearing in CBED patterns are given for all the (3 + 1)-dimensional space groups of the incommensurately modulated crystal. (orig.)

  3. N = 1 supersymmetric indices and the four-dimensional A-model

    Science.gov (United States)

    Closset, Cyril; Kim, Heeyeon; Willett, Brian

    2017-08-01

    We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.

  4. Lifshitz anomalies, Ward identities and split dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,55 Haim Levanon street, Tel-Aviv, 69978 (Israel)

    2017-03-16

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  5. Lifshitz anomalies, Ward identities and split dimensional regularization

    International Nuclear Information System (INIS)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia

    2017-01-01

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  6. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  7. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Smith Nadine

    2005-06-01

    Full Text Available Abstract Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this

  8. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    Science.gov (United States)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  9. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  10. Criticality calculations for homogeneous mixtures of uranium and plutonium

    International Nuclear Information System (INIS)

    Spiegelberg, R. de S.H.

    1981-05-01

    Critical parameters were calculated using the one-dimensional multigroup transport theory. Calculations have been performed for water mixture of uranium metal and uranium oxides and plutonium nitrates to determine the dimensions of simple critical geometries (sphere and cylinder). The results of the calculations were plotted showing critical parameters (volume, radius or critical mass). The critical values obtained in Handbuch zur Kritikalitat were used to compare with critical parameters. A sensitivity study for the influences of mesh space size, multigroup structure and order of the S sub(n) approximation on the critical radius was carried out. The GAMTEC-II code was used to generate multigroup cross sections data. Critical radius were calculated using the one-dimensional multigroup transport code DTF-IV. (Author) [pt

  11. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, Troels F; Pedersen, Thomas G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, 9220 Aalborg Oest (Denmark); Cornean, Horia D, E-mail: tfr@nanophysics.d [Department of Mathematical Sciences, Aalborg University, Frederik Bajers Vej 7G, 9220 Aalborg (Denmark)

    2010-11-26

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m{sub e}/m{sub h} = {sigma} in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  12. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Roennow, Troels F; Pedersen, Thomas G; Cornean, Horia D

    2010-01-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m e /m h = σ in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  13. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  14. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  15. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  16. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 , C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  17. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  18. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.; Yin, Jun; Bose, Riya; Sinatra, Lutfan; Alarousu, Erkki; Yengel, Emre; AlYami, Noktan; Saidaminov, Makhsud I.; Zhang, Yuhai; Hedhili, Mohamed N.; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially

  19. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  20. Dimensional transitions in thermodynamic properties of ideal Maxwell–Boltzmann gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2015-01-01

    An ideal Maxwell–Boltzmann gas confined in various rectangular nanodomains is considered under quantum size effects. Thermodynamic quantities are calculated from their relations with the partition function, which consists of triple infinite summations over momentum states in each direction. To obtain analytical expressions, summations are converted to integrals for macrosystems by a continuum approximation, which fails at the nanoscale. To avoid both the numerical calculation of summations and the failure of their integral approximations at the nanoscale, a method which gives an analytical expression for a single particle partition function (SPPF) is proposed. It is shown that a dimensional transition in momentum space occurs at a certain magnitude of confinement. Therefore, to represent the SPPF by lower-dimensional analytical expressions becomes possible, rather than numerical calculation of summations. Considering rectangular domains with different aspect ratios, a comparison of the results of derived expressions with those of summation forms of the SPPF is made. It is shown that analytical expressions for the SPPF give very precise results with maximum relative errors of around 1%, 2% and 3% at exactly the transition point for single, double and triple transitions, respectively. Based on dimensional transitions, expressions for free energy, entropy, internal energy, chemical potential, heat capacity and pressure are given analytically valid for any scale. (paper)

  1. Constructing and analysis of soliton-like solutions of (1 + 1), (2 + 1), (3 + 1)-dimensional Schrodinger equations with the third power nonlinearity law

    International Nuclear Information System (INIS)

    Zhestkov, S.V.; Romanenko, A.A.

    2009-01-01

    The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)

  2. Hamiltonian Monte Carlo study of (1+1)-dimensional models with restricted supersymmetry on the lattice

    International Nuclear Information System (INIS)

    Ranft, J.; Schiller, A.

    1984-01-01

    Lattice versions with restricted suppersymmetry of simple (1+1)-dimensional supersymmetric models are numerically studied using a local hamiltonian Monte Carlo method. The pattern of supersymmetry breaking closely follows the expectations of Bartels and Bronzan obtain in an alternative lattice formulation. (orig.)

  3. Biomedical applications of two- and three-dimensional deterministic radiation transport methods

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1992-01-01

    Multidimensional deterministic radiation transport methods are routinely used in support of the Boron Neutron Capture Therapy (BNCT) Program at the Idaho National Engineering Laboratory (INEL). Typical applications of two-dimensional discrete-ordinates methods include neutron filter design, as well as phantom dosimetry. The epithermal-neutron filter for BNCT that is currently available at the Brookhaven Medical Research Reactor (BMRR) was designed using such methods. Good agreement between calculated and measured neutron fluxes was observed for this filter. Three-dimensional discrete-ordinates calculations are used routinely for dose-distribution calculations in three-dimensional phantoms placed in the BMRR beam, as well as for treatment planning verification for live canine subjects. Again, good agreement between calculated and measured neutron fluxes and dose levels is obtained

  4. Calculation of voltages in electric power transmission lines during historic geomagnetic storms: An investigation using realistic earth impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-01-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  5. Effective Hamiltonian for 2-dimensional arbitrary spin Ising model

    International Nuclear Information System (INIS)

    Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)

    1983-08-01

    The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)

  6. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  7. Generation of geometrical phases and persistent spin currents in 1-dimensional rings by Lorentz-violating terms

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Ferreira, M.M., E-mail: manojr.ufma@gmail.com; Mouchrek-Santos, V.E.; Silva, Edilberto O.

    2015-06-30

    We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.

  8. 49 CFR 1141.1 - Procedures to calculate interest rates.

    Science.gov (United States)

    2010-10-01

    ... the portion of the year covered by the interest rate. A simple multiplication of the nominal rate by... 49 Transportation 8 2010-10-01 2010-10-01 false Procedures to calculate interest rates. 1141.1... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES TO CALCULATE INTEREST RATES...

  9. Collision probability in two-dimensional lattice by ray-trace method and its applications to cell calculations

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-03-01

    A series of formulations to evaluate collision probability for multi-region cells expressed by either of three one-dimensional coordinate systems (plane, sphere and cylinder) or by the general two-dimensional cylindrical coordinate system is presented. They are expressed in a suitable form to have a common numerical process named ''Ray-Trace'' method. Applications of the collision probability method to two optional treatments for the resonance absorption are presented. One is a modified table-look-up method based on the intermediate resonance approximation, and the other is a rigorous method to calculate the resonance absorption in a multi-region cell in which nearly continuous energy spectra of the resonance neutron range can be solved and interaction effect between different resonance nuclides can be evaluated. Two works on resonance absorption in a doubly heterogeneous system with grain structure are presented. First, the effect of a random distribution of particles embedded in graphite diluent on the resonance integral is studied. Next, the ''Accretion'' method proposed by Leslie and Jonsson to define the collision probability in a doubly heterogeneous system is applied to evaluate the resonance absorption in coated particles dispersed in fuel pellet of the HTGR. Several optional models are proposed to define the collision rates in the medium with the microscopic heterogeneity. By making use of the collision probability method developed by the present study, the JAERI thermal reactor standard nuclear design code system SRAC has been developed. Results of several benchmark tests for the SRAC are presented. The analyses of critical experiments of the SHE, DCA, and FNR show good agreement of critical masses with their experimental values. (J.P.N.)

  10. Nuclear data preparation and discrete ordinates calculation

    International Nuclear Information System (INIS)

    Carmignani, B.

    1980-01-01

    These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)

  11. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.

    Science.gov (United States)

    Zhou, Yong; Zhang, Dong H

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH4 reaction and the H2+CH3 reaction are calculated. Simulations of the H+CH4 reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable high accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH4 rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H2+CH3 reaction are found to be in good consistency with experimental observations.

  12. Exact interior solutions in 2 + 1-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Biswas, Ritabrata [Indian Institute of Engineering Sceince and Technology Shibpur, Howrah, West Bengal (India); Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh, Uttar Pradesh (India)

    2014-04-15

    We provide a new class of exact solutions for the interior in 2 + 1-dimensional spacetime. The solutions obtained for the perfect fluid model both with and without cosmological constant (Λ) are found to be regular and singularity free. It assumes very simple analytical forms that help us to study the various physical properties of the configuration. Solutions without Λ are found to be physically acceptable. (orig.)

  13. Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2012-01-01

    We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.

  14. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    Science.gov (United States)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  15. Shielding calculations for the Intense Neutron Source Facility. Final report

    International Nuclear Information System (INIS)

    Battat, M.E.; Henninger, R.J.; Macdonald, J.L.; Dudziak, D.J.

    1978-06-01

    Results of shielding calculations for the Intnse Neutron Source (INS) facility are presented. The INS facility is designed to house two sources, each of which will produce D--T neutrons with intensities in the range from 1 to 3 x 10 15 n/s on a continuous basis. Topics covered include the design of the biological shield, use of two-dimensional discrete-ordinates results to specify the source terms for a Monte Carlo skyshine calculation, air activation, and dose rates in the source cell (after shutdown) due to activation of the biological shield

  16. Post-test thermal calculations and data analyses for the Spent Fuel Test, Climax

    International Nuclear Information System (INIS)

    Montan, D.N.; Patrick, W.C.

    1986-06-01

    After the Spent Fuel Test - Climax (SFT-C) was completed, additional calculations were performed using the best available (directly measured or inferred from measurements made during the test) input parameters, thermal properties, and power levels. This report documents those calculations and compares the results with measurements made during the three-year heating phase and six-month posttest cooling phase of the SFT-C. Three basic types of heat-transfer calculations include a combined two-dimensional/three-dimensional, infinite-length, finite-difference model; a fully three-dimensional, finite-length, finite-difference model; and a fully three-dimensional, finite-length, analytical solution. The finite-length model much more accurately reflects heat flow near the ends of the array and produces cooler temperatures everywhere than does its infinite-length counterpart. 14 refs., 144 figs., 4 tabs

  17. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  18. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Theis, C.; Buchegger, K.H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.

    2006-01-01

    The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems

  19. Two-dimensional analytical solution for nodal calculation of nuclear reactors

    International Nuclear Information System (INIS)

    Silva, Adilson C.; Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2017-01-01

    Highlights: • A proposal for a coarse mesh nodal method is presented. • The proposal uses the analytical solution of the two-dimensional neutrons diffusion equation. • The solution is performed homogeneous nodes with dimensions of the fuel assembly. • The solution uses four average fluxes on the node surfaces as boundary conditions. • The results show good accuracy and efficiency. - Abstract: In this paper, the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G). The spatial domain of reactor core is divided into a set of nodes with uniform nuclear parameters. To determine iteratively the multiplication factor and the neutron flux in the reactor we combine the analytical solution of the neutron diffusion equation with an iterative method known as power method. The analytical solution for different types of regions that compose the reactor is obtained, such as fuel and reflector regions. Four average fluxes in the node surfaces are used as boundary conditions for analytical solution. Discontinuity factors on the node surfaces derived from the homogenization process are applied to maintain averages reaction rates and the net current in the fuel assembly (FA). To validate the results obtained by the analytical solution a relative power density distribution in the FAs is determined from the neutron flux distribution and compared with the reference values. The results show good accuracy and efficiency.

  20. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  1. A through calculation of 1,100 MWe PWR large break LOCA by THYDE-P1 EM model

    International Nuclear Information System (INIS)

    Kanazawa, Masayuki; Asahi, Yoshiro; Hirano, Masashi

    1984-07-01

    THYDE-P1 is a code to analyze both the blowdown and refill-reflood phases of loss-of-coolant accidents (LOCAs) of pressurized water reactors (PWRs). Up to now, THYDE-P1 has been applied to various experiment analyses, which show its high capability to analyze LOCAs as a best estimate (BE) calculation code. In this report, evaluation model (EM) calculation method, especialy in the blowdown and refill phases, is established equivalently to WREM/J2 which is regarded as appropriate for an EM calculation code, and the results of them are compared and discussed. The present calculation was the first executed by THYDE-P1-EM, and was performed as Sample Calculation Run 80 which was a part of a series of THYDE-P sample calculations. The calculation was carried out from the LOCA initiation till 400 seconds for a guillotine break at the cold leg of a commercial 1,100 MWe PWR plant. The calculated results agreed well to that of the WREM/J2 code. (author)

  2. First intermediate break test 6IB1 data comparison with a TRAC-BD1/MOD1 blind calculation

    International Nuclear Information System (INIS)

    Wheatley, P.D.

    1985-04-01

    TRAC-BD1/MOD1 has been used to calculate the behavior in the FIST (Full Integral Test Facility) facility during an intermediate break in one of the recirculation loops. Results of the calculation are compared with the data from the experiment, and the analysis is discussed in this report. The calculation was blind with only the initial and boundary conditions available prior to performance of the calculation. The calculation has been previously documented without reference to the experimental data (i.e., prior to release of the data). This report extends the prior report by discussing the analysis of the data to code comparisons. This work was performed as part of the Nuclear Regulatory Commission's support to the FIST program which is being provided at the Idaho National Engineering Laboratory

  3. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.

    Science.gov (United States)

    Poirier, Bill; Salam, A

    2004-07-22

    In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.

  4. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  5. Uncertainty Evaluation with Multi-Dimensional Model of LBLOCA in OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jieun; Oh, Deog Yeon; Seul, Kwang-Won; Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    KINS has used KINS-REM (KINS-Realistic Evaluation Methodology) which developed for Best- Estimate (BE) calculation and uncertainty quantification for regulatory audit. This methodology has been improved continuously by numerous studies, such as uncertainty parameters and uncertainty ranges. In this study, to evaluate the applicability of improved KINS-REM for OPR1000 plant, uncertainty evaluation with multi-dimensional model for confirming multi-dimensional phenomena was conducted with MARS-KS code. In this study, the uncertainty evaluation with multi- dimensional model of OPR1000 plant was conducted for confirming the applicability of improved KINS- REM The reactor vessel modeled using MULTID component of MARS-KS code, and total 29 uncertainty parameters were considered by 124 sampled calculations. Through 124 calculations using Mosaique program with MARS-KS code, peak cladding temperature was calculated and final PCT was determined by the 3rd order Wilks' formula. The uncertainty parameters which has strong influence were investigated by Pearson coefficient analysis. They were mostly related with plant operation and fuel material properties. Evaluation results through the 124 calculations and sensitivity analysis show that improved KINS-REM could be reasonably applicable for uncertainty evaluation with multi-dimensional model calculations of OPR1000 plants.

  6. Scattering amplitudes in four- and six-dimensional gauge theories

    International Nuclear Information System (INIS)

    Schuster, Theodor

    2014-01-01

    We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.

  7. The calculation of neutron flux using Monte Carlo method

    Science.gov (United States)

    Günay, Mehtap; Bardakçı, Hilal

    2017-09-01

    In this study, a hybrid reactor system was designed by using 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2 fluids, ENDF/B-VII.0 evaluated nuclear data library and 9Cr2WVTa structural material. The fluids were used in the liquid first wall, liquid second wall (blanket) and shield zones of a fusion-fission hybrid reactor system. The neutron flux was calculated according to the mixture components, radial, energy spectrum in the designed hybrid reactor system for the selected fluids, library and structural material. Three-dimensional nucleonic calculations were performed using the most recent version MCNPX-2.7.0 the Monte Carlo code.

  8. Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries

    International Nuclear Information System (INIS)

    Watabiki, Y.

    1989-01-01

    We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries

  9. Bandgap calculation of two-dimensional mixed solid-fluid phononic crystals by Dirichlet-to-Neumann maps

    International Nuclear Information System (INIS)

    Li Fenglian; Wang Yuesheng; Zhang Chuanzeng

    2011-01-01

    A numerical method based on the Dirichlet-to-Neumann (DtN) map is presented to compute the bandgaps of two-dimensional phononic crystals, which are composed of square or triangular lattices of circular solid cylinders in a fluid matrix. The DtN map is constructed using the cylindrical wave expansion in a unit cell. A linear eigenvalue problem, which depends on the Bloch wave vector and involves relatively small matrices, is formulated. Numerical calculations are performed for typical systems with various acoustic impedance ratios of the solid inclusions and the fluid matrix. The results indicate that the DtN-map based method can provide accurate results for various systems efficiently. In particular it takes into account the fluid-solid interface conditions and the transverse wave mode in the solid component, which has been proven to be significant when the acoustic impedance of the solid inclusions is close to or smaller than that of the fluid matrix. For systems with an acoustic impedance of the inclusion much less than that of the matrix, physical flat bands appear in the band structures, which will be missed if the transverse wave mode in the solid inclusions is neglected.

  10. Calculation of static harmonics of a nuclear reactor using CITATION code

    International Nuclear Information System (INIS)

    Belchior Junior, A.; Moreira, J.M.L.

    1989-01-01

    The CITATION code, which solves the multigroup diffusion equation by the finite difference method, calculates the fundamental λ-mode (harmonic) for nuclear reactors. In this work, two fission source correction methods are attempted to obtain higher λ-modes through the CITATION code. The two methods are compared, their advantages and disadvantages analysed and verified against analytical solutions. Two dimensional harmonic modes are calculated for the IEA-R1 research reactor and for the ANGRA-I power reactor. The results are shown in graphics and tables. (author) [pt

  11. Calculation of fluences of fast neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor. Part I. Theory, calculations, comparison with the experiment

    International Nuclear Information System (INIS)

    Rataj, J.

    1993-10-01

    The method of calculating neutron spectra and integral flux densities of neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor is outlined. The one-dimensional and two-dimensional calculations were performed by means of the DORT code in R, R-Z, and R-Θ geometries using the cross sections from the ELXSIR library. In the R-Θ geometry, the coupled neutron flux densities were determined. The calculated values of the maximum activation of detectors differ less than 15% from the values measured in surveillance specimens, which is within the limit of uncertainty associated with the position of the detector in the casing. The differences between the calculated and observed data behind the pressure vessel were below 4%. 10 tabs., 3 figs., 41 refs

  12. HTR-PROTEUS benchmark calculations. Pt. 1. Unit cell results LEUPRO-1 and LEUPRO-2

    International Nuclear Information System (INIS)

    Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Klippel, H.T.; Kuijper, J.C.

    1995-09-01

    In the framework of the IAEA Co-ordinated Research Programme (CRP) on 'Validation of Safety Related Physics Calculations for Low-Enriched (LEU) HTGRs' calculational benchmarks are performed on the basis of LEU-HTR pebble-bed critical experiments carried out in the PROTEUS facility at PSI, Switzerland. Of special interest is the treatment of the double heterogeneity of the fuel and the spherical fuel elements of these pebble bed core configurations. Also of interest is the proper calculation of the safety related physics parameters like the effect of water ingress and control rod worth. This document describes the ECN results of the LEUPRO-1 and LEUPRO-2 unitcell calculations performed with the codes WIMS-E, SCALE-4 and MCNP4A. Results of the LEUPRO-1 unit cell with 20% water ingress in the void is also reported for both the single and the double heterogeneous case. Emphasis is put on the intercomparison of the results obtained by the deterministic codes WIMS-E and SCALE-4, and the Monte Carlo code MCNP4A. The LEUPRO whole core calculations will be reported later. (orig.)

  13. Ferromagnetism in the two-dimensional periodic Anderson model

    International Nuclear Information System (INIS)

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  14. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  15. Chemical potential of one-dimensional simple harmonic oscillators

    International Nuclear Information System (INIS)

    Mungan, Carl E

    2009-01-01

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  16. 26 CFR 1.409A-4 - Calculation of income inclusion. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Calculation of income inclusion. [Reserved] 1.409A-4 Section 1.409A-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Calculation of income inclusion. [Reserved] ...

  17. Method of dimensionality reduction in contact mechanics and friction

    CERN Document Server

    Popov, Valentin L

    2015-01-01

    This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...

  18. Conservation laws for two (2 + 1)-dimensional differential-difference systems

    International Nuclear Information System (INIS)

    Yu Guofu; Tam, H.-W.

    2006-01-01

    Two integrable differential-difference equations are considered. One is derived from the discrete BKP equation and the other is a symmetric (2 + 1)-dimensional Lotka-Volterra equation. An infinite number of conservation laws for the two differential-difference equations are deduced

  19. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM [Lithium Blanket Module] experiments at LOTUS

    International Nuclear Information System (INIS)

    Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

    1988-01-01

    In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li 2 O rod in the LBM. Considered were the contributions from 1 H, 6 Li, 7 Li, 9 Be, /sup nat/C, 14 N, 16 O, 23 Na, 27 Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs

  20. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E

    1985-07-01

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  1. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  2. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  3. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  4. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  5. QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin; Savcheva, Antonia, E-mail: svetlin.tassev@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-10

    Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.

  6. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Butt, Imran A; Wattis, Jonathan A D

    2006-01-01

    Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2 + 1)-dimensional cubic nonlinear Schroedinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalized (2 + 1)-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does not go to zero with the amplitude; we find that the energy threshold is maximized by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached

  7. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    Science.gov (United States)

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  8. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  9. Negative dimensional integrals. Pt. 1

    International Nuclear Information System (INIS)

    Halliday, I.G.; Ricotta, R.M.

    1987-01-01

    We propose a new method of evaluating integrals based on negative dimensional integration. We compute Feynman graphs by considering analytic extensions. Propagators are raised to negative integer powers and integrated over negative integer dimensions. We are left with the problem of computing polynomial integrals and summing finite series. (orig.)

  10. Criticality calculation method for mixer-settlers

    International Nuclear Information System (INIS)

    Gonda, Kozo; Aoyagi, Haruki; Nakano, Ko; Kamikawa, Hiroshi.

    1980-01-01

    A new criticality calculation code MACPEX has been developed to evaluate and manage the criticality of the process in the extractor of mixer-settler type. MACPEX can perform the combined calculation with the PUREX process calculation code MIXSET, to get the neutron flux and the effective multiplication constant in the mixer-settlers. MACPEX solves one-dimensional diffusion equation by the explicit difference method and the standard source-iteration technique. The characteristics of MACPEX are as follows. 1) Group constants of 4 energy groups for the 239 Pu-H 2 O solution, water, polyethylene and SUS 28 are provided. 2) The group constants of the 239 Pu-H 2 O solution are given by the functional formulae of the plutonium concentration, which is less than 50 g/l. 3) Two boundary conditions of the vacuum condition and the reflective condition are available in this code. 4) The geometrical bucklings can be calculated for a certain energy group and/or region by using the three dimentional neutron flux profiles obtained by CITATION. 5) The buckling correction search can be carried out in order to get a desired k sub(eff). (author)

  11. Bounds on the Capacity of Weakly constrained two-dimensional Codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2002-01-01

    Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....

  12. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  13. Comparison of BWR-6 pressurization transients with one-dimensional and point kinetics

    International Nuclear Information System (INIS)

    Serra, J.M.; Mata, P.; Cronin, J.T.

    1992-01-01

    This paper focuses on the differences between the results of core reload licensing calculations for the BWR-6 plant when performed with a one-dimensional (1-D) versus a point kinetics model. More specifically, the improvement in critical power ratio which would be expected from a change in methods from a point to a 1-D kinetics core wide transient calculation for pressurization transients is investigated. To qualitatively assess critical power ratio (CPR) improvement, core wide transient and hot channel calculations of a generator load rejection with failure of the steam by-pass system and a feedwater controller failure of maximum demand are performed with both, point and 1-D kinetics models in the core wide simulation. Additionally, a sensitivity study on the frequency of power shape function updating in the 1-D kinetics calculation is performed

  14. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    Science.gov (United States)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  15. Calculating the heat transfer coefficient of frame profiles with internal cavities

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2004-01-01

    . The heat transfer coefficient is determined by two-dimensional numerical calculations and by measurements. Calculations are performed in Therm (LBNL (2001)), which is developed at Lawrence Berkeley National Laboratory, USA. The calculations are performed in accordance with the future European standards...... correspondence between measured and calculated values. Hence, when determining the heat transfer coefficient of frame profiles with internal cavities by calculations, it is necessary to apply a more detailed radiation exchange model than described in the prEN ISO 10077-2 standard. The ISO-standard offers......Determining the energy performance of windows requires detailed knowledge of the thermal properties of their different elements. A series of standards and guidelines exist in this area. The thermal properties of the frame can be determined either by detailed two-dimensional numerical methods...

  16. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  17. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  18. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  19. Perturbation calculations with Wilson loop

    International Nuclear Information System (INIS)

    Peixoto Junior, L.B.

    1984-01-01

    We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt

  20. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  1. Symmetry Analysis and Exact Solutions of (2+1)-Dimensional Sawada-Kotera Equation

    International Nuclear Information System (INIS)

    Zhi Hongyan; Zhang Hongqing

    2008-01-01

    Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)-dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko-Dubrovsky equations, respectively.

  2. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    Science.gov (United States)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  3. Neutron beam applications; development of texture measuring technique using 1-dimensional PSD

    Energy Technology Data Exchange (ETDEWEB)

    Park, No Jin; Lee, Moon Kyu; Joung, Tae Won; Lee, In Sung [Kumoh National University of Technology, Kumi (Korea)

    2002-03-01

    The new developed materials have often a low crystal symmetry or/and multi-phase state. Because the diffraction patterns of those materials are very complex and some peaks are overlapped, the measured pole figures with a conventional detector (0-dimensional detector) are not sufficient to use for the texture analysis. And also the widely broaden diffraction patterns caused by sever deformation, can only measured with lots of measuring errors using 0-dimensional detector. In this study the 1-dimensional and 2-dimensional position sensitive detector(PSD) is used such pattern to analyse. With PSD the more accurate pole figures can be measured, and the texture analysis, the estimation of the properties are determined more precisely. The measurement using PSD needs special technique for the analysis of the measured pattern. In this study the measuring and analysing technique is developed and compared with the conventional detector. 11 refs., 92 figs., 21 tabs. (Author)

  4. The reliability of three-dimensional scapular attitudes in healthy people and people with shoulder impingement syndrome

    Directory of Open Access Journals (Sweden)

    Hébert Luc J

    2007-06-01

    Full Text Available Abstract Background Abnormal scapular displacements during arm elevation have been observed in people with shoulder impingement syndrome. These abnormal scapular displacements were evaluated using different methods and instruments allowing a 3-dimensional representation of the scapular kinematics. The validity and the intrasession reliability have been shown for the majority of these methods for healthy people. However, the intersession reliability on healthy people and people with impaired shoulders is not well documented. This measurement property needs to be assessed before using such methods in longitudinal comparative studies. The objective of this study is to evaluate the intra and intersession reliability of 3-dimensional scapular attitudes measured at different arm positions in healthy people and to explore the same measurement properties in people with shoulder impingement syndrome using the Optotrak Probing System. Methods Three-dimensional scapular attitudes were measured twice (test and retest interspaced by one week on fifteen healthy subjects (mean age 37.3 years and eight subjects with subacromial shoulder impingement syndrome (mean age 46.1 years in three arm positions (arm at rest, 70° of humerothoracic flexion and 90° of humerothoracic abduction using the Optotrak Probing System. Two different methods of calculation of 3-dimensional scapular attitudes were used: relative to the position of the scapula at rest and relative to the trunk. Intraclass correlation coefficient (ICC and standard error of measure (SEM were used to estimate intra and intersession reliability. Results For both groups, the reliability of the three-dimensional scapular attitudes for elevation positions was very good during the same session (ICCs from 0.84 to 0.99; SEM from 0.6° to 1.9° and good to very good between sessions (ICCs from 0.62 to 0.97; SEM from 1.2° to 4.2° when using the method of calculation relative to the trunk. Higher levels of

  5. A one-dimensional, one-group absorption-production nodal method for neutron flux and power distributions calculations

    International Nuclear Information System (INIS)

    Ferreira, C.R.

    1984-01-01

    It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt

  6. Spin precession in inversion-asymmetric two-dimensional systems

    International Nuclear Information System (INIS)

    Liu, M.-H.; Chang, C.-R.

    2006-01-01

    We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction

  7. Transfer Area Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Dianda, B.

    2004-01-01

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their

  8. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  9. Calculations of core concrete interaction using MELCOR 1.8.5

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    OECD/MCCI project is scheduled for 4 years from 2002. 1 to 2005. 12 to perform a series of tests through which the data for cooling the molten core spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction) are secured. This paper deals with the transient calculations of the 2-D CCI tests performed under the OECD/MCCI project by using a well-known severe accident analysis code, MELCOR 1.8.5. The CCI test was performed at the rectangular geometry with one ablative bottom wall and two ablative and two non-ablative side walls. Since the MELCOR 1.8.5 can only accommodate a cylindrical geometry, an appropriate scaling methodology was applied to adjust the geometrical difference between the CCI test and the MELCOR calculations. The default heat transfer models contained in the CORCON-Mod3 module of MELCOR 1.8.5 were used for the base case calculation. The key parameters of the CCI phenomena such as the melt temperature, concrete ablation, cavity shape, gas generation, heat transfer rate, etc. were calculated and compared with the test results. In addition, sensitivity studies with the change of the inputs and character variables of MELCOR were also included.

  10. Gauge constructs and immersions of four-dimensional spacetimes in (4 + k)-dimensional flat spaces: algebraic evaluation of gravity fields

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2003-01-01

    Local action of the fundamental group SO(a, 4 + k - a) is used to show that any solution of an algebraically closed differential system, that is generated from matrix Lie algebra valued 1-forms on a four-dimensional parameter space, will generate families of immersions of four-dimensional spacetimes R 4 in flat (4 + k)-dimensional spaces M 4+k with compatible signature. The algorithm is shown to work with local action of SO(a, 4 + k - a) replaced by local action of GL(4 + k). Immersions generated by local action of the Poincare group on the target spacetime are also obtained. Evaluations of the line elements, immersion loci and connection and curvature forms of these immersions are algebraic. Families of immersions that depend on one or more arbitrary functions are calculated for 1 ≤ k ≤ 4. Appropriate sections of graphs of the conformal factor for two and three interacting line singularities immersed in M 6 are given in appendix A. The local immersion theorem given in appendix B shows that all local solutions of the immersion problem are obtained by use of this method and an algebraic extension in exceptional cases

  11. 1+1-dimensional quantum electrodynamics as an illustration of the hypothetical structure of quark field theory

    International Nuclear Information System (INIS)

    Becher, P.; Joos, H.

    1977-07-01

    It is the aim of the main part of these lectures to show how most of the expected dynamical properties of quantum chromodynamics are realised in 1+1 dimensional quantum electrodynamics. Asymptotic freedom, the infrared limit, quark confinement and bag approximation are discussed in detail. (BJ) [de

  12. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  13. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    International Nuclear Information System (INIS)

    Li Jin-Yuan; Fang Nian-Qiao; Yuan Xiao-Bo; Zhang Ji; Xue Yu-Long; Wang Xue-Mu

    2016-01-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. (paper)

  14. Spectral dimensionality of random superconducting networks

    International Nuclear Information System (INIS)

    Day, A.R.; Xia, W.; Thorpe, M.F.

    1988-01-01

    We compute the spectral dimensionality d of random superconducting-normal networks by directly examining the low-frequency density of states at the percolation threshold. We find that d = 4.1 +- 0.2 and 5.8 +- 0.3 in two and three dimensions, respectively, which confirms the scaling relation d = 2d/(2-s/ν), where s is the superconducting exponent and ν the correlation-length exponent for percolation. We also consider the one-dimensional problem where scaling arguments predict, and our numerical simulations confirm, that d = 0. A simple argument provides an expression for the density of states of the localized high-frequency modes in this special case. We comment on the connection between our calculations and the ''termite'' problem of a random walker on a random superconducting-normal network and point out difficulties in inferring d from simulations of the termite problem

  15. A one-dimensional material transfer model for HECTR version 1.5

    International Nuclear Information System (INIS)

    Geller, A.S.; Wong, C.C.

    1991-08-01

    HECTR (Hydrogen Event Containment Transient Response) is a lumped-parameter computer code developed for calculating the pressure-temperature response to combustion in a nuclear power plant containment building. The code uses a control-volume approach and subscale models to simulate the mass, momentum, and energy transfer occurring in the containment during a loss-of-collant-accident (LOCA). This document describes one-dimensional subscale models for mass and momentum transfer, and the modifications to the code required to implement them. Two problems were analyzed: the first corresponding to a standard problem studied with previous HECTR versions, the second to experiments. The performance of the revised code relative to previous HECTR version is discussed as is the ability of the code to model the experiments. 8 refs., 5 figs., 3 tabs

  16. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  17. (2 + 1)-Dimensional Dirac hierarchy and its integrable couplings as well as multi-component integrable system

    International Nuclear Information System (INIS)

    Li Zhu; Dong Huanhe

    2008-01-01

    Under the frame of the (2 + 1)-dimensional zero curvature equation and Tu model, (2 + 1)-dimensional Dirac hierarchy is obtained. Again by use of the expanding loop algebra the integrable coupling system of the above hierarchy is given

  18. Anharmonic, dimensionality and size effects in phonon transport

    Science.gov (United States)

    Thomas, Iorwerth O.; Srivastava, G. P.

    2017-12-01

    We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.

  19. First and second collision source for mitigating ray effects in discrete ordinate calculations

    International Nuclear Information System (INIS)

    Gomes, L.T.; Stevens, P.N.

    1991-01-01

    This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)

  20. Subauroral red arcs as a conjugate phenomenon: comparison of OV1-10 satellite data with numerical calculations

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the OV1-10 satellite measurements of the integral airglow intensities at 630 nm in the SAR arc regions observed in the northern and southern hemisphere as a conjugate phenomenon, with the model results obtained using the time-dependent one-dimensional mathematical model of the Earth ionosphere and plasmasphere (the IZMIRAN model during the geomagnetic storm of the period 15–17 February 1967. The major enhancements to the IZMIRAN model developed in this study are the inclusion of He+ ions (three major ions: O+, H+, and He+, and three ion temperatures, the updated photochemistry and energy balance equations for ions and electrons, the diffusion of NO+ and O2+ ions and O(1D and the revised electron cooling rates arising from their collisions with unexcited N2, O2 molecules and N2 molecules at the first vibrational level. The updated model includes the option to use the models of the Boltzmann or non-Boltzmann distributions of vibrationally excited molecular nitrogen. Deviations from the Boltzmann distribution for the first five vibrational levels of N2 were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels v > 2 and leads to a decrease in the calculated electron density and integral intensity at 630 nm in the northern and southern hemispheres in comparison with the electron density and integral intensity calculated using the Boltzmann vibrational distribution of N2. It is found that the intensity at 630 nm is very sensitive to the oxygen number densities. Good agreement between the modelled and measured intensities is obtained provided that at all altitudes of the southern hemisphere a reduction of about factor 1.35 in MSIS-86 atomic oxygen densities is included in the IZMIRAN model with the non-Boltzmann vibrational distribution of N2

  1. Investigation of multi-dimensional computational models for calculating pollutant transport

    International Nuclear Information System (INIS)

    Pepper, D.W.; Cooper, R.E.; Baker, A.J.

    1980-01-01

    A performance study of five numerical solution algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids was made. Test problems include transport of point and distributed sources, and a simulation of a continuous source. In all cases, analytical solutions are available to assess relative accuracy. The particle-in-cell and second-moment algorithms, both of which employ sub-grid resolution coupled with Lagrangian advection, exhibit superior accuracy in modeling a point source release. For modeling of a distributed source, algorithms based upon the pseudospectral and finite element interpolation concepts, exhibit improved accuracy on practical discretizations

  2. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Arostica, Fernanda; Bahamonde, Sebastian [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2013-08-15

    In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann-Robertson-Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources. (orig.)

  3. CFD-calculations to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-04-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN. For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-ε-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes. (orig.)

  4. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

  5. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

  6. HLW Canister and Can-In-Canister Drop Calculation

    International Nuclear Information System (INIS)

    H. Marr

    1999-01-01

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver

  7. Pellet by pellet neutron flux calculations coupled with nodal expansion method

    International Nuclear Information System (INIS)

    Aldo, Dall'Osso

    2003-01-01

    We present a technique whose aim is to replace 2-dimensional pin by pin de-homogenization, currently done in core reactor calculations with the nodal expansion method (NEM), by a 3-dimensional finite difference diffusion calculation. This fine calculation is performed as a zoom in each node taking as boundary conditions the results of the NEM calculations. The size of fine mesh is of the order of a fuel pellet. The coupling between fine and NEM calculations is realised by an albedo like boundary condition. Some examples are presented showing fine neutron flux shape near control rods or assembly grids. Other fine flux behaviour as the thermal flux rise in the fuel near the reflector is emphasised. In general the results show the interest of the method in conditions where the separability of radial and axial directions is not granted. (author)

  8. Interim results of the sixth three-dimensional AER dynamic benchmark problem calculation. Solution of problem with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Hadek, J.; Kral, P.; Macek, J.

    2001-01-01

    The paper gives a brief survey of the 6 th three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAPS-3D at NRI Rez. This benchmark was defined at the 10 th AER Symposium. Its initiating event is a double ended break in the steam line of steam generator No. I in a WWER-440/213 plant at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations as well as tuning of initial state before the transient were performed with the code DYN3D. Transient calculations were made with the system code RELAPS-3D.The KASSETA library was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the 6 th AER dynamic benchmark purposes. The RELAPS-3D full core neutronic model was connected with seven coolant channels thermal-hydraulic model of the core (Authors)

  9. CONDOR: neutronic code for fuel elements calculation with rods

    International Nuclear Information System (INIS)

    Villarino, E.A.

    1990-01-01

    CONDOR neutronic code is used for the calculation of fuel elements formed by fuel rods. The method employed to obtain the neutronic flux is that of collision probabilities in a multigroup scheme on two-dimensional geometry. This code utilizes new calculation algorithms and normalization of such collision probabilities. Burn-up calculations can be made before the alternative of applying variational methods for response flux calculations or those corresponding to collision normalization. (Author) [es

  10. Calculation of crack stress density of cement base materials

    Directory of Open Access Journals (Sweden)

    Chun-e Sui

    2018-01-01

    Full Text Available In this paper, the fracture load of cement paste with different water cement ratio, different mineral admixtures, including fly ash, silica fume and slag, is obtained through experiments. the three-dimensional fracture surface is reconstructed and the three-dimensional effective area of the fracture surface is calculated. the effective fracture stress density of different cement paste is obtained. The results show that the polynomial function can accurately describe the relationship between the three-dimensional total area and the tensile strength

  11. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    Science.gov (United States)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  12. Accurate calculation of Green functions on the d-dimensional hypercubic lattice

    International Nuclear Information System (INIS)

    Loh, Yen Lee

    2011-01-01

    We write the Green function of the d-dimensional hypercubic lattice in a piecewise form covering the entire real frequency axis. Each piece is a single integral involving modified Bessel functions of the first and second kinds. The smoothness of the integrand allows both real and imaginary parts of the Green function to be computed quickly and accurately for any dimension d and any real frequency, and the computational time scales only linearly with d.

  13. Aspects of cell calculations in deterministic reactor core analysis

    International Nuclear Information System (INIS)

    Varvayanni, M.; Savva, P.; Catsaros, N.

    2011-01-01

    Τhe capability of achieving optimum utilization of the deterministic neutronic codes is very important, since, although elaborate tools, they are still widely used for nuclear reactor core analyses, due to specific advantages that they present compared to Monte Carlo codes. The user of a deterministic neutronic code system has to make some significant physical assumptions if correct results are to be obtained. A decisive first step at which such assumptions are required is the one-dimensional cell calculations, which provide the neutronic properties of the homogenized core cells and collapse the cross sections into user-defined energy groups. One of the most crucial determinations required at the above stage and significantly influencing the subsequent three-dimensional calculations of reactivity, concerns the transverse leakages, associated to each one-dimensional, user-defined core cell. For the appropriate definition of the transverse leakages several parameters concerning the core configuration must be taken into account. Moreover, the suitability of the assumptions made for the transverse cell leakages, depends on earlier user decisions, such as those made for the core partition into homogeneous cells. In the present work, the sensitivity of the calculated core reactivity to the determined leakages of the individual cells constituting the core, is studied. Moreover, appropriate assumptions concerning the transverse leakages in the one-dimensional cell calculations are searched out. The study is performed examining also the influence of the core size and the reflector existence, while the effect of the decisions made for the core partition into homogenous cells is investigated. In addition, the effect of broadened moderator channels formed within the core (e.g. by removing fuel plates to create space for control rod hosting) is also examined. Since the study required a large number of conceptual core configurations, experimental data could not be available for

  14. Numerical solution of multigroup diffuse equations of one-dimensional geometry

    International Nuclear Information System (INIS)

    Pavelesku, M.; Adam, S.

    1975-01-01

    The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)

  15. Liquid structure and freezing of the two-dimensional classical electron fluid

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Rovere, M.; Tosi, M.P.

    1984-11-01

    Accurate theoretical results are reported for the pair correlation function of the classical two-dimensional electron liquid with r -1 interactions at strong coupling. The approach involves an evaluation of the bridge diagram corrections to the hypernetted-chain approximation, the role of low dimensionality being evident, relative to the case of the three-dimensional classical plasma, in an enhanced sensitivity to long range correlations. The liquid structure results are utilized in a density-wave theory of first-order freezing into the triangular lattice, the calculated coupling strength at freezing being in reasonable agreement with computer simulation results and with data on electron films on a liquid-He surface. The stability of the triangular electron lattice against deformation into a body-centered rectangular lattice is also discussed. (author)

  16. Dimensionality analysis of multiparticle production at high energies

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1989-01-01

    An algorithm of analysis of multiparticle final states is offered. By the Renyi dimensionalities, which were calculated according to experimental data, though it were hadron distribution over the rapidity intervals or particle distribution in an N-dimensional momentum space, we can judge about the degree of correlation of particles, separate the momentum space projections and areas where the probability measure singularities are observed. The method is tested in a series of calculations with samples of fractal object points and with samples obtained by means of different generators of pseudo- and quasi-random numbers. 27 refs.; 11 figs

  17. Map of calculated radioactivity of fission product, (1)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr) Vol. II Maps of radioactivity of each nuclide (Nb - Sb) Vol. III Maps of radioactivity of each nuclide (Te - Tm) (auth.)

  18. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  19. Thermal neutron flux distribution in the ET R R-1 reactor core as experimentally measured and theoretically calculated by the code triton

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.

  20. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  2. Coupling reducing k-points for supercell models of defects in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    The optimum choice of k-point for supercell calculations of defect states in a three-dimensional photonic crystal is investigated for the case of a supercell with a simple cubic (SC) structure. By using the k-point (1/4,1/4,1/4) it is possible to eliminate the symmetric part of the repeated...

  3. Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...

    Indian Academy of Sciences (India)

    1Department of Mathematics, Pabna University of Science and Technology, Pabna, Bangladesh ... equation and the (1+1)-dimensional compound KdVB equation; nonlinear partial differential ... (3) can be integrated term by term one or more.

  4. Surfactant 1-Hexadecyl-3-methylimidazolium Chloride Can Convert One-Dimensional Viologen Bromoplumbate into Zero-Dimensional.

    Science.gov (United States)

    Liu, Guangfeng; Liu, Jie; Nie, Lina; Ban, Rui; Armatas, Gerasimos S; Tao, Xutang; Zhang, Qichun

    2017-05-15

    A zero-dimensional N,N'-dibutyl-4,4'-dipyridinium bromoplumbate, [BV] 6 [Pb 9 Br 30 ], with unusual discrete [Pb 9 Br 30 ] 12- anionic clusters was prepared via a facile surfactant-mediated solvothermal process. This bromoplumbate exhibits a narrower optical band gap relative to the congeneric one-dimensional viologen bromoplumbates.

  5. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  6. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  7. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  8. Sandia Strehl Calculator Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-05

    The Sandia Strehl Calculator is designed to calculate the Gibson and Lanni point spread function (PSF), Strehl ratio, and ensquared energy, allowing non-design immersion, coverslip, and sample layers. It also uses Abbe number calculations to determine the refractive index at specific wavelengths when given the refractive index at a different wavelength and the dispersion. The primary application of Sandia Strehl Calculator is to determine the theoretical impacts of using an optical microscope beyond its normal design parameters. Examples of non-design microscope usage include: a) using coverslips of non-design material b) coverslips of different thicknesses c) imaging deep into an aqueous sample with an immersion objective d) imaging a sample at 37 degrees. All of these changes can affect the imaging quality, sometimes profoundly, but are at the same time non-design conditions employed not infrequently. Rather than having to experimentally determine whether the changes will result in unacceptable image quality, Sandia Strehl Calculator uses existing optical theory to determine the approximate effect of the change, saving the need to perform experiments.

  9. The complex metal-rich boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68, y=1.06) with a new structure type containing B{sub 4} zigzag fragments: Synthesis, crystal chemistry and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany)

    2012-08-15

    Polycrystalline samples and single crystals of the new complex boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B{sub 4} fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) A, b=14.995(2) A and c=3.234(1) A. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B{sub 4} fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior. - graphical abstract: The structure of Ti{sub 1.68(2)}Rh{sub 2.38(6)}Ir{sub 1.94(4)} B{sub 3}, a new structure type containing planar trans zigzag B{sub 4} units, is another example which illustrates the tendency of metal-rich borides to form B-B bonds with increasing boron content. Beside the B{sub 4} fragment it exhibits one-dimensional chains of titanium atoms and hold one-dimensional strings of face-sharing empty tetrahedral and square pyramidal clusters (see figure). Highlights

  10. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  11. Calculation of the counting efficiency for extended sources

    International Nuclear Information System (INIS)

    Korun, M.; Vidmar, T.

    2002-01-01

    A computer program for calculation of efficiency calibration curves for extended samples counted on gamma- and X ray spectrometers is described. The program calculates efficiency calibration curves for homogeneous cylindrical samples placed coaxially with the symmetry axis of the detector. The method of calculation is based on integration over the sample volume of the efficiencies for point sources measured in free space on an equidistant grid of points. The attenuation of photons within the sample is taken into account using the self-attenuation function calculated with a two-dimensional detector model. (author)

  12. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  13. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  14. GPU-based implementation of an accelerated SR-NLUT based on N-point one-dimensional sub-principal fringe patterns in computer-generated holograms

    Directory of Open Access Journals (Sweden)

    Hee-Min Choi

    2015-06-01

    Full Text Available An accelerated spatial redundancy-based novel-look-up-table (A-SR-NLUT method based on a new concept of the N-point one-dimensional sub-principal fringe pattern (N-point1-D sub-PFP is implemented on a graphics processing unit (GPU for fast calculation of computer-generated holograms (CGHs of three-dimensional (3-Dobjects. Since the proposed method can generate the N-point two-dimensional (2-D PFPs for CGH calculation from the pre-stored N-point 1-D PFPs, the loading time of the N-point PFPs on the GPU can be dramatically reduced, which results in a great increase of the computational speed of the proposed method. Experimental results confirm that the average calculation time for one-object point has been reduced by 49.6% and 55.4% compared to those of the conventional 2-D SR-NLUT methods for each case of the 2-point and 3-point SR maps, respectively.

  15. Magnetic monopoles in 4D: a perturbative calculation

    Energy Technology Data Exchange (ETDEWEB)

    Khvedelidze, Arsen [Department of Theoretical Physics, A.M.Razmadze Mathematical Institute, Tbilisi, GE-0193 (Georgia); McMullan, David [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States)

    2006-01-15

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W{sup {+-}}). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite.

  16. Magnetic monopoles in 4D: a perturbative calculation

    International Nuclear Information System (INIS)

    Khvedelidze, Arsen; McMullan, David; Kovner, Alex

    2006-01-01

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W ± ). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite

  17. Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from three dimensions (3D) to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disk-shaped BECs. We analyze the first sound velocity in axially homogeneous cigar-shaped BECs and in radially homogeneous disk-shaped BECs. We consider also the dimensional reduction in a BEC confined by a harmonic potential both in the radial direction and in the axial direction. By using a variational approach, we calculate monopole and quadrupole collective oscillations of the BEC. We find that the frequencies of these collective oscillations are related to the dimensionality and to the repulsive or attractive interatomic interaction

  18. Unitary gauge calculation of K0/sub L/ → μ+μ- in the Weinberg SU(2)'/sub L/ x U(1) gauge theory

    International Nuclear Information System (INIS)

    Olenick, R.P.

    1979-01-01

    The rare weak decay K 0 /sub L/ → μ + μ - is calculated in the unitary gauge of the Weinberg SU(2)/sub L/ x U(1) model of weak and electromagnetic interactions. A historical development of gauge theories is presented first; this indicates the need for extension of the hadron symmetry group to SU(4). The GIM mechanism, which extends this group by introducing the charmed quark, is incorporated into Weinberg theory. Explicit calculations of the fourth-order Feynman diagrams representing W + W - , Z 0 , γ, and Higgs scalar intermediate states are performed. Through the technique of dimensional regularization the divergent amplitudes are evaluated, and the calculation is shown to be renormalizable by counterterms generated from the original Lagrangian. The Higgs scalar contribution to the effective Lagrangian is found to be greatly suppressed compared to the W + W - and Z 0 contributions, which are used to estimate the charmed quark mass. Analysis reveals that a charmed quark mass less than or equal to 5 GeV will suppress the decay rate to the experimentally observed value. Concluding remarks are made

  19. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  20. Calculation of the 5th AER dynamic benchmark with APROS

    International Nuclear Information System (INIS)

    Puska, E.K.; Kontio, H.

    1998-01-01

    The model used for calculation of the 5th AER dynamic benchmark with APROS code is presented. In the calculation of the 5th AER dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic VVER-440 plant model created by IVO PE. (author)

  1. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  2. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  3. Variational model for one-dimensional quantum magnets

    Science.gov (United States)

    Kudasov, Yu. B.; Kozabaranov, R. V.

    2018-04-01

    A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.

  4. Spin—Dependent Scattering Effects and Dimensional Crossover in a Quasi—Two—Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANGYong-Hong; WANGYong-Gang; 等

    2002-01-01

    Two kinds of spin-dependent scattering effects (magnetic-impurity and spin-orbit scatterings) are investigated theoretically in a quasi-tow-dimensional (quasi-2D) disordered electron system.By making use of the diagrammatic techniques in perturbation theory,we have calculated the dc conductivity and magnetoresistance due to weak-localization effects,the analytical expressions of them are obtained as functions of the interlayer hopping energy and the characteristic times:elastic,inelastic,magnetic and spin-orbit scattering times.The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling is discussed,and the condition for the crossover is shown to be dependent on the aforementioned scattering times.At low temperature there exists a spin-dependent-scattering-induced dimensional crossover in this system.

  5. TRIPOLI 01, a three-dimensional polykinetic Monte Carlo program. Pt.1. Presentation of the TRIPOLI code

    International Nuclear Information System (INIS)

    Baur, A.; Bourdet, L.; Gonnord, J.; Nimal, J.C.; Vergnaud, T.

    1977-01-01

    TRIPOLI is a package of programs intended for solving the neutron polykinetic transport in any three-dimensional geometry. It is written in FORTRAN for IBM computers and the 400 kilo octets are not overflown (buffers excluded). The Monte Carlo method is used. Particular emphasis is put on the problems of reducing the calculating time through two different ways: weighting or smoothing techniques have been used for processing the strong attenuations with a reasonable computer time consumption, and the quantities have been pre-calculated to reduce to a maximum the simulation time. TRIPOLI has been conceived to solve a large scale of neutron propagation problems involving fast neutrons (calculation of radiation damage in materials, biological dose or inelastic γ production), slow neutrons (mechanical structure activation, neutron flux on control chambers or sources of capture γ radiation); near the cores (materials irradiation inside power or experimental reactors) or at large distances from the sources (activation of the secondary fluid or radiation streaming through the shields). Three new possibilities appear in TRIPOLI 2: calculations in unsteady operation, point calculations of the reaction rates using the method of 'the shockless flux after the shock', and the FINE RESPONSE method in opposition to INTEGRAL RESPONSES [fr

  6. Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting

    2011-01-17

    We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.

  7. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  8. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  9. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  10. Exact solutions for the (2+1)-dimensional Boiti-Leon-Pempielli system

    International Nuclear Information System (INIS)

    Hu, Y H; Zheng, C L

    2008-01-01

    The object reduction approach is applied to the (2+1)-dimensional Boiti-Leon-Pempielli system using a special conditional similarity reduction. Abundant exact solutions of this system, including the hyperboloid function solutions, the trigonometric function solutions and a rational function solution, are obtained

  11. Audit Calculations of LBLOCA for Ulchin Unit 1 and 2 Power Up rate

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donggu; Huh, Byunggil; Yoo, Seunghunl; Yang, Chaeyong; Seul, Kwangwon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The KINS-Realistic Evaluation Model (KINS-REM) was developed for the independent audit calculation in 1991, and the code accuracy and statistical method have been improved. To support the licensing review and to confirm the validity of licensee's calculation, regulatory auditing calculations have been also conducted. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power up rate is under review. In this study, the regulatory audit calculation for LBLOCA of Ulchin Unit 1 and 2 with 4.5% power up rate was performed by applying KINS-REM. In this study, the regulatory audit calculation for LBLOCA of Ulchin Unit 1 and 2 with 4.5% power up rate was performed by applying KINS-REM. It is confirmed that the analysis results of LBLOCA for Ulchin 1 and 2 power up rate meets the PCT acceptance criteria.

  12. Nuclear performance calculations for the ELMO Bumpy Torus Reactor (EBTR) reference design

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1977-12-01

    The nuclear performance of the ELMO Bumpy Torus Reactor reference design has been calculated using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV transport cross-section data and nuclear response functions. The calculated results include estimates of the spatial and integral heating rate with emphasis on the recovery of fusion neutron energy in the blanket assembly and minimization of the energy deposition rates in the cryogenic magnet coil assemblies. The tritium breeding ratio in the natural lithium-laden blanket was calculated to be 1.29 tritium nuclei per incident neutron. The radiation damage in the reactor structural material and in the magnet assembly is also given

  13. Instantons, three-dimensional gauge theory, and the Atiyah-Hitchin manifold

    NARCIS (Netherlands)

    Dorey, N.; Khoze, V.V.; Mattis, M.P.; Tong, D.; Vandoren, S.

    1997-01-01

    We investigate quantum effects on the Coulomb branch of three-dimensional N = 4 supersymmetric gauge theory with gauge group SU(2). We calculate perturbative and one-instanton contributions to the Wilsonian effective action using standard weakcoupling methods. Unlike the four-dimensional case,

  14. Dynamic colloidal assembly pathways via low dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu [Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Thyagarajan, Raghuram; Ford, David M. [Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterized by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.

  15. Structure and thermodynamic properties of (C5H12N)CuBr3: a new weakly coupled antiferromagnetic spin-1/2 chain complex lying in the 1D-3D dimensional cross-over regime.

    Science.gov (United States)

    Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan

    2014-04-07

    Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.

  16. One-dimensional metallic edge states in MoS2

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel

    2001-01-01

    By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...

  17. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation

    International Nuclear Information System (INIS)

    Gonzalez, Ivan; Schmidt, Ivan

    2007-01-01

    We present an improved form of the integration technique known as NDIM (negative dimensional integration method), which is a powerful tool in the analytical evaluation of Feynman diagrams. Using this technique we study a φ 3 +φ 4 theory in D=4-2ε dimensions, considering generic topologies of L loops and E independent external momenta, and where the propagator powers are arbitrary. The method transforms the Schwinger parametric integral associated to the diagram into a multiple series expansion, whose main characteristic is that the argument contains several Kronecker deltas which appear naturally in the application of the method, and which we call diagram presolution. The optimization we present here consists in a procedure that minimizes the series multiplicity, through appropriate factorizations in the multinomials that appear in the parametric integral, and which maximizes the number of Kronecker deltas that are generated in the process. The solutions are presented in terms of generalized hypergeometric functions, obtained once the Kronecker deltas have been used in the series. Although the technique is general, we apply it to cases in which there are 2 or 3 different energy scales (masses or kinematic variables associated to the external momenta), obtaining solutions in terms of a finite sum of generalized hypergeometric series 1 and 2 variables respectively, each of them expressible as ratios between the different energy scales that characterize the topology. The main result is a method capable of solving Feynman integrals, expressing the solutions as hypergeometric series of multiplicity (n-1), where n is the number of energy scales present in the diagram

  18. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki

    2015-03-01

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  19. Experiments and calculations on neutron streaming through bent ducts

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.); Zsolnay, E.M.

    1993-07-01

    Neutron spectra in a cylindrical straight duct and in bent ducts with angles of 30deg, 60deg and 90deg have been measured by the multiple foil activation and thermoluminescence dosimetry methods. Two-dimensional discrete ordinates and three-dimensional Monte Carlo calculations are executed, and the results are compared with the measurements. The flow rate at the duct entrance calculated by the DOT3.5 code is underestimated by approximately 30 %, due to a conversion of the core and reflector geometry from XY to RZ geometry. The fast neutron flux in the ducts is underestimated by 20 % by the MORSE-SGC/S code due to a too coarse angular mesh of the source, which does not properly represent the actual angular distribution of the fast flux, which is highly peaked forwardly into the ducts. The thermal neutron flux was over-estimated by the Monte Carlo calculation. A method is proposed to calculate the angular distribution of the flow rate at the duct entrance and to calculate the source strength and the angular distribution of the flow rate at the entrance of the second leg of the duct. The results are compared with those of the transport calculations. Generally, the agreement is quite satisfactory. (author).

  20. False vacuum decay in quantum mechanics and four dimensional scalar field theory

    Science.gov (United States)

    Bezuglov, Maxim

    2018-04-01

    When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.